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Dispersive nonreciprocity between a qubit and a cavity
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The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics.
It describes the frequency shift of one quantum mode in response to excitations in the other and, in closed systems,
is necessarily bidirectional, i.e., reciprocal. Here, we present an experimental study of a nonreciprocal dispersive-type
interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative
intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including
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asymmetric frequency pulls and photon shot noise dephasing, under varying degrees of nonreciprocity by tuning
the magnetic field bias of a ferrite component in situ. We introduce a general master equation model for nonreciprocal
interactions in the dispersive regime, providing a compact description of the observed qubit-cavity dynamics
agnostic to the intermediary system. Our result provides an example of quantum nonreciprocal phenomena beyond
the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.

INTRODUCTION

Theoretical and experimental studies of nonreciprocity are of great
interest, both due to their fundamental implications for realizing
exotic phases of matter (I1-3) and their relevance to applications in
classical and quantum information processing. The most widely in-
vestigated nonreciprocal phenomena concerns the scattering ma-
trix S of input and output signals for a multiport network, where
the transmission coeflicient is not invariant under the exchange of
the source and the receiver, i.e., S;; # Sji, with isolators and circulators
being the canonical examples. Realization of nonreciprocal scatter-
ing in optical (4, 5), acoustic (6, 7), and microwave domains (8, 9)
with new techniques has been an intensive area of study. On the
other hand, the concept of nonreciprocity goes beyond the scattering
properties of propagating linear modes, especially in quantum con-
texts where one often considers nonreciprocal interactions between
stationary quantum subsystems. When the stationary modes are
linear and in the classical correspondence limit, their nonreciprocal
interactions can be conveniently described by a non-Hermitian
Hamiltonian (5, 6, 10, 11). Such non-Hermitian dynamics have
been shown in recent works to generate a plethora of interesting
physical phenomena, including the non-Hermitian skin effect (10-12)
and previously unexplored critical phenomena under monitored
dynamics (13, 14).

Nonreciprocal interactions that are more uniquely quantum
arise when the subsystems of interest include strongly nonlinear
modes, which necessitates the use of master equations to describe
the system dynamics. A well-studied example is a cascaded network
of resonant qubits (15), where the interaction between neighboring
qubits is mediated by emission and absorption via a directional
waveguide (16). The resulting effective interaction can be described
as nonreciprocal transfer of single excitations. This cascaded model
has been investigated theoretically, where the nonreciprocity leads
to unique dynamics such as steady-state entanglement and dimerized
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many-body states. Experimental development in chiral quantum
optical platforms (17-19) and waveguide circuit quantum electro-
dynamics (QED) (20-23) are expected to realize such resonant non-
reciprocal phenomena in the near future.

It is natural to consider nonreciprocal interactions that go beyond
(one-way) excitation transfer, as is expected if the relevant subsystems
are nonresonant. This is particularly relevant in quantum device engi-
neering where it is commonplace to use weak hybridization of disparate
linear and nonlinear modes. For example, the dispersive Hamiltonian

between a qubit and a cavity, TXETEGZ, forms the cornerstone of circuit

QED and superconducting quantum computation (24). Here, the qubit
or the cavity experiences a frequency shift in response to an excitation
in one other, by the same amount y, exemplifying the reciprocal na-
ture of the dispersive interaction in a closed quantum system. While
the dispersive Hamiltonian is an approximate effective model of the
underlying Jaynes-Cummings type couplings, its ability to compactly
describe prominent experimental observables without needing all
microscopic details makes it an extremely valuable tool in describing
light-matter interactions.

Recently, a class of nonreciprocal interactions that is distinct from
the cascaded quantum systems has been theoretically investigated
(25). The simplest example, arising from dispersive-type couplings in
open quantum systems, can be described by a single Lindblad dissi-
pator, D[Ge™®:], which leads to a one-way influence of a cavity mode
a on a qubit 6, in terms of a phase or frequency shift. This leads to
several basic questions. What is the generic effective model of open-
system qubit-cavity interactions in the dispersive regime? How ro-
bustly can we model the nonreciprocal features of such interactions
in practical systems in the presence of complex microscopic details
and imperfections?

In this work, we experimentally realize and characterize a disper-
sive type of quantum nonreciprocal interaction between a supercon-
ducting cavity and a transmon qubit. To access varying degrees of
nonreciprocity in situ, we implement a hybrid quantum system where
the qubit-cavity interaction is mediated by a complex set of cavity-
magnon modes constructed from three-dimensional niobium and
copper waveguide cavities and a ferrimagnetic yttrium iron garnet
(YIG) crystal (26-29). We study the nonreciprocal influence between
the qubit and the cavity in terms of asymmetric dispersive frequency
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shifts and impacts on dephasing and decay rates. Our experiment
provides an example of generalized dispersive interaction in open
quantum systems.

A central conclusion of our study is that the nonreciprocal fea-
tures of dispersive-type interactions in an open system can be en-
capsulated by a simple Lindblad dissipator

041 A

D[e 2 GZﬁ]

(1)

This nontrivial extension of (25) applies to an extremely wide class
of microscopic dissipative bath models (i.e., a general linear network
of lossy modes) and allows a few-parameter description of the effec-
tive qubit-cavity interaction with full predictive power of the result-
ing quantum dynamics. We have validated this in our experiments.
While optimal methods for engineering desirable interaction prop-
erties (specified by 6 and n in Eq. 1) remain to be explored in future
work, our study establishes a practical characterization and anal-
ysis framework for describing the phenomena of dispersive non-
reciprocity.

RESULTS

In this main section, we will first introduce the experimental system
setup and present observations of dispersive qubit-cavity frequency
shifts with varying degrees of nonreciprocity through Ramsey mea-
surements. Then, we present a general master equation model of
dispersive nonreciprocity with dissipator Eq. 1 and experimentally
characterize the model parameters from measured free-evolution
dynamics of the system starting from an initial cavity coherent
state. Last, we validate and demonstrate the utility of the model in
predicting system dynamics under different control protocols such
as continuous cavity drive and Fock state generation.

System setup

Our experimental setup is shown in Fig. 1A. By inserting a single-
crystalline YIG cylinder into the center of a copper waveguide Y-
junction and applying a variable external magnetic field, we engineer
a nonreciprocal interaction between a niobium superconducting
cavity and a superconducting transmon qubit connected to two out-
put ports of the waveguide Y-junction (see Materials and Methods
for details). The level of directionality can be tuned in situ via the
external field. At an external bias of about +20 mT, the ferrite-loaded
Y-junction functions like a circulator that mediates directional micro-
wave transmission between the cavity side and the transmon side with
a bandwidth of a few hundred megahertz (26).

Unlike in a practical circulator where broadband directional isola-
tion is usually a first priority, the most important quality of our device
is the low internal loss of the cavity and magnon modes. Therefore, we
can describe the entire intermediary system (except for the cavity and
the qubit themselves) as a network of coupled linear modes that share
only one dominant decay channel, the 50-ohm transmission line at
the third port of the waveguide Y-junction, as shown in Fig. 1 (A and
B), regardless of the external field. This allows us to treat the linear
network, whose underlying details prove too challenging to charac-
terize precisely, as a single dissipative bath in mediating the effective
interaction between the longer-lived qubit and cavity. It is such a gen-
eralized quantum interaction, which encompasses both the standard
dispersive interaction (24) and the dissipative directional effects as
represented by Fig. 1C, that is the subject of our study.
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Fig. 1. Schematics of our integrated nonreciprocal device. (A) A cartoon draw-
ing of our device (not to scale), composed of a Cu waveguide Y-junction loaded
with a YIG cylinder, two close-ended Nb rectangular waveguide segments with
weakly coupled drive ports, named as the “cavity port”and the “qubit port,’ respec-
tively, in the figure. The bottom left segment houses the cavity mode under study
and an ancilla transmon (small orange cross) to facilitate readout of the cavity state.
The right segment houses the transmon qubit under study. The magnetic dipole in
the YIG crystal is coupled to a series of microwave modes through its precession
under external magnetic field. The top waveguide segment of the Y-junction is
impedance-matched to a transmission line for signal output. (B) A general sche-
matic of the mode connectivity of system, where the cavity is exchange-coupled to
many intermediary modes and the qubit is dispersively coupled to them.The inter-
mediary modes contain a large collective loss inherited from the open waveguide
port. (C) Schematic representation of the qubit-cavity effective model, Eq. 2, with
their reciprocal dispersive coupling A and a dispersive type of nonreciprocal dissi-

[LEL PN
pation operator I'D [e 58 a].

Integration of superconducting qubits in a hybrid quantum system
with ferromagnetic magnons faces substantial challenges in miti-
gating the impact of magnetic fields on qubit coherence. Previous
experiments used permanent magnets to provide strong local bias
fields away from the qubit, achieving qubit lifetimes ranging from <1 ps
(30-32) to about 3 ps recently (33) but have limited to no tunability of
external field. In our experiment, we use the large electromagnet of
the cryostat to apply a global magnetic field to the device, sufficient to
fully reverse the directionality of the qubit-cavity coupling. At the same
time, the qubit is shielded by the Meissener effect of a niobium wave-
guide and a layer of high-permeability foil. We observe T and T, on
the order of a few microseconds (up to 10 ps) while being unaffected
by the applied field up to 0.1 T. While future implementation of
tunable nonreciprocity in circuit QED may ultimately benefit from
alternative strategies based on Josephson parametric circulators (9,
34, 35), our ferrite-based platform avoids the outstanding challenges
of parametric pump tone leakage that could severely degrade qubit co-
herence and obscure the dispersive effects with spurious Stark shifts.

The cavity in our experiment is evanescently coupled to the Y-
junction through an aperture, whose loss is dominated by coupling
to the Y-junction. The cavity can be driven from a weakly coupled
cavity port as labeled in Fig. 1A. An additional transmon (marked as
an orange X) is installed inside the cavity for readout of the cavity
state. This additional transmon will not participate in the quantum
dynamics under study and will be referred to as the ancilla, to distin-
guish it from the qubit. On the other hand, the qubit can be driven
from a weakly coupled qubit port as labeled in Fig. 1A. The qubit is
Purcell protected by effectively a buffer cavity mode formed by a
modest constriction slot between the niobium waveguide segment
and the Y-junction. This extra buffer mode is sufficiently short-lived
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to be treated as part of the dissipative bath rather than a quantum
object, but it provides an impedance environment to boost the inter-
action between the qubit and the cavity.

Observation and control of nonreciprocal frequency shifts
As the qubit and cavity are detuned, we expect the mediated interac-
tion to be dispersive. To characterize the phenomenon of dispersive
nonreciprocity between the qubit and the cavity, we compare the
qubit frequency shift per cavity photon, labeled .4, with cavity fre-
quency shift in response to the qubit excitation, labeled yq.. A closed
quantum system is reciprocal, where the dispersive frequency pull
per excitation in both directions are guaranteed to be equal, i.e., xcq =
Xqc- Violation of this relation is a sign of nonreciprocity.

To measure x4, we perform Ramsey experiments on the qubit
with and without cavity photons. By comparing these measure-
ments, we can extract the accumulated extra qubit phase shift ¢
caused by cavity photons over a finite time window of # = 200 ns, as
shown in Fig. 2A. The cavity is initialized in a coherent state with an
initial mean photon number of 77, & 3. The choice of njand ¢ is mo-
tivated by optimizing signal-to-noise ratio while keeping the cavity
well within the linear regime. The cavity photon number undergoes
free decay over time, and hence, the instantaneous qubit frequency
also varies over time. Assuming the dispersive frequency shift is pro-
portional to photon numbers (as is the case in closed-system circuit
QED), we define the cavity-to-qubit dispersive shift Xcq = ¢ /(E - yy),
where 71, is the time-averaged cavity photon number during the inte-
gration time . Example results of the qubit state versus rotation angle 6
of the second Ramsey n/2 pulse are shown in Fig. 2B (solid lines),
which informs the amplitude and phase of the qubit coherence
function (c_(t)) at fixed time ¢. By comparing (c_(t)) to the reference

qubit state {c°(t)) measured without cavity photons (dashed
lines) at the same f, we can extract the photon-induced phase
shift ¢ and decoherence factor { at time t from (c_) / (c° ) = e,
The time-averaged cavity photon number 7,,, is calibrated using a
separate Ramsey experiment of the ancilla inside the cavity for the
same time window, which allows for normalization of yq as a per-
photon quantity (see Materials and Methods for details of the calibra-
tion). The extracted decoherence factor { informs the cumulative loss
of qubit coherence due to photon shot noise over the time window ,
which can be similarly converted to a qubit dephasing rate per
photon, ¥ = —In(§) /(- 7,,),

On the other hand, . is measured with a cavity Ramsey protocol
with the qubit in its ground (|g) = |1)) or excited (|e) = |{)) state. The
cavity Ramsey sequence is composed of two cavity displacement
pulses with a wait time ¢ in between, as shown in Fig. 2C. We use the
dispersively coupled ancilla inside the cavity to read out the cavity
state. This readout, inspired by photon number measurements in the
strong dispersive regime (36, 37), is implemented by a relatively long
(spectrally narrow) ancilla n-pulse, followed by reading out the state
of the ancilla. Example results of the ancilla state over ¢, representing
the oscillation and decay of the cavity coherent state, are plotted
in Fig. 2D, with the solid and dashed lines corresponding to the qubit
in |g) and |e) states, respectively. Since the qubit lifetime T} > ¢,
the qubit state does not change over the measurement window to
a good approximation, as confirmed by the constant cavity oscillation
frequency in this measurement. The extracted cavity frequency wg
and . gives Yqc = g — O,

The two types of Ramsey measurements are carried out for vari-
ous external magnetic fields, and the extracted dispersive shifts in
both directions, yqc and y.q, are plotted in the top of Fig. 2E. The
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Fig. 2. Demonstration of nonreciprocal qubit-cavity frequency shifts. (A) The pulse diagram and (B) example results of a qubit Ramsey measurement under coherent
cavity photon population at selective magnetic field (B = +£30 mT). The qubit coherence evolution is obtained by initializing the qubit in an equator state and cavity in a
coherent state with a displacement pulse D(«). The system then evolves over a wait time t followed by a second 7/2 qubit rotation along a variable rotation angle 6 and a
readout (RO) of the qubit state. The qubit state against rotation angle 6 yields a sinusoidal graph as plotted in (B), where the phase and amplitude can be extracted. The
solid and dashed lines show the qubit Ramsey curves with and without cavity photons, respectively. (C) The pulse diagram and (D) the experimental result of the cavity
photon Ramsey measurement with a relatively long ancilla excitation pulse [orange Ry(n)] to obtain the qubit-dependent cavity frequency, where the solid (dashed) lines
correspond to the qubit in |g) (|e)). (E) The top plots both measured ys under different external magnetic fields showing variable nonreciprocity between the cavity and
the qubit. yqc is near-symmetric across the external field, as apparent in (D), where the —30- and 30-mT curves are similar to each other. xq is clearly asymmetric, where
the positive and negative field results are distinctly different, as shown in (B). The bottom is the qubit dephasing rate under different external magnetic fields.
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magnetic field serves as a control knob to vary the complex bath-
mediated qubit-cavity interaction. While it is not unexpected that
nonreciprocity exists in the presence of magnetic field, our experi-
ment presents an unambiguous signature of nonreciprocity in the
dispersive regime, Yqc # Xcq» and demonstrates in situ control over
the degree of such nonreciprocity, e.g., ranging from approximately
reciprocal near-zero field to strongly nonreciprocal at high negative
fields. Moreover, we note a few nontrivial features in the magnetic
field dependence. First, yqc shows symmetry with respect to B; this
is a result of an Onsager-type constraint on eigenvalues of a linear
non-Hermitian Hamiltonians, which in turn arises from microscop-
ic time-reversal symmetry even in the presence of external field. In
contrast, Xcq and the photon-induced dephasing rate y (the bottom
of Fig. 2E) show no such symmetry; this can be attributed to their
sensitivity to the eigenvectors of the non-Hermitian Hamiltonian
(see section S1C). Second, the nonreciprocity at zero field is small
but definitely nonzero within experimental uncertainties. While many
experiments have realized magnetless nonreciprocity by engineering
synthetic flux (35, 38), our data at zero field demonstrate an interest-
ing theoretical aspect of quantum nonreciprocity: The dissipative in-
teraction between quantum subsystems can be nonreciprocal without
real or synthetic magnetic field (25).

Effective nonreciprocal model in the dispersive regime

While the phenomenological observables yqc and yq highlight a dis-
tinctive aspect of the effective qubit-cavity dispersive interaction,
they do not a priori fully characterize the general dynamics of the
qubit-cavity system. Given an arbitrary initial state of this qubit-
cavity system, how can we model the system to fully predict its time
evolution? Of course, if we know the full details of all relevant interme-
diary modes (Fig. 1B), including their mode frequencies, decay rates,
internal and external coupling rates, then one could, in principle, solve
the dynamics of the expanded system. However, not only is this ap-
proach computationally expensive and intuitively opaque, it is often
unrealistic to extract detailed knowledge of a highly-dissipative multi-
mode system. On the other hand, if the system is in a regime that allows
(i) adiabatic elimination of the intermediary modes and (ii) dispersive
approximation of the qubit, then we can derive a simple effective
Markovian master equation only involving the cavity a and the qubit:

~ Jr Ata Aa Ata A]
d,p=—i|lAa'a+=c6,a'a,p|+
P ¢ 5%z p @)
041 A
D[a]p+TDle > alp

which is written in the rotating frame of both the qubit and a reference
frequency of the cavity [see Materials and Methods and section S1 (A
and B) for details] and can be fully specified via six independent real
parameters. We have not included here the intrinsic decoherence of
the qubit that would give rise to additional qubit-only dephasing and
relaxation dissipators.

We now provide physical intuition for the emergence of Eq. 2 from
the underlying microscopic model in Fig. 1B. As mode a is coupled to
a linear network of bath modes, the effective cavity detuning A, cav-
ity decay rate , and the conventional reciprocal dispersive interaction
Z“(5 a'a are expected. The nonlinear collective dissipator D|e™ T )
in contrast, describes a form of bath-mediated nonreciprocal interac-
tion between the qubit and the cavity. It is instructive to consider this
dissipator in two special limits
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1) © # 0, n = 0: The dissipator D ¢2%:G| describes a fully direc-
tional dispersive interaction from the cavity to the qubit. The instanta-
neous one-way dispersive shift is I'sinf per photon (c.f,, Fig. 3C). Ata
heuristic level, this interaction is due to processes where cavity photons
hop to the intermediary modes, briefly interact with the qubit, and then
leak out to the environment (Fig. 3A). This dissipator has the general
form D[a UB] (where UB is a unitary operator on a subsystem B). As
discussed in (25), general dissipators of this form exploit a dissipative
gauge symmetry to realize one-way 1nteract10ns

2) 8 =0, 1 # 0: The dissipator D[ez Za] describes a qubit-state—
dependent cavity decay process. For an example observation of this
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Fig. 3. Schematic representation and experimental parameters of the master
equation. (A) The case of 8 # 0, = 0: The dissipator describes a fully directional dis-
persive interaction from the cavity to the qubit, which comes from the one-way travel-
ing photon in the intermediary modes (the blue dashed wave packet) suppressing the
qubit transition energy. (B) The case of 8 = 0, n # 0: The dissipator describes a qubit-
state-dependent cavity decay process, which comes from density-of-states function
of the intermediary mode being dispersively shifted by the qubit. (C) The six master
equation parameters experimentally determined at different magnetic fields via
Eqgs. 12 to 17 (see Materials and Methods). We also show I'sinf, which is the instanta-
neous one-way dispersive shift in the case of (A), and I'sinhn, which is the qubit-state
dependence of cavity decay rate in the case of (B). Note that the parameter A is
equivalent to yqc in Fig. 2E.
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effect, see Fig. 4. We can view the multimode intermediary structure
together with the qubit as a dissipative environment for the cavity (see
Fig. 3B). As the qubit dispersively shifts the intermediary modes
and hence the density-of-states function of the bath, the cavity decay
rate (governed by the Fermi’s golden rule) acquires a qubit-state-
dependent term of I'sinhn. As a backaction of this effect, the qubit
experiences a pure dephasing rate of 2I'sinh?(1)/2) per photon without
frequency shifts. This dissipative interaction is bidirectional but very
asymmetric between the qubit and the cavity.

As we show in section S1A, introduction of these two types of dis-
sipative interactions, together with the regular dispersive Hamiltonian,
gﬁzafa, captures any linear bath-mediated qubit-cavity interaction in
the dispersive regime quite generally, assuming the adiabatic ap-
proximation holds. Bypassing the intricate details of the bath modes,
the effective model of Eq. 2 allows description of arbitrary quan-
tum dynamics in the qubit-cavity Hilbert space. To experimentally
specify the model parameters of our system, we can use a small set
of measurements where the cavity is initialized in a coherent state,
and its subsequent dynamics can be described by semiclassical
mode amplitude and fluctuations. By combining measurements of
the photon-induced qubit phase shift and dephasing over a given
time window (Fig. 2, A and B) and measurements of the cavity fre-
quencies (Fig. 2, C and D) and decay rates (Fig. 4) for both qubit
states, we can obtain six real observables to uniquely determine all
the parameters in the master equation (Materials and Methods).

T TC
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Fig. 4. Measurements of qubit-state-dependent cavity decay rates. (A) The
pulse diagram and (B) example result (B = —30 mT) of cavity decay rate measure-
ment, with qubit prepared in |g) or |e). The cavity is prepared in a coherent state
with a displacement pulse D(a). We map the cavity photon number to the ancilla’s
phase shift ¢ over a sliding time window of fixed length (t = 100 ns), which is mea-
sured in a Ramsey sequence of the ancilla. Although the instantaneous cavity pho-
ton number changes substantially during the time window t, the cumulative phase
shift can be used to infer the average photon number n_ during 7. n_ can be fit to an
exponential decay as the Ramsey window slides in time t for both the qubit in |g)
and in |e), which gives the cavity decay rates for the respective cases.
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The applied magnetic field B provides an in situ tuning knob that
allows us to access many distinct instances of the model, each deter-
mined independently with parameters plotted in Fig. 3C. How the
magnetic field controls each of the model parameters depends on
complex details of the intermediary bath modes, which is not a fo-
cus of our study. Nevertheless, we observe in Fig. 3C that I'sinhn, A,
and A, at +B are symmetric. This is the consequence of microscopic
symmetry requirements. In a linear system with microreversibility,
the Onsager-Casimir relation (39) requires that the full scattering
matrix S satisfy S(—B) = ST(B). This relation holds separately for
each qubit states since our original multimode system dynamics
conserves G,. As a result, the effective complex frequency of the cav-
ity must be symmetric with respect to magnetic fields +B for both
qubit states, which leads to the symmetry of A, A, I'sinhn, and k +
I'coshn (see section S1C for details). Note that an analogous theo-
retical argument predicts that k should be symmetric in B, which is
apparently violated by the data in Fig. 3C and will require further
investigation. This might be explained by the presence of other long-
lived modes in the system (such as a different cavity mode or a mag-
non mode) that are weakly coupled to the qubit and off-resonantly
excited, which may make the calculation of I" and thus « less accurate.
We also observed temporal fluctuations in the internal loss rate of
the cavity, which may have contributed to this discrepancy.

Verification of the qubit-cavity dynamics

At this stage, we have used a set of experimental measurements to
characterize the parameters of the general master equation model in
Eq. 2 that should describe a generic nonreciprocal, dissipative dis-
persive qubit-cavity interaction. Of course, this extraction of param-
eters does not by itself show the validity or utility of our model.
Now, we use our fully constrained model to make predictions for
independent experiments (with different initial states and/or drives)
and compare these directly against experimental results.

In the first verification experiment, we investigate the qubit response
to continuous wave (CW) cavity drive. Here, we drive the cavity continu-
ously at constant amplitude and varying frequencies and measure the
resultant ac Stark shift and photon shot noise-induced dephasing
rate on the qubit using a Ramsey sequence (Fig. 5). Note that the
cavity is stabilized to a steady state during the Ramsey protocol as
opposed to undergoing free decay in the experiments presented in
section S2B. The model prediction of the driven system, which can
be solved after appending a drive term €(d@'e= + h.c) to the
Hamiltonian in Eq. 2, agrees quite well with the experimental
data with no free parameters (see section S1E for details). We observe
that the Stark shift and dephasing rate often display distinctly differ-
ent peak frequency (e.g., 30 and —30 mT as shown in Fig. 5B), which
is unexpected for a traditional dispersively coupled qubit-cavity sys-
tem and therefore is a signature of the nonreciprocal interaction in
our system. This nontrivial feature in the frequency and line shape is
well captured by our model. In comparison, at 0 mT, when the system
is close to reciprocal, the Stark shift and decay rate peak at a similar
frequency.

In another test of the master equation model, we investigate the
time-domain evolution of the qubit in the presence of cavity pho-
tons. The experimental protocol is the same as in Fig. 2A, where the
cavity is initialized in a coherent state and the qubit is initialized in
an equator state. In Fig. 6 (A and B), we show the qubit coherence
factor { and the cumulative phase shift ¢ as a function of time ¢ for
arange of external fields. The slopes of the coherence factor (on alog
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Fig. 5. Parameter-free verification of the master equation model with continu-
ous cavity drive. (A) The pulse diagram and (B) example of the theory prediction
(solid line) and experimental result (dot) of qubit Ramsey measurement under
steady state CW (5 ps) cavity drive at selective fields (constant drive amplitude
across detunings). The Ramsey is performed with a fixed time window at the end of
the CW tone. At each CW detuning, the Ramsey data give the Stark shift and de-
phasing rate. The result at —30 mT is scaled by 1/2 for better visualization. The blue
dashed line indicates the cavity frequency A, at 0 mT, and the 0-mT Stark shift and
dephasing peaks correspond well with this frequency, as expected. The orange
dashed dot line indicates A, at +30 mT. Here, the peak frequency in Stark shift and
dephasing rates are distinctly different from each other. See section S2E for more
data at different fields.

scale) and the phase shift on these plots correspond to the instanta-
neous photon shot noise dephasing rate and ac Stark shift, and the
decrease of slopes over time indicates the continuous decay of cavity
photon numbers. A nontrivial feature to be noted is that the dephas-
ing and frequency shift effects decay on slightly different timescales,
which can be seen more clearly from their ratio, In({)/¢, which is
not a constant over time (Fig. 6C). The time evolution based on the
master equation model can be solved as shown in Materials and
Methods (Eq. 10) and are plotted as solid curves for comparison.
Since the model is applicable on timescales where all fast bath de-
grees of freedom can be adiabatically eliminated, discrepancies are
expected on short timescales. This is especially true at higher mag-
netic fields when the buffer cavity enclosing the qubit has longer
lifetimes (20 ns). The model captures the time-domain data well
at low fields (e.g., 0 and +10 mT). At higher fields, we find that
the model can describe the temporal evolution reasonably if one
allows for an empirical time offset as a fit parameter, which is 33 and
31 ns for +30 mT in Fig. 6. This ad hoc modification to the model
can be understood as some “turn-on” time allowing for the bath
(which is not infinitely fast) to reach the quasi-steady state set by
the initial condition of the qubit-cavity system. Figure 6C provides
a more sensitive test of the model, which correctly captures the
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time-varying ratio of the dephasing and phase shift effects, although
the discrepancies at short times and higher fields become apparent
due to the limited separation of timescales.

Last, we apply Eq. 2 to scenarios with non-Gaussian cavity states.
Specifically, we consider cavity-qubit dynamics where the cavity is
initialized in a single-photon Fock state. Here, we can no longer un-
derstand the system via semiclassical equations of motion for mode
amplitudes (e.g., as in Eqgs. 8 and 11 that we used to characterize the
model parameters), but Eq. 2 remains valid and provides direct in-
sights to the nonreciprocal qubit-cavity dynamlcs An interesting
special case is n=0 where the dissipator 'D|e°-a| implements a
unitary gate ¢2° on the qubit when the photon escapes the cavity.
Therefore, if the cavity does not lose the photon via other channels
(i.e., k = 0), then the qubit will receive a deterministic phase shift of
0 after t > 1/I" without incurring photon-induced dephasing. A
practical application of this deterministic phase shift is microwave
single-photon detection as was implemented in (40, 41). These ex-
periments used a conventional circulator to enforce directionality
and were understood as the interaction between a qubit and a travel-
ling photon in a transmission line. Our model effectively describes
the interaction between the detector qubit and the source cavity of
the photons and is further generalized to allow the nonreciprocity
of the interaction channel to be varied continuously.

Our experimental platform, aided by the ancilla inside the cavity,
allows us to generate single photons and investigate their interaction
with the qubit over a range of model parameters by varying mag-
netic fields. A cavity Fock state |1) can be generated by first prepar-
ing the ancilla transmon in the |f) state (its second excited state) and
applying a strong drive to induce the four-wave-mixing (FWM) [0) —
|g1) sideband transition, which converts the double excitations in
the ancilla to a single cavity photon. Experimentally, our FWM tran-
sition rate is limited to 0.6 MHz, which, compared to cavity total
decay rate of 1.5 to 4 MHz, is not fast enough to instantaneously
initialize the cavity in |1) before the dissipative process takes place.
Nevertheless, in the limit where the ancilla’s |f) state is perfectly pre-
pared and long-lived, under a sufficiently long FWM drive, there
will be one and only one photon generated and emitted from the
cavity, effectively realizing single-photon dynamics in our qubit-
cavity system.

We implement this approach of single-photon generation with a
pulse sequence as shown in Fig. 7A and measure the long-time (¢ =
700 ns) cumulative phase shift ¢ and dephasing In(¢) of the qubit
similarly as in previous coherent state-based experiments. When
the bath modes of the device function approximately like a circula-
tor in the direction from the cavity to the qubit (near B &~ —20 mT),
one can expect suppressed qubit dephasing but nonzero phase shift
for a single photon. Therefore, the suppressed ratio of In({)/¢ is a
distinctive signature of the Fock state-qubit interaction compared
to a coherent state-qubit interaction. In Fig. 7B, we show that In()/¢
is smaller for the Fock state-induced dynamics for a range of nega-
tive fields. (At positive fields, both phase shift and dephasing are too
small to be measured accurately in the single photon limit.) The ex-
perimentally measured dephasing factor in the Fock state experi-
ment, as reflected in the In({)/¢ ratio (red data points), is larger than
the Eq. 2 prediction (see section S1F) assuming a perfect initial Fock
state. After accounting for limited conversion efficiency (about 89%)
of the [f0) — |g1) sideband transition in the presence of ancilla T}
decay and limited fidelity (estimated about 85%) in preparing
the ancilla |f) state, the experimental data agree well with the model
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Fig. 6. Experiment-theory comparison of the transient dynamics. Time-domain values of (A) qubit coherence (¢), (B) accumulated phase shift (¢), and (C) the ratio
between qubit decoherence and phase shift [In(¢)/$] of qubit Ramsey measurement results at =30 mT (red), —10 mT (yellow), 0 mT (blue), 10 mT (orange), and 30 mT
(purple). The cavity is initialized in a coherent state for all data. The scatter dots are experimental results, and solid lines are theory predictions from the master Eq. 2. The
—30-mT data in the coherence panel is plotted according to the red y scale on the right side, the —30-mT data in phase shift panel and +30-mT data in the decoherence/
phase shift panel are scaled by 1/2 for better relative visual scaling. Experimental dots start at 30 ns considering the 60-ns qubit pulse right before readout pulse. An ad

hoc horizontal shift of 33 and 31 ns has been applied to the theory curve (see text).

prediction. The experiment also illustrates that the In(C)/¢ ratio for
coherent state dynamics is approximately symmetric with respect to
magnetic field, in agreement with theoretical predictions based on
Onsager-type relations (see section S1D), and this symmetry no
longer holds for general quantum dynamics of non-Gaussian states.

DISCUSSION

In this work, we have realized a dispersive type of nonreciprocal inter-
action between a qubit and a linear cavity in superconducting circuit
QED. This effective interaction, manifested as asymmetric frequency
pulls without direct excitation exchange, is mediated by a dissipative
bath with broken time reversal symmetry. We introduced a general
one-qubit one-cavity master equation model, Eq. 2, which extends the
ubiquitous qubit-cavity dispersive interaction in circuit and cavity
QED to a dissipative setting and allows simple predictions of qubit-
cavity joint dynamics without tackling the complexity of the bath. We
verify the efficacy of this master equation model through measure-
ments of the qubit dynamics interacting with continuous cavity drive,
initial cavity coherent states, and single-photon states.

While the use of nonreciprocity in superconducting circuits so
far has been primarily limited to canonical circulators in peripheral
input/output settings, substantial efforts are under way to integrate
nonreciprocal elements with the core part of the quantum devices.
These studies, for example, range from the development of on-chip
superconducting parametric circulators for qubit readout (9, 34,
35), the use of commercial circulators as directional links between
quantum modules (42, 43), to the development of one-way emitters
in waveguide QED (21, 23) and the realization of chiral cavity QED
for topological many-body physics (33, 44). As bath-mediated non-
reciprocity becomes more deeply embedded in the devices, complex
interactions between quantum modes and components will arise
beyond the dichotomy of direct (capacitive/inductive) coupling and
cascaded coupling (via a circulator). To design and to characterize
these devices with embedded nonreciprocal elements, it is crucial to
have an effective model that are not only general enough to capture
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the main features and imperfections of nonreciprocity but also sim-
ple enough to not invoke the dynamics of the bath. Our work fulfills
this need in future engineering and utilization of nonreciprocal cir-
cuit QED systems.

Beyond circuit QED, demonstration of dispersive nonreci-
procity opens a frontier in the study of nonreciprocity beyond stan-
dard scattering-type interactions. For example, making use of the
intrinsic connection between those nonreciprocal dynamics and
measurement-and-feedforward processes (25, 45), having access to
those dynamical elements, could enable realization of passively
protected quantum memory (46) and even autonomous quantum
error correction (47). The dispersive nonreciprocity demonstrated
here also provides a powerful building block for dissipative quantum
simulation. For example, there is immense interest in classical many-
body models with kinetic constraints that are inherently directional
(48-51). Our dispersive nonreciprocal interaction provides a route
for realizing quantum analogs of such models. More generally, our
work thus lays the foundation for investigating and engineering the
dispersive type of nonreciprocity, both in the quest for novel dissipa-
tive quantum phases of matter and for potential applications in quan-
tum technologies.

MATERIALS AND METHODS

Device details

As shown in Fig. 1A, a ¢-5.58 mm X 5.0 mm single-crystalline YIG
cylinder is placed at the center of a copper waveguide Y-junction, with
external magnetic fields applied along its height (the [111] orientation
of the YIG crystal). The three sides of the Y-junction are connected,
respectively, to (i) a narrow-band niobium superconducting cavity
(the cavity of interest), which also contains an ancilla transmon for
the convenience of cavity state preparation and analysis, (ii) a broad-
band niobium cavity which functions as a buffer mode and contains
the transmon qubit (the qubit of interest), and (iii) a 50-ohm trans-
mission line which is the source of the collective dissipation of the
intermediary modes.
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Fig. 7. Parameter-free verification of the master equation with single photon
generation. (A) The pulse diagram of qubit Ramsey experiment in the presence of a
single photon generated by an FWM pulse. After initializing the ancillain |f), a |f0) — |g1)
FWM pulse is applied to convert the ancilla |f) state to a cavity photon. (B) The experi-
mental result of the qubit dephasing/Stark shift ratio from the |f0) — |g1) FWM
measurement (red triangle) and coherent cavity state measurement (blue circle),
compared to theory predictions with different initial states: ideal single photon
Fock state (orange square), FWM Fock state generation mimicking the experimen-
tal setups (purple diamond), which considers the initial thermal population of the
ancilla and pulse infidelity thus set ancilla state initializing at 85% in |f) state, and
the ancilla T; decay during the FWM pulse.

The collective spin precession inside the YIG crystal (magnon
excitations) is hybridized with the electromagnetic modes in the vi-
cinity of the waveguide Y-junction in a chirality-dependent manner,
forming a series of chiral photon-magnon polariton modes (26, 27,
52). In particular, a pair of near-degenerate polariton modes with
zero-field frequency close to 10.8 GHz are primarily responsible for
generating an effective dissipative linear coupling between the cavity
and the buffer mode. External magnetic fields lift the degeneracy of
the polariton mode pair, resulting in clockwise and counterclockwise
eigenmodes with mode splitting approximately proportional to mag-
netic field in the regime below magnetic saturation (see section S2B
for more detailed discussion of an ideal toy model of the intermediary
mode coupling structure). When the mode splitting approximately
matches the loaded loss rate (B ~ +20 mT for this mode pair), the
Y-junction functions approximately like a waveguide circulator with an
operating bandwidth of a few hundred megahertz (set by the few hun-
dred megahertz loss rate via the transmission line) near 10.8 GHz (53).
This device allows us to vary the external magnetic field and hence ac-
cess coupling channels beyond the special case of the canonical circula-
tor. Note that we apply demagnetization training cycles to suppress the
magnetic hysteresis effect before performing experiments at the zero
field, thus the hysteresis is negligible. More details of our YIG-cavity
device platform and a modeling of the few-mode cavity polariton sys-
tem without qubits can be found in a previous article (26). However, we
emphasize that explicit modeling of the lossy intermediary modes
based on limited characterization tools (such as the cavity transmission
measurements, see fig. S2) does not yield accurate prediction of the
qubit-cavity dynamics. This highlights the usefulness of the master
equation model Eq. 2 which does not require detailed knowledge.

The Hamiltonian and coherence parameters of the cavity and
qubit modes are listed in Table 1. We used the TE201 mode of two
rectangular cavities for the main cavity mode and the buffer mode,
whose frequencies are closely matched to each other using tuning

Table 1. Experimental parameters for the device used in the measurements. The cavity linewidth is a range rather than fixed value as it is dependent on the

field and the qubit state.

9.141 GHz

Frequency

Wang et al., Sci. Adv. 10, eadj8796 (2024) 17 April 2024
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screws and designed to be in the vicinity of the aforementioned
Y-junction polariton modes near 10.8 GHz. The frequencies of the
qubit and the ancilla are far detuned from cavity modes; hence, their
coupling to the dissipative modes is deeply in the dispersive re-
gime. The ancilla is a transmon dispersively coupled to the cavity, so
that setting the ancilla transmon in ground or excited state would
keep the cavity in different frequencies. Thus, we can read the transmon’s
state through regular dispersive readout, by sending a readout pulse
at the cavity’s resonance frequency, and checking the response
amplitude or phase to readout the ancilla. We have also carried
out similar experiments on a second device with similar cavity
parameters but different transmon parameters, and the results are
included in the Supplementary Materials.

General theory of dispersive nonreciprocity

Here, we outline the general theory framework, where one starts from
minimal assumptions about the microscopic system and derives the
general model in Eq. 2. Detailed derivations can be found in sec-
tion S1A. The nonreciprocal device studied in this work generally
consists of one cavity mode ¢; (mode a in the main text), which is
coupled to additional waveguide and circulator modes denoted by ¢; (j =
2,3..., N), as well as a qubit dispersively coupled to the waveguide
modes. In what follows, we assume that the qubit is strongly coupled
to a single waveguide mode c,, which corresponds to the bare buffer
cavity mode used in this work. However, we note that the final result
here, i.e., the effective master Eq. 2, also holds in more general cases
where the qubit is dispersively coupled to multiple intermediary
modes. The total system dynamics can be described by a Lindblad
master equation (setting 7 = 1)

~

0p=—i|Ho+—=5,+ D[ +LaissP 3)

Z

N|8

Yog 32,5
2

where H, denotes the Hamiltonian of the coupled linear-mode
system, and Lgiss encodes the dissipative dynamics of the total
cavity-circulator system. The dynamics of the bosonic modes alone
is quadratic, so that we have

Z hfmA‘ Am

£,m=1

(4)

1 ~ia
gdlssp - Z rfm( pC __{ f m’p})

¢,m=1

©)

Note that the coeflicient matrices hz,, and I'z,,, generally depend
on the external field B.

We focus on the regime where the waveguide and circulator
modes evolve at timescales much faster than the cavity-qubit system
of interest, which agrees with the experimental system. In this case,
we can integrate out the waveguide and circulator degrees of free-
dom to obtain an effective description of the cavity-qubit dynamics.
This adiabatic elimination can be carried out, e.g., using the stan-
dard procedure (54) directly with Lindbladians; see also section S1A
for an explicit derivation based on quantum Langevin equations of
motion and section S1B for an in-depth discussion about how the
general model is valid for the experimental systems considered in
this work. The final effective quantum master equation generally
takes the form of Eq. 2.
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Calibration of cavity photon number

The averaged photon number 71, is required for calculating the qu-
bit frequency shift per cavity photon, yq = ¢/ (£ - 11,,). To calibrate
M4, we measure the ancilla that is directly dispersively coupled to
the cavity, where we perform Ramsey experiments on the ancilla
with and without cavity photons. By comparing these measure-
ments, we can extract the accumulated extra ancilla phase shift ¢,
caused by cavity photons over a finite time window of t = 200 ns, as
shown in Fig. 8A. Example results of the ancilla state versus rotation
angle 0 of the second Ramsey 7/2 pulse is plotted in Fig. 8B, with the
solid and dashed lines representing cases without and with cavity
photons, respectively. As ¢, is proportional to the 7, with the ratio

T D(a) b4
A x( ) Rg (_) RO
Cavity port /\
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Fig. 8. Photon number calibration. (A) The pulse diagram and (B) the example
experimental result of cavity photon number calibration for an ancilla qubit
Ramsey measurement under cavity photons. We obtain the ancilla phase evolution
by varying the delay time between the cavity pulse and the second ancilla /2
pulse. The result of the ancilla state against the rotation angle 6 is plotted. We ob-
tain the phase and the amplitude from these sinusoidal curves. The solid and
dashed lines are for the results without or with cavity photons, respectively, where
the phase difference between them is the accumulated phase of ancilla due to cav-
ity photons. (C) The averaged cavity photon number during 200 ns, based on the
time-averaged frequency shift divided by the dispersive shift y, between the cavity
and the ancilla. (D) Initial photon number calculated with Eq. 7.
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set by dispersive coupling strength y, between the ancilla and the
cavity, , = ),M,ygt, We obtain 71,,, in the 200-ns time window,

Mavg = o/ (s - 1) (6)
and repeat this protocol for all of the external fields, the result is
plotted in Fig. 8C.

The initial photon number 7, is a required quantity for comput-
ing the master equation parameters. We can compute its value via
the measured cavity decay rate conditioned on the qubit in ground
state, Ko, as well as the time-averaged cavity photon number 7,,,
during the time window ¢ (see paragraph above for discussion on its
measurement), making use of the following equation

L th

ng=n
0 av _
81—

)
The initial photon number #, is plotted against varying magnetic
fields in Fig. 8D.

Characterization of system parameters in the master
equation model

To motivate our measurement protocol to determine the model pa-
rameters, it is worth first discussing the physical meaning of the dy-
namics generated by Eq. 2: The cavity now experiences a qubit-state—
dependent frequency detuning o, and decay rate k , whereas the
qubit undergoes a time- dependent cav1ty photon- 1nduced phase shift
and dephasing effect. It is straightforward to see that the qubit-state—
dependent cavity frequency detuning o, and decay rate x, (where o, =
1, 1) can be expressed as

=A, +;Lc5 K. =K + e’ (8)

o‘ 2 2> Mo,

Furthermore, the qubit undergoes a time-dependent, cavity photon-
induced phase shift and dephasing effect with the cavity initialized
in a coherent state (at t = 0) in the qubit Ramsey experiment. From
Eq. 2, the qubit coherence obeys the equation of motion (see
section S1D for derivations)

d{G_())

= [- iA+T(e" - coshn)]a,a; (_(t))

)

Integrating Eq. 9 over time leads to the following equation relat-
ing the qubit phase shift ¢ and decoherence factor In{ to system
parameters, as

6_() _ _

"oy~ e

— 0 _
ET(O)EL(O) iM+T'(e" —coshn) (10)

iA+x+Tcoshn
(1 _ e—(i?x+|<+l"coshn)tf)

where a;/,(0) are the initial cavity amplitudes conditioning on
qubit state. Assuming that a;(0) ~ a,(0) (short drive pulse limit),
we can factor out the drive-dependent term ET(O)ET(O) by rescal-
ing the equation with respect to the cavity photon number at t =
0, n,. Taking the long evolution time limit, i.e., when the cavity
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photon has fully decayed [t;>> 1/(x + I)], Eq. 10 further simpli-
fies to the following

(B
CXOI

_ iA+T(coshn — ) (11)
-n
ik +x + Tcoshn

Measurements of the six real observables (i.e., three complex
numbers) on the LHS of Egs. 8 and 10 together provide sufficient
constraints to uniquely determine all the parameters in the master
equation Eq. 2

Acz(u)g+me)/2 (12)
A= Cl)g — o, (13)
[sinhn = (x, —,) /2 (14)
x + Fcoshn = (k, +x,) /2 (15)
M (k,+%,)/2 ih+1
I'sind=A+Im £ __° Zq)t ne (16)
1_6[—1)»—(Kg+1<€)/2]tf n,
iM(x, +x,)/2 i +1
I'(coshn —cosB) = — lRe - £ Z¢t ne
2 l_e—[zh+(1<g+1<e)/2]tf 1,
(17)

Note that so far in this derivation of Eqs. 2 and 10, we have neglected
intrinsic decoherence of the qubit for simplicity, which, in experi-
ments, is calibrated out by performing differential measurements
with or without the cavity drives.

The six experiments used to determine the six parameters are:

1) The qubit Ramsey measurements of its coherence function
(6_(t;) ) in the presence of cavity photons, as discussed in section S2B
and Fig. 2 (A and B). These measurements give { and ¢. We use data
at tr= 700 ns instead of 200 ns in this analysis as focusing on the long-
time integration is expected to provide the largest signal and the best
stability.

2) The cavity Ramsey experiments of its frequencies conditioned
on both qubit states, as discussed in section S2B and Fig. 2 (C and
D), which provide wg and w..

3) The cavity decay rate measurements, as shown and discussed
in Fig. 4 and its caption in section S2C, which give k; and ..

In either type of cavity measurements, it is not possible to perform
direct heterodyne detection of cavity photons as it requires larger pho-
ton numbers for reasonable measurement time, which will be affected
by higher-order spurious nonlinearities. In the cavity Ramsey mea-
surements, to read out the cavity state, we use a method inspired by
photon number measurements in the strong dispersive regime (36,
37). Although our system is not in the number-resolved regime, we
apply a 200-ns square m-pulse to excite the ancilla (Fig. 2C), whose
spectral width is a few times of the cavity-ancilla dispersive shift. The
pulse excites the ancilla with decreasing efficiency at increasing photon
numbers. Therefore, the measured ancilla |6,) provides a monotonic
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proxy for the cavity photon number (although the relationship is not
linear), which is sufficient for an accurate measurement of the free-
evolution frequency of the cavity.

In measuring the cavity decay rate, however, it is important to
implement a reliable readout scheme that detects the mean cavity
photon number in the range of 0.1 to 10 in a linear fashion. To tack-
le this challenge, we devised a scheme that maps the cavity photon
number to the ancilla’s phase shift ¢ over a sliding time window of
fixed length (t = 100 ns, as shown in Fig. 4A), which is measured in
a Ramsey sequence of the ancilla. Although the instantaneous cavity
photon number changes substantially during the time window =,
the cumulative phase shift ¢, can be used to infer the average pho-

ton number during T, 1,,, = %, with y, the dispersive shift between

the cavity and the ancilla. We find that #,,, can be fit well to an ex-

avg

ponential decay as the Ramsey window slides in time t for both the
qubit in |g) and in |e), which gives the cavity decay rates for the re-
spective cases. In our experiment, we observe that our cavity decay
rates fluctuate over the timescale of hours to days, possibly caused
by changing configurations of trapped vortices, but the difference,
K, — K,, tends to be mostly stable.

Supplementary Materials
This PDF file includes:

Sections S1to S3

Figs.S1to S14

Table S1
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