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Dispersive nonreciprocity between a qubit and a cavity
Ying-Ying Wang1, Yu-Xin Wang2†, Sean van Geldern1, Thomas Connolly1‡,  
Aashish A. Clerk2, Chen Wang1*

The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. 
It describes the frequency shift of one quantum mode in response to excitations in the other and, in closed systems, 
is necessarily bidirectional, i.e., reciprocal. Here, we present an experimental study of a nonreciprocal dispersive-type 
interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative 
intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including 
asymmetric frequency pulls and photon shot noise dephasing, under varying degrees of nonreciprocity by tuning 
the magnetic field bias of a ferrite component in situ. We introduce a general master equation model for nonreciprocal 
interactions in the dispersive regime, providing a compact description of the observed qubit-cavity dynamics 
agnostic to the intermediary system. Our result provides an example of quantum nonreciprocal phenomena beyond 
the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.

INTRODUCTION
Theoretical and experimental studies of nonreciprocity are of great 
interest, both due to their fundamental implications for realizing 
exotic phases of matter (1–3) and their relevance to applications in 
classical and quantum information processing. The most widely in-
vestigated nonreciprocal phenomena concerns the scattering ma-
trix S of input and output signals for a multiport network, where 
the transmission coefficient is not invariant under the exchange of 
the source and the receiver, i.e., Sij ≠ Sji, with isolators and circulators 
being the canonical examples. Realization of nonreciprocal scatter-
ing in optical (4, 5), acoustic (6, 7), and microwave domains (8, 9) 
with new techniques has been an intensive area of study. On the 
other hand, the concept of nonreciprocity goes beyond the scattering 
properties of propagating linear modes, especially in quantum con-
texts where one often considers nonreciprocal interactions between 
stationary quantum subsystems. When the stationary modes are 
linear and in the classical correspondence limit, their nonreciprocal 
interactions can be conveniently described by a non-Hermitian 
Hamiltonian (5, 6, 10, 11). Such non-Hermitian dynamics have 
been shown in recent works to generate a plethora of interesting 
physical phenomena, including the non-Hermitian skin effect (10–12) 
and previously unexplored critical phenomena under monitored 
dynamics (13, 14).

Nonreciprocal interactions that are more uniquely quantum 
arise when the subsystems of interest include strongly nonlinear 
modes, which necessitates the use of master equations to describe 
the system dynamics. A well-studied example is a cascaded network 
of resonant qubits (15), where the interaction between neighboring 
qubits is mediated by emission and absorption via a directional 
waveguide (16). The resulting effective interaction can be described 
as nonreciprocal transfer of single excitations. This cascaded model 
has been investigated theoretically, where the nonreciprocity leads 
to unique dynamics such as steady-state entanglement and dimerized 

many-body states. Experimental development in chiral quantum 
optical platforms (17–19) and waveguide circuit quantum electro-
dynamics (QED) (20–23) are expected to realize such resonant non-
reciprocal phenomena in the near future.

It is natural to consider nonreciprocal interactions that go beyond 
(one-way) excitation transfer, as is expected if the relevant subsystems 
are nonresonant. This is particularly relevant in quantum device engi-
neering where it is commonplace to use weak hybridization of disparate 
linear and nonlinear modes. For example, the dispersive Hamiltonian 
between a qubit and a cavity, ℏχ

2
�a
†
�a�σz , forms the cornerstone of circuit 

QED and superconducting quantum computation (24). Here, the qubit 
or the cavity experiences a frequency shift in response to an excitation 
in one other, by the same amount χ, exemplifying the reciprocal na-
ture of the dispersive interaction in a closed quantum system. While 
the dispersive Hamiltonian is an approximate effective model of the 
underlying Jaynes-Cummings type couplings, its ability to compactly 
describe prominent experimental observables without needing all 
microscopic details makes it an extremely valuable tool in describing 
light-matter interactions.

Recently, a class of nonreciprocal interactions that is distinct from 
the cascaded quantum systems has been theoretically investigated 
(25). The simplest example, arising from dispersive-type couplings in 
open quantum systems, can be described by a single Lindblad dissi-
pator, D[âeiθσ̂z ] , which leads to a one-way influence of a cavity mode 
â on a qubit σ̂z in terms of a phase or frequency shift. This leads to 
several basic questions. What is the generic effective model of open-
system qubit-cavity interactions in the dispersive regime? How ro-
bustly can we model the nonreciprocal features of such interactions 
in practical systems in the presence of complex microscopic details 
and imperfections?

In this work, we experimentally realize and characterize a disper-
sive type of quantum nonreciprocal interaction between a supercon-
ducting cavity and a transmon qubit. To access varying degrees of 
nonreciprocity in situ, we implement a hybrid quantum system where 
the qubit-cavity interaction is mediated by a complex set of cavity-
magnon modes constructed from three-dimensional niobium and 
copper waveguide cavities and a ferrimagnetic yttrium iron garnet 
(YIG) crystal (26–29). We study the nonreciprocal influence between 
the qubit and the cavity in terms of asymmetric dispersive frequency 
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shifts and impacts on dephasing and decay rates. Our experiment 
provides an example of generalized dispersive interaction in open 
quantum systems.

A central conclusion of our study is that the nonreciprocal fea-
tures of dispersive-type interactions in an open system can be en-
capsulated by a simple Lindblad dissipator

This nontrivial extension of (25) applies to an extremely wide class 
of microscopic dissipative bath models (i.e., a general linear network 
of lossy modes) and allows a few-parameter description of the effec-
tive qubit-cavity interaction with full predictive power of the result-
ing quantum dynamics. We have validated this in our experiments. 
While optimal methods for engineering desirable interaction prop-
erties (specified by θ and η in Eq. 1) remain to be explored in future 
work, our study establishes a practical characterization and anal-
ysis framework for describing the phenomena of dispersive non-
reciprocity.

RESULTS
In this main section, we will first introduce the experimental system 
setup and present observations of dispersive qubit-cavity frequency 
shifts with varying degrees of nonreciprocity through Ramsey mea-
surements. Then, we present a general master equation model of 
dispersive nonreciprocity with dissipator Eq. 1 and experimentally 
characterize the model parameters from measured free-evolution 
dynamics of the system starting from an initial cavity coherent 
state. Last, we validate and demonstrate the utility of the model in 
predicting system dynamics under different control protocols such 
as continuous cavity drive and Fock state generation.

System setup
Our experimental setup is shown in Fig. 1A. By inserting a single-
crystalline YIG cylinder into the center of a copper waveguide Y-
junction and applying a variable external magnetic field, we engineer 
a nonreciprocal interaction between a niobium superconducting 
cavity and a superconducting transmon qubit connected to two out-
put ports of the waveguide Y-junction (see Materials and Methods 
for details). The level of directionality can be tuned in situ via the 
external field. At an external bias of about ±20 mT, the ferrite-loaded 
Y-junction functions like a circulator that mediates directional micro-
wave transmission between the cavity side and the transmon side with 
a bandwidth of a few hundred megahertz (26).

Unlike in a practical circulator where broadband directional isola-
tion is usually a first priority, the most important quality of our device 
is the low internal loss of the cavity and magnon modes. Therefore, we 
can describe the entire intermediary system (except for the cavity and 
the qubit themselves) as a network of coupled linear modes that share 
only one dominant decay channel, the 50-ohm transmission line at 
the third port of the waveguide Y-junction, as shown in Fig. 1 (A and 
B), regardless of the external field. This allows us to treat the linear 
network, whose underlying details prove too challenging to charac-
terize precisely, as a single dissipative bath in mediating the effective 
interaction between the longer-lived qubit and cavity. It is such a gen-
eralized quantum interaction, which encompasses both the standard 
dispersive interaction (24) and the dissipative directional effects as 
represented by Fig. 1C, that is the subject of our study.

Integration of superconducting qubits in a hybrid quantum system 
with ferromagnetic magnons faces substantial challenges in miti-
gating the impact of magnetic fields on qubit coherence. Previous 
experiments used permanent magnets to provide strong local bias 
fields away from the qubit, achieving qubit lifetimes ranging from <1 μs 
(30–32) to about 3 μs recently (33) but have limited to no tunability of 
external field. In our experiment, we use the large electromagnet of 
the cryostat to apply a global magnetic field to the device, sufficient to 
fully reverse the directionality of the qubit-cavity coupling. At the same 
time, the qubit is shielded by the Meissener effect of a niobium wave-
guide and a layer of high-permeability foil. We observe T1 and T2 on 
the order of a few microseconds (up to 10 μs) while being unaffected 
by the applied field up to ±0.1 T. While future implementation of 
tunable nonreciprocity in circuit QED may ultimately benefit from 
alternative strategies based on Josephson parametric circulators (9, 
34, 35), our ferrite-based platform avoids the outstanding challenges 
of parametric pump tone leakage that could severely degrade qubit co-
herence and obscure the dispersive effects with spurious Stark shifts.

The cavity in our experiment is evanescently coupled to the Y-
junction through an aperture, whose loss is dominated by coupling 
to the Y-junction. The cavity can be driven from a weakly coupled 
cavity port as labeled in Fig. 1A. An additional transmon (marked as 
an orange ×) is installed inside the cavity for readout of the cavity 
state. This additional transmon will not participate in the quantum 
dynamics under study and will be referred to as the ancilla, to distin-
guish it from the qubit. On the other hand, the qubit can be driven 
from a weakly coupled qubit port as labeled in Fig. 1A. The qubit is 
Purcell protected by effectively a buffer cavity mode formed by a 
modest constriction slot between the niobium waveguide segment 
and the Y-junction. This extra buffer mode is sufficiently short-lived 
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Fig. 1. Schematics of our integrated nonreciprocal device. (A) A cartoon draw-
ing of our device (not to scale), composed of a Cu waveguide Y-junction loaded 
with a YIG cylinder, two close-ended Nb rectangular waveguide segments with 
weakly coupled drive ports, named as the “cavity port” and the “qubit port,” respec-
tively, in the figure. The bottom left segment houses the cavity mode under study 
and an ancilla transmon (small orange cross) to facilitate readout of the cavity state. 
The right segment houses the transmon qubit under study. The magnetic dipole in 
the YIG crystal is coupled to a series of microwave modes through its precession 
under external magnetic field. The top waveguide segment of the Y-junction is 
impedance-matched to a transmission line for signal output. (B) A general sche-
matic of the mode connectivity of system, where the cavity is exchange-coupled to 
many intermediary modes and the qubit is dispersively coupled to them. The inter-
mediary modes contain a large collective loss inherited from the open waveguide 
port. (C) Schematic representation of the qubit-cavity effective model, Eq. 2, with 

their reciprocal dispersive coupling λ and a dispersive type of nonreciprocal dissi-

pation operator ΓD
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to be treated as part of the dissipative bath rather than a quantum 
object, but it provides an impedance environment to boost the inter-
action between the qubit and the cavity.

Observation and control of nonreciprocal frequency shifts
As the qubit and cavity are detuned, we expect the mediated interac-
tion to be dispersive. To characterize the phenomenon of dispersive 
nonreciprocity between the qubit and the cavity, we compare the 
qubit frequency shift per cavity photon, labeled χcq, with cavity fre-
quency shift in response to the qubit excitation, labeled χqc. A closed 
quantum system is reciprocal, where the dispersive frequency pull 
per excitation in both directions are guaranteed to be equal, i.e., χcq = 
χqc. Violation of this relation is a sign of nonreciprocity.

To measure χcq, we perform Ramsey experiments on the qubit 
with and without cavity photons. By comparing these measure-
ments, we can extract the accumulated extra qubit phase shift ϕ 
caused by cavity photons over a finite time window of t = 200 ns, as 
shown in Fig. 2A. The cavity is initialized in a coherent state with an 
initial mean photon number of n0 ≈ 3 . The choice of n0 and t is mo-
tivated by optimizing signal-to-noise ratio while keeping the cavity 
well within the linear regime. The cavity photon number undergoes 
free decay over time, and hence, the instantaneous qubit frequency 
also varies over time. Assuming the dispersive frequency shift is pro-
portional to photon numbers (as is the case in closed-system circuit 
QED), we define the cavity-to-qubit dispersive shift χcq = ϕ∕ (t ⋅ navg) , 
where navg is the time-averaged cavity photon number during the inte-
gration time t. Example results of the qubit state versus rotation angle θ 
of the second Ramsey π/2 pulse are shown in Fig. 2B (solid lines), 
which informs the amplitude and phase of the qubit coherence 
function 〈σ−(t)〉 at fixed time t. By comparing 〈σ−(t)〉 to the reference 

qubit state ⟨σ0
−
(t)⟩ measured without cavity photons (dashed 

lines) at the same t, we can extract the photon-induced phase 
shift ϕ and decoherence factor ζ at time t from ⟨σ−⟩∕⟨σ0−⟩ = ζeiϕ . 
The time-averaged cavity photon number navg is calibrated using a 
separate Ramsey experiment of the ancilla inside the cavity for the 
same time window, which allows for normalization of χcq as a per-
photon quantity (see Materials and Methods for details of the calibra-
tion). The extracted decoherence factor ζ informs the cumulative loss 
of qubit coherence due to photon shot noise over the time window t, 
which can be similarly converted to a qubit dephasing rate per 
photon, γ = −ln(ζ)∕ (t ⋅ navg).

On the other hand, χqc is measured with a cavity Ramsey protocol 
with the qubit in its ground (|g〉 ≡ |↑〉) or excited (|e〉 ≡ |↓〉) state. The 
cavity Ramsey sequence is composed of two cavity displacement 
pulses with a wait time t in between, as shown in Fig. 2C. We use the 
dispersively coupled ancilla inside the cavity to read out the cavity 
state. This readout, inspired by photon number measurements in the 
strong dispersive regime (36, 37), is implemented by a relatively long 
(spectrally narrow) ancilla π-pulse, followed by reading out the state 
of the ancilla. Example results of the ancilla state over t, representing 
the oscillation and decay of the cavity coherent state, are plotted 
in Fig. 2D, with the solid and dashed lines corresponding to the qubit 
in |g〉 and |e〉 states, respectively. Since the qubit lifetime T1 ≫ t, 
the qubit state does not change over the measurement window to 
a good approximation, as confirmed by the constant cavity oscillation 
frequency in this measurement. The extracted cavity frequency ωg 
and ωe gives χqc = ωg − ωe.

The two types of Ramsey measurements are carried out for vari-
ous external magnetic fields, and the extracted dispersive shifts in 
both directions, χqc and χcq, are plotted in the top of Fig. 2E. The 
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Fig. 2. Demonstration of nonreciprocal qubit-cavity frequency shifts. (A) The pulse diagram and (B) example results of a qubit Ramsey measurement under coherent 
cavity photon population at selective magnetic field (B = ±30 mT). The qubit coherence evolution is obtained by initializing the qubit in an equator state and cavity in a 
coherent state with a displacement pulse D(α). The system then evolves over a wait time t followed by a second π/2 qubit rotation along a variable rotation angle θ and a 
readout (RO) of the qubit state. The qubit state against rotation angle θ yields a sinusoidal graph as plotted in (B), where the phase and amplitude can be extracted. The 
solid and dashed lines show the qubit Ramsey curves with and without cavity photons, respectively. (C) The pulse diagram and (D) the experimental result of the cavity 
photon Ramsey measurement with a relatively long ancilla excitation pulse [orange Rx(π)] to obtain the qubit-dependent cavity frequency, where the solid (dashed) lines 
correspond to the qubit in |g〉 (|e〉). (E) The top plots both measured χs under different external magnetic fields showing variable nonreciprocity between the cavity and 
the qubit. χqc is near-symmetric across the external field, as apparent in (D), where the −30- and 30-mT curves are similar to each other. χcq is clearly asymmetric, where 
the positive and negative field results are distinctly different, as shown in (B). The bottom is the qubit dephasing rate under different external magnetic fields.
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magnetic field serves as a control knob to vary the complex bath-
mediated qubit-cavity interaction. While it is not unexpected that 
nonreciprocity exists in the presence of magnetic field, our experi-
ment presents an unambiguous signature of nonreciprocity in the 
dispersive regime, χqc ≠ χcq, and demonstrates in situ control over 
the degree of such nonreciprocity, e.g., ranging from approximately 
reciprocal near-zero field to strongly nonreciprocal at high negative 
fields. Moreover, we note a few nontrivial features in the magnetic 
field dependence. First, χqc shows symmetry with respect to B; this 
is a result of an Onsager-type constraint on eigenvalues of a linear 
non-Hermitian Hamiltonians, which in turn arises from microscop-
ic time-reversal symmetry even in the presence of external field. In 
contrast, χcq and the photon-induced dephasing rate γ (the bottom 
of Fig. 2E) show no such symmetry; this can be attributed to their 
sensitivity to the eigenvectors of the non-Hermitian Hamiltonian 
(see section S1C). Second, the nonreciprocity at zero field is small 
but definitely nonzero within experimental uncertainties. While many 
experiments have realized magnetless nonreciprocity by engineering 
synthetic flux (35, 38), our data at zero field demonstrate an interest-
ing theoretical aspect of quantum nonreciprocity: The dissipative in-
teraction between quantum subsystems can be nonreciprocal without 
real or synthetic magnetic field (25).

Effective nonreciprocal model in the dispersive regime
While the phenomenological observables χqc and χcq highlight a dis-
tinctive aspect of the effective qubit-cavity dispersive interaction, 
they do not a priori fully characterize the general dynamics of the 
qubit-cavity system. Given an arbitrary initial state of this qubit-
cavity system, how can we model the system to fully predict its time 
evolution? Of course, if we know the full details of all relevant interme-
diary modes (Fig. 1B), including their mode frequencies, decay rates, 
internal and external coupling rates, then one could, in principle, solve 
the dynamics of the expanded system. However, not only is this ap-
proach computationally expensive and intuitively opaque, it is often 
unrealistic to extract detailed knowledge of a highly-dissipative multi-
mode system. On the other hand, if the system is in a regime that allows 
(i) adiabatic elimination of the intermediary modes and (ii) dispersive 
approximation of the qubit, then we can derive a simple effective 
Markovian master equation only involving the cavity a and the qubit:

which is written in the rotating frame of both the qubit and a reference 
frequency of the cavity [see Materials and Methods and section S1 (A 
and B) for details] and can be fully specified via six independent real 
parameters. We have not included here the intrinsic decoherence of 
the qubit that would give rise to additional qubit-only dephasing and 
relaxation dissipators.

We now provide physical intuition for the emergence of Eq. 2 from 
the underlying microscopic model in Fig. 1B. As mode a is coupled to 
a linear network of bath modes, the effective cavity detuning Δc, cav-
ity decay rate κ, and the conventional reciprocal dispersive interaction 
λ

2
σ̂z â

†
â are expected. The nonlinear collective dissipator D

[

e
iθ+η

2
σ̂z â

]

 , 
in contrast, describes a form of bath-mediated nonreciprocal interac-
tion between the qubit and the cavity. It is instructive to consider this 
dissipator in two special limits

1) θ ≠ 0, η = 0: The dissipator D
[

e
iθ

2
σ̂z â

]

 describes a fully direc-
tional dispersive interaction from the cavity to the qubit. The instanta-
neous one-way dispersive shift is Γsinθ per photon (c.f., Fig. 3C). At a 
heuristic level, this interaction is due to processes where cavity photons 
hop to the intermediary modes, briefly interact with the qubit, and then 
leak out to the environment (Fig. 3A). This dissipator has the general 
form D[âÛB] (where ÛB is a unitary operator on a subsystem B). As 
discussed in (25), general dissipators of this form exploit a dissipative 
gauge symmetry to realize one-way interactions.

2) θ = 0, η ≠ 0: The dissipator D[e
η

2
σ̂z â] describes a qubit-state– 

dependent cavity decay process. For an example observation of this 

�t ρ̂= − i

[

Δcâ
†
â+

λ

2
σ̂z â

†
â, ρ̂

]

+

κD[â]ρ̂+ΓD[e
iθ+η

2
σ̂z â]ρ̂

(2)

A

C

B

Fig. 3. Schematic representation and experimental parameters of the master 
equation. (A) The case of θ ≠ 0, η = 0: The dissipator describes a fully directional dis-
persive interaction from the cavity to the qubit, which comes from the one-way travel-
ing photon in the intermediary modes (the blue dashed wave packet) suppressing the 
qubit transition energy. (B) The case of θ = 0, η ≠ 0: The dissipator describes a qubit-
state–dependent cavity decay process, which comes from density-of-states function 
of the intermediary mode being dispersively shifted by the qubit. (C) The six master 
equation parameters experimentally determined at different magnetic fields via 
Eqs. 12 to 17 (see Materials and Methods). We also show Γsinθ, which is the instanta-
neous one-way dispersive shift in the case of (A), and Γsinhη, which is the qubit-state 
dependence of cavity decay rate in the case of (B). Note that the parameter λ is 
equivalent to χqc in Fig. 2E.
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effect, see Fig. 4. We can view the multimode intermediary structure 
together with the qubit as a dissipative environment for the cavity (see 
Fig. 3B). As the qubit dispersively shifts the intermediary modes 
and hence the density-of-states function of the bath, the cavity decay 
rate (governed by the Fermi’s golden rule) acquires a qubit-state– 
dependent term of Γsinhη. As a backaction of this effect, the qubit 
experiences a pure dephasing rate of 2Γsinh2(η/2) per photon without 
frequency shifts. This dissipative interaction is bidirectional but very 
asymmetric between the qubit and the cavity.

As we show in section S1A, introduction of these two types of dis-
sipative interactions, together with the regular dispersive Hamiltonian, 
λ

2
σ̂z â

†
â , captures any linear bath–mediated qubit-cavity interaction in 

the dispersive regime quite generally, assuming the adiabatic ap-
proximation holds. Bypassing the intricate details of the bath modes, 
the effective model of Eq. 2 allows description of arbitrary quan-
tum dynamics in the qubit-cavity Hilbert space. To experimentally 
specify the model parameters of our system, we can use a small set 
of measurements where the cavity is initialized in a coherent state, 
and its subsequent dynamics can be described by semiclassical 
mode amplitude and fluctuations. By combining measurements of 
the photon-induced qubit phase shift and dephasing over a given 
time window (Fig. 2, A and B) and measurements of the cavity fre-
quencies (Fig. 2, C and D) and decay rates (Fig. 4) for both qubit 
states, we can obtain six real observables to uniquely determine all 
the parameters in the master equation (Materials and Methods).

The applied magnetic field B provides an in situ tuning knob that 
allows us to access many distinct instances of the model, each deter-
mined independently with parameters plotted in Fig. 3C. How the 
magnetic field controls each of the model parameters depends on 
complex details of the intermediary bath modes, which is not a fo-
cus of our study. Nevertheless, we observe in Fig. 3C that Γsinhη, λ, 
and Δc at ±B are symmetric. This is the consequence of microscopic 
symmetry requirements. In a linear system with microreversibility, 
the Onsager-Casimir relation (39) requires that the full scattering 
matrix S satisfy S(−B) = ST(B). This relation holds separately for 
each qubit states since our original multimode system dynamics 
conserves σ̂z . As a result, the effective complex frequency of the cav-
ity must be symmetric with respect to magnetic fields ±B for both 
qubit states, which leads to the symmetry of λ, Δc, Γsinhη, and κ + 
Γcoshη (see section S1C for details). Note that an analogous theo-
retical argument predicts that κ should be symmetric in B, which is 
apparently violated by the data in Fig. 3C and will require further 
investigation. This might be explained by the presence of other long-
lived modes in the system (such as a different cavity mode or a mag
non mode) that are weakly coupled to the qubit and off-resonantly 
excited, which may make the calculation of Γ and thus κ less accurate. 
We also observed temporal fluctuations in the internal loss rate of 
the cavity, which may have contributed to this discrepancy.

Verification of the qubit-cavity dynamics
At this stage, we have used a set of experimental measurements to 
characterize the parameters of the general master equation model in 
Eq. 2 that should describe a generic nonreciprocal, dissipative dis-
persive qubit-cavity interaction. Of course, this extraction of param-
eters does not by itself show the validity or utility of our model. 
Now, we use our fully constrained model to make predictions for 
independent experiments (with different initial states and/or drives) 
and compare these directly against experimental results.

In the first verification experiment, we investigate the qubit response 
to continuous wave (CW) cavity drive. Here, we drive the cavity continu-
ously at constant amplitude and varying frequencies and measure the 
resultant ac Stark shift and photon shot noise–induced dephasing 
rate on the qubit using a Ramsey sequence (Fig. 5). Note that the 
cavity is stabilized to a steady state during the Ramsey protocol as 
opposed to undergoing free decay in the experiments presented in 
section S2B. The model prediction of the driven system, which can 
be solved after appending a drive term ϵ(â†e−iΔd t + h. c.) to the 
Hamiltonian in Eq.  2, agrees quite well with the experimental 
data with no free parameters (see section S1E for details). We observe 
that the Stark shift and dephasing rate often display distinctly differ-
ent peak frequency (e.g., 30 and −30 mT as shown in Fig. 5B), which 
is unexpected for a traditional dispersively coupled qubit-cavity sys-
tem and therefore is a signature of the nonreciprocal interaction in 
our system. This nontrivial feature in the frequency and line shape is 
well captured by our model. In comparison, at 0 mT, when the system 
is close to reciprocal, the Stark shift and decay rate peak at a similar 
frequency.

In another test of the master equation model, we investigate the 
time-domain evolution of the qubit in the presence of cavity pho-
tons. The experimental protocol is the same as in Fig. 2A, where the 
cavity is initialized in a coherent state and the qubit is initialized in 
an equator state. In Fig. 6 (A and B), we show the qubit coherence 
factor ζ and the cumulative phase shift ϕ as a function of time t for 
a range of external fields. The slopes of the coherence factor (on a log 

t
RO

Cavity port

Qubit port

A

B

(rad)

Fig. 4. Measurements of qubit-state–dependent cavity decay rates. (A) The 
pulse diagram and (B) example result (B = −30 mT) of cavity decay rate measure-
ment, with qubit prepared in |g〉 or |e〉. The cavity is prepared in a coherent state 
with a displacement pulse D(α). We map the cavity photon number to the ancilla’s 
phase shift ϕ over a sliding time window of fixed length (τ = 100 ns), which is mea-
sured in a Ramsey sequence of the ancilla. Although the instantaneous cavity pho-
ton number changes substantially during the time window τ, the cumulative phase 
shift can be used to infer the average photon number nτ during τ. nτ can be fit to an 
exponential decay as the Ramsey window slides in time t for both the qubit in |g〉 
and in |e〉, which gives the cavity decay rates for the respective cases.
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scale) and the phase shift on these plots correspond to the instanta-
neous photon shot noise dephasing rate and ac Stark shift, and the 
decrease of slopes over time indicates the continuous decay of cavity 
photon numbers. A nontrivial feature to be noted is that the dephas-
ing and frequency shift effects decay on slightly different timescales, 
which can be seen more clearly from their ratio, ln(ζ)/ϕ, which is 
not a constant over time (Fig. 6C). The time evolution based on the 
master equation model can be solved as shown in Materials and 
Methods (Eq. 10) and are plotted as solid curves for comparison. 
Since the model is applicable on timescales where all fast bath de-
grees of freedom can be adiabatically eliminated, discrepancies are 
expected on short timescales. This is especially true at higher mag-
netic fields when the buffer cavity enclosing the qubit has longer 
lifetimes (≳20 ns). The model captures the time-domain data well 
at low fields (e.g., 0 and ±10 mT). At higher fields, we find that 
the model can describe the temporal evolution reasonably if one 
allows for an empirical time offset as a fit parameter, which is 33 and 
31 ns for ±30 mT in Fig. 6. This ad hoc modification to the model 
can be understood as some “turn-on” time allowing for the bath 
(which is not infinitely fast) to reach the quasi-steady state set by 
the initial condition of the qubit-cavity system. Figure 6C provides 
a more sensitive test of the model, which correctly captures the 

time-varying ratio of the dephasing and phase shift effects, although 
the discrepancies at short times and higher fields become apparent 
due to the limited separation of timescales.

Last, we apply Eq. 2 to scenarios with non-Gaussian cavity states. 
Specifically, we consider cavity-qubit dynamics where the cavity is 
initialized in a single-photon Fock state. Here, we can no longer un-
derstand the system via semiclassical equations of motion for mode 
amplitudes (e.g., as in Eqs. 8 and 11 that we used to characterize the 
model parameters), but Eq. 2 remains valid and provides direct in-
sights to the nonreciprocal qubit-cavity dynamics. An interesting 
special case is η = 0, where the dissipator ΓD

[

e
iθ

2
σ̂z â

]

 implements a 
unitary gate e

iθ

2
σ̂z on the qubit when the photon escapes the cavity. 

Therefore, if the cavity does not lose the photon via other channels 
(i.e., κ = 0), then the qubit will receive a deterministic phase shift of 
θ after t ≫ 1/Γ without incurring photon-induced dephasing. A 
practical application of this deterministic phase shift is microwave 
single-photon detection as was implemented in (40, 41). These ex-
periments used a conventional circulator to enforce directionality 
and were understood as the interaction between a qubit and a travel-
ling photon in a transmission line. Our model effectively describes 
the interaction between the detector qubit and the source cavity of 
the photons and is further generalized to allow the nonreciprocity 
of the interaction channel to be varied continuously.

Our experimental platform, aided by the ancilla inside the cavity, 
allows us to generate single photons and investigate their interaction 
with the qubit over a range of model parameters by varying mag-
netic fields. A cavity Fock state |1〉 can be generated by first prepar-
ing the ancilla transmon in the |f〉 state (its second excited state) and 
applying a strong drive to induce the four-wave-mixing (FWM) |f0〉 − 
|g1〉 sideband transition, which converts the double excitations in 
the ancilla to a single cavity photon. Experimentally, our FWM tran-
sition rate is limited to 0.6 MHz, which, compared to cavity total 
decay rate of 1.5 to 4 MHz, is not fast enough to instantaneously 
initialize the cavity in |1〉 before the dissipative process takes place. 
Nevertheless, in the limit where the ancilla’s |f〉 state is perfectly pre-
pared and long-lived, under a sufficiently long FWM drive, there 
will be one and only one photon generated and emitted from the 
cavity, effectively realizing single-photon dynamics in our qubit-
cavity system.

We implement this approach of single-photon generation with a 
pulse sequence as shown in Fig. 7A and measure the long-time (t = 
700 ns) cumulative phase shift ϕ and dephasing ln(ζ) of the qubit 
similarly as in previous coherent state–based experiments. When 
the bath modes of the device function approximately like a circula-
tor in the direction from the cavity to the qubit (near B ≈ −20 mT), 
one can expect suppressed qubit dephasing but nonzero phase shift 
for a single photon. Therefore, the suppressed ratio of ln(ζ)/ϕ is a 
distinctive signature of the Fock state–qubit interaction compared 
to a coherent state-qubit interaction. In Fig. 7B, we show that ln(ζ)/ϕ 
is smaller for the Fock state–induced dynamics for a range of nega-
tive fields. (At positive fields, both phase shift and dephasing are too 
small to be measured accurately in the single photon limit.) The ex-
perimentally measured dephasing factor in the Fock state experi-
ment, as reflected in the ln(ζ)/ϕ ratio (red data points), is larger than 
the Eq. 2 prediction (see section S1F) assuming a perfect initial Fock 
state. After accounting for limited conversion efficiency (about 89%) 
of the |f0〉 − |g1〉 sideband transition in the presence of ancilla T1 
decay and limited fidelity (estimated about 85%) in preparing 
the ancilla |f〉 state, the experimental data agree well with the model 

RO

CW

t0

Cavity port

Qubit port

A

B

1/2×

1/2×

Fig. 5. Parameter-free verification of the master equation model with continu-
ous cavity drive. (A) The pulse diagram and (B) example of the theory prediction 
(solid line) and experimental result (dot) of qubit Ramsey measurement under 
steady state CW (5 μs) cavity drive at selective fields (constant drive amplitude 
across detunings). The Ramsey is performed with a fixed time window at the end of 
the CW tone. At each CW detuning, the Ramsey data give the Stark shift and de-
phasing rate. The result at −30 mT is scaled by 1/2 for better visualization. The blue 
dashed line indicates the cavity frequency Δc at 0 mT, and the 0-mT Stark shift and 
dephasing peaks correspond well with this frequency, as expected. The orange 
dashed dot line indicates Δc at ±30 mT. Here, the peak frequency in Stark shift and 
dephasing rates are distinctly different from each other. See section S2E for more 
data at different fields.
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prediction. The experiment also illustrates that the ln(ζ)/ϕ ratio for 
coherent state dynamics is approximately symmetric with respect to 
magnetic field, in agreement with theoretical predictions based on 
Onsager-type relations (see section  S1D), and this symmetry no 
longer holds for general quantum dynamics of non-Gaussian states.

DISCUSSION
In this work, we have realized a dispersive type of nonreciprocal inter-
action between a qubit and a linear cavity in superconducting circuit 
QED. This effective interaction, manifested as asymmetric frequency 
pulls without direct excitation exchange, is mediated by a dissipative 
bath with broken time reversal symmetry. We introduced a general 
one-qubit one-cavity master equation model, Eq. 2, which extends the 
ubiquitous qubit-cavity dispersive interaction in circuit and cavity 
QED to a dissipative setting and allows simple predictions of qubit-
cavity joint dynamics without tackling the complexity of the bath. We 
verify the efficacy of this master equation model through measure-
ments of the qubit dynamics interacting with continuous cavity drive, 
initial cavity coherent states, and single-photon states.

While the use of nonreciprocity in superconducting circuits so 
far has been primarily limited to canonical circulators in peripheral 
input/output settings, substantial efforts are under way to integrate 
nonreciprocal elements with the core part of the quantum devices. 
These studies, for example, range from the development of on-chip 
superconducting parametric circulators for qubit readout (9, 34, 
35), the use of commercial circulators as directional links between 
quantum modules (42, 43), to the development of one-way emitters 
in waveguide QED (21, 23) and the realization of chiral cavity QED 
for topological many-body physics (33, 44). As bath-mediated non-
reciprocity becomes more deeply embedded in the devices, complex 
interactions between quantum modes and components will arise 
beyond the dichotomy of direct (capacitive/inductive) coupling and 
cascaded coupling (via a circulator). To design and to characterize 
these devices with embedded nonreciprocal elements, it is crucial to 
have an effective model that are not only general enough to capture 

the main features and imperfections of nonreciprocity but also sim-
ple enough to not invoke the dynamics of the bath. Our work fulfills 
this need in future engineering and utilization of nonreciprocal cir-
cuit QED systems.

Beyond circuit QED, demonstration of dispersive nonreci-
procity opens a frontier in the study of nonreciprocity beyond stan-
dard scattering-type interactions. For example, making use of the 
intrinsic connection between those nonreciprocal dynamics and 
measurement-and-feedforward processes (25, 45), having access to 
those dynamical elements, could enable realization of passively 
protected quantum memory (46) and even autonomous quantum 
error correction (47). The dispersive nonreciprocity demonstrated 
here also provides a powerful building block for dissipative quantum 
simulation. For example, there is immense interest in classical many-
body models with kinetic constraints that are inherently directional 
(48–51). Our dispersive nonreciprocal interaction provides a route 
for realizing quantum analogs of such models. More generally, our 
work thus lays the foundation for investigating and engineering the 
dispersive type of nonreciprocity, both in the quest for novel dissipa-
tive quantum phases of matter and for potential applications in quan-
tum technologies.

MATERIALS AND METHODS
Device details
As shown in Fig. 1A, a ϕ-5.58 mm × 5.0 mm single-crystalline YIG 
cylinder is placed at the center of a copper waveguide Y-junction, with 
external magnetic fields applied along its height (the [111] orientation 
of the YIG crystal). The three sides of the Y-junction are connected, 
respectively, to (i) a narrow-band niobium superconducting cavity 
(the cavity of interest), which also contains an ancilla transmon for 
the convenience of cavity state preparation and analysis, (ii) a broad-
band niobium cavity which functions as a buffer mode and contains 
the transmon qubit (the qubit of interest), and (iii) a 50-ohm trans-
mission line which is the source of the collective dissipation of the 
intermediary modes.

    Coherence   Phase shift (rad)     Deco./phase shift

E�ective delay time (ns)

A CB

1/2×

1/2×

1/2×
0.9

0.8

0.7

0.6 0.2

0.3

0.4
0.5

Fig. 6. Experiment-theory comparison of the transient dynamics. Time-domain values of (A) qubit coherence (ζ), (B) accumulated phase shift (ϕ), and (C) the ratio 
between qubit decoherence and phase shift [ln(ζ)/ϕ] of qubit Ramsey measurement results at −30 mT (red), −10 mT (yellow), 0 mT (blue), 10 mT (orange), and 30 mT 
(purple). The cavity is initialized in a coherent state for all data. The scatter dots are experimental results, and solid lines are theory predictions from the master Eq. 2. The 
−30-mT data in the coherence panel is plotted according to the red y scale on the right side, the −30-mT data in phase shift panel and ±30-mT data in the decoherence/
phase shift panel are scaled by 1/2 for better relative visual scaling. Experimental dots start at 30 ns considering the 60-ns qubit pulse right before readout pulse. An ad 
hoc horizontal shift of 33 and 31 ns has been applied to the theory curve (see text).
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The collective spin precession inside the YIG crystal (magnon 
excitations) is hybridized with the electromagnetic modes in the vi-
cinity of the waveguide Y-junction in a chirality-dependent manner, 
forming a series of chiral photon-magnon polariton modes (26, 27, 
52). In particular, a pair of near-degenerate polariton modes with 
zero-field frequency close to 10.8 GHz are primarily responsible for 
generating an effective dissipative linear coupling between the cavity 
and the buffer mode. External magnetic fields lift the degeneracy of 
the polariton mode pair, resulting in clockwise and counterclockwise 
eigenmodes with mode splitting approximately proportional to mag-
netic field in the regime below magnetic saturation (see section S2B 
for more detailed discussion of an ideal toy model of the intermediary 
mode coupling structure). When the mode splitting approximately 
matches the loaded loss rate (B ≈ ±20 mT for this mode pair), the 
Y-junction functions approximately like a waveguide circulator with an 
operating bandwidth of a few hundred megahertz (set by the few hun-
dred megahertz loss rate via the transmission line) near 10.8 GHz (53). 
This device allows us to vary the external magnetic field and hence ac-
cess coupling channels beyond the special case of the canonical circula-
tor. Note that we apply demagnetization training cycles to suppress the 
magnetic hysteresis effect before performing experiments at the zero 
field, thus the hysteresis is negligible. More details of our YIG-cavity 
device platform and a modeling of the few-mode cavity polariton sys-
tem without qubits can be found in a previous article (26). However, we 
emphasize that explicit modeling of the lossy intermediary modes 
based on limited characterization tools (such as the cavity transmission 
measurements, see fig.  S2) does not yield accurate prediction of the 
qubit-cavity dynamics. This highlights the usefulness of the master 
equation model Eq. 2 which does not require detailed knowledge.

The Hamiltonian and coherence parameters of the cavity and 
qubit modes are listed in Table 1. We used the TE201 mode of two 
rectangular cavities for the main cavity mode and the buffer mode, 
whose frequencies are closely matched to each other using tuning 
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Fig. 7. Parameter-free verification of the master equation with single photon 
generation. (A) The pulse diagram of qubit Ramsey experiment in the presence of a 
single photon generated by an FWM pulse. After initializing the ancilla in |f〉, a |f0〉 − |g1〉 
FWM pulse is applied to convert the ancilla |f〉 state to a cavity photon. (B) The experi-
mental result of the qubit dephasing/Stark shift ratio from the |f0〉 − |g1〉 FWM 
measurement (red triangle) and coherent cavity state measurement (blue circle), 
compared to theory predictions with different initial states: ideal single photon 
Fock state (orange square), FWM Fock state generation mimicking the experimen-
tal setups (purple diamond), which considers the initial thermal population of the 
ancilla and pulse infidelity thus set ancilla state initializing at 85% in |f〉 state, and 
the ancilla T1 decay during the FWM pulse.

Table 1. Experimental parameters for the device used in the measurements. The cavity linewidth is a range rather than fixed value as it is dependent on the 
field and the qubit state.

Qubit

Frequency 9.141 GHz

 χ0/2π 5.0 MHz

Anharmonicity 451 MHz

T1 5.3 μs

T2 2.2 μs

T2 echo 2.7 μs

Buffer cavity

Frequency 10.808 GHz

Linewidth >5 MHz

Cavity Frequency 10.809 GHz  χa/2π 1.1 MHz

Linewidth 1.5–4.0 MHz

Ancilla Frequency 8.277 GHz

Anharmonicity 490 MHz

T1 10.2 μs

T2 2.9 μs

T2 echo 3.7 μs
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screws and designed to be in the vicinity of the aforementioned 
Y-junction polariton modes near 10.8 GHz. The frequencies of the 
qubit and the ancilla are far detuned from cavity modes; hence, their 
coupling to the dissipative modes is deeply in the dispersive re-
gime. The ancilla is a transmon dispersively coupled to the cavity, so 
that setting the ancilla transmon in ground or excited state would 
keep the cavity in different frequencies. Thus, we can read the transmon’s 
state through regular dispersive readout, by sending a readout pulse 
at the cavity’s resonance frequency, and checking the response 
amplitude or phase to readout the ancilla. We have also carried 
out similar experiments on a second device with similar cavity 
parameters but different transmon parameters, and the results are 
included in the Supplementary Materials.

General theory of dispersive nonreciprocity
Here, we outline the general theory framework, where one starts from 
minimal assumptions about the microscopic system and derives the 
general model in Eq. 2. Detailed derivations can be found in sec-
tion S1A. The nonreciprocal device studied in this work generally 
consists of one cavity mode c1 (mode a in the main text), which is 
coupled to additional waveguide and circulator modes denoted by cj (j = 
2,3…, N), as well as a qubit dispersively coupled to the waveguide 
modes. In what follows, we assume that the qubit is strongly coupled 
to a single waveguide mode c2, which corresponds to the bare buffer 
cavity mode used in this work. However, we note that the final result 
here, i.e., the effective master Eq. 2, also holds in more general cases 
where the qubit is dispersively coupled to multiple intermediary 
modes. The total system dynamics can be described by a Lindblad 
master equation (setting ℏ = 1)

where Ĥ0 denotes the Hamiltonian of the coupled linear-mode 
system, and Ldiss encodes the dissipative dynamics of the total 
cavity-circulator system. The dynamics of the bosonic modes alone 
is quadratic, so that we have

Note that the coefficient matrices hℓm and Γℓm generally depend 
on the external field B.

We focus on the regime where the waveguide and circulator 
modes evolve at timescales much faster than the cavity-qubit system 
of interest, which agrees with the experimental system. In this case, 
we can integrate out the waveguide and circulator degrees of free-
dom to obtain an effective description of the cavity-qubit dynamics. 
This adiabatic elimination can be carried out, e.g., using the stan-
dard procedure (54) directly with Lindbladians; see also section S1A 
for an explicit derivation based on quantum Langevin equations of 
motion and section S1B for an in-depth discussion about how the 
general model is valid for the experimental systems considered in 
this work. The final effective quantum master equation generally 
takes the form of Eq. 2.

Calibration of cavity photon number
The averaged photon number navg is required for calculating the qu-
bit frequency shift per cavity photon, χcq = ϕ∕ (t ⋅ navg) . To calibrate 
navg , we measure the ancilla that is directly dispersively coupled to 
the cavity, where we perform Ramsey experiments on the ancilla 
with and without cavity photons. By comparing these measure-
ments, we can extract the accumulated extra ancilla phase shift ϕa 
caused by cavity photons over a finite time window of t = 200 ns, as 
shown in Fig. 8A. Example results of the ancilla state versus rotation 
angle θ of the second Ramsey π/2 pulse is plotted in Fig. 8B, with the 
solid and dashed lines representing cases without and with cavity 
photons, respectively. As ϕa is proportional to the navg , with the ratio 

�t ρ̂= −i

[

Ĥ0+
ωq

2
σ̂z+

χ0

2
σ̂z ĉ

†

2
ĉ2, ρ̂

]

+Ldissρ̂ (3)

Ĥ0 =

N
∑

�,m=1

h
�mĉ

†

�
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ℒdissρ̂ =

n
∑

𝓁,m=1

Γ
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(

ĉmρĉ
†

𝓁
−
1

2
{̂c

†

𝓁
ĉm, ρ̂}

)
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Fig. 8. Photon number calibration. (A) The pulse diagram and (B) the example 
experimental result of cavity photon number calibration for an ancilla qubit 
Ramsey measurement under cavity photons. We obtain the ancilla phase evolution 
by varying the delay time between the cavity pulse and the second ancilla π/2 
pulse. The result of the ancilla state against the rotation angle θ is plotted. We ob-
tain the phase and the amplitude from these sinusoidal curves. The solid and 
dashed lines are for the results without or with cavity photons, respectively, where 
the phase difference between them is the accumulated phase of ancilla due to cav-
ity photons. (C) The averaged cavity photon number during 200 ns, based on the 
time-averaged frequency shift divided by the dispersive shift χa between the cavity 
and the ancilla. (D) Initial photon number calculated with Eq. 7.
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set by dispersive coupling strength χa between the ancilla and the 
cavity, ϕa = χanavgt , we obtain navg in the 200-ns time window,

and repeat this protocol for all of the external fields, the result is 
plotted in Fig. 8C.

The initial photon number n0 is a required quantity for comput-
ing the master equation parameters. We can compute its value via 
the measured cavity decay rate conditioned on the qubit in ground 
state, κg, as well as the time-averaged cavity photon number navg 
during the time window t (see paragraph above for discussion on its 
measurement), making use of the following equation

The initial photon number n0 is plotted against varying magnetic 
fields in Fig. 8D.

Characterization of system parameters in the master 
equation model
To motivate our measurement protocol to determine the model pa-
rameters, it is worth first discussing the physical meaning of the dy-
namics generated by Eq. 2: The cavity now experiences a qubit-state– 
dependent frequency detuning ωσz

 and decay rate κσz, whereas the 
qubit undergoes a time-dependent cavity photon–induced phase shift 
and dephasing effect. It is straightforward to see that the qubit-state– 
dependent cavity frequency detuning ωσz

and decay rate κσz (where σz =  
↑, ↓) can be expressed as

Furthermore, the qubit undergoes a time-dependent, cavity photon–
induced phase shift and dephasing effect with the cavity initialized 
in a coherent state (at t = 0) in the qubit Ramsey experiment. From 
Eq.  2, the qubit coherence obeys the equation of motion (see 
section S1D for derivations)

Integrating Eq. 9 over time leads to the following equation relat-
ing the qubit phase shift ϕ and decoherence factor lnζ to system 
parameters, as

where a↑∕↓(0) are the initial cavity amplitudes conditioning on 
qubit state. Assuming that a↑(0) ≈ a↓(0) (short drive pulse limit), 
we can factor out the drive-dependent term a↑(0)a∗↓(0) by rescal-
ing the equation with respect to the cavity photon number at t = 
0, n0 . Taking the long evolution time limit, i.e., when the cavity 

photon has fully decayed [tf ≫ 1/(κ + Γ)], Eq. 10 further simpli-
fies to the following

Measurements of the six real observables (i.e., three complex 
numbers) on the LHS of Eqs. 8 and 10 together provide sufficient 
constraints to uniquely determine all the parameters in the master 
equation Eq. 2

Note that so far in this derivation of Eqs. 2 and 10, we have neglected 
intrinsic decoherence of the qubit for simplicity, which, in experi-
ments, is calibrated out by performing differential measurements 
with or without the cavity drives.

The six experiments used to determine the six parameters are:
1) The qubit Ramsey measurements of its coherence function 

⟨ σ̂−(tf )⟩ in the presence of cavity photons, as discussed in section S2B 
and Fig. 2 (A and B). These measurements give ζ and ϕ. We use data 
at tf = 700 ns instead of 200 ns in this analysis as focusing on the long-
time integration is expected to provide the largest signal and the best 
stability.

2) The cavity Ramsey experiments of its frequencies conditioned 
on both qubit states, as discussed in section S2B and Fig. 2 (C and 
D), which provide ωg and ωe.

3) The cavity decay rate measurements, as shown and discussed 
in Fig. 4 and its caption in section S2C, which give κg and κe.

In either type of cavity measurements, it is not possible to perform 
direct heterodyne detection of cavity photons as it requires larger pho-
ton numbers for reasonable measurement time, which will be affected 
by higher-order spurious nonlinearities. In the cavity Ramsey mea-
surements, to read out the cavity state, we use a method inspired by 
photon number measurements in the strong dispersive regime (36, 
37). Although our system is not in the number-resolved regime, we 
apply a 200-ns square π-pulse to excite the ancilla (Fig. 2C), whose 
spectral width is a few times of the cavity-ancilla dispersive shift. The 
pulse excites the ancilla with decreasing efficiency at increasing photon 
numbers. Therefore, the measured ancilla |σz〉 provides a monotonic 

navg = ϕa ∕ (χa ⋅ t) (6)

n0 = navg
κg t

1 − e−κg t
(7)

ωσz
= Δc +

λ

2
σz , κσz = κ + Γeησz (8)

d⟨σ̂−(t)⟩

dt
= [− iλ+Γ(eiθ −coshη)]a↑a

∗
↓
⟨σ̂−(t)⟩ (9)

ln
⟨σ̂−(tf )⟩

⟨σ̂−(0)⟩
≡ (iϕ+ lnζ)=

a↑(0)a
∗
↓
(0)

− iλ+Γ(eiθ −coshη)

iλ+κ+Γcoshη
×

(1−e
−(iλ+κ+Γcoshη)tf )

(10)

ln
⟨ σ̂−(tf )⟩

⟨ σ̂−(0)⟩
≃ − n0

iλ + Γ(coshη − eiθ)

iλ + κ + Γcoshη
(11)

Δc = (ωg + ωe)∕2 (12)

λ = ωg − ωe (13)

Γsinhη = (κg − κe)∕2 (14)

κ + Γcoshη = (κg + κe)∕2 (15)

Γsinθ=λ+ Im

[

iλ+ (κg +κe)∕2

1−e[−iλ−(κg+κe)∕2]tf

iϕ+ lnζ

n0

]

(16)

Γ(coshη−cosθ)= −
1

2
Re

[

iλ+ (κg +κe)∕2

1−e−[iλ+(κg+κe)∕2]tf
×

iϕ+ lnζ

n0

]

(17)
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proxy for the cavity photon number (although the relationship is not 
linear), which is sufficient for an accurate measurement of the free-
evolution frequency of the cavity.

In measuring the cavity decay rate, however, it is important to 
implement a reliable readout scheme that detects the mean cavity 
photon number in the range of 0.1 to 10 in a linear fashion. To tack-
le this challenge, we devised a scheme that maps the cavity photon 
number to the ancilla’s phase shift ϕ over a sliding time window of 
fixed length (τ = 100 ns, as shown in Fig. 4A), which is measured in 
a Ramsey sequence of the ancilla. Although the instantaneous cavity 
photon number changes substantially during the time window τ, 
the cumulative phase shift ϕa can be used to infer the average pho-
ton number during τ, navg =

ϕa

τχa
 , with χa the dispersive shift between 

the cavity and the ancilla. We find that navg can be fit well to an ex-
ponential decay as the Ramsey window slides in time t for both the 
qubit in |g〉 and in |e〉, which gives the cavity decay rates for the re-
spective cases. In our experiment, we observe that our cavity decay 
rates fluctuate over the timescale of hours to days, possibly caused 
by changing configurations of trapped vortices, but the difference, 
κg − κe, tends to be mostly stable.

Supplementary Materials
This PDF file includes:
Sections S1 to S3
Figs. S1 to S14
Table S1
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