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Per- and polyfluorinated chemicals (PFAS) are of rising concern due to environmental
persistence and emerging evidence of health risks to humans. Environmental persistence
is largely attributed to a failure of microbes to degrade PFAS. PFAS recalcitrance has
been proposed to result from chemistry, specifically C-F bond strength, or biology,
largely negative selection from fluoride toxicity. Given natural evolution has many hurdles,
this review advocates for a strategy of laboratory engineering and evolution. Enzymes
identified to participate in defluorination reactions have been discovered in all Enzyme
Commission classes, providing a palette for metabolic engineering. In vivo PFAS biodeg-
radation will require multiple types of reactions and powerful fluoride mitigation mechan-
isms to act in concert. The necessary steps are to: (1) engineer bacteria that survive very
high, unnatural levels of fluoride, (2) design, evolve, and screen for enzymes that cleave
C-F bonds in a broader array of substrates, and (3) create overall physiological conditions
that make for positive selective pressure with PFAS substrates.

OPEN ACCESS

Defining the problems and why natural bacteria have
largely not evolved to biodegrade PFAS

More than twenty-two million fluorinated chemicals are listed by the PubChem database [1] almost
all of which have been devised by humans and within the last one hundred years. Thousands of orga-
nofluorine compounds have entered commercial use. The last decade has seen a steeply rising concern
per- and polyfluorinated alkyl substances (PFAS) for their persistence, bioaccumulation, and health
effects including infertility and cancer [2,3]. According to the 2021 OECD definition, PFAS are con-
sidered, with some exceptions, to be substances with at least one perfluorinated methyl group (-CF;)
or a perfluorinated methylene group (-CF,-). Thus, in the broadest PFAS definition, even commonly
used antidepressants (e.g. prozac) and other pharmaceuticals meet the definition of PFAS, although
their chemical and biological properties vary widely. Moreover, >50% of recently introduced pesticides
are fluorinated [4]. Human exposure to fluorinated chemicals is heightened by their extreme persist-
ence in the environment. Persistence is largely due to resistance to microbial degradation.

Microbes biodegrade most anthropogenic chemicals when the chemicals are composed of functional
groups found in natural products [5], but PFAS are different. No natural products currently known
contain more than a single fluorine substituent [6]. In this context, PFAS are inherently foreign to
nature. This has led some to suggest that PFAS are largely resistant to the catalytic capacity of
enzymes [7-10]. But other reasons for PFAS persistence may be more compelling. One alternative
explanation posits that evolutionary forces have constrained PFAS biodegradation.

In general, microorganisms have evolved to biodegrade structurally diverse anthropogenic chemi-
cals, largely driven by selective pressure to acquire metabolic energy and elements for cell replication
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or new enzyme evolution in nature is partly driven by the sheer abundance of microorganisms.
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biodegradation of the pharmaceutical metformin, with almost identical genes identified and characterized in
wastewater treatment plants globally [15-17]. Metformin can provide either carbon or nitrogen, or both, to
support growth [18].

PFAS are different [19]. Fluorine is a toxin, not a nutrient. Perfluorinated carbon chains are highly oxidized
such that their oxidation to carbon dioxide affords little energy to drive cell metabolism. To handle perfluori-
nated carbon chains, multiple evolutionary innovations are required to remodel metabolic pathways and cell
physiology. In total, these evolutionary hurdles contribute to making PFAS environmentally persistent.

Targets for fluoride robustness bioengineering

It is well-established that fluoride anion is highly toxic to prokaryotes and eukaryotes [20,21]. Although fluor-
ide is more abundant than carbon, nitrogen, and all the other halides in the Earth’s crust [22], it is mostly
eschewed by living things. In almost all cell types, chloride is a major anion in ionic and osmotic balance [23].
Organic compounds containing chlorine, bromine and iodine number in the thousands and are particularly
common in marine organisms [24]. In contrast, known organofluorine compounds number on the order of
tens, and some, such as 5-fluorouracil, are now believed to have been environmental contaminants from phar-
maceuticals rather than biosynthetic products [25].

The typical response of organisms to fluoride anion is to manage the toxicity when it gets into cells and
expel the ion as quickly as possible. In prokaryotes, as little 0.0007 M intracellular fluoride has been demon-
strated to be toxic [26], whereas intracellular chloride levels of 0.1 M are common and 4.0 M is tolerated by
some microbes [27]. The toxicity of fluoride is largely attributed to coordination of the anion to essential
enzymes which utilize calcium and magnesium. Those cations are common in enzymes involved in phosphoryl
group transfer reactions such as enolase, pyrophosphatase and ATPases [21,28]. Fluoride binding to enzymes is
typically reversible and that underlies the widespread cellular strategy of using membrane fluoride exporters to
help shift the binding equilibrium and expel the toxic anion [29]. The majority of microbes, including fungi,
which have been subjected to genomic sequencing and analyzed show genes clearly identified as fluoride expor-
ters [30,31]. Microbes express two independently evolved fluoride exporters. The more widespread, that consti-
tute 60%, are known as Fluc, or CrcB, type exporters. They function as channels that are driven by ionic
equilibrium. The other type are known as CLC" membrane proteins and function as fluoride/proton antipor-
ters. For all classes, fluoride exporters have been shown to serve as major protective measures. Genetic knock-
outs render the cell much more susceptible to fluoride toxicity [31-33]. Moreover, the expression of fluoride
exporters has been shown to be significantly up-regulated following exposure to fluoride [20,33].

Enzymes cleave C-F bonds via different mechanisms

In the last few years, there has been an explosion of interest in enzymatic and non-enzymatic defluorination
[34-38]. Studies on non-enzymatic defluorination can help reveal plausible mechanisms for new natural and
engineered defluorinating enzymes that are being uncovered. There have also been numerous reports of PFAS
defluorination by microorganisms in which the responsible enzymes have not been identified [39,40]. These
studies, and reports of PFAS biodegradation by microbial consortia, have been recently reviewed [41] and will
not be covered here.

The focus of this review will be on the breadth of enzyme types known to participate in defluorination, orga-
nized by the Enzyme Commission classification and covering all seven major classes: (1) Oxidoreductases, (2)
Transferases, (3) Hydrolases, (4) Lyases, (5) Isomerases, (6) Ligases, and (7) Translocases (Table 1). The most
well-represented are oxidoreductases and lyases. The most well studied individual enzymes are the hydrolases.
The translocases do not catalyze a C-F bond cleavage reaction but serve to remove fluoride from cells after
enzymatic defluorination. Table 1 illustrates representative reactions, and it is not meant to be comprehensive.
For additional examples, we have compiled more than one hundred enzymes that have fluoride as a product
for this paper as part of a PFAS biodegradation enzyme resource (z.umn.edu/pfas-biodeg). The resource pri-
marily sourced from various literature sources as well as the BRENDA Enzyme Database [65]. We emphasize
that these natural proteins primarily conduct biochemical reactions with monofluorinated compounds rather
than PFAS. Nonetheless, this resource provides a consolidated set of enzymes generally capable of defluorina-
tion as starting points for engineering or evolution.

Oxidoreductases are the first major class depicted in Table 1 and they highlight widely divergent mechanisms
of defluorination. Pyruvate dehydrogenase uses thiamine pyrophosphate to mediate decarboxylation with elim-
ination of fluorine from the B-carbon of 3-fluoropyruvate [42]. This theme of B-elimination is also observed
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Table 1. Representative enzymes catalyzing C-F bond cleavage. Part 1 of 2
Enzyme E.C. # Reaction catalyzed References
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Table 1. Representative enzymes catalyzing C-F bond cleavage. Part 2 of 2
Enzyme E.C. # Reaction catalyzed References
Fluoroacetate dehalogenase 3.8.1.13 Enz-. C,,O * [65,56]
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Enzymes are organized according to the numbering of the Enzyme Commission (E.C.). While the entire reaction pathway could not be represented, a key mechanistic feature
or the overall reaction was represented. Protein sequences and other metadata are available for download at z.umn.edu/pfas-biodeg.

with succinate dehydrogenase that is proposed to effect deprotonation as a prelude to a physiological dehydro-
genation reaction [44]. A variation of this mechanism occurs with caffeoyl-CoA reductase that catalyzes a
flavin-dependent double bond reduction as part of an electron-bifurcating reaction designed to conserve meta-
bolic energy for the host bacteria, Acetobacterium spp [43]. It has been proposed that certain perfluorinated
olefinic carboxylic acids can bind and undergo double bond reduction followed by deprotonation and
B-elimination of fluoride.
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Laccase mediator systems (LMS) are chemo-enzymatic processes by which laccases oxidize a chemical medi-
ator such as a nitroxyl radical, which subsequently oxidizes a substrate, while molecular oxygen is reduced to
water [66]. LMS were reported to be effective in the removal of PFAS [67]. Recent evidence suggests that this
removal may be linked to experimental artifacts arising from PFAS sorption onto the laccases rather than
actual degradation [68]. Regardless, the mechanisms of LMS in PFAS binding or catalysis warrant further inves-
tigation to assess laccases as a strategy for remediation.

Oxygenases catalyze a different type of defluorination with aryl fluorides which can undergo mono- or diox-
ygenation at the carbon atoms bearing fluorine and/or those adjacent. There are many examples of such reac-
tions as recently reviewed [69], one example is shown in Table 1. 2-Fluorobenzoate-1,2-dioxygenase catalyzes
an aromatic cis-hydroxylation of a fluorinated benzene that is set up for facile decarboxylation and defluorina-
tion at the adjacent carbon to generate catechol [47]. Cytochrome P450Cam functions physiologically as a
monooxygenase, but under anaerobic conditions can catalyze reductive dehalogenation as shown in Table 1.
The enzyme catalyzes dechlorination followed by defluorination through a carbene intermediate that may be
partially stabilized by the enzyme heme iron [48].

A rare direct reductive cleavage is indicated in a recent report [50]. An anaerobic bacterium was shown to
use the natural product fluoroacetate as an electron sink via reduction to acetate. Based on genomic analysis,
the responsible enzyme is proposed to be a glycine reductase-type defluorinase [50]. Another reductive reaction
is represented by benzoyl-CoA reductase [45]. That enzyme formally replaces an aryl fluorine with a hydrogen
atom and that is proposed to be mediated by aryl double bond reduction and subsequent HF elimination
(Table 1). A novel reductive defluorination of 3,3-difluorocyclopropene to propene is carried out by the
molybdenum-iron nitrogenase from Azotobacter vinelandii OP [49]. This didefluorination reaction is proposed
to proceed via initial reduction and cleavage of the carbon-carbon double bond with further electron inputs
leading to fluoride displacement (Table 1). 2-Fluoropropene was observed as a minor product. This novel
reductive defluorination mechanism highlights an untapped potential of biological catalysis.

Transferases known to catalyze defluorination are more limited (Table 1). In one example, fluoroacetate
detoxification is furnished by glutathione transferases that catalyze a thiolytic displacement of fluoride [51]. In
that case, the tripeptide glutathione that provides the thiol is sacrificial and eliminated from the host animal to
protect against the toxin. Another example of transferase catalyzed defluorination uses the glutathione catalytic-
ally. With dihaloalkanes, one halide is displaced, generating a gem-halo thioether that decomposes to an alde-
hyde and re-releasing glutathione [52,53]. The transferases were reactive with chlorofluoromethane and catalyze
defluorination but were not reactive with difluoromethane.

With the natural product fluoroacetate as a major enzyme evolutionary driver, the largest collection of char-
acterized defluorinating enzymes are hydrolases which are reactive with fluoroacetate (Table 1). Some of those
enzymes are non-selective with respect to their substrate. These hydrolases emanate from two divergent
enzyme superfamilies. One group, fluoroacetate dehalogenases [55,56], maps to the o/B-hydrolases, and the
other group is in the haloacetate dehalogenase superfamily [54]. Of the latter, there are members that are
(S)-specific or (R)-specific and some enzymes work on either enantiomer. A subclass of the (S)-specific haloa-
cid dehalogenases are the ones shown to date to be reactive with fluorinated substrates [59].

While the fluoroacetate dehalogenases and defluorinating haloacid dehalogenases derive from different ances-
tral enzymes, they are mechanistically similar, a good example of convergent evolution (Table 1). Both enzymes
utilize an aspartic acid for nucleophilic attack on the carbon that is alpha to the substrate carboxylate to gener-
ate a covalent enzyme-substrate ester intermediate with displacement of fluoride. The ester is subsequently
hydrolyzed as part of the catalytic cycle. Both enzymes facilitate C-F bond cleavage by providing amino acid
side chains with some partial or full positive charge character. In both cases, the fluoride must be displaced
from the active site fluoride pocket into the bulk water phase where hydration largely prevents rebinding and
inhibiting enzyme activity. Some fluoroacetate dehalogenases have been shown to be reactive with difluoroace-
tate [70].

Lyases are an important enzyme class to look to because they typically involve elimination chemistry which
is among the more facile mechanisms for displacing fluorine atoms from carbon chains, including perfluori-
nated chains [71]. Enoyl-CoA hydratase hydrates a fluorinated double bond leading to elimination of fluoride
[57]. Propanediol hydratase is notable for catalyzing a triple defluorination of a trifluoromethyl group [58].
This cobalamin enzyme catalyzes a 1,2-shift of a hydroxyl that is thought to activate an adjacent fluoride for
elimination. The subsequent difluoro-ene readily accepts water to generate an acyl fluoride that rapidly under-
goes hydrolysis. In total, the enzyme transforms 3,3,3-trifluoro-1,2-propanediol to malonic semialdehyde.
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Threonine ammonia lyase catalyzes an elimination of fluoride via a double shift facilitated by a pyridoxal phos-
phate cofactor [59]. Cysteine B-lyase initiates a Michael addition to a halogenated olefin to set up subsequent
elimination reactions [60]. While its physiological function is forming a carbon-carbon bond, the set-up reac-
tion generating a carbanion leads to a defluorination in a reaction resembling that catalyzed by propionyl-CoA
carboxylase [64].

Isomerases often involve the formation of double bonds, that may or may not be dependent on cofactors
[61,62]. Fluoromuconolactone isomerase catalyzes a net elimination of HF, allowing certain bacteria to grow on
fluorobenzoic acids [63].

Ligases involved in fluorine biochemistry, but not included in Table 1, catalyze carboxylic acid ligations to
Coenzyme A that can set up reductive or hydrolytic defluorination reactions [43,45]. The ligase propionyl-CoA
carboxylase generates a carbanion in an activation step for carboxylation, leading to fluoride elimination of a
fluorinated analogue (Table 1). Translocases that export fluoride from prokaryotic cells have not been cataloged
yet by the Enzyme Commission, but they have been extensively studied, as previously described [29]. For in
vivo PFAS degradation, fluoride exporters are an essential component to protect against fluoride toxicity. An
understudied area is translocation of charged PFAS species into cells. Despite a dearth of dedicated investiga-
tions, several studies indicate that the entry of fluorinated carboxylic and sulfonic acid compounds into pro-
karyotic cells is facile [72,73].

Enzymatic elimination reactions likely figure prominently in fluorotelomer defluorination [74]. A parallel
advancement was the reported abiotic defluorination and mineralization of perfluorooctanoic acid in dimethyl-
sulfoxide and NaOH at 40°C [34]. In that study, initial decarboxylation leads to lyase-like chemistry, generating
electron deficient fluoroolefins. Subsequent hydration reactions lead to gem-elimination of fluoride and further
intermediates undergoing extensive defluorination. Considering this chemical knowledge and the biochemical
reactions highlighted in Table 1, one should strongly consider elimination reactions to tackle multiply fluori-
nated PFAS.

Putting the pieces together: enzymes, microbes, and
materials engineering

The multi-faceted requirements for the biodegradation of any highly fluorinated compound (fluoride resistance,
transport, catalytic enzymes, cofactors) calls for laboratory engineering and evolution. The premise of this
review is that natural PFAS-degrading microbes will evolve naturally, eventually, but laboratory evolution can
greatly speed up the process.

Engineering a supra-natural fluoride-resistant bacterium
Efficient defluorination of PFAS will require combining different components from naturally evolved organisms
to mitigate fluoride stress (Table 2). In nature, prokaryotes contain genes encoding either a CrcB or CLC"
fluoride export protein. Each one singly allows a given prokaryote to withstand tens of millimolar levels of
fluoride, a level sufficient for virtually all natural environments. As previously described, the intracellular
volume of a typical prokaryote is on the order of 1 femtoliter, such that the displacement of even one fluoride
anion from one femtomole of PFAS will generate one thousand-fold the toxic level of fluoride [30]. This indi-
cates that the level of fluoride export for robust PFAS-degraders must exceed natural resistance levels. Fluoride
exporters have been exquisitely refined through evolution to achieve recorded rates as high as 10 000-100 000
ions exported per second [32]. However, fluoride resistance may be further enhanced by increasing exporter
expression above natural levels or combining both exporters (Figure 1A). Observations of crcB and CLC'-
encoding genes co-occurring in the same genome are rare (~3% of genomes) [30] and the physiological conse-
quences of having multiple mechanisms has not yet been examined. CrcB and CLC" exporters use different
mechanisms and so may cover different concentration levels within a cell and act in a complementary fashion.
In addition to previously highlighted natural fluoride abatement functions [30], functions evolved for other
purposes may prove beneficial for engineering PFAS degrading organisms. For example, fluoride-binding ribos-
witches are natural regulatory elements that serve to turn on fluoride stress functions in the presence of fluor-
ide. As such, these 52-mer RNA molecules harbor a Mg>" cation that binds fluoride and changes conformation
of the riboswitch to allow expression of fluoride stress genes [20]. We suggest here that riboswitches present an
(untested) possibility to engineer cellular resistance solutions. For example, we speculate that fluoride ribos-
witches, if overexpressed, may also be able to function as protective agents if enough copies were present to

1 762 © 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-
ND).

620z AeN | uo Jasn ejosauul Jo ANsioAuN Ag Jpd-0g8z0-+202-00/6.9£96/.5.1/£2/18Y/3pd-8joie/Wwayooiq/wod ssaidpuepiod;/:dpy wol pepeojumoq


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Biochemical Journal (2024) 481 1757-1770
https://doi.org/10.1042/BCJ20240283

Table 2. Several representative fluoride resistance functions shown to protect microorganisms.
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Mechanism of F~ toxicity

Protein Function Microorganism mitigation References
CrcB Fluoride exporter Many Passive, gradient driven [32]
cLch Fluoride exporter Many Antiporter, F~ and H* [29]
Enolase Enzyme inhibited by Streptococcus High expression overcomes [26]
fluoride inhibition by F~
Pyro-phosphatase Enzyme inhibited by Multiple High expression overcomes [26]
fluoride inhibition by F~
Phosphatases Cleavage of phosphate Multiple Cytoplasmic acidification [30]
esters
PO3~ transporter Importing phosphate Multiple Not well established [30]
Surface adhesion Promotes biofilm formation Pseudomonas putida Not well established [33]
protein KT2440
Divalent cation Importing Ca?*, Mg®* Multiple Not well established [30]
transporter
Universal stress protein Expressed during multiple Enterobacter cloacae Not well established [28]
stresses FRM
bind and lessen the amount of cytosolic fluoride (Figure 1A). Although the dissociation constant (Kp) of the
fluoride riboswitch is in the high wM range [75], if a high activity enzyme is cleaving C-F bonds intracellularly,
riboswitch binding may be able to ‘buffer’ the high cytoplasmic fluoride levels. Over-expressed riboswitches
could prevent inhibition of essential enzymes and ferry enzymatically released fluoride anions to fluoride
(A) PFAS to screen
Biocompatible -
RFRFRF O hydrogel Screen for F
F
OH
F FF FF FF F
FF O
g OoH
F FF F
(B) PFAS surrogates for lab evolution e .
1 Select rapid growth
R = CHg- P N N
CH;CH,-
Figure 1. Screening and selecting for enhanced biocatalysts to catalyze defluorination of PFAS.
(A) Screening is highlighted with two representative PFAS, perfluorooctanoic acid and perfluorobutanoic acid. A biocompatible
hydrogel is shown to encapsulate a bacterial cell containing a defluorinase(s) and membrane fluoride exporters, CLC and
CrcB. Defluorination may be screened various ways, such as detecting fluoride release in microtiter well plate assays. (B)
Candidate PFAS ‘surrogate substrates’ can be used for laboratory evolution. The substrates undergo defluorination to yield
organic products such as o-keto acids that can provide carbon and energy for an appropriate host microorganism. The
microorganism may be protected against fluoride toxicity by using metal cations that avidly bind fluoride anion after expulsion
from the cell. These methods can be used to select for improvements in biological defluorination via adaptive evolution.
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exporters, hardening cells against fluoride-mediated stress. Since Pseudomonas putida, a commonly used syn-
thetic chassis for fluorine chemistry [33] does not have a naturally-encoded fluoride riboswitch, this presents
an intriguing orthogonal option separate from normal cell regulatory mechanisms. The cellular consequences
of riboswitch overexpression are manifold, organism-dependent [33,76], and not yet tested in this context.
Nonetheless, the idea serves as a singular example of how knowledge of biological mechanisms may be tuned
for potential PFAS applications.

Creating a ‘fluorophile’

Prokaryotes known as halophiles tolerate or require chloride levels of 4 M, and/or grow in high levels of
bromide and iodide salts naturally [77]. However, to our knowledge, microorganisms are not designed to toler-
ate or require even 0.1 M fluoride, for physiological reasons discussed previously. Halophilic microorganisms
exclude fluoride from their menu.

The ideal situation would be to create a true ‘fluorophile,” an organism benefited by fluoride, but the toxicity
of fluoride itself makes this a singularly challenging task. However, it may be plausible to engineer cells that are
addicted to fluoride (Figure 1). For example, one could place essential gene(s) under fluoride-sensitive control,
such as a modified fluoride riboswitch. In such a synthetic biology scenario, only cells actively generating fluor-
ide in the cytoplasm via C-F bond cleavage would be able to grow. They may additionally be protected by
fluoride exporters. In fact, organisms having highly active fluoride exporters will further select for higher level
defluorination to maintain sufficient intracellular fluoride concentrations to keep riboswitches ‘on.
Alternatively, one could envision engineering fluoride ‘addicts’ where fluoride down-regulates or turns off a
toxic or autolytic function.

In natural environments, biodegradation is best sustained when it brings benefits to the biodegrading organ-
ism, and this also could also be applied to fluoride under specific circumstances. For example, there are several
metals that co-ordinate with fluoride and form highly insoluble precipitates. For example, moderate concentra-
tions of a metal such as scandium will by itself act as a negative-selective agent in but serve as a neutralizing
reagent against fluoride toxicity via co-precipitation of both toxins (Figure 1B). The net effect is to generate a
positive selective pressure for fluoride release. In concert with active fluoride exporters, such as CrcB or CLC"
or both, under this scenario the fluoride would leave the cell and protect against metal import and toxification.

Large-scale enzyme library generation and high-throughput screening

In combination with the above-mentioned methods for selection, methods for high-throughput screening
would be beneficial for enzyme engineering or metagenomic libraries. In most ‘standard’ functional metage-
nomics workflows, enzyme libraries are screened by negative selection. In the case of PFAS, however, fluoride
anions formed from defluorination reactions will be more toxic than unmetabolized PFAS. Total defluorination
of a standard long chain (Cg) perfluorinated carboxylic acid would produce 15 fluoride anions per single mol-
ecule of substrate. Thus, fluoride toxicity would quickly overwhelm any antimicrobial threat posited by the
initial screening substrate itself. Hurdles in selecting for the biodegradation of PFAS compounds, such as fluor-
ide toxicity, must therefore be dealt with up front in the selection or evolution of a fluoride-resistant chassis.
More hardy alternative hosts to Escherichia coli are ideal for such purposes, such as P. putida KT2440 [33,78],
Saccharomyces cerevisiae [79] and other strains with natural or evolved resistance to fluoride [80].

As opposed to negative selection, positive selection can be introduced by using surrogate substrates with
some selectable components (Figure 1B). The surrogate concept requires that C-F bond cleavage occurs to
unlock the capture of the selectable nutrient. Example surrogate substrates include compounds with CF,-R
groups such as difluorophenylacetate, difluoropropionate, and other difluoroalkanoates and analogs.

Fluoride detection is the preferred method to screen for defluorination over parent compound removal since
the latter is subject to sorption artifacts (Figure 1A) [68]. Moreover, background fluoride concentrations in
most environmental samples or laboratory materials are low [81]. For enzyme or cell-based libraries with sizes
amenable to 96-well plate screening, colorimetric screens are efficient for fluoride detection such as the forma-
tion of lanthanum-alizarin complexes or xylenol orange [82] liquid microtiter well plate methods. These
96-well plate detection assays have been adapted to screen alanine scanning libraries of defluorinating enzymes
[83] or the E. coli ASKA collection [84,85]. A more generalizable screening method, although prone to artifact
due to lowered buffering capacity, is the measurement of pH change. These methods are reviewed more thor-
oughly elsewhere [85].
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However, while microtiter-well plate assays are effective for screening hundreds to thousands of samples,
several orders of magnitude higher screening capacity is needed for larger enzyme engineering or enzyme
design efforts. For screening larger random mutagenesis or saturation (NNN, NNB, NNK, MAX) libraries,
96-well plate screening is not feasible. For randomizing 3 NNN positions, for example, over 10° colonies need
to be screened to attain a 99% probability of discovering the best variant in variant space [86].

Such libraries require more scalable methods such micro- or nanodroplet-based screening or high-
throughput mass spectrometry screening methods, well-reviewed elsewhere [87]. For droplet sorting, standard
pH-change assays e.g. with pH-sensitive GFP variants [88,89] may be amenable for the detection of defluorina-
tion activity. Biosensors are also effective for fluoride ion detection [90] and have been combined with micro-
fluidic methods [91]. A halide-sensitive green fluorescent protein which binds fluoride as well as other halides
was previously reported [92] and may be useful if engineered for better fluoride selectivity and sensitivity.

Interestingly, some microdroplet screening methods themselves use PFAS reagents to build
water-in-fluorinated oil drops which are more biocompatible and stable than hydrocarbon alternatives [93].
Perfluorinated reagents are also prized for high-throughput mass spectrometry e.g. nanostructure-initiator mass
spectrometry methods [94]. Potential interference, whether from other halides or from fluorinated reagents
present in the screening materials, or by phosphates which interfere with colorimetric fluoride detection assays,
must be kept in mind with respect to experimental design.

Naturally-evolved and highly-selective, fluoride-specific crcB riboswitches have already been applied in com-
bination with various reporter genes or with Casl3a to generate a fluorescent signal for fluoride ion detection
based on the Sherlock method [95]. FluorMango [96] is a fluoride-specific RNA-based biosensor combining
aptamers from the crcB riboswitch [20] and the light-up aptamer Mango-III [97]. Previously, FluorMango
proved effective for identification of defluorinating bacterial cells [96]. The method used in combination with
fluorescence-based cell sorting was also able to enrich a bacterial population to achieve a 20-fold increase in
defluorination activity [98].

Enzymes performing fluorine chemistry, whether C-F bond cleavage or formation, typically suffer from low
catalytic efficiency likely due to a combination of factors including the high activation energy and challenging
chemical properties of fluorine [71,99,100]. Further techniques are needed to detect or enhance weak pheno-
types such as increasing enzyme production levels. For example, a new method for metagenomic library con-
struction [101] enables higher-level expression of captured genes through restriction digestion of DNA at
specific ‘CATG’ restriction cut sites and promotes cloning of start codons in-frame and downstream of strong
inducible promoters. Such examples, in combination with more sensitive and better throughput fluoride detec-
tion methods, will increase the overall discovery rate.

Computational methods for in silico screening or ‘design-of-experiments’ may additionally narrow the search
space [101]. Data-driven approaches typically combine in silico deep-learning approach with activity screening,
exemplified by a recent microfluidics-based study that yielded a high hit rate in the discovery of nuclease var-
iants [102,103]. Such methods are widely applied in drug discovery [104] and are well-poised to contribute to
the screening of enzymes against a large fluorochemical library for a relatively rare phenotype such as defluori-
nation. However, drug discovery largely focuses on small molecule candidate drugs binding to structurally
defined protein targets. Binding is only the first step in enzyme catalysis and predicting catalytic functionality
remains a significantly more challenging task.

Materials-microbe co-engineering

Fluorine in the earth’s crust exists largely as fluoride anion bound to cations of aluminum, calcium, magnesium
and other metals. Industrial fluorine used for PFAS synthesis is largely mined from fluorite (CaF,) ores with
strong metal-to-fluorine bonds. The propensity of fluoride to bind avidly to metals can be leveraged for PFAS
biodegradation, specifically by mitigating fluoride toxicity (Figure 1B). Intracellularly, Mg*" bound in a
fluoro-riboswitch may help lower fluoride toxicity until it can be exported, as described previously. Following
export, fluoride can re-enter cells in an aqueous environment, particularly if the pH is <7. Various hydrogel
materials containing metals have been prepared and characterized exclusively for the removal of fluoride anions
from water [105-107]. Many hydrogel materials can be prepared under mild conditions, making them poten-
tially biocompatible. Such materials include silica, polyacrylamide, polyvinyl alcohol, and alginate. Alginate
beads are typically prepared via inducing gel formation with di- or trivalent metal cations. Calcium, magne-
sium, and aluminum are typically combined with alginate, but many others have been used for different
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purposes. Porous, biocompatible, metal-laced gel materials would be ideal to harbor biodegrading microorgan-
isms and sequester fluoride after enzymatic defluorination (Figure 1).

An additional benefit to a material-centered biocatalytic system is the option to include materials to concen-
trate PFAS from a water sample to enhance biodegradation rates. Independent of catalysis, various materials
have been developed to specifically adsorb PFAS. Adsorbent materials for this purpose include modified cyclo-
dextrins and graphene oxide materials [108,109]. Most current methods for treating water use adsorbents to
sequester PFAS. Contaminated adsorbents may be land-filled or treated thermally at temperatures that are
EU-mandated to exceed 850°C [110]. Optimal microbe-material interfaces would both adsorb and degrade
PFAS in situ. Previous research has shown the capability of gels containing specific microorganisms to bind,
concentrate and biodegrade s-triazine herbicides, hydrocarbons and phenols [111-113].

Conclusion

There is no silver bullet to solve the PFAS crisis. Phasing in the use of non-fluorinated PFAS alternatives where
possible as well as applying synergistic combinations of chemical, physical, and biological PFAS removal
methods will all be required. This review provides a suite of ‘prescriptions’ for how to envision, build, or
enhance PFAS biodegradation with the aid of enzymes and microorganisms. One could envision a future, for
concentrated PFAS waste streams where biocontainment is possible, where combinations of components from
different organisms can create inspired synthetic biology ‘FluoroBrick’ platforms [75]. While numerous evolu-
tionary hurdles must be overcome, the ever-growing toolbox for enhancing and evolving enzymes provides
optimism even for these truly ‘new-to-nature’ substrates such as PFAS. Regardless, with or without our own
meddling in response to PFAS, biological evolution will continue tinkering.
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