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SUMMARY

Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA
structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA),
and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA
structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alter-
native DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here,
we review the recent advancements in the field and present state-of-the-art technologies and methods to
study alternative DNA structures. We discuss the limitations of these methods as well as how they are begin-
ning to provide insights into causal relationships between alternative DNA structures, genome function and

stability, and human disease.

ALTERNATIVE DNA STRUCTURES: HISTORICAL
OVERVIEW

In 1953, James Watson and Francis Crick proposed a model for
the structure of DNA based on the experimental data of Rosalind
Franklin and Maurice Wilkins. They determined that DNA folds
into the so-called “B-form,” a right-handed double helix with a
helical turn of 10.5 bp built of stacked purine (Pu)-pyrimidine
(Py) base pairs of adenine-thymine and guanine-cytosine'™
(Figure 1A). Although atypical right-handed DNA helices were
observed under specific ambient conditions, such as in water-
alcohol solutions (A form)* or in the presence of lithium ions
(C form),° B-DNA was generally believed to be the only feasible
DNA structure formed under physiological conditions.

Nevertheless, experimental evidence began to accumulate
pointing to the existence of alternative nucleic acid structures
that are radically different from B-DNA. Three-stranded RNA
structures formed by synthetic poly-A and poly-U tracts were
the first ones discovered.® The authors correctly hypothesized
that the third poly-U strand could fit into the major groove of the
A:U duplex’ forming Hoogsteen hydrogen bonds®* with adenines
of the duplex. Homopolymers (dA)n-(dT)n and d(TC)n-d(GA)n
were soon found to form triplexes with poly-rU and poly-r(UC)
RNA strands, respectively.'®'" Subsequently, DNA triplexes, in
which a d(TC)n strand formed Hoogsteen hydrogen bonds with
the d(GA)n-d(TC)n duplex were detected at lower pH.'>'*

In an independent development, tri- and tetra-nucleotides of
deoxyriboguanylic acid were found to form exceptionally stable
higher-order structures.’® Studying X-ray diffraction of gels
formed by guanosine monophosphate, Gellert et al.'® proposed
that G-quartets stabilized by Hoogsteen hydrogen bonds are
responsible for their formation and stability. It was further sug-
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gested that monovalent cations, particularly K*, additionally sta-
bilize G-quartets."”

Although these early studies did not initially spark general in-
terest in shifting the accepted paradigm that B-DNA is the only
thermodynamically favorable structure, a striking blow to this
consensus came from the first crystal DNA structure of the
(CG)s repeat, which appeared to exist in a totally different DNA
conformation—a left-handed Z-DNA'® (Figure 1A). Aside from
its opposite helix sign, Z-DNA differs from B-DNA in that its dinu-
cleotide repetitive unit results in a zig-zag sugar-phosphate
backbone. Z-DNA was then shown to readily form in negatively
supercoiled plasmid DNA.®

After the discovery of Z-DNA, additional alternative DNA struc-
tures were shown to form in supercoiled plasmid DNA. For
example, two halves of an inverted repeat in the same DNA
strand can pair with each other, rather than with their comple-
mentary DNA strand, generating a cruciform-shaped structure
(Figure 1A). The base of the DNA cruciform is a four-way DNA
junction, and there are at least 3 single-stranded DNA (ssDNA)
bases at each of its tips (Figure 1A).2%?"

Triplex H-DNA formed by natural homopurine/homopyrimidine
(hPu/hPy) mirror repeats was the first multistranded DNA structure
discovered.?>?? In this structure, the DNA strand corresponding to
one half of a mirror repeat (either pyrimidine or purine) unwinds and
folds back to form Hoogsteen or reverse Hoogsteen hydrogen
bonds with the purines of the duplex half of the repeat, whereas
its complementary strand remains single stranded (Figure 1A).

Shortly after the discovery of H-DNA, another multistranded
DNA structure, now called G4-DNA, was found in single-
stranded G-rich sequences located at immunoglobulin class
switch recombination (CSR) regions and telomeres.”* " It is built
by stacked G-quartets paired via Hoogsteen hydrogen bonds
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Figure 1. B-DNA and alternative (non-B) DNA
structures

(A) Representative images of right-handed
B-form DNA double helix. Alternative (non-B)
DNA structures: G4s formed in formed in
G3.N1_7G3,.N1_7G3,N4_7;Gz, consensus sequences,
H-DNA formed in homopurine/homopyrimidine
(hPu/hPy) mirror repeats, Z-DNA in regularly
alternating (PuPy), repeats, cruciform in inverted
repeats, and hairpins/S-DNA in direct tandem
repeats. Each alternative DNA structure shows its
specific distribution of ssDNA stretches/unpaired
bases (yellow regions). The arrows highlight regions
where ssDNA processing enzymes or chemicals
can act on alternative DNA structures. The block
sign fillustrates the inhibitory effect of multistrand
DNA present in G4s and H-DNA on dimethyl sulfate
(DMS)-induced guanine methylation.

(B) RNA:DNA hybrid-associated alternative DNA
structures. RNA:DNA hybrids can form R-loops
when the ssDNA is not folded or into other types of
RNA:DNA hybrids when the non-paired ssDNA
folds into alternative DNA structures, such as G4s,
forming G-loops or H-DNA, forming H-loops. Each
alternative DNA structure shows its specific
distribution of ssDNA stretches/unpaired bases
(yellow regions).
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and stabilized by monovalent cations, particularly potassium
(Figure 1A). Importantly, G4-DNA can be formed by one, two,
or four DNA strands in various orientations relative to each other.

These studies fueled the discovery of other alternative DNA
structures,?® " including i-motifs (iMs) composed of interca-
lated cytosine-cytosine base pairs,®’ DNA unwinding elements
(DUEs) formed by AT-rich elements located adjacent to replica-
tion origins,33 and S-DNA consists of slipped-strand hairpins
formed by some direct tandem repeats®**° (Figure 1A).

The underlying structural, biophysical, and biochemical char-
acteristics of alternative DNA structures were initially established
in vitro. First, alternative DNA structures are formed in regions of
repetitive DNA with strict sequence requirements, for example,
regularly alternating (PuPy), repeats form Z-DNA, inverted re-
peats form DNA cruciform, hPu/hPy mirror repeats form
H-DNA, and guanine-runs belonging to the consensus sequence
G3,N1_7G3,N1_7G3,N1_7G3, form G4s, whereas certain direct
tandem repeats form S-DNA/hairpins (reviewed in Brown and
Freudenreich,”® Wang and Vasquez,®® and Khristich and Mir-
kin®%) (Figure 1A). Second, a fundamental property of all these
structures is that they are thermodynamically unfavorable in
linear DNA but can be promoted by supercoiling or biological
processes that unwind B-DNA, such as replication or transcrip-
tion.?°% In transcribed regions, an RNA transcript can invade
duplex DNA, forming three-stranded RNA:DNA structures called
R-loops.*®8 Furthermore, RNA transcripts can stabilize other
alternative DNA structures, such as H-DNA and G4s, by binding
to the free ssDNA strand to create mixed structures called
H-loops (H-DNA)*® or G-loops (G4-DNA)*° (Figure 1B).

Tandem repeats, sequences of two or more DNA bases that are
repeated numerous times in a head-to-tail fashion, account for
about 3% of the human genome”' in a total of 1,049,715 repeats
(GRCh38 genome annotated using tandem repeats finder*® last
updated at UCSC: 2022-10-18). Importantly, this is still an under-
representation of the repeats that potentially form alternative DNA
structures, as some sequences, such as G4 forming repeats, are
often not annotated as tandem repeats. Indeed, about 716,310
genomic DNA sequences were found to potentially form G4
alone.”® In addition, over sixty repeat expansion diseases
(REDs) caused by pathogenic expansions of tandem repeats
have been reported (reviewed in Khristich and Mirkin®® and
Gall-Duncan et al.*%). The most well-known REDs include Hun-
tington’s disease (HD), fragile X syndrome (FXS), and Friedreich’s
ataxia (FRDA), which are caused by the expansion of (CAG),,
(CGG),, and (GAA), repeats, respectively. Thus, DNA sequences
prone to form alternative DNA structures are highly frequent in the
human genome and associated with several human diseases.

The discovery of alternative DNA structures led to numerous
speculations on their possible biological roles. Z-DNA was sug-
gested to play a role in transcriptional activation.*® It was also
postulated to initiate genetic recombination, since two DNA
strands of the adjacent B- and Z-DNA segments are not topolog-
ically linked.“®~*® DNA cruciforms were suggested to play a role in
both site-specific’® and homologous recombination (HR).*° In
fact, DNA cruciforms are so similar to Holliday junctions that
they were used as a bait to isolate Holliday junction resolvases
(e.g., MUSB81).%">2 A separate group of studies implicated the for-
mation of DNA cruciformsin replication origins.>* >° Since H-DNA-
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forming hPu/hPy mirror repeats were initially identified in the up-
stream promoter regions of eukaryotic genes,*® they were thought
to play a role in transcription initiation.”*°® H-DNA-forming se-
quences were also proposed to serve as terminators of DNA repli-
cation®®° and speculated to be the hotspots of HR.*® Localization
of G4-DNA to telomeric overhangs®®?” implied their role in chro-
mosome end-protection. Another thought-provoking idea was
that four telomeric overhangs might form a parallel-stranded G4-
DNA structure during the course of homolog recognition in meiotic
prophase.”* Finally, the role of G4-DNA in immunoglobulin CSR
was also discussed, given their presence at these regions.**
S-DNA was believed to be at the heart of repeat expansions,
leading to their progressive lengthening by misalignment, or
“slipping,” during replication or repair.%'~5°

Some of these ideas were subsequently substantiated,
whereas others have yet to be substantiated (reviewed in
Brown and Freudenreich,”® Wang and Vasquez,® Khristich
and Mirkin,*® and Georgakopoulos-Soares et al.®"). Notably, a
major obstacle for establishing the biological role of alternative
DNA structures was that their dynamic nature made it chal-
lenging to unambiguously prove their existence in vivo, partic-
ularly in large eukaryotic genomes, given that a specific
structure may only be present in a small fraction of the cell pop-
ulation at any given time. Thus, the development of new
methods was key for the detection of alternative DNA struc-
tures. This review concentrates on various methods to detect
alternative DNA structures in vivo, and how the development
of these technologies has changed our understanding of their
biological role in health and disease.

METHODS TO DETECT ALTERNATIVE DNA STRUCTURES IN VITRO

New methods for the detection of alternative DNA in vivo are deeply grounded
in earlier developed approaches for their detection in vitro. Unlike canonical
double-stranded DNA, most alternative DNA structures contain ssDNA re-
gions (Figures 1A and 1B) that have been harnessed in various ways for non-
canonical DNA structure detection. S1 nuclease, which preferably cleaves
ssDNA,®* emerged as one of the first of these tools.'®" Although S1 nuclease
was key in the discovery of DNA cruciforms'®?" and H-DNA (reviewed in
Mirkin and Frank-Kamenetskii®®), it functions at acidic pH. Other ssDNA-spe-
cific nucleases, such as P1 and mung bean (MBN) nucleases, were also used
(reviewed in Wang et al.?%), since they cleave DNA under neutral pH, i.e., at
near-physiological conditions.

An alternative approach utilized chemical probes that modify bases accord-
ing to the type of hydrogen bonding they are involved in. Several of them
modify ssDNA bases and therefore identify the absence of Watson-Crick
hydrogen bonding.®” These include osmium tetroxide (OsO,) that modifies
the unsaturated 5-6 double bond of single-stranded thymines,®® chloroacetal-
dehyde (CAA) that converts single-stranded adenines, cytosines, and gua-
nines into their etheno derivatives,®® potassium permanganate (KMnO,) that
causes cis-dihydroxylation of the 5-6 double bond of single-stranded thy-
mines,’ and diethyl pyrocarbonate (DEPC) that preferably carboxylates the
N6 and N7 positions of single-stranded adenines.”’ Another useful chemical
probe to detect multistranded DNA structures is dimethyl sulfate (DMS), since
it methylates the N7 position of guanines when they are not involved in Hoogs-
teen or reverse Hoogsteen hydrogen bonding.”? Therefore, guanines are pro-
tected from DMS modification in three- and four-stranded alternative DNA
structures that utilize those hydrogen bonding. All these modifications can
be detected at nucleotide resolution via DNA sequencing”®’® and were
thereby used to elucidate key characteristics of alternative DNA structures.
Importantly, assays that rely on protection from labeling are only suitable
when alternative DNA structures are highly frequent.

For DNA cruciforms, central single-stranded loops and unwound regions
at four-way junctions were modified by different single-stranded base-
specific chemicals.””®? Z-DNA was modified at the B-to-Z junction using
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single-stranded base-specific chemicals,?*®* whereas DEPC selectively

modified purines in Z-conformation.?> H-DNA can fold in two forms: H-y
and H-r. In the H-y form, the pyrimidine strand is single stranded, whereas
the purine strand is single stranded for H-r. For H-DNA in the H-y form,
half of the purine strand and the center of pyrimidine strand were modified
by single-stranded base-specific chemicals, whereas the remaining half of
the purine strand was protected from DMS modification.”®">76:8%87 |n H-r
DNA, half of the pyrimidine strand was modified by single-stranded base-
specific chemicals, whereas half of the purine strand was protected from
methylation by DMS.?"%4-°° In G4-DNA, all guanines were protected against
DMS methylation®*?%2" (Figure 1).

Since they generate irreversible products, one drawback of using single-
strand-specific nucleases and chemicals is that they can shift the equilibrium
from B-DNA to alternative DNA structures. Thus, additional methods including
two-dimensional gel electrophoresis were used to detect interconversions
between B-DNA and alternative structures during plasmid supercoiling.’’
This allowed detection of the Z-DNA,°%°® DNA cruciform,®*°® and triplex
H-DNA formation.??

Small molecules, proteins, or antibodies that direct bind alternative DNA
structures can also be used for DNA structures in vitro (e.g., Lam et al.,’® Zheng
etal.,”” and Miiller et al.?®). Another feature exploited in the detection of some
alternative DNA structures is their potent ability to halt polymerases. Although
initially identified as an obstacle to DNA sequencing, particularly in G/C-rich
sequences,” this feature was quickly harnessed into a tool referred to as
the polymerase stop assay to detect alternative DNA structures,'°° including
G4-DNA and H-DNA in vitro. With the advent of high-throughput sequencing
methods, genome-wide modifications of the polymerase stop assay were
developed. Murat et al. evaluated the kinetics and fidelity of DNA synthesis us-
ing 20,000 sequences comprising all short tandem repeats permutations in
different lengths and found that polymerase stalling and pairing errors during
DNA sequencing could be used to predict the formation of alternative
DNA structures, such as hairpins and G4s."°" In another method, whole-
genome sequencing (WGS) was carried out with and without G-quadruplex-
stabilizing ligands or ions, leading to an observable alteration in sequencing
readout attributable to G4-DNA formation.**'%?

EVIDENCE OF LOCAL ALTERNATIVE SECONDARY
STRUCTURE FORMATION IN VIVO

Given their relevance to disease, certain loci and DNA motifs
have been interrogated more closely using various tools to
detect structure formation in vivo. One technique used is liga-
tion-mediated PCR (LM-PCR), which allows for nucleotide-reso-
lution mapping of DNA breaks using knowledge of only one side
of the break since the second PCR primer anneals to a universal
linker ligated to the DNA end.®®'%® LM-PCR was initially used to
map double-strand breaks (DSBs) occurring in vivo to H-DNA
motifs in the human c-myc gene, ' then to verify that the breaks
were triplex-induced by localizing the sites of breakage specif-
ically to the loop of the triplex.'® In another instance, DNA
breaks were localized the base of a cruciform.’®® These studies
pointed to the role of nucleotide excision repair (NER) compo-
nents in cleaving H-DNA and DNA cruciforms. %106

A clever approach to detect alternative DNA structures in-
volves proteins either designed or found in nature that specif-
ically bind to a sequence in its non-B-DNA form. For example,
zinc-finger nucleases (ZFNs) specifically designed to cleave
(CTG), and (CTG), hairpin structures were first characterized
in vitro. Expression of these nucleases in human cells revealed
the formation of S-DNA in vivo during replication of the ectopic
cassette carrying expandable (CTG),-(CTG), repeats.'®”

An important disease-related example involves the adenosine
deaminase ADAR1, whose p150 isoform contains a Z-DNA/Z-
RNA-specific binding domain. In cancer, loss of ADAR1 over-
comes resistance to immune checkpoint blockade'® and sub-
sequent activation of ZBP1-dependent necroptosis.'’® A small
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molecule that induces Z-DNA formation and thereby directly ac-
tivates ZBP1-dependent necroptosis was able to potentiate the
immune checkpoint blockade response in a melanoma mouse
model.'®® On the other hand, variants of ADAR1 isoform p150
that reduce its Z-RNA binding lead to three diseases: dyschro-
matosis symmetrica hereditaria, Aicardi-Goutiéres syndrome,
and bilateral striatal necrosis/dystonia, likely through dysregula-
tion of the innate immune response.’'1""

Another immune-related example is an interaction between
activation-induced cytidine deaminase (AID) and G4-DNA in
the immunoglobulin loci involved in CSR and somatic hypermu-
tation (SHM). Transcription through the class switch region lead-
ing to G-loop formation has been known to be key to CSR.""?
More recently, G4-DNA formed by CSR regions, rather than
linear B-DNA, was found to be the preferred substrate for
AID.""® Altogether, these data support the idea that formation
of G-loops*® and their subsequent cleavage by AID drive CSR.
A mouse model of hyper-immunoglobulin M (IgM) syndrome
bearing an orthologous AID mutation with impaired G4-DNA
binding but retained catalytic activity lacks both CSR and
SHM, providing evidence that this protein-structure interaction
occurs and has functional significance in vivo."'* Corroborating
the significance of this interaction, G4-DNA stabilization using
a small molecule decreases CSR in mice.""®

The causal link between structure formation and pathological
outcomes has historically been hindered by the lack of reliable
methods to visualize alternative DNA structures in vivo. In the
past few years, however, the development of new tools has
enabled progress in this field.

GENOME-WIDE MAPPING OF ALTERNATIVE DNA
STRUCTURES IN VIVO

Antibody-based and related methods

Antibody-based methods to detect alternative DNA structures can
rely on direct binding of antibodies to alternative DNA structures or
indirectly via expression of tagged proteins to bind alternative
DNA structures and using antibodies raised against protein tags
(Figure 2) (Tables 1 and S1). These antibody-based methods
have been widely used forimaging’'®~'?° and for high-throughput
sequencing studies, such as chromatin immunoprecipitation
sequencing (ChIP-seq),*°~'*> DRIP-seq (DNA-RNA immunopre-
cipitation sequencing),®®'%*3* or CUT&Tag'**"**"'*" (Tables 1
and S1). Several important conclusions have come from these
studies. For example, Z-DNA is preferably observed in the
upstream promoter areas of human genes and is believed to be
triggered by transcription.'®'-'%813° G4s are enriched in cancer
genomes and at telomeres,'?" making G4s potential therapeutic
targets.'*® In addition, G4s associated with RNA:DNA hybrids
(G-loops) have been linked to telomeres as a characteristic of telo-
merase-deficient tumors that use a recombination-based telo-
mere maintenance called alternative lengthening of telomeres
(ALT)."' G4s accumulate during the S phase of the cell cy-
cle,'?""'*2 and high-resolution single-molecule imaging in vivo al-
lowed for direct observation of G4 formation between the helicase
protein complex Cdc45, Mcm2-7, and GINS (CMG), and DNA po-
lymerase.'*® R-loops are involved in regulatory steps during
transcription initiation and termination.®6%% 133134 Both R-loops
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Figure 2. Antibody-based methods detection
of alternative DNA structures

Top, antibodies that direct recognize alternative
DNA structures. Antibodies that direct bind G4s
(e.g., BG4 antibody) and RNA:DNA hybrids (e.g.,
S9.6 antibody) are illustrated and have been
extensively used for imaging and genome-wide
binding (e.g., ChIP-seq) methods. Bottom,
antibody-based methods for indirect recognition of
alternative DNA structures. These methods rely on
ectopic expression of tagged proteins that
bind alternative DNA structures. Antibody-based
recognition of tagged regions allow for the score
alternative DNA structures in vivo. G4s binding via
tagged GRP, Z-DNA binding via tagged Zaa and
RNA:DNA hybrid binding via tagged dRNH are
exemplified and been extensively used for imaging

and/or genome-wide binding (e.g., ChIP-seq)
e methods.
(61 ZONA o MDA
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and G4s can promote DNA demethylation via their inhibitory
effect on DNA methyltransferase activity at CpG island pro-
moters.% 133144146 pqditionally, R-loops can threaten genome
instability in specific genetic backgrounds, such as HR-deficient
cells, which accumulate DNA damage due to transcription-repli-
cation conflicts associated with R-loops."*"'48

Although antibody-based methods are used to detect alterna-
tive DNA structures, the specificity of such antibodies must be
taken carefully into consideration. For example, the detection of
RNA:DNA hybrids (e.g., R-loops, H-loops, or G-loops) has
frequently relied on the $9.6 antibody.'%%"°® However, $9.6 anti-
body binds to double-stranded RNA (dsRNA) in vitro and
invivo,'®”'%® giving rise to non-specific signals. Furthermore, inac-
tivation of genes associated with the resolution of RNA:DNA hy-
brids, BRCAT1 or SETX, can increase both dsRNA and RNA:DNA
hybrids, making it harder to interpret results obtained with the
S9.6 antibody.'®” As an alternative, several studies have used
catalytically inactive RNase H1 (dRNH) that directly binds
RNA:DNA hybrids (Tables 1 and S1)."®® RNase H1 binding of
RNA:DNA can be achieved through ectopic expression of dRNH
in cells or binding of purified enzyme and appears to be a reliable
substitute to the S$9.6 antibody (Figures 2 and 3).167-16%170 A recent
study used dRNH to show that deregulation of R-loop dynamics
leads to the excision of RNA:DNA hybrids, which triggers the
expression of pro-inflammatory immune responses.'”" Thus,
alternative DNA structures not only threaten genome integrity
but also trigger non-autonomous cellular responses.

Since alternative DNA structures are transient and may fold in
different ways, it is critical to use orthogonal approaches to detect
these structures. For example, G4s can extrude into loops of
different sizes and the four-stranded guanines can bind in parallel,
antiparallel, or mixed orientations.’**'"® Antibodies raised
against G4s might not bind all types of DNA G4 folds and might
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dRNH-TAG ectopic expression

also bind RNA G4 or RNA:DNA mixed
G4s.">>"7#176 Fyrthermore, a G4 mono-
clonal antibody (1H6) was shown to cross-
react with thymidine-rich regions in
ssDNA."”” As an alternative approach,
small G4-binding molecules have been
developed and used to visualize G4 in cells
(reviewed in Varshney et al.,'*° Feng et al.,’®” Cafieque et al.,'”®
and Monchaud'”®) (Tables 1 and S1). These molecules can be ra-
diolabeled, associated with fluorophores, or detected by “click”
chemistry. 40157178179 |mportantly, reagents that reportedly sta-
bilize alternative structures, and are therefore utilized as positive
controls for specificity or as methods to prove specific structure
formation, may also have unexpected activities. For example,
the G-quadruplex ligand pyridostatin was shown to poison topo-
isomerase 2, thereby generating DNA DSBs.'®°

Anti-TAG

TAG
[ ]

Chemical and enzymatic genome-wide footprinting
methods

With the advent of high-throughput sequencing, the original
strategy of mapping single-stranded regions associated with
alternative DNA structures has been revisited on a genomic
scale (Tables 1 and S1). Kouzine et al. performed in vivo perman-
ganate probing followed by S1 nuclease digestion with high-
throughput sequencing to ascertain non-B-DNA presence in
resting and activated mouse B cells (Figure 4).'*° The modifica-
tion of bases with KMnOy in vivo cemented them into a single-
stranded state and S1 nuclease converted them into DSBs, the
ends of which were then sequenced (Figure 4)."*° Overall, high
ssDNA signals were detected upstream of active genes, driven
by transcriptional supercoiling. These signals coincided with
non-B-DNA motifs, which included Z-DNA (~25,000 motifs),
G4 (~20,000 motifs), and H-DNA (~17,000 motifs in total). This
method demonstrated that ssDNA enrichment occurs in acti-
vated but not in resting B cells, therefore suggesting that they
do not arise as an artifact of sample preparation.

The findings from Kouzine et al. were further validated by ke-
thoxal-assisted ssDNA sequencing (KAS-seq) (Figure 5)."5%18
In this case, the authors used kethoxal (1,1-dihydroxy-3-
ethoxy-2-butanone), which reacts with the N1 and N2 positions
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Table 1. Genome-wide methods to detect alternative DNA structures in vivo, related to Table S1

Method Alternative DNA structure detected Short description References
ssDNA-seq Z-DNA, G4, H-DNA, and SIDD ssDNA permanganate oxidation in live Kouzine et al.*°
(stress-induced duplex cells followed by S1 nuclease cleavage

destabilized site) of purified DNA
KAS-seq Z-DNA, G4, H-DNA, cruciforms, pull-down of biotinylated guanines in Wu et al.’®®
and hairpins single-stranded modified by N3-kethoxal

S1-END-seq cruciforms and H-DNA S1 nuclease DNA digestion from cells Matos-Rodrigues et al."®’
embedded in agarose

P1-END-seq P1 nuclease DNA digestion from cells Matos-Rodrigues et al."®’
embedded in agarose

EME1-MUS81- cruciforms EME1-MUS81 nuclease DNA digestion van Wietmarschen et al."?

END-seq of cells embedded in agarose

S1-seq H-DNA (mostly) S1 nuclease digestion of DNA from cells Maekawa et al.’>®
embedded in agarose

G4-ChlP-seq G4 BG4 antibody-based immunoprecipitation Hansel-Hertsch et al.’>*

G4P-ChlP-seq expression of G4P (G4-binding domain of Zheng et al.””
DHX36/G4R1/RHAU [G4 helicase)) in living
cells, G4 capture by G4P chromatin
immunoprecipitation

D1-ChlIP-seq D1 antibody-based chromatin Liu et al.’®®
immunoprecipitation

G4-CUT&Tag BG4 antibody-based CUT&Tag Lyu et al.”®®

snG4-CUT&Tag BG4-antibody-based single-nuclei Hui et al.™®®
CUT&Tag

SG4-CUT&Tag G4 binding nanobody SG4-based Galli et al.’?®
CUT&Tag

G4access MNase chromatin digestion followed by Esnault et al.'*®
subnucleosomal fractions purification

G4DP-seq G4 binding small molecule (BioTASQ or Feng et al."®’
BioCyTASQ)-based pull down

iM-IP-seq i-Motif (iM) iMab antibody-based immunoprecipitation Ma et al.’®®

iMab-CUT&Tag iMab antibody-based CUT&Tag Zanin et al."®’

DRIP-seq DNA:RNA hybrid $9.6 antibody-based immunoprecipitation Ginno et al.’**

R-ChIP expression of tagged catalytically inactive Chen et al.”™®
RNaseH (dRNH), followed by tag chromatin
immunoprecipatation

MapR CUT&RUN-based method using Yan et al.’®®
catalytically inactive RNaseH1 (dRNH)-
guided MNase digestion of RNA:DNA
hybrids

R-Loop CUT&Tag CUT&Tag-based method using N-terminal Wang et al.’®"
hybrid-binding domain (HBD) of RNase H1

S9.6-CUT&Tag-seq CUT&Tag-based method using S9.6 Jiang et al."®?
antibody

SMRF-seq $9.6 antibody-based RNA:DNA hybrid Malig et al.’®®
enrichment followed by single-molecule
footprinting using sodium bisulfite
deamination of unpaired cytosines

spKAS-seq strand-specific KAS-seq mapping which Wu et al.’®*
specifically labels only the ssDNA portion of
RNA:DNA hybrids

Zaa-ChlP-seq Z-DNA expression of FLAG-tagged Z-DNA-binding Shin et al.'®"

protein Zaa, FLAG chromatin
immunoprecipitation

Molecular Cell 83, October 19, 2023 3627



- ¢? CellPress

Antibody-independent native RNA:DNA hybrid recognition

Immobilize cells on beads

RNA:DNA hybrid recognition

Molecular Cell

MNase-mediated cleavage Library prepartion and sequencing

VR \ ) ’_,,—7’/ \\ // \\ _____
\ — / /,/\”/’ ! R-loop \ ,/ /"“—‘ \ \\\‘A
= p YUK PR LA
<N RN \;{/ \%'\ﬁg%’ \/ o _8)‘//'}9
g N / \ /
\ - I\ ) Tl _ X _ 7

=

‘QO dRNH-MNase

Figure 3. Antibody-independent native RNA:DNA hybrid recognition and quantification

First, cells are immobilized by magnetic beads and permeabilized. Second, a catalytic deficient mutant of RNase H fused to micrococcal nuclease (dRHN-
MNase) binds to RNA-DNA hybrids in the cells. Third, MNase activation results in cleavage of DNA fragments in proximity to R-loops. Fourth, genomic regions
RNA-DNA hybrid containing regions diffuse out of the cell. The dRHN-MNase cleaved DNA fragments are then recovered, sequencing libraries are prepared and

submitted to high-throughput sequencing.'®%'"2

of guanines in ssDNA. Kethoxal-labeled ssDNA was pulled down
by biotinylation through click chemistry and enriched for high-
throughput sequencing (Figure 5). Similar to what was found
by Kouzine et al., this method revealed a strong correlation be-
tween ssDNA-containing regions and repetitive regions in the
genome associated with alternative DNA structures, including
H-DNA, cruciform, and G4s."°° Another newly developed assay
called G4access used size selection of small (<100 bp) products
of micrococcal nuclease (MNase) processing of chromatin DNA
to score G4s formed genome wide'*° (Figure 6).

Although much has been learned with these genome-wide
mapping tools, they are generally low-resolution approaches.
This makes it difficult to faithfully test models proposing how
alternative structures are folded in vivo. In addition, as different
repeat motifs and ssDNA regions may overlap, the ssDNA-label-
ing techniques frequently do not distinguish which alternative
DNA structure is formed.

Nucleotide resolution methods for genome-wide
detection of alternative DNA structures in vivo
In 2016, END-seq was developed to quantify DSBs genome
wide at single-nucleotide resolution. In this method, cells are
embedded in agarose plugs and subjected to protein and RNA
degradation.'®?'® The DNA ends are then blunted by exonucle-
ases (ExoVII/T) and then sequenced (Figure 2). END-seq has
been used to quantify recurrent DSBs formed genome wide in
several contexts, including endogenous/programmed DSBs
during lymphocyte development and meiosis, '>'87'5 as well
as to identify hotspots of DNA breakage upon treatment with
genotoxic agents (e.g., etoposide and hydroxyurea).'86'88
More recently, recombinant nucleases were used to convert
alternative DNA structures and endogenous sites of ssDNA
breaks genome wide into DSBs, which were then mapped at sin-
gle-nucleotide resolution by END-seq,'>'-152:189.190

Gene inactivation screens revealed that the WRN helicase
(defective in Werner syndrome) is essential for the survival of
mismatch repair (MMR)-deficient microsatellite unstable (MSI)
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colon cancer cells.'®"'% Using END-seq mapping, it was deter-
mined that WRN inactivation in MSI cells resulted in chromosome
breakage at thousands of recurrent DSB sites.'? Breakage was
mediated by the structure-specific nuclease MUS81 targeted to
(TA), repeats that expanded specifically in MSI cells.'? A recent
study found no evidence of any generated mechanism that could
confer resistance to WRN deficiency in MSI cancer cells.'®® Given
that (TA), repeats can form cruciform structures and that MUS81
can process such structures,'®"'%% it was hypothesized that the
formation of cruciform at expanded (TA), repeats required WRN
helicase unwinding. Indeed, both recombinant EME1-MUS81
and S1 nuclease treatment in situ converted expanded sites of
(TA), repeats into DSBs'**'®" (Figure 7A) (Tables 1 and S1).
Notably, structure-forming expanded (TA), repeats were highly
recalcitrant to short-read sequencing and required long-read
technology for their detection.'*?

In addition to revealing cruciform structures formed at
expanded (TA), repeats, S1-END-seq detected H-DNA struc-
tures in several MSI and non-MSI human cell lines'’
(Figure 7B). H-DNA peaks localized to long (averaging 200 bp)
H-DNA motifs including (GAAA),, (GGAA),, and (GAA),.">
H-DNA was formed during S phase, enhanced upon the induc-
tion of replication stress, and enriched in transformed cells and
hotspots for genome instability. Accurately quantitating the ab-
solute abundance of alternate DNA structures within the genome
has been challenging due to the fact that most methods (e.g.,
ChIP-seq) lack adequate internal controls for normalization. In
an attempt to estimate the absolute number of H-DNA structures
formed per cell, pre-B cells harboring a single zinc-finger-
induced DSB at the T cell receptor beta (TCRp) enhancer'®?
were used as a spike-in for S1-END-seq samples. By assuming
that each spike-in mouse pre-B cell harbored a zinc-finger-
induced DSB, it was possible to estimate that ~300 H-DNA
structures were present at a given time within the KM12 cell
line."" A similar normalization approach was used to provide
DSB quantitation via another WGS method that scores DSBs
called iBLESS.?"°
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Figure 4. Genome-wide mapping of alternative DNA structures
genome-wide via ssDNA-seq

Genomic regions containing ssDNA are stabilized in live cells via pyrimidine
oxidation by potassium permanganate (KMnQO,), the DNA is then purified and
treated with S1 nuclease. ssDNA-containing regions, including the ones in
present in alternative DNA structures (highlighted in yellow), processed by S1
nuclease create 3' DNA ends. Next, the 3’ DNA ends are labeled via incor-
poration of biotin-13-dUTP(2’-deoxyuridine, 5’-triphosphate) by terminal de-
oxynucleotidyl transferase (TdT). DNA ends containing biotin-13-dUTP are
enriched using streptavidin magnetic beads. The biotinylated DNA tails are
then removed, and the DNA submitted to sonication, followed by library
preparation and high-throughput sequencing.'*®

Maekawa et al. used a similar method (S1-seq) to interrogate
whether H-DNA structures are formed in mouse cells using
mouse testis samples or primary B cell cultures'®® (Tables 1
and S1). This study revealed S1-induced breaks mapped to rela-
tively short, mostly (GA),,, H-DNA motifs. S1-END-seq and S1-seq
have similar limitations. Both methods rely on protein and RNA
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degradation in plugs that can destabilize alternative DNA struc-
tures. We speculate that this might be the reason why both S1-
END-seq and S1-seq do not score G4s, as these structures might
be destabilized during by sample preparation. Furthermore, S1-
END-seq or S1-seq requires the formation of blunted DNA ends
for the ligation of sequencing adaptors. Thus, these methods
are only able to visualize structures in which S1 cleavage creates
substrates suitable for sequencing. As an example, we illustrate
the potential processing of a S-DNA/hairpin, which would not
be able to generate S1-END-seq peaks (Figure 7C). The condi-
tions in which the enzymatic reactions are performed during S1-
END-seq or S1-seq must be carefully controlled. For example,
low pH, which is necessary for optimal S1 nuclease activity, can
drive H-DNA formation.?® This can be avoided using the single-
strand-specific P1 nuclease that shows optimal activity in neutral
pH."®" These limitations must be taken into account when inter-
preting results from S1-END-seq and similar experimental pro-
cedures. The development of new methods to reveal additional
structures (e.g., S-DNA/hairpins and G4s) at single-nucleotide
resolution is necessary to uncover the full spectrum of alternative
DNA structures formed in vivo.

Recently, a pipeline using enzymatic or chemical probing fol-
lowed by long-read sequencing has been harnessed to decipher
RNA secondary and even tertiary structures.??'2%% Additional
chemical probes and bioinformatic tools may allow for the adap-
tation of this technology to DNA secondary structures, poten-
tially addressing some of the drawbacks of current techniques.

Computational approaches to non-B-DNA discovery

Experimental techniques for non-B-DNA detection have been
progressing simultaneously with computational technologies for
non-B-DNA prediction. At first, computational tools to predict
non-B-DNA formation genome wide largely relied on their motifs
to determine DNA sequences that have the ability to form a certain
non-B-DNA structure.?®*2°" This analysis is, however, compli-
cated by the fact that the majority of non-B-DNA sequence motifs
coincide with simple-tandem repeats, which can simultaneously
be inverted or mirror repeats, or both and are enormously over-
represented in eukaryotic genomes. Not surprisingly, therefore,
only a small percentage of those motifs actually form the structure
in vivo, according to current in vivo detection techniques. For
example, only about 1% of the sequences predicted to form
G4-DNA were detected in vivo via G4-ChlP-seq,'** and of the
~50,000 H-DNA motifs in the human genome, only 3,110 repeats
form H-DNA recurrently.’®" Recently, deep learning approaches
have been applied to non-B-DNA structure discovery. These
methods have improved with the existence of in vivo structure-
mapping datasets. For example, DeepG4 uses a convolutional
neural network trained using in vitro G4-seq and in vivo G4-
ChIP-seq data to predict G4s genome wide.?®® Similarly, DeepZ
uses a recurrent neural network trained using the in vivo structure
detection methods of Z-DNA ChlIP-seq, ssDNA-seq, and KAS-
seq.?% Very recently, a non-B-DNA detection computational
approach was established that harnesses the differential timing
of B-DNA and non-B-DNA translocation through a nanopore us-
ing whole-genome nanopore sequencing data.'® Importantly,
future developments in prediction tools must incorporate key as-
pects of cell physiology, including chromatin state, transcription,
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Figure 5. Genome-wide mapping of alternative DNA structures via
KAS-seq

ssDNA is labeled in live cells by kethoxal reaction with exposed guanine bases
(highlighted by the gray boxes). The genomic DNA is then purified and ke-
thoxal-modified guanines are biotinylated through “click” cycloaddition with a
biotin-conjugated alkyne. Next, biotinylated DNA fragments are sonicated and
enriched using streptavidin beads. Libraries are prepared using the resulting
purified DNA and submitted to high-throughput sequencing.'*%'8’

B Biotin

and replication, which have been experimentally demonstrated to
influence the likelihood of a given motif to fold into alternative DNA
structures in vivo.

ALTERNATIVE DNA STRUCTURES AND GENOME
INSTABILITY

Given the historical paucity of reliable methods to detect alterna-

tive DNA structures in vivo, researchers first focused on the
biological roles of structure-prone motifs as a proxy for the
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structures themselves. Although these non-B motifs have been
associated with several physiological processes, they have
also been suggested to play pathological roles that can threaten
genome integrity (reviewed in Brown and Freudenreich,?® Wang
and Vasquez,?® and Khristich and Mirkin°).

It was experimentally demonstrated by us and others that struc-
ture-prone DNA repeats can cause chromosomal fragility and
trigger chromosomal rearrangements, including deletions, dupli-
cations, inversions, translocations, and complex chromosomal re-
arrangements (reviewed in Brown and Freudenreich,?® Wang and
Vasquez,?® and Khristich and Mirkin®). Strikingly, these repeats
also elevate mutation rates in adjacent DNA segments, a phenom-
enon that we called repeat-induced mutagenesis (RIM) (reviewed
in Shah and Mirkin®""). Comparative genomics data are in line
with these conclusions. For example, deletion and translocation
breakpoints found in human disease and cancer genomes are
associated with non-B-DNA motifs.?® 95212213 They also appear
to have a higher density of nucleotide variants in the human
genome?'*?'° and somatic cancer genomes.®' The latter conclu-
sion may need additional verification, taking into account the high
rate of sequencing errors at non-B-DNA motifs as well as overlap-
ping and interrupted motifs.>'%217

Recently, Erwin et al. conducted a genome-wide study of tan-
dem repeat expansions in cancer.?'® Using WGS by short-read
data from 2,622 cancer genomes encompassing 29 different
cancer types, they identified 160 recurrent repeat expansions
(rREs) in 7 cancer types. Notably, H-DNA-forming motifs were
the most frequent type of rREs.?"®

Structure-prone repeats are hard to replicate, leading to replica-
tion fork stalling (reviewed in Khristich and Mirkin,*° Técher et al.,”'®
and Zell et al.?*°). Numerous tools have been developed to assess
fork stalling at these repeats in vivo, including two-dimensional gel
electrophoresis of replication intermediates,””' DNA fiber anal-
ysis,”?* and fluorescent array signal monitoring.>** Although the
stalling at a structure-forming motif can be used as a surrogate
for structure formation, the actual visualization of replication
through the structures themselves, rather than motifs with struc-
ture-forming potential, is only beginning to come into focus.?**
Importantly, not only the formation of alternative DNA structures
per se can challenge DNA stability, as the formation of protein ag-
gregates bound to alternative DNA structures®?®%?° can create
“protein bumps” that block replisome progression. To counteract
genome instability, multiple helicases have been shownto aidinthe
progression of polymerization through non-B-DNA structures
in vitro and non-B-DNA motifs in vivo.>**° These include genes
mutated in human developmental syndromes, such as Bloom syn-
drome (BLM), Werner syndrome (WRN), Warsaw breakage syn-
drome (DDX11), and Fanconi anemia (FANCJ).”° Importantly, res-
olution of alternative DNA structures might become essential for
cell survival. As mentioned above, WRN helicase plays an essential
function in protecting MSI cells against DSBs generated by DNA
cruciform formed in expanded (TA), repeats.'®?

ALTERNATIVE DNA STRUCTURES AND HUMAN
DISEASE

More than 60 REDs have been reported, and despite their differ-
ences, there are many commonalities between REDs: most are
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Figure 6. Antibody-independent native G4 recognition and quantification
First, cell nuclei are purified. Second, micrococcal nuclease (MNase) bind to accessible genomic regions. Third, MNase activation results in cleavage of DNA
fragments and the selection of small products <100 bp allows for the enrichment of genomic regions folded in G4s. Fourth, the small (<100 bp) MNase cleaved

DNA fragments are then recovered, sequencing libraries are prepared and submitted to high-throughput sequencing.

rare, neurodegenerative diseases with no known cure.**** REDs
can be caused by expanded repeats in the noncoding or coding
regions of the genome and may be dominantly or recessively in-
herited.*>** Many proposed mechanisms of repeat instability
are grounded in the ability of the disease-causing repeats’ to
form alternative DNA structures (reviewed in Khristich and Mir-
kin®® and Mirkin®®"). These models implicate imperfect hairpin
and/or S-DNA formation in HD’s (CAG), and (CTG), expansion
process®?%??° and triplex/H-DNA formation in FRDA’s (GAA),
repeat expansion mechanism.?*°=2*? The ability of repeat inter-
ruptions, hindering structure formation, to stabilize expandable
repeats supports the role of structure formation in the repeat
expansion process (reviewed in Khristich and Mirkin®°).

An established model for repeat instability involves the
aberrant processing of alternative DNA structures by DNA repair
and/or replication machinery, where MMR and NER factors
are the two most studied pathways associated with structure
processing.?%%%

Depending on the genomic location and composition of the
repeat that causes disease, different pathogenic mechanisms
are at play. Some include loss of function, such as in the reces-
sively inherited FRDA, or toxic gain of function at the RNA or pro-
tein level, such as in the dominantly inherited HD.*%** In fact,
RED patient cells show accumulation of RNA:DNA hybrids at
expanded repeats, which are linked to gene silencing in FRDA
and FXS.?**?35 DNA triplexes form in vivo in lymphoblastoid
cell lines from FRDA patients who contain expanded (GAA), re-
peats.’®! These triplexes are destabilized by a polyamide com-
pound that binds to (GAA), repeats in vivo, confirming similar
data generated using triplex-forming plasmids.?*® Interestingly,
polyamide binding to (GAA), repeats has been shown to
decrease repeat expansion in FRDA-induced pluripotent stem
cells (iPSCs), thereby suggesting that H-DNA may participate
in repeat expansion.”®” Alternatively, H-DNA may be linked to
the downregulation of FXN in FRDA. Supporting this,
(GAGGA), repeat, which does not form triplexes and is more sta-
ble than (GAA), repeat, leads to only a very mild and late-onset
disease.”®%2%9

Disease-causing repeat expansions in REDs can reach thou-
sands of repeats, making these repeats impossible to sequence
via short-read sequencing. The advent of long-read sequencing
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in the recent past has been key to expanding the tool kit to inves-
tigate repeat instability and discover new types of REDs. Indeed,
long-read sequencing techniques have revealed previously un-
known causes of several hereditary human diseases.**?*° For
example, CANVAS (cerebellar ataxia neuropathy vestibular are-
flexia syndrome), which is one of the most common recessive
hereditary ataxias,”*'>*® was found to be caused by the expan-
sion of (AAGGG), repeats in the second intron of the RFC1
gene.?*'%2 Very recently, we confirmed that (AAGGG), motifs
form H-DNA in vitro and in vivo and block DNA replication.?**
Another example is the late-onset SCA27B—one of the most
frequent forms of spinocerebellar ataxias,?*>>® which is caused
by the (GAA),, repeat expansion in an intron of the FGF14 gene.
Similar to FRDA, (GAA), repeat expansions in this case cause
gene silencing in neurons.?*°

Given this recent trend, it is fair to assume that the increased
accessibility of long-read sequencing will lead to the progressive
discovery of new REDs. Similarly, long-read sequencing of can-
cer genomes may open a new spectrum of repeat instabilities in
cancer, which will likely amplify the number of rREs recently
found by short-read sequencing.”'® In a broader sense, many
pathologies with unknown genetic causes may be attributable
to long, structure-prone DNA repeats. Improvement of long-
read sequencing technologies to increase the sequencing depth
per run, increase the speed of sequencing, and reduce costs per
sample will be key for the widespread use of these methods. Un-
derstanding the etiology of these diseases is still in its infancy,
but it is likely that the formation of alternative DNA structures
might contribute significantly to human pathologies.

TARGETING ALTERNATIVE DNA STRUCTURES IN
HUMAN DISEASE

The stabilization of alternative DNA structures has been shown
to be potential targets for oncotherapy.?*’>*° This has been
particularly explored for G4 stabilizers but recently Z-DNA and
S-DNA hairpin structures as well. Indeed, a Z-DNA-binding
molecule has been shown to be a good candidate for cancer
therapy associated with anti-PD1 immunotherapy'®® and a se-
ries of azacryptands that bind S-DNA/hairpin junctions are
toxic to cancer cells.?®"*?>? G4-stabilizing ligands induce DNA
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Figure 7. Genome-wide mapping of alternative DNA structures at single-nucleotide resolution using END-seq

(A) Detection of DNA cruciform in (TA), repeats via EME1-MUS81-END-seq (top) or S1-END-seq (bottom). Cells are embedded in agarose, forming plugs, then
(top) EME1-MUS81 endonuclease converts four-way junctions of DNA cruciforms present in long (TA), repeats into DSBs or (bottom) S1 nuclease converts
overall ssDNA regions including regions of unpaired bases in the loop or base of DNA cruciforms into DSBs. The ends are ligated to biotinylated adaptors. After
DNA sonication, DSBs are captured by streptavidin magnetic beads, lllumina sequencing adaptors are added to the DNA ends, and the samples are subjected to

(legend continued on next page)
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damage in several cell lines. This is likely caused by direct effects
as ChlIP-seq for the DSB marker YH2AX revealed DNA breaks at
G4-DNA-forming repeats upon treatment with the G4 ligand pyr-
idostatin.?*® Similarly, ChlP-seq for RAD51, the recombinase
responsible for DSB repair via HR, identified thousands of
genomic loci undergoing DSB repair after treatment with the
G4 ligand CX-5461.2°* The induction of DNA damage by G4 sta-
bilizers is often associated with cell death, and G4 stabilizers are
particularly toxic to HR-deficient cancer cells independent of
whether they are PARP-inhibitor sensitive or resistant.”>*2°°
CX-5461 is currently in phase 1 for clinical trials for patients
with solid tumors and BRCA1/2, PALB2, or HR deficiency (Clin-
ical trial ID: NCT04890613).°7+2%8

The development and full characterization of small molecules
targeting alternative DNA structures are promising new avenues
for cancer therapy. Understanding the mechanisms of alterna-
tive DNA structure formation and processing will be key to fully
depicture the potential of these molecules.

Alternative DNA structures are also promising targets for RED
therapies. Using a compound called naphthyridine-azaquino-
lone (NA), which specifically binds and stabilizes S-DNA/
hairpins formed in (CAG), repeats, Nakamori et al. found that
hairpin stabilization can induce repeat contractions in HD patient
cells as well as in spiny neurons of HD mouse striatum.?*°
Furthermore, NA treatment-induced contractions and improved
motor function in a mouse model for dentatorubral-pallidoluy-
sian atrophy (DRPLA), which is also caused by the expansion
of a (CAG), repeat in the ATNT gene.”®® Another recent study
demonstrated that reactivation of FMR17 in FXS patient cells
create R-loops that fuel repeat contractions, reestablishing
FMR1 expression.”®" Very recently, it was shown that locked nu-
cleic acid (LNA)-DNA oligonucleotides and peptide nucleic acid
(PNA) oligomers targeting FRDA's expanded (GAA), repeats
interfere with triplex formation and prevent repeat expansion in
an experimental human system.?®?

Overall, these studies provide an exciting new line of treatment
for REDs, either by destabilizing alternative structures or by
fueling alternative DNA structure formation, which allows the
endogenous cellular machinery to delete the pathogenic
expanded repeats.

CONCLUSIONS

Although the biological significance of alternative DNA struc-
tures was initially brought into question, recent technological ad-
vancements confirmed their presence in vivo and strongly corre-
lated them with genome instability. By and large, non-B-DNA
sequence motifs can be considered genomic weak links. In
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some instances, this instability benefits important physiological
processes, as exemplified by CSR. In other instances, it causes
hereditary human diseases, as exemplified by REDs, or contrib-
utes to cancer development. Notably, since the instability of
structure-prone DNA repeats increases with age, REDs are
generally late-onset diseases, which could explain the lack of
evolutionary counter-selection against them. Future studies
exploring the function of alternative DNA structures in vivo
should aim to go beyond correlations to establish direct causal
links between alternative DNA structure formation and genome
instability in health and disease. Based on the recent progress
described here, it is also fair to assume that targeting alternative
DNA structures in vivo might provide new therapeutic strategies
for related human diseases.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
molcel.2023.08.018.
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sequencing. Left end reads are aligned to the minus strand, and right end reads are aligned to the plus strand. A two-ended peak created from the processing of

DNA cruciform into DSBs is illustrated.

(B) Genome-wide detection of H-DNA/triplexes via S1-END-seq. Cells are embedded in agarose, forming plugs, then S1 nuclease converts ssDNA regions,
(upper right) including H-DNA structures, genome wide into DSBs, and the DSB ends are ligated to biotinylated adaptors. After DNA sonication, DSBs are
captured by streptavidin magnetic beads, lllumina sequencing adaptors are added to the DNA ends, and the samples are subjected to sequencing. Left end
reads are aligned to minus strand, and right end reads are aligned to the plus strand. A one-ended peak created from H-DNA/triplexes formed in homopurine/
homopyrimidine (hPu/hPy) repeats which were processed into DSBs is illustrated. Triple helix-containing ends are unsuitable for adaptor ligation; thus H-DNA/

triplexes generate a one-ended peak.

(C) Limitations of S1-END-seq in detecting certain alternative DNA structures, such as S-DNA/hairpins. After processing of hairpin/s-DNA ssDNA loop, the

ligation of adaptors into the DSB end does not generate mappable reads.
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