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Abstract 

The printing outcome of vat photopolymerization (VPP) of thermoplastics largely depends on 

physicochemical properties of monomers and their compositions in resins, which also greatly 

determine the material properties, e.g., tensile strength (σT) and toughness (UT)and phase transition 

temperature (Tg). A methodology for optimizing the resin formulation is of paramount importance 

in realizing highly printable thermoplastics with balanced σT/UT and target Tg while remaining 

largely underexplored. Herein, we introduce a multi-objective Bayesian optimization (MOBO) 

algorithm under two physics informed constraints (printability and Tg) to optimize two conflicting 

properties: σT and UT. The two constraints are formulated as two machine learning (ML) models, 

which are trained with weight ratios of the six monomers and physics informed (PI) descriptors 

derived from their physiochemical parameters. Dimensional reduction analysis reveals that the 

algorithm avoids recommendation of the monomer ratios that do not pass the two constraints. The 

printing failure rate is reduced from 16% in the background experiments to 3% in the 

recommended experiments. Within only 36 iterations (72 samples), the MOBO algorithm 

successfully identifies five sets of ratios leading to Pareto optimal of σT and UT. Due to the 

constraint in Tg they show appropriate Tg for shape memory application. The partial dependence 

analysis indicates that σT and UT depend on both the ratios and physiochemical features of the 

monomers. These results underscore capability of such a smart decision-making algorithm—with 

constraints that are not fully understood but can be informed by prior knowledge—in planning the 

experiments from the vast design space, thus holding a great promise for broader applications in 

materials design and manufacturing. 

Keywords: Bayesian optimization, multi-objective, physics informed, thermoplastics, vat 

photopolymerization  
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1. Introduction 

Three-dimensional (3D) printing is increasingly popular for fabricating objects with complex 

structures and desired functionalities [1,2]. Several common 3D printing technologies including 

stereolithography (SLA), vat photopolymerization (VPP) (e.g., digital light processing (DLP) and 

liquid-crystal display (LCD) printing), selective laser sintering (SLS) [3], direct ink writing (DIW), 

and fused deposition modeling (FDM) have been utilized for this purpose. Among different types 

of materials for 3D printing, thermoplastics have recently become a surge of interest [4]. Ligon et 

al. offered a comprehensive review in polymers for 3D printing and their applications [5]. This 

surge stems from their remarkable recyclability, positioning them as viable alternatives to the 

conventional thermosets [6]. While FDM is commonly employed for printing the thermoplastics, 

it is a relatively slow and low-precision process. VPP, in contrast, offers much better printing 

resolution and faster printing rates. When subjected to digital light exposure, monomers in a photo-

curable resin are polymerized to a polymer. Depending on the reaction kinetics, the cured polymer 

could be dissolved into the surrounding liquid resin. Thus, a rapid solid-liquid phase separation is 

critical, which constitutes a fundamental and enabling characteristic particularly for VPP based 3D 

printing of thermosets, because the crosslinked thermosets networks are usually infusible and 

insoluble [7]. Although photocurable thermoplastics are a known entity, meeting the unique 

requirements for VPP proves to be a challenge. Because in the process, competition of two 

concurrent reactions—polymerization or solidification of a resin to a polymer and 

diffusion/dissolution of the cured polymer into the resin—results in an unpredictable printability 

issue, particularly if multiple monomers are used in the resin. Achieving the sought-after rapid 

liquid-solid separation is contingent upon dominance of the first reaction, while minimizing the 

influence of the second. A key to success is to promote the polymerization rate to obtain a 
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thermoplastic with a sufficiently high molecular weight. Because if the polymerization kinetics is 

slow, it would afford ample time for the cured thermoplastic to diffuse and dissolve into the resin.  

The polymerization and the dissolution rates are affected by a range of physicochemical 

parameters of the monomers, e.g., reactivity, viscosity, molecular weight, glass transition 

temperature (Tg), and intermolecular forces [8-10]. In many cases, to print a thermoplastic with the 

tunable mechanical properties a resin consisting of different types of monomers with various 

weight ratios is usually utilized [11]. An Monomer can generally be categorized as "hard" or "soft" 

one based on its chemical structure. Hard monomers typically exhibit rigid and sterically hindered 

structures, which contribute to faster polymerization kinetics and higher Tg of the resulting 

polymers. Consequently, thermoplastics derived from hard monomers tend to possess a higher 

strength but low stretchability. Conversely, soft monomers are characterized by more flexible 

structures with fewer steric hindrances. As a result, their polymerization process tends to be slower, 

and the resulting polymers exhibit lower Tg. Thermoplastics polymerized from the soft monomers 

typically demonstrate a higher stretchability but lower strength compared to those from the hard 

monomers. Given numerous options for the monomers and spacious choices in their ratios, the 

design space for the resins becomes enormous and is very difficult to be exhaustively searched. 

Thus, a methodology for optimizing the resin formulation is of paramount importance in realizing 

printable thermoplastics with improved tensile strength (σT) and toughness (UT) as well as target 

Tg from the vast design space, while it remains largely underexplored. In a traditional practice, 

establishing correlation of the monomers’ ratios with the resulting printability and properties of 

the materials requires extensive experimental trials [12]. Decision is mainly made by scientists 

who are well trained with domain knowledge. This human-centered, labor- and time-consuming 

practice greatly limits new material development efficiency by 3D printing. Sometimes, if the 
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number of input variables dramatically increases, it could become powerless in finding a solution 

to realize the optimum materials properties with this practice [13]. This challenge will become 

even bigger if an application involves optimization of two or more competing property objectives 

such as σT  and UT. 

Bayesian optimization (BO) algorithms present a cost-effective avenue to tackling this 

challenge [14-18]. In BO, an objective function is approximated by a surrogate model that is cheap 

to evaluate and can be updated with both successful and failed samples [19]. They show quite 

success in single objective optimization (SOO) [20-23]. As an example, Gongora et al. employed 

a BO algorithm as a decision maker in an autonomous robot to search structures with increased 

compressive toughness [21]. Balachandran et al. applied a BO algorithm for SOO, named efficient 

global optimization (EGO) [24], to optimize curie temperature of ferroelectric perovskites [20]. 

Liu et al. developed a BO framework for optimizing efficiency of the perovskite solar cells. Using 

prior experimental data as a probabilistic constraint they increased the success rate to 47% 

compared to 12% resulting from the Latin hypercube sampling (LHS) method [25]. However, 

many real-world applications necessitate the achievement of multiple performance objectives 

[26,27]. Cao et al. developed a multi-objective Bayesian optimization (MOBO) algorithm to 

design formulation consisting of three surfactants, a polymer, and a thickener [28]. To lower the 

number of experiments for evaluation, they trained a separate classifier to screen out the 

recommended formulation that might lead to failed experiment. The limitation is that the classifier 

acts as a post-screener and is not integrated in the MOBO algorithm, thus the algorithm must run 

again if the proposed samples do not pass the screening, leading to low searching efficiency. In 

another study, Erps et al. applied a MOBO algorithm without constraints to formulate the ink 

compositions for 3D printing thermosets [29]. Their method, a purely data-driven algorithm, which 
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would lack generalizability when applied to other materials or manufacturing systems, e.g., it is 

not directly applicable to VPP of thermoplastics. Because, as stated previously, the competition 

polymerization and dissolution reactions in VPP of thermoplastics would make many 

recommended resin formulations fail to meet the printability and property constraints. Therefore, 

how to incorporate the constraints and the prior knowledge in physics and chemistry directly in a 

MOBO framework to tackle application scenarios with limited available data remains a knowledge 

gap in the field. 

Herein, we introduce a MOBO algorithm with two physics informed (PI) constraints to 

recommend feasible resin formulations for VPP—more specifically, LCD—of thermoplastics with 

optimized σT and UT (the two objectives of the MOBO algorithm). We developed two ML models 

to output two constraints. The first one is to predict if a recommended resin formulation leads to a 

printable thermoplastic. The second one is to predict if a recommended resin formulation realizes 

a thermoplastic with Tg in a target range (10 °C ≤ Tg ≤ 60 °C). They were trained by using the 

weight ratios of six monomers for the resins and their physiochemical parameters as the PI features. 

In this study, the six monomers include two soft monomers of 2-hydroxy-3-phenoxypropyl 

acrylate (HA) and isooctyl acrylate (IA) and four hard monomers of 1-vinyl-2-pyrrolidone (NVP), 

acrylic acid (AA), N-(2-hydroxyethyl)acrylamide (HEAA), and isobornyl acrylate (IBOA). To 

train MOBO, two separate Gaussian Processes (GPs) for both objectives of σT and UT were chosen 

as the surrogate models. In order to pretrain the two constraint models, 43 weight ratios of the 

monomers were initially provided. These ratios were selected using the Latin hypercube sampling 

(LHS) principle, which allowed for the creation of a comprehensive database. LHS methodology 

was employed to ensure an efficient coverage of the search space in a randomized manner. This 

approach facilitates the exploration of diverse combinations of the monomer ratios, enabling the 
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constraint models to learn from the dataset. By utilizing LHS, we can enhance the robustness and 

effectiveness of the pretrained models in handling a wide range of potential input configurations. 

In the training process, functions were sampled from each fitted GP. Subsequently, a non-

dominated sorting genetic algorithm (NSGA-II) was employed to identify the Pareto front among 

the sampled functions that meet the criteria of the two established constraint functions. In each 

iteration, the MOBO algorithm suggests two sets of ratios, which are used to print new 

thermoplastics for experimental evaluation. Data from these newly evaluated samples are included 

in the database to update both the two constraint functions and the two GPs. Within 36 iterations 

(recommending 72 new sets of the ratios), the MOBO algorithm can successfully discover five 

compositions leading to thermoplastics with Parato optimal fronts of σT and UT and with Tg in the 

target range. Among them, one exemplifies a remarkable UT, characterized by a high stretchability 

while one showcases a high σT. Performance of the two constraint models is evaluated by 

comparing the failure rates of the initial training samples and recommended samples. The failure 

rate is reduced from 16% in the initial LHS-guided experiments to 3% in the MOBO recommended 

experiments. The unsatisfactory rate regarding Tg is also reduced from 35% in the LHS-guided 

experiments to 17% in the recommended samples, indicating that integrating the constraint models 

within the MOBO algorithm greatly enhances the efficiency and reduces the amount of required 

training data. We expect that this physics-constrained MOBO algorithm can be applied to metals 

[30], shape memory polymers [31], and hydrogels [32] in other processes. 



7 
 

 

Figure 1. Development of a MOBO algorithm with PI constraints for 3D printing. (a) 

Schematic showing solid-liquid separation mechanism in LCD printing of thermoplastics and 

photographs of two represented printable and nonprintable samples. (b) Workflow of the proposed 

MOBO framework with PI constraints for LCD thermoplastics printing.  

 

2. Materials and Methods 

Materials. 2-Hydroxy-3-phenoxypropyl acrylate (HA), isooctyl acrylate (IA, > 90%), and 

acrylic acid (AA, 98%), were purchased from Sigma Aldrich (St. Louis, MO, U.S.). 

Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO, >97%), isobornyl acrylate (IBOA, > 

90%), N-Vinylpyrrolidone (NVP, > 99%), and N-(2-hydroxyethyl)acrylamide (HEAA, >98%) 

were purchased from Fisher Scientific (Pittsburgh, PA, U.S.). 
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Characteristics of the monomer. HA contributes to the flexibility of the polymer due to its 

hydroxyl group, potentially enhancing its elongation properties. IA imparts flexibility to the 

polymer due to its soft nature, while its long alkyl chain enhances the polymer's toughness and 

impact resistance. AA and NVP improves the strength of the polymer due to its ability to form 

hydrogen bonds, potentially increasing its tensile strength. IBOA provides rigidity to the polymer 

network, enhancing its hardness and dimensional stability. HEAA contributes to the flexibility and 

toughness of the polymer, while the formed hydrogen bond enhances its adhesion and cohesion 

properties. 

LCD 3D printing. The six monomers HA, IA, AA, IBOA, NVP, and HEAA with a certain 

weight ratio were mixed in a beaker to get a resin, which was added with a photoinitiator, 

diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) (2 wt%) and then magnetically stirred 

for 1 minute. The uniformly miscible resin was used for printing by a LCD 3D printer (Anycubic 

Photon Mono 4K) with an irradiation wavelength of 405 nm. In each experiment, parameters of a 

constant power density of ~5 mW/cm2, a layer thickness of 50 µm, and an exposure of 15 s were 

used. After the printing, the samples were post-cured by 405-nm UV light for 60 s.  

Mechanical testing of the printed samples. The tensile testing was conducted on a Mark-10 

universal testing machine at a loading rate of 50 mm/min. For each set of the monomer ratio, at 

least five samples were printed and tested for statistical analysis. Tensile strength was taken from 

the highest point of stress-strain curves, and toughness was calculated from the area of the stress-

strain curves. 

Physics informed input descriptors for RF models. The extracted descriptors are solubility, 

total energy, molecular weight of heavy atoms, and complexity. The solubility parameters were 
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predicted from group contributions of the monomers [10]. The total solubility was calculated from 

Eq. 1 and Eq. 2. 

𝛿2 = 𝛿𝑑
2 + 𝛿𝑝

2 + 𝛿ℎ
2                                                                                                                        (1) 

𝛿𝑑 =
∑ 𝑭𝑑𝑖

𝑉
; 𝛿𝑝 =

√∑ 𝑭𝑝𝑖
2

𝑉
; 𝛿ℎ = √

∑ 𝑬ℎ𝑖

𝑉
                                                                                             (2) 

where 𝛿𝑑, 𝛿𝑝, and 𝛿ℎare the contribution of dispersion forces, the contribution of polar forces, and 

the contribution of hydrogen bonding, respectively. Fdi, Fpi, and Ehi for different functional groups 

were extracted from Table 7.10 in the book by Krevelen [10] V is the molar volume of the 

monomers. The total energy of each monomer was calculated by DFT. First, we used Open Babel, 

an open chemical toolbox [33], to construct the 3-dimensional coordinates from the simplified 

molecular-input line-entry system (SMILES) of the monomers. Then, 50 steps of local 

optimization were carried out by the MMFF94 force field. The DFT calculations for all monomers 

were carried out using Gaussian-16-A.03, licensed under the University of Missouri. Geometry 

optimization and frequency calculations were carried out using the B3LYP functional with the 

basis 6-31G (2df, p) to calculate the total energy. Complexity accounts for the atom size, 

symmetry, branches, rings, number of bonds, and heteroatoms characteristics of the input 

monomers [34]. We extracted the complexity values of the monomers from the PubChem database 

[35], which were calculated by the Bertz’s approach [34]. We also extracted molecular weight of 

heavy atoms of the monomers from the PubChem database. All the calculated descriptors are listed 

in Table S1.  

Model parameters. In each iteration, the GPs for both objectives were updated as new datasets 

from the evaluated experiments were added into the database. To tune the hyperparameters of the 

GPs, we employed a maximum posteriori estimate method proposed by Bradford et al [36]. The 

kernel function is the Matérn 5/2, which is versatile and supports a wide range of function types 



10 
 

[37]. To solve MOO of the sampled GPs, picked by TS sampling, a standard NSGA-II solver was 

applied with a population size of 100 and a total number of 100 generations [38]. To handle the 

constraints inside the solver, we used the “feasibility first” approach introduced in the pymoo 

python library [39]. To evaluate a solution, the solver first checks whether the solution satisfies 

the constraints. In this case, the solver does not calculate the GP values for the solutions that do 

not pass the constraints. Thus, we defined the values of ≤ 0 in Eq. 3 and Eq. 4 as satisfaction with 

the constraints.  

𝑔1 ∶ (−1) × ℙ( 𝑃𝑟𝑖𝑛𝑡𝑎𝑏𝑙𝑒) + 0.7 ≤ 0                                                                                               (3) 

𝑔2 ∶ (−1) × ℙ( 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑇𝑔) + 0.7 ≤ 0                                                                                       (4) 

Where, ℙ is the predicted probability from the RF models. Numbers closer to 1 indicate higher 

confidence in predictions. We multiplied (-1) to the predicted values from the RF models since we 

considered positive values to be the infeasible recommendations. We added 0.7 to the predicted 

values to bias the recommendations that are highly probable being feasible for printability and 

satisfaction of Tg. The hyperparameters of the fitted RF models are listed in Table S2.  

Design space. The ratio of each monomer can take continuous values from 0 to 1. Given the 

resolution limitation, we only considered two decimals, which resulted in 101 possible values for 

each ratio. To ensure that the sum of all proposed monomer ratios equates to 1, we considered only 

five ratios as the design space in the algorithm, as shown in Eq. 5.  

𝑔3 ∶ 𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5 − 1 ≤ 0                                                                                                (5) 

with 0 ≤ 𝑅𝑖 ≤ 1 𝑓𝑜𝑟 𝑖 = 1, 2, 3, 4, 5                                                                                                      

Where R1 to R5 are ratios of HA, IA, NVP, AA, and HEAA, respectively. Fig. S1 displays the 

distribution of two ratios in each plot for all the initial and evaluated 115 samples. The ratio of the 

last monomer, IBOA, was determined by Eq. 6. 
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𝑅6 = 1 − (𝑅1 + 𝑅2 + 𝑅3 + 𝑅4 + 𝑅5)                                                                                            (6) 

A list of acronyms with their full description is provided in Table S3. 

 

3. Results 

3.1. Architecture of the MOBO algorithm with the physics informed constraints 

To formulate the resins, the six monomers as depicted in Fig. S2 were mixed in various weight 

ratios. We first started with 3D printing of 43 initial samples with the ratios sampled by the LHS 

principle [25] with an aim to maximize the coverage of the design space. As illustrated in Fig. 1a, 

each set of the ratio was printed at least five times to obtain ≥ five samples. Slow polymerization 

kinetics would make the cured polymer have ample time to diffuse and dissolve before reaching a 

desired molecular weight. If the resulting polymer's molecular weight remains low even with a 

satisfactory polymerization kinetics, it would still be susceptible to dissolution throughout the 

entire printing process, resulting in non-printable objects with obvious defects and incomplete 

shapes, as shown in Fig. 1a. It is important to note that we kept the 3D printing parameters 

consistent and focused solely on experimenting with ink compositions. Considering them as input 

variables into the MOBO is not advisable, given their significant distinction from the monomer 

ratios. Moreover, such an approach would demand a significantly larger number of experiments to 

achieve optimization, if feasible. The ones that were printable then underwent tensile testing to 

collect the stress-strain curves, from which two critical mechanical properties of σT and UT were 

derived, as exemplified in Fig. S3. Due to the variances in the printed samples even if they are 

from the same set of monomer ratios, the derived σT and UT were picked from a representative 

sample. Tg was measured from the differential scanning calorimetry (DSC) (Fig. S4). These 43 

ratios along with the averaged σT, UT, and Tg form an initial database. Then two random forest 
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(RF) classifiers were pretrained for predicting if the resin is printable (yes/no) and if the resulting 

thermoplastic has Tg within a predefined range (10 °C ≤ Tg ≤ 60 °C) (Fig. S5). The reason why we 

chose this Tg range is because the samples with Tg outside this range exhibit very poor mechanical 

properties, as shown from the results of the initial 43 samples (Fig. S6). The samples with Tg in 

the range are classified as 1 otherwise classified as 0. An RF classifier is an ML algorithm that 

builds multiple decision trees during training and outputs the modes of the classes of the individual 

trees. It combines the predictions of multiple individual decision trees to improve the overall 

accuracy and robustness of the classification task [40].  

To make the RF models more generalizable and be better pretrained with limited experimental 

data, the PI descriptors of solubility, heavy atoms molecular weight, complexity, and total energy 

to represent the physiochemical properties of the monomers were used as the inputs (Fig. S5). 

Solubility was calculated from three contributions of dispersion forces, polar forces, and hydrogen 

bonding [10]. Those contributions cannot be determined directly. One approach is to approximate 

them from the functional groups of the monomers. Complexity accounts for the atom size, 

symmetry, branches, rings, number of bonds, and heteroatoms characteristics of the input 

monomers [34]. The total energy was calculated by density function theory (DFT). Details about 

the calculations are explained in Materials and Methods. To make these additional features the 

variables in the RF model training, we normalized them to their respective weight ratios.  

After the pretraining, the two RF classifiers were incorporated as the constraints in the MOBO 

algorithm (Fig. 1b). Two GPs that approximate the two objective functions were also pretrained 

on the initial 43 datasets. For training the GPs, only the weight ratios of the monomers were used 

as the input. In each iteration, the MOBO recommended two new sets of the weight ratios that 

were expected to lead to printable thermoplastics with the predicted Tg in the predefined range 
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while showing improved σT and UT. The recommended two sets of the ratios in each iteration were 

then used to make new resins to print thermoplastics which underwent tensile testing. The new 

datasets of the monomer ratios, printability, corresponding Tg, σT, and UT were incorporated into 

the existing database to update both the two GPs and the two RF models. This loop continued until 

the predefined iteration number was reached or enough Pareto frontier points were obtained. In 

multi-objective optimization, the Pareto frontier points represent solutions where no objective can 

be improved without degrading at least one other objective. These points are considered optimal 

because they represent the best trade-offs between conflicting objectives, forming a boundary that 

separates feasible and infeasible solutions in the objective space. More details are described in 

Materials and Methods. 

 

3.2. Algorithm description 

To optimize the two objectives concurrently, we adopted a MOBO strategy renowned for its 

efficacy in dealing with the black-box objective functions [16]. Our algorithm was built upon 

“Thompson sampling efficient multi-objective optimization” (TSEMO) [36], where Thompson 

sampling (TS) was used. As illustrated in Fig. 2, two independent GPs as the surrogate models 

were fitted to the initial 43 datasets to approximate the two objectives of σT and UT. The essence 

of TS lies in the art of balancing the exploration of high-uncertainty regions and the exploitation 

of high-performing areas within the design space [36]. Regions with fewer data points are 

associated with higher uncertainty and therefore are more actively explored. TS chooses an action 

that matches the probability where the action leads to an improved reward in each iteration. It does 

so by drawing a sample based on the posterior distribution and returning an maximum index from 

the sampled vectors [41]. To sample a function from the posterior distribution of each GP, we 
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employed spectral sampling, the details of which are outlined in the TSEMO paper [36]. Spectral 

sampling algorithms typically involve decomposing the covariance matrix associated with the GP 

into its spectral components. By sampling from the spectral representation of the covariance 

matrix, samples from the posterior distribution can be efficiently generated [36]. It leverages the 

spectral properties of the covariance function to achieve computational efficiency while 

maintaining accuracy in sampling. Unlike SOO, which yields a single optimized outcome, MOO 

produces a region referred to as the Pareto front [16]. We employed the AutoOED software 

package to facilitate our optimization process [42]. This region encompasses points that balance 

the objectives and cannot be surpassed by any other points. Consequently, enhancing one objective 

relative to the Pareto front necessitates compromising the other objective. Given that the sampled 

functions are computationally inexpensive to evaluate, we utilized NSGA-II, a genetic-based 

MOO method, to identify the Pareto front of the sampled functions. The Pareto set (sets of ratios) 

that pass the constraints of both printability and Tg were kept as the candidate set. We utilized the 

expected hypervolume improvement (EHVI) to identify a set of monomer ratios that result in the 

greatest enhancement in hypervolume. In multi-objective optimization, the hypervolume serves as 

a metric for evaluating the quality of a solution set, such as the Pareto front. It quantifies the volume 

of the objective space that is dominated by these solutions, providing a comprehensive assessment 

of their distribution and diversity. EHVI quantifies the potential improvement in the hypervolume 

upon adding a candidate point to the existing set of solutions. It is calculated based on a predicted 

Pareto frontier point and a reference point, which is typically approximated using the anti-ideal 

point derived from the candidate sets with the lowest σT and UT values. A higher hypervolume 

value indicates a broader spread of solution and is indicative of superior performance in the multi-

objective optimization algorithm. A schematic showing the hypervolume improvement and the 
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reference point is shown in Fig. S7. Details about the EHVI can be found in the TSEMO paper 

[36].  

. 

Figure 2. Flowchart showing the MOBO algorithm training. The newly evaluated samples are 

used to update GPs as well as the RF models which are the two constraints: C1 and C2.  

 

3.3. Model Performance 

Evaluation on printability and Tg. One innovation of the proposed MOBO algorithm is the 

PI constraints can greatly improve the success in both the printability and target Tg of the 

thermoplastics printed by the recommended sets of the monomer ratios. In this study, we defined 

a failure rate as the ratio of failed samples to the total number of samples evaluated. Samples were 

deemed failed for printability if they were not successfully printable during experimental testing, 

while for the Tg range, samples were considered to be failed if their glass transition temperature 

(Tg) fell outside the predetermined range. As presented in Table 1, the failure rate for printability 

is reduced to 3% for the ratios recommended by MOBO, compared to 16% for the initial samples 
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by the LHS principle. The percentage of the printed samples with Tg outside the preassigned range 

(10-60 ℃) decreases from 35% to 17% for the ones printed using the sets of the weight ratios 

recommended by the MOBO algorithm. This improvement can be attributed to the optimization 

algorithm, which incorporates a classifier as a constraint. These classifiers selectively pass only 

those ratios deemed printable with acceptable Tg, thereby guiding the recommended samples 

towards a feasible region, and consequently reducing the occurrence of failed printing. It is 

important to note that the success rate regarding the printability is higher than that of Tg. This 

discrepancy can be attributed to closer correlation of the monomers' structural characteristics with 

the printability than that with Tg. This observation well agrees with our previous experimental 

findings, which suggest that the hydrogen interactions among the monomers play a crucial role in 

expediting polymerization and diminishing the solubility of the resulting polymers in liquid 

precursors [8]. This behavior promotes rapid solid-liquid phase separation, ultimately enhancing 

the printability. The behavior of Tg may more rely on other characteristics such as the molecule 

weights and chain-to-chain interactions, which could be informed by molecular dynamics (MD) 

simulations while it is out of current study [43]. The future direction of this research is to include 

more descriptors to inform the reactivity of the monomers as well as the polymer chain interactions 

for better informing Tg of the resulting polymers.  

 

Table 1. Failure rates about printability and Tg for the initial samples recommended by LHS and 

the ones recommended by the proposed MOBO algorithm. 

 43 Initial Samples by LHS 72 New Samples by MOBO 

RF1: 

printability 

Printable 

# of samples 
Failure rate 

Printable 

# of samples 
Failure rate 

36 16% 70 3% 
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RF2: Tg 

range 

# of samples with 

acceptable Tg 
Failure rate 

# of samples with 

acceptable Tg 
Failure rate 

28 35% 60 17% 

 

This considerable improvement motivates us to further explore how the input ratios impact 

their printability and Tg of the resulting thermoplastics. However, visualizing the correlation in a 

6-dimensional space is too difficult. To address this challenge, we employed Principal Component 

Analysis (PCA) to reduce the dimensions for easy visualization and comparison. Fig. 3a represents 

a two-dimensional (2D) PCA map of the ratios with respect to the printability. Notably, the 

nonprintable samples which are predominately from the initial experiments are clustered in a 

distinct region, while the printable ones from both the initial and evaluated experiments are 

grouped in a separate region. That shows that the constraint model for printability can avoid the 

nonprintable recommendations. The two sets of nonprintable ratios out of 72 recommended 

samples are located close to other printable samples and could not be recognized by the trained RF 

constraint model. This insight underscores the impracticality of simply restricting the design space 

solely based on observations of a few infeasible samples. Instead, the intricacies of the relationship 

between these ratios and the printability necessitate the use of an ensemble-based model such as 

RF as a constraint. Fig. 3b shows the PCA map of the ratios with respect to Tg of the printable 

samples. The marked region shows the initial samples with Tg outside the predefined range. The 

constraint model can largely avoid this region, but there are still evaluated samples that do not 

satisfy the Tg requirement but are outside this region. It suggests that as we stated previously Tg is 

less correlated to the monomers' structural characteristics than the printability is.   
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. 

Figure 3. 2D PCA maps on the monomer weight ratios with respect to (a) printability and (b) 

Tg range labels.  

 

Samples with the Parato frontier points of UT and σT. Iteratively, as data from the newly 

evaluated samples was added, the two objective GPs were updated and started to converge. We 

examine how a relative error (RE), as indicated in Eq. 7 evolve for both σT and UT over iterations. 

𝑅𝐸 =
|𝑌̂ − Y|

Y
                                                                                                                                                                             (7) 

where Ŷ is the predicted and Y is experimental vales. RE were calculated for both σT and UT 

and plotted versus the number of the iterations (Fig. S8). The REs from the evaluated samples in 

each iteration are averaged to get average REs. They show relatively large fluctuations in the 
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beginning of the iterations, which is expected, because the algorithm tends to explore different 

regions of the design space. As the projected design space is enormous, some of them can lead to 

poor recommendations. Nevertheless, as shown by the trendlines, as the iteration increases the 

average REs of both UT and σT decrease, indicating the model convergence.  

Out of a total of 115 sets of ratios, comprising 43 initial and 72 evaluated ones—recommended 

by MOBO, 106 lead to printable thermoplastics. The σT and UT values for these 106 printed 

thermoplastics are illustrated in Fig. 4a. From the 72 evaluated samples, we can identify five Pareto 

frontier points, each annotated with the corresponding sample number. For instance, Sample 15 

means that it is the 15th evaluated sample. The five sets of the monomer ratios, Tg values, and σT 

and UT are summarized in Table S4, from which we can see that Samples 15, 17, and 37 have high 

UT and moderate σT while Samples 38 and 70 have high σT and moderate UT. It is worth 

highlighting that the two soft monomers collectively for all the five samples occupy ~ 70% of the 

total weight, and the two hard monomers, NVP and IBOA, account for ≤ 5% each. Fig. 4b presents 

evolvement of the hypervolume over the 72 evaluated samples. It increases from an initial value 

of 100 to 815 in the final iteration. Even though the Thompson sampling was applied to balance 

extrapolation and exploitation, the results indicate a pronounced emphasis on exploiting a 

subdivision of the ratio space. Additionally, the initial samples were randomly selected by the 

algorithm. We foresee that involvement of a human scientist in the MOBO algorithm based 

decision making process would be quite beneficial to tackle this challenge. It changes a lot at the 

beginning and then starts to saturate at the 40th sample. This indicates model convergence, 

signifying the effectiveness of the proposed algorithm in exploring the feasible design space. It is 

worth noting that within the realm of MOO featuring non-convex objective functions, the potential 

for further improvement remains, particularly with a larger experimental budget. To visually track 
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the algorithm's progress in identifying the Pareto frontier points, Fig. 4c displays the cumulative 

number of Pareto points discovered over the course of evaluations. The data points in the graph 

indicate the count of Pareto points found at specific milestones for the 10th, 20th, 30th, 40th, 50th, 

60th, and 70th samples. 

Furthermore, we investigated evolution of the cumulative ratios of the soft and hard monomers 

(Fig. 4d-e). Notably, before the 45th sample, the recommended hard and soft monomer ratios 

substantially fluctuate, while in the later iterations they are stabilized at ~ 0.53 for the hard 

monomers and 0.47 for the soft monomers, respectively. It is another indication for the model 

convergence. The recommended hard monomers and soft monomers ratios agree well with our 

intuition that the balanced soft and hard monomer ratios would lead to the thermoplastics with 

improved UT and σT. 
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Figure 4. Performance evaluation of the model. (a) UT versus σT of the initial samples (depicted 

in blue) and new evaluated ones from recommendations by MOBO (shown in red). The discovered 

five points form a Pareto front. (b) Hypervolume improvement in the evaluated samples. (c) 

Number of the Pareto frontier points discovered over the evaluated samples.  Evolved cumulative 

hard monomer ratios (d) and soft monomer ratios (e) in the evaluated samples. 

 

Partial dependance analysis (PDA) on the GPs’ predictions. After the defined GPs were 

trained on all collected experimental data, all of their predictions are analyzed to disclose how the 

algorithm correlates the input ratios with the output properties. A series of plots, each depicting 
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the partial dependence (PD) of UT and σT of the thermoplastics on the input monomer ratios, are 

shown in Fig. 5a and 5b, respectively [40]. One-way PD plots with two exmaples shown in Fig. 

5a-i and Fig. 5b-i inform the correlation of the UT and σT with the input ratio of a specific 

monomer. In these PD plots, we kept one ratio constant while allowing the other ratios to vary, 

and then averaged all the predictions made by the GPs. As shown in the blue plots, the ratios of 

the soft monomers (R1 and R2) mainly exhibit a positive correlation with UT and a negative one 

with σT. In contrast, as indicated by the red plots, the ratios of the hard monomers (R3, R4, and R5) 

mainly yield a negative influence on UT but a positive one on σT. This trend agrees with our 

hypothesis that increase of the hard monomer ratios tend to increase the strength while the soft 

monomers favor toughness enhancement. As evident in Fig. 5a-i, increasing the ratio of R2 up to 

40% exhibits a positive correlation with UT, which then reverses to a negative correlation with 

further increases. Notably, this threshold is significantly lower (~ 20%) when considering the 

influence of R2 on σT, as shown in Fig. 5b-i. Additionally, the plots unveil that different hard 

monomer ratios exert differred effects. While NVP (R3), a hard monomer, exhibits a linear, 

negative correlation with UT, the effect of HEAA (R5) on UT is not quite so. 

Two-way PD plots represent the dependence of UT and σT on the two monomer ratios. They 

are shown in the color maps with brighter colors corresponding to higher values and vice versa 

(Fig. 5). The data points denoted with star markers correspond to the Pareto frontier points. It is 

important to note that not all Pareto frontier points are situated in regions with the highest values 

of the displayed objective. This observation underscores a fundamental aspect of this optimization 

challenge: the two objectives largely conflict with each other. Fig. 5a-ii shows dependence of UT 

on R2 and R4. We can see that with R2 of < 20% UT shows less dependence on R4, while for R2 > 

20%, increasing R4 up to ~ 20% increases UT. But further increases in R4 above 20% decreases 
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UT. Fig. 5b-ii shows dependence of σT on R2 and R4. It reveals that an increase in R4 leads to 

higher σT when maintaining R2 of < 20%. Overall, the PDA indicates that the correlation of UT 

and σT with the monomer ratios is complicated and cannot be simply delineated. To reach 

optimized UT and σT, the monomer ratios should be meticulously formulated, which is almost 

impossible by human. But the results show that the proposed MOBO algorithm would make this 

challenging problem possible.  
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Figure 5.  Partial dependance analysis of (a) UT and (b) σT on ratios of the soft monomers 

(blue) and hard monomers (red). R1: HA, R2: IA; R3: NVP, R4: AA, R5: HEAA. Panels (i) and 

(ii) are annotated for explanation in the text with (i) shows an example of a one-way PD while (ii) 

shows a two-way PD.  

 

3.4. Applications of Pareto front samples with optimal trade-offs 

The resin formulations that realize the Pareto set offer valuable materials for designing 

structures with tailored performance. Distribution of the five Pareto frontier points of UT and σT 

are presented in Fig. 6a. Their representative stress-strain curves and respective Tg are illustrated 

in Fig. 6b-f. They show that these thermoplastics printed from the monomer ratios recommended 

by the MOBO algorithm can be classified into two categories. One category is characterized by 

high UT with a large stretchability. The other one exhibits exceptional σT. It is worth noting that 

the constraint in Tg renders these materials with the shape memory properties in a suitable 

temperature range of 29—41 ℃, which is in the predefined range of 10-60 ℃ established from the 

initial samples. The histograms of Tg for initial and evaluated samples are illustrated in Fig. S9. 

Further analysis on the distribution of measured σT, UT, and fractural strain (εf) with respective to 

Tg are presented in Fig. S10. As shown in Fig. S10a, elevating Tg up to 60 ℃ has a positive 

correlation to σT, while Tg above 60 ℃ results in a reduction f σT. The relationships between Tg 

and UT, Tg and εf are depicted in Fig. S10b and Fig. S10c, respectively. They appear less 

straightforward but still highlight that samples falling outside the specified range exhibit notably 

lower toughness and strain. 

With the Pareto frontier points’ distinct performance attributes in UT and σT, we illuminate 

two distinct applications. The first is to print a high-strength gripper from the set of the monomer 
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ratios for Sample 38 (Fig. 6g). Due to phase transition above Tg, it shows a viscoelasticity property, 

thus can be easily programmed to a temporary, opened shape. It recovered to the original close 

shape upon heating, allowing it to securely grasp an object. Cooling down below Tg restores the 

stiffness of the gripper, ensuring a secure hold on the object (Movie S1). Additionally, a shape 

memory thermoplastic with high UT finds application for printing a highly stretchable spring using 

the set of the monomer ratios for Sample 15. It was programmed to a fully stretched state when 

subjected to heat (Fig. 6h). This stretched spring recovered to its original shape when reheated 

(Movie S2). Besides, among all the evaluated samples some show quite elastic performance with 

an example shown in Fig. S11. Although they do not show the properties in the Pareto front, they 

further prove the advantage of using the proposed MOBO algorithm for the resin formulation 

recommendation to print materials with the diverse mechanical behaviors.  
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Figure 6. Shape memory behaviors of thermoplastics in the Pareto front of UT and σT. (a) 

Distribution of UT versus σT for the five Pareto front samples shown in Table S4. (b-f) Stress-

strain plots of the five Pareto front samples along with their Tg. (g, h) Photographs showing shape 

memory behaviors for (g) a gripper printed from the set of the monomer ratios for Sample 38 and 

(h) a spring printed from the set of the monomer ratios for Sample 15. 

 

4. Discussion 
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In this study, we designed and implemented a multi-objective Bayesian optimization algorithm 

with physics-informed constraints to accelerate the LCD 3D printing of thermoplastics with 

optimized σT, UT and with Tg in a target range. To develop the algorithm, we designed two RF 

classifiers as constraint models that are directly integrated in the framework. In our study, 

additional physics-based features have been incorporated into the two developed classifiers. These 

classifiers were utilized to guide the recommended samples towards feasible regions. It is 

important to note that the inputs to the GPs are the ratios of the monomers. Please note that GPs 

were primarily utilized as fitting tools to establish connections between the monomer ratios and 

the mechanical properties, while this connection is essentially a black-box phenomenon and is very 

difficult to be explicitly defined by physics-based models. In each iteration, the classifiers screen 

the Pareto sets of the ratios which are predicted to be printable and lead to thermoplastics with Tg 

in a target range before their hypervolume indicators are calculated. As a result, the percentage of 

nonprintable sets of the monomer ratios was reduced from 16% in the initial samples to 3% in the 

recommended samples. The percentage of the printed samples with Tg in the target range increased 

from 65% to 83%. The developed MOBO algorithm afforded five Pareto frontier points of σT, UT 

within only 36 iterations (72 recommendations). These thermoplastics exhibit Tg in a range of 29—

41 ℃, which is suitable for use as shape memory polymers. In summary, the significance of this 

work lies in its potential to streamline the design and manufacturing of printable thermoplastics by 

VPP meeting multiple requirements of high printability, target Tg, and optimized σT and UT. To 

our best knowledge, such a data driven MOBO algorithm constrained by prior knowledge and 

physics laws has not yet been demonstrated. Thus, this innovation holds great promise for a wide 

range of applications in materials science and manufacturing.  
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Supplementary Tables: 

Table S1. Extracted and calculated descriptors for the six monomers. 

Features 

Monomer 

Complexity 

Energy 

(Hartree

) 

MW of 

HAs 

(g/mol) 

δd δp δh δ 

HA 221.00 -766.60 208.13 17.49 5.66 12.09 22.00 

IA 55.90 -581.70 164.12 15.57 4.14 4.89 16.84 

NVP 120.00 -364.00 102.07 17.87 10.39 8.09 22.20 

AA 55.90 -267.20 68.03 16.04 13.39 17.91 27.52 

HEAA 90.40 -401.20 106.06 17.34 9.07 15.55 25.00 

IBOA 306.00 -657.90 188.14 17.99 4.11 4.86 19.08 
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Note: δ is the total solubility that was calculated from three components of δd, δp, and δh, which 

are the dispersion force, polar force, and hydrogen bonding, respectively. The unit for all solubility 

components is (MJ.m-3)0.5. MW stands for molecular weight. HAs stands for heavy atoms. 

 

Table S2. Hyperparameters of the trained random forest (RF) models used as constraints.  

Hyperparameter Value 

max_depth 5 

min_sample_split 2 

n_estimators 50 
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Table S3. List and definitions of acronyms used throughout the paper. 

Abbreviation Definition 

AA Acrylic Acid  

BO Bayesian Optimization 

DFT Density-Functional Theory 

DIW Direct Ink Writing 

DLP Digital Light Processing  

DSC Scanning Calorimetry  

EGO Efficient Global Optimization  

EHVI Expected Hypervolume Improvement  

FDM Fused Deposition Modeling  

GP Gaussian Process 

HA 2-Hydroxy-3-Phenoxypropyl Acrylate  

HEAA N-(2-Hydroxyethyl)Acrylamide  

IA Isooctyl Acrylate 

IBOA Isobornyl Acrylate  

LCD Liquid-Crystal Display 

LHS Latin Hypercube Sampling  

MD Molecular Dynamics 

ML Machine Learning 

MOBO Multi Objective Bayesian Optimization 

MOO Multi-Objective Optimization 

NSGA Non-Dominated Sorting Genetic Algorithm  

NVP 1-Vinyl-2-Pyrrolidone  

PCA Principal Component Analysis 

PDA Partial Dependance Analysis  

PI Physics Informed 

RE Relative Error  

RF Random Forest 

SLA Stereolithography  

SLS Selective Laser Sintering 

SOO Single Objective Optimization  

TS Thompson Sampling 

TSEMO Thompson Sampling Efficient Multi-Objective 

Optimization 

VPP Vat Photopolymerization  

 

Table S4. Ratios, mechanical properties, and transition temperature of the discovered five Pareto 

frontier points. 
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Sample ID 

R1 

(HA

) 

R2 

(IA) 

R3 

(NVP

) 

R4 

(AA

) 

R5 

(HEAA

) 

R6 

(IBOA

) 

σT 

(MPa

) 

UT 

(MJ.m-

3) 

Tg 

(°C) 

15 0.27 0.41 0.00 0.11 0.21 0.00 15.10 25.76 29.7 

17 0.28 0.34 0.00 0.10 0.28 0.00 31.22 22.56 34.3 

37 0.53 0.25 0.00 0.03 0.18 0.01 17.82 25.02 30.2 

38 0.51 0.21 0.00 0.11 0.15 0.02 49.99 2.75 40.7 

70 0.52 0.21 0.05 0.11 0.09 0.02 32.03 7.58 35.7 

 

 

Supplementary Figures: 
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Figure S1. Distribution of ratios for the monomers employed in the optimization algorithm. 

The initial samples are represented by red points, while the evaluated samples are denoted by blue 

points. The intensity of the blue points corresponds to the iteration at which the samples were 

collected, with darker colors indicating later iterations in the algorithm. The samples highlighted 

with stars are the discovered Pareto frontier points. 

 



38 
 

 

Figure S2. LCD 3D printing of thermoplastics consisting of hard and soft monomers. Pool of 

(a) hard and (b) soft monomers. (c) Schematic of LCD 3D printing. 

SMILES of the six monomers shown in Fig. S1a and Fig. S1b: 

1. 2-Hydroxy-3-phenoxypropyl acrylate (HA): “C=CC(=O)OCC(COC1=CC=CC=C1)O” 

2.  Isooctyl acrylate (IA): “CC(C)CCCCCOC(=O)C=C” 

3. 1-Vinyl-2-pyrrolidone(NVP): “C=CN1CCCC1=O” 

4. acrylic acid (AA): “C=CC(=O)O” 

5. N-(2-Hydroxyethyl)acrylamide (HEAA): “C=CC(=O)NCCO” 

6. Isobornyl acrylate (IBOA): “CC1(C2CCC1(C(C2)OC(=O)C=C)C)C” 

  



39 
 

. 

Figure S3. Stress-strain curves for deriving the two performance objectives for optimization 

by the MOBO algorithm: (a) Tensile toughness; (b) Tensile strength. 

 

. 

Figure S4. A differential scanning calorimetry (DSC) curve of a thermoplastic (Sample 72) 

from which Tg is calculated. Sample 72 was printed from HA, IA, NVP, AA, HEAA, and IBOA 

with monomer ratios of 16, 40, 21, 10, 3, and 10%, respectively.  
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Figure S5. Two RF classifiers employed as constraint models. On the left side are the structures 

of the monomers along with the extracted descriptors. Those were included with the monomer 

ratios as the input to train the two RF classifiers. The first one is to predict if a recommended resin 

formulation leads to a printable thermoplastic. The second one is to predict if the recommended 

resin formulation realizes a thermoplastic with Tg in a target range (10 °C ≤ Tg ≤ 60 °C). 

 

 

. 

Figure S6. Distribution of (a) tensile toughness and (b) tensile strength in relation to transition 

temperature (Tg). Only successfully printed samples are represented.  
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Figure S7. Visualization of the hypervolume improvement. The hypervolume of the existing 

Pareto front consisting of {a, b, c, d} is highlighted in red. In this figure, r represents the reference 

point, chosen as the anti-ideal point relative to the approximate Pareto front of the GP samples. r 

has the lowest f1 and f2 with f1 value from C1 and f2 value from C6. The yellow area indicates the 

potential contribution of point C2 added to the new Pareto front. From candidate set (C1-C6), C2 

has the highest hypervolume improvement.  
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. 

Figure S8. Evolved average relative errors of UT and σT of the evaluated samples as function 

of the iteration numbers: (a) tensile toughness and (b) tensile strength. 

 

. 

Figure S9. The histogram of Tg. The dashed lines show the acceptable Tg range of 10 and 60 °C, 

used in the constraint model. 
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. 

Figure S10. Correlation of mechanical properties over Tg for the initial and evaluated 

samples. The dashed lines show the predefined Tg range of 10°C-60 °C. 
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. 

Figure S11. Tensile testing curve of a discovered thermoplastic showing an elastomer behavior. 

 


