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Abstract

The printing outcome of vat photopolymerization (VPP) of thermoplastics largely depends on
physicochemical properties of monomers and their compositions in resins, which also greatly
determine the material properties, e.g., tensile strength (ot) and toughness (Ut)and phase transition
temperature (7). A methodology for optimizing the resin formulation is of paramount importance
in realizing highly printable thermoplastics with balanced o1/Ut and target 7, while remaining
largely underexplored. Herein, we introduce a multi-objective Bayesian optimization (MOBO)
algorithm under two physics informed constraints (printability and 7;) to optimize two conflicting
properties: or and Ut. The two constraints are formulated as two machine learning (ML) models,
which are trained with weight ratios of the six monomers and physics informed (PI) descriptors
derived from their physiochemical parameters. Dimensional reduction analysis reveals that the
algorithm avoids recommendation of the monomer ratios that do not pass the two constraints. The
printing failure rate is reduced from 16% in the background experiments to 3% in the
recommended experiments. Within only 36 iterations (72 samples), the MOBO algorithm
successfully identifies five sets of ratios leading to Pareto optimal of or and Urt. Due to the
constraint in 7, they show appropriate 7 for shape memory application. The partial dependence
analysis indicates that ot and Ut depend on both the ratios and physiochemical features of the
monomers. These results underscore capability of such a smart decision-making algorithm—with
constraints that are not fully understood but can be informed by prior knowledge—in planning the
experiments from the vast design space, thus holding a great promise for broader applications in
materials design and manufacturing.
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1. Introduction

Three-dimensional (3D) printing is increasingly popular for fabricating objects with complex
structures and desired functionalities [1,2]. Several common 3D printing technologies including
stereolithography (SLA), vat photopolymerization (VPP) (e.g., digital light processing (DLP) and
liquid-crystal display (LCD) printing), selective laser sintering (SLS) [3], direct ink writing (DIW),
and fused deposition modeling (FDM) have been utilized for this purpose. Among different types
of materials for 3D printing, thermoplastics have recently become a surge of interest [4]. Ligon et
al. offered a comprehensive review in polymers for 3D printing and their applications [5]. This
surge stems from their remarkable recyclability, positioning them as viable alternatives to the
conventional thermosets [6]. While FDM is commonly employed for printing the thermoplastics,
it is a relatively slow and low-precision process. VPP, in contrast, offers much better printing
resolution and faster printing rates. When subjected to digital light exposure, monomers in a photo-
curable resin are polymerized to a polymer. Depending on the reaction kinetics, the cured polymer
could be dissolved into the surrounding liquid resin. Thus, a rapid solid-liquid phase separation is
critical, which constitutes a fundamental and enabling characteristic particularly for VPP based 3D
printing of thermosets, because the crosslinked thermosets networks are usually infusible and
insoluble [7]. Although photocurable thermoplastics are a known entity, meeting the unique
requirements for VPP proves to be a challenge. Because in the process, competition of two
concurrent reactions—polymerization or solidification of a resin to a polymer and
diffusion/dissolution of the cured polymer into the resin—results in an unpredictable printability
issue, particularly if multiple monomers are used in the resin. Achieving the sought-after rapid
liquid-solid separation is contingent upon dominance of the first reaction, while minimizing the

influence of the second. A key to success is to promote the polymerization rate to obtain a



thermoplastic with a sufficiently high molecular weight. Because if the polymerization kinetics is
slow, it would afford ample time for the cured thermoplastic to diffuse and dissolve into the resin.

The polymerization and the dissolution rates are affected by a range of physicochemical
parameters of the monomers, e.g., reactivity, viscosity, molecular weight, glass transition
temperature (7}), and intermolecular forces [8-10]. In many cases, to print a thermoplastic with the
tunable mechanical properties a resin consisting of different types of monomers with various
weight ratios is usually utilized [11]. An Monomer can generally be categorized as "hard" or "soft"
one based on its chemical structure. Hard monomers typically exhibit rigid and sterically hindered
structures, which contribute to faster polymerization kinetics and higher 7, of the resulting
polymers. Consequently, thermoplastics derived from hard monomers tend to possess a higher
strength but low stretchability. Conversely, soft monomers are characterized by more flexible
structures with fewer steric hindrances. As a result, their polymerization process tends to be slower,
and the resulting polymers exhibit lower 7. Thermoplastics polymerized from the soft monomers
typically demonstrate a higher stretchability but lower strength compared to those from the hard
monomers. Given numerous options for the monomers and spacious choices in their ratios, the
design space for the resins becomes enormous and is very difficult to be exhaustively searched.
Thus, a methodology for optimizing the resin formulation is of paramount importance in realizing
printable thermoplastics with improved tensile strength (ot) and toughness (Ut) as well as target
T, from the vast design space, while it remains largely underexplored. In a traditional practice,
establishing correlation of the monomers’ ratios with the resulting printability and properties of
the materials requires extensive experimental trials [12]. Decision is mainly made by scientists
who are well trained with domain knowledge. This human-centered, labor- and time-consuming

practice greatly limits new material development efficiency by 3D printing. Sometimes, if the



number of input variables dramatically increases, it could become powerless in finding a solution
to realize the optimum materials properties with this practice [13]. This challenge will become
even bigger if an application involves optimization of two or more competing property objectives

such as ot and Ur.

Bayesian optimization (BO) algorithms present a cost-effective avenue to tackling this
challenge [14-18]. In BO, an objective function is approximated by a surrogate model that is cheap
to evaluate and can be updated with both successful and failed samples [19]. They show quite
success in single objective optimization (SOO) [20-23]. As an example, Gongora et al. employed
a BO algorithm as a decision maker in an autonomous robot to search structures with increased
compressive toughness [21]. Balachandran et al. applied a BO algorithm for SOO, named efficient
global optimization (EGO) [24], to optimize curie temperature of ferroelectric perovskites [20].
Liu et al. developed a BO framework for optimizing efficiency of the perovskite solar cells. Using
prior experimental data as a probabilistic constraint they increased the success rate to 47%
compared to 12% resulting from the Latin hypercube sampling (LHS) method [25]. However,
many real-world applications necessitate the achievement of multiple performance objectives
[26,27]. Cao et al. developed a multi-objective Bayesian optimization (MOBO) algorithm to
design formulation consisting of three surfactants, a polymer, and a thickener [28]. To lower the
number of experiments for evaluation, they trained a separate classifier to screen out the
recommended formulation that might lead to failed experiment. The limitation is that the classifier
acts as a post-screener and is not integrated in the MOBO algorithm, thus the algorithm must run
again if the proposed samples do not pass the screening, leading to low searching efficiency. In
another study, Erps et al. applied a MOBO algorithm without constraints to formulate the ink

compositions for 3D printing thermosets [29]. Their method, a purely data-driven algorithm, which



would lack generalizability when applied to other materials or manufacturing systems, e.g., it is
not directly applicable to VPP of thermoplastics. Because, as stated previously, the competition
polymerization and dissolution reactions in VPP of thermoplastics would make many
recommended resin formulations fail to meet the printability and property constraints. Therefore,
how to incorporate the constraints and the prior knowledge in physics and chemistry directly in a
MOBO framework to tackle application scenarios with limited available data remains a knowledge
gap in the field.

Herein, we introduce a MOBO algorithm with two physics informed (PI) constraints to
recommend feasible resin formulations for VPP—more specifically, LCD—of thermoplastics with
optimized ot and Ur (the two objectives of the MOBO algorithm). We developed two ML models
to output two constraints. The first one is to predict if a recommended resin formulation leads to a
printable thermoplastic. The second one is to predict if a recommended resin formulation realizes
a thermoplastic with 7; in a target range (10 °C < 7 < 60 °C). They were trained by using the
weight ratios of six monomers for the resins and their physiochemical parameters as the PI features.
In this study, the six monomers include two soft monomers of 2-hydroxy-3-phenoxypropyl
acrylate (HA) and isooctyl acrylate (IA) and four hard monomers of 1-vinyl-2-pyrrolidone (NVP),
acrylic acid (AA), N-(2-hydroxyethyl)acrylamide (HEAA), and isobornyl acrylate (IBOA). To
train MOBO, two separate Gaussian Processes (GPs) for both objectives of or and Ut were chosen
as the surrogate models. In order to pretrain the two constraint models, 43 weight ratios of the
monomers were initially provided. These ratios were selected using the Latin hypercube sampling
(LHS) principle, which allowed for the creation of a comprehensive database. LHS methodology
was employed to ensure an efficient coverage of the search space in a randomized manner. This

approach facilitates the exploration of diverse combinations of the monomer ratios, enabling the



constraint models to learn from the dataset. By utilizing LHS, we can enhance the robustness and
effectiveness of the pretrained models in handling a wide range of potential input configurations.
In the training process, functions were sampled from each fitted GP. Subsequently, a non-
dominated sorting genetic algorithm (NSGA-II) was employed to identify the Pareto front among
the sampled functions that meet the criteria of the two established constraint functions. In each
iteration, the MOBO algorithm suggests two sets of ratios, which are used to print new
thermoplastics for experimental evaluation. Data from these newly evaluated samples are included
in the database to update both the two constraint functions and the two GPs. Within 36 iterations
(recommending 72 new sets of the ratios), the MOBO algorithm can successfully discover five
compositions leading to thermoplastics with Parato optimal fronts of ot and Ut and with 7 in the
target range. Among them, one exemplifies a remarkable Ur, characterized by a high stretchability
while one showcases a high or. Performance of the two constraint models is evaluated by
comparing the failure rates of the initial training samples and recommended samples. The failure
rate is reduced from 16% in the initial LHS-guided experiments to 3% in the MOBO recommended
experiments. The unsatisfactory rate regarding 7y is also reduced from 35% in the LHS-guided
experiments to 17% in the recommended samples, indicating that integrating the constraint models
within the MOBO algorithm greatly enhances the efficiency and reduces the amount of required
training data. We expect that this physics-constrained MOBO algorithm can be applied to metals

[30], shape memory polymers [31], and hydrogels [32] in other processes.
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Figure 1. Development of a MOBO algorithm with PI constraints for 3D printing. (a)
Schematic showing solid-liquid separation mechanism in LCD printing of thermoplastics and
photographs of two represented printable and nonprintable samples. (b) Workflow of the proposed

MOBO framework with PI constraints for LCD thermoplastics printing.

2. Materials and Methods

Materials. 2-Hydroxy-3-phenoxypropyl acrylate (HA), isooctyl acrylate (IA, > 90%), and
acrylic acid (AA, 98%), were purchased from Sigma Aldrich (St. Louis, MO, U.S.).
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO, >97%), isobornyl acrylate (IBOA, >
90%), N-Vinylpyrrolidone (NVP, > 99%), and N-(2-hydroxyethyl)acrylamide (HEAA, >98%)

were purchased from Fisher Scientific (Pittsburgh, PA, U.S.).



Characteristics of the monomer. HA contributes to the flexibility of the polymer due to its
hydroxyl group, potentially enhancing its elongation properties. IA imparts flexibility to the
polymer due to its soft nature, while its long alkyl chain enhances the polymer's toughness and
impact resistance. AA and NVP improves the strength of the polymer due to its ability to form
hydrogen bonds, potentially increasing its tensile strength. IBOA provides rigidity to the polymer
network, enhancing its hardness and dimensional stability. HEAA contributes to the flexibility and
toughness of the polymer, while the formed hydrogen bond enhances its adhesion and cohesion
properties.

LCD 3D printing. The six monomers HA, IA, AA, IBOA, NVP, and HEAA with a certain
weight ratio were mixed in a beaker to get a resin, which was added with a photoinitiator,
diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) (2 wt%) and then magnetically stirred
for 1 minute. The uniformly miscible resin was used for printing by a LCD 3D printer (Anycubic
Photon Mono 4K) with an irradiation wavelength of 405 nm. In each experiment, parameters of a
constant power density of ~5 mW/cm?, a layer thickness of 50 um, and an exposure of 15 s were
used. After the printing, the samples were post-cured by 405-nm UV light for 60 s.

Mechanical testing of the printed samples. The tensile testing was conducted on a Mark-10
universal testing machine at a loading rate of 50 mm/min. For each set of the monomer ratio, at
least five samples were printed and tested for statistical analysis. Tensile strength was taken from
the highest point of stress-strain curves, and toughness was calculated from the area of the stress-
strain curves.

Physics informed input descriptors for RF models. The extracted descriptors are solubility,

total energy, molecular weight of heavy atoms, and complexity. The solubility parameters were



predicted from group contributions of the monomers [10]. The total solubility was calculated from

Eq. 1 and Eq. 2.
52 = 62 + 52 + 67 1)
[F2,
YFgyi & YEn;
Ba =% 8y == 6 = |75 2

where 84, 6,, and Spare the contribution of dispersion forces, the contribution of polar forces, and
the contribution of hydrogen bonding, respectively. Fai, Fpi, and Ey; for different functional groups
were extracted from Table 7.10 in the book by Krevelen [10] ¥ is the molar volume of the
monomers. The total energy of each monomer was calculated by DFT. First, we used Open Babel,
an open chemical toolbox [33], to construct the 3-dimensional coordinates from the simplified
molecular-input line-entry system (SMILES) of the monomers. Then, 50 steps of local
optimization were carried out by the MMFF94 force field. The DFT calculations for all monomers
were carried out using Gaussian-16-A.03, licensed under the University of Missouri. Geometry
optimization and frequency calculations were carried out using the B3LYP functional with the
basis 6-31G (2df, p) to calculate the total energy. Complexity accounts for the atom size,
symmetry, branches, rings, number of bonds, and heteroatoms characteristics of the input
monomers [34]. We extracted the complexity values of the monomers from the PubChem database
[35], which were calculated by the Bertz’s approach [34]. We also extracted molecular weight of
heavy atoms of the monomers from the PubChem database. All the calculated descriptors are listed
in Table S1.

Model parameters. In each iteration, the GPs for both objectives were updated as new datasets
from the evaluated experiments were added into the database. To tune the hyperparameters of the
GPs, we employed a maximum posteriori estimate method proposed by Bradford et al [36]. The

kernel function is the Matérn 5/2, which is versatile and supports a wide range of function types
9



[37]. To solve MOO of the sampled GPs, picked by TS sampling, a standard NSGA-II solver was
applied with a population size of 100 and a total number of 100 generations [38]. To handle the
constraints inside the solver, we used the “feasibility first” approach introduced in the pymoo
python library [39]. To evaluate a solution, the solver first checks whether the solution satisfies
the constraints. In this case, the solver does not calculate the GP values for the solutions that do
not pass the constraints. Thus, we defined the values of < 0 in Eq. 3 and Eq. 4 as satisfaction with
the constraints.

g1 : (1) X P( Printable) + 0.7 < 0 3)
g2+ (—1) x ]P( Acceptable Tg) +07<0 4)
Where, P is the predicted probability from the RF models. Numbers closer to 1 indicate higher
confidence in predictions. We multiplied (-1) to the predicted values from the RF models since we
considered positive values to be the infeasible recommendations. We added 0.7 to the predicted
values to bias the recommendations that are highly probable being feasible for printability and
satisfaction of Ty. The hyperparameters of the fitted RF models are listed in Table S2.

Design space. The ratio of each monomer can take continuous values from 0 to 1. Given the
resolution limitation, we only considered two decimals, which resulted in 101 possible values for
each ratio. To ensure that the sum of all proposed monomer ratios equates to 1, we considered only
five ratios as the design space in the algorithm, as shown in Eq. 5.
g3 R{+R,+R;3+R,+R;—1<0 ®))
with0 < R; <1fori=1,273,45
Where R; to Rs are ratios of HA, IA, NVP, AA, and HEAA, respectively. Fig. S1 displays the
distribution of two ratios in each plot for all the initial and evaluated 115 samples. The ratio of the

last monomer, IBOA, was determined by Eq. 6.
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R6:1_(R1+R2+R3+R4+R5) (6)

A list of acronyms with their full description is provided in Table S3.

3. Results
3.1.  Architecture of the MOBO algorithm with the physics informed constraints

To formulate the resins, the six monomers as depicted in Fig. S2 were mixed in various weight
ratios. We first started with 3D printing of 43 initial samples with the ratios sampled by the LHS
principle [25] with an aim to maximize the coverage of the design space. As illustrated in Fig. 1a,
each set of the ratio was printed at least five times to obtain > five samples. Slow polymerization
kinetics would make the cured polymer have ample time to diffuse and dissolve before reaching a
desired molecular weight. If the resulting polymer's molecular weight remains low even with a
satisfactory polymerization kinetics, it would still be susceptible to dissolution throughout the
entire printing process, resulting in non-printable objects with obvious defects and incomplete
shapes, as shown in Fig. 1a. It is important to note that we kept the 3D printing parameters
consistent and focused solely on experimenting with ink compositions. Considering them as input
variables into the MOBO is not advisable, given their significant distinction from the monomer
ratios. Moreover, such an approach would demand a significantly larger number of experiments to
achieve optimization, if feasible. The ones that were printable then underwent tensile testing to
collect the stress-strain curves, from which two critical mechanical properties of ot and Ut were
derived, as exemplified in Fig. S3. Due to the variances in the printed samples even if they are
from the same set of monomer ratios, the derived or and Ut were picked from a representative
sample. T, was measured from the differential scanning calorimetry (DSC) (Fig. S4). These 43

ratios along with the averaged or, U, and 7 form an initial database. Then two random forest
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(RF) classifiers were pretrained for predicting if the resin is printable (yes/no) and if the resulting
thermoplastic has 7, within a predefined range (10 °C < Ty < 60 °C) (Fig. S5). The reason why we
chose this T range is because the samples with 7, outside this range exhibit very poor mechanical
properties, as shown from the results of the initial 43 samples (Fig. S6). The samples with 7, in
the range are classified as 1 otherwise classified as 0. An RF classifier is an ML algorithm that
builds multiple decision trees during training and outputs the modes of the classes of the individual
trees. It combines the predictions of multiple individual decision trees to improve the overall
accuracy and robustness of the classification task [40].

To make the RF models more generalizable and be better pretrained with limited experimental
data, the PI descriptors of solubility, heavy atoms molecular weight, complexity, and total energy
to represent the physiochemical properties of the monomers were used as the inputs (Fig. S5).
Solubility was calculated from three contributions of dispersion forces, polar forces, and hydrogen
bonding [10]. Those contributions cannot be determined directly. One approach is to approximate
them from the functional groups of the monomers. Complexity accounts for the atom size,
symmetry, branches, rings, number of bonds, and heteroatoms characteristics of the input
monomers [34]. The total energy was calculated by density function theory (DFT). Details about
the calculations are explained in Materials and Methods. To make these additional features the
variables in the RF model training, we normalized them to their respective weight ratios.

After the pretraining, the two RF classifiers were incorporated as the constraints in the MOBO
algorithm (Fig. 1b). Two GPs that approximate the two objective functions were also pretrained
on the initial 43 datasets. For training the GPs, only the weight ratios of the monomers were used
as the input. In each iteration, the MOBO recommended two new sets of the weight ratios that

were expected to lead to printable thermoplastics with the predicted 7§ in the predefined range
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while showing improved ot and Ut. The recommended two sets of the ratios in each iteration were
then used to make new resins to print thermoplastics which underwent tensile testing. The new
datasets of the monomer ratios, printability, corresponding 7%, oT, and Ut were incorporated into
the existing database to update both the two GPs and the two RF models. This loop continued until
the predefined iteration number was reached or enough Pareto frontier points were obtained. In
multi-objective optimization, the Pareto frontier points represent solutions where no objective can
be improved without degrading at least one other objective. These points are considered optimal
because they represent the best trade-offs between conflicting objectives, forming a boundary that
separates feasible and infeasible solutions in the objective space. More details are described in

Materials and Methods.

3.2.  Algorithm description

To optimize the two objectives concurrently, we adopted a MOBO strategy renowned for its
efficacy in dealing with the black-box objective functions [16]. Our algorithm was built upon
“Thompson sampling efficient multi-objective optimization” (TSEMO) [36], where Thompson
sampling (TS) was used. As illustrated in Fig. 2, two independent GPs as the surrogate models
were fitted to the initial 43 datasets to approximate the two objectives of ot and Ut. The essence
of TS lies in the art of balancing the exploration of high-uncertainty regions and the exploitation
of high-performing areas within the design space [36]. Regions with fewer data points are
associated with higher uncertainty and therefore are more actively explored. TS chooses an action
that matches the probability where the action leads to an improved reward in each iteration. It does
so by drawing a sample based on the posterior distribution and returning an maximum index from

the sampled vectors [41]. To sample a function from the posterior distribution of each GP, we
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employed spectral sampling, the details of which are outlined in the TSEMO paper [36]. Spectral
sampling algorithms typically involve decomposing the covariance matrix associated with the GP
into its spectral components. By sampling from the spectral representation of the covariance
matrix, samples from the posterior distribution can be efficiently generated [36]. It leverages the
spectral properties of the covariance function to achieve computational efficiency while
maintaining accuracy in sampling. Unlike SOO, which yields a single optimized outcome, MOO
produces a region referred to as the Pareto front [16]. We employed the AutoOED software
package to facilitate our optimization process [42]. This region encompasses points that balance
the objectives and cannot be surpassed by any other points. Consequently, enhancing one objective
relative to the Pareto front necessitates compromising the other objective. Given that the sampled
functions are computationally inexpensive to evaluate, we utilized NSGA-II, a genetic-based
MOO method, to identify the Pareto front of the sampled functions. The Pareto set (sets of ratios)
that pass the constraints of both printability and 7, were kept as the candidate set. We utilized the
expected hypervolume improvement (EHVI) to identify a set of monomer ratios that result in the
greatest enhancement in hypervolume. In multi-objective optimization, the hypervolume serves as
a metric for evaluating the quality of a solution set, such as the Pareto front. It quantifies the volume
of the objective space that is dominated by these solutions, providing a comprehensive assessment
of their distribution and diversity. EHVI quantifies the potential improvement in the hypervolume
upon adding a candidate point to the existing set of solutions. It is calculated based on a predicted
Pareto frontier point and a reference point, which is typically approximated using the anti-ideal
point derived from the candidate sets with the lowest or and Ut values. A higher hypervolume
value indicates a broader spread of solution and is indicative of superior performance in the multi-

objective optimization algorithm. A schematic showing the hypervolume improvement and the
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reference point is shown in Fig. S7. Details about the EHVI can be found in the TSEMO paper
[36].
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Figure 2. Flowchart showing the MOBO algorithm training. The newly evaluated samples are

used to update GPs as well as the RF models which are the two constraints: C; and Co.

3.3. Model Performance

Evaluation on printability and T,. One innovation of the proposed MOBO algorithm is the
PI constraints can greatly improve the success in both the printability and target 7, of the
thermoplastics printed by the recommended sets of the monomer ratios. In this study, we defined
a failure rate as the ratio of failed samples to the total number of samples evaluated. Samples were
deemed failed for printability if they were not successfully printable during experimental testing,
while for the 7, range, samples were considered to be failed if their glass transition temperature
(Ty) fell outside the predetermined range. As presented in Table 1, the failure rate for printability

is reduced to 3% for the ratios recommended by MOBO, compared to 16% for the initial samples
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by the LHS principle. The percentage of the printed samples with 7} outside the preassigned range
(10-60 °C) decreases from 35% to 17% for the ones printed using the sets of the weight ratios
recommended by the MOBO algorithm. This improvement can be attributed to the optimization
algorithm, which incorporates a classifier as a constraint. These classifiers selectively pass only
those ratios deemed printable with acceptable T, thereby guiding the recommended samples
towards a feasible region, and consequently reducing the occurrence of failed printing. It is
important to note that the success rate regarding the printability is higher than that of 7. This
discrepancy can be attributed to closer correlation of the monomers' structural characteristics with
the printability than that with 7. This observation well agrees with our previous experimental
findings, which suggest that the hydrogen interactions among the monomers play a crucial role in
expediting polymerization and diminishing the solubility of the resulting polymers in liquid
precursors [8]. This behavior promotes rapid solid-liquid phase separation, ultimately enhancing
the printability. The behavior of 7, may more rely on other characteristics such as the molecule
weights and chain-to-chain interactions, which could be informed by molecular dynamics (MD)
simulations while it is out of current study [43]. The future direction of this research is to include
more descriptors to inform the reactivity of the monomers as well as the polymer chain interactions

for better informing 7 of the resulting polymers.

Table 1. Failure rates about printability and 7 for the initial samples recommended by LHS and

the ones recommended by the proposed MOBO algorithm.

43 Initial Samples by LHS 72 New Samples by MOBO
Printable Failure rate Printable Failure rate
RF1: # of samples # of samples
printability
36 16% 70 3%

16



# of samples with Failure rate # of samples with Failure rate
RF2: T acceptable T acceptable 7
range

This considerable improvement motivates us to further explore how the input ratios impact
their printability and 7} of the resulting thermoplastics. However, visualizing the correlation in a
6-dimensional space is too difficult. To address this challenge, we employed Principal Component
Analysis (PCA) to reduce the dimensions for easy visualization and comparison. Fig. 3a represents
a two-dimensional (2D) PCA map of the ratios with respect to the printability. Notably, the
nonprintable samples which are predominately from the initial experiments are clustered in a
distinct region, while the printable ones from both the initial and evaluated experiments are
grouped in a separate region. That shows that the constraint model for printability can avoid the
nonprintable recommendations. The two sets of nonprintable ratios out of 72 recommended
samples are located close to other printable samples and could not be recognized by the trained RF
constraint model. This insight underscores the impracticality of simply restricting the design space
solely based on observations of a few infeasible samples. Instead, the intricacies of the relationship
between these ratios and the printability necessitate the use of an ensemble-based model such as
RF as a constraint. Fig. 3b shows the PCA map of the ratios with respect to 7, of the printable
samples. The marked region shows the initial samples with 7 outside the predefined range. The
constraint model can largely avoid this region, but there are still evaluated samples that do not
satisfy the 7, requirement but are outside this region. It suggests that as we stated previously 7§ is

less correlated to the monomers' structural characteristics than the printability is.

17



Initial non-printalgle ared

«r Filhy
. ok o
. 1=Printable; 0=Non-printable
-0.51 . e Initia,1 % Eval,1
e Initial, 0 * Eval,0
-0.50 -0.25 0.00 025 0.50
b) PC1 [-~]

elnitial region with non-
desired Ty °
.

0.5

o~ 0.01
3
m [ ]
Y [ ]
d =Des. ; U=Non-des.
-0.51 . -1-[:niti.:;,g1[l " *d Ev.l;?.,1
« Initial, 0 * Eval,0
-0.50 -0.25 0.00 025 0.50
PC1 [-]

Figure 3. 2D PCA maps on the monomer weight ratios with respect to (a) printability and (b)
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Samples with the Parato frontier points of Ur and or. Iteratively, as data from the newly
evaluated samples was added, the two objective GPs were updated and started to converge. We

examine how a relative error (RE), as indicated in Eq. 7 evolve for both orand Ur over iterations.

rE =121 7

where Y is the predicted and Y is experimental vales. RE were calculated for both ot and Ur
and plotted versus the number of the iterations (Fig. S8). The REs from the evaluated samples in
each iteration are averaged to get average REs. They show relatively large fluctuations in the
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beginning of the iterations, which is expected, because the algorithm tends to explore different
regions of the design space. As the projected design space is enormous, some of them can lead to
poor recommendations. Nevertheless, as shown by the trendlines, as the iteration increases the
average REs of both Ut and ot decrease, indicating the model convergence.

Out of a total of 115 sets of ratios, comprising 43 initial and 72 evaluated ones—recommended
by MOBO, 106 lead to printable thermoplastics. The ot and Ut values for these 106 printed
thermoplastics are illustrated in Fig. 4a. From the 72 evaluated samples, we can identify five Pareto
frontier points, each annotated with the corresponding sample number. For instance, Sample 15
means that it is the 15" evaluated sample. The five sets of the monomer ratios, T, values, and o1
and Ur are summarized in Table S4, from which we can see that Samples 15, 17, and 37 have high
Ut and moderate or while Samples 38 and 70 have high or and moderate Ur. It is worth
highlighting that the two soft monomers collectively for all the five samples occupy ~ 70% of the
total weight, and the two hard monomers, NVP and IBOA, account for < 5% each. Fig. 4b presents
evolvement of the hypervolume over the 72 evaluated samples. It increases from an initial value
of 100 to 815 in the final iteration. Even though the Thompson sampling was applied to balance
extrapolation and exploitation, the results indicate a pronounced emphasis on exploiting a
subdivision of the ratio space. Additionally, the initial samples were randomly selected by the
algorithm. We foresee that involvement of a human scientist in the MOBO algorithm based
decision making process would be quite beneficial to tackle this challenge. It changes a lot at the
beginning and then starts to saturate at the 40" sample. This indicates model convergence,
signifying the effectiveness of the proposed algorithm in exploring the feasible design space. It is
worth noting that within the realm of MOO featuring non-convex objective functions, the potential

for further improvement remains, particularly with a larger experimental budget. To visually track
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the algorithm's progress in identifying the Pareto frontier points, Fig. 4¢ displays the cumulative
number of Pareto points discovered over the course of evaluations. The data points in the graph
indicate the count of Pareto points found at specific milestones for the 10", 20, 30™, 40, 50™,
60", and 70" samples.

Furthermore, we investigated evolution of the cumulative ratios of the soft and hard monomers
(Fig. 4d-e). Notably, before the 45" sample, the recommended hard and soft monomer ratios
substantially fluctuate, while in the later iterations they are stabilized at ~ 0.53 for the hard
monomers and 0.47 for the soft monomers, respectively. It is another indication for the model
convergence. The recommended hard monomers and soft monomers ratios agree well with our
intuition that the balanced soft and hard monomer ratios would lead to the thermoplastics with

improved Ut and or.
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Figure 4. Performance evaluation of the model. (a) Ut versus o of the initial samples (depicted
in blue) and new evaluated ones from recommendations by MOBO (shown in red). The discovered
five points form a Pareto front. (b) Hypervolume improvement in the evaluated samples. (c)
Number of the Pareto frontier points discovered over the evaluated samples. Evolved cumulative

hard monomer ratios (d) and soft monomer ratios (e) in the evaluated samples.

Partial dependance analysis (PDA) on the GPs’ predictions. After the defined GPs were
trained on all collected experimental data, all of their predictions are analyzed to disclose how the

algorithm correlates the input ratios with the output properties. A series of plots, each depicting
21



the partial dependence (PD) of Ut and ot of the thermoplastics on the input monomer ratios, are
shown in Fig. 5a and 5b, respectively [40]. One-way PD plots with two exmaples shown in Fig.
5a-i and Fig. 5b-i inform the correlation of the Ut and or with the input ratio of a specific
monomer. In these PD plots, we kept one ratio constant while allowing the other ratios to vary,
and then averaged all the predictions made by the GPs. As shown in the blue plots, the ratios of
the soft monomers (R; and R2) mainly exhibit a positive correlation with Ut and a negative one
with or. In contrast, as indicated by the red plots, the ratios of the hard monomers (R3, R4, and Rs)
mainly yield a negative influence on Ut but a positive one on or. This trend agrees with our
hypothesis that increase of the hard monomer ratios tend to increase the strength while the soft
monomers favor toughness enhancement. As evident in Fig. 5a-i, increasing the ratio of R up to
40% exhibits a positive correlation with U, which then reverses to a negative correlation with
further increases. Notably, this threshold is significantly lower (~ 20%) when considering the
influence of R on or, as shown in Fig. 5b-i. Additionally, the plots unveil that different hard
monomer ratios exert differred effects. While NVP (R3), a hard monomer, exhibits a linear,
negative correlation with Ur, the effect of HEAA (Rs) on Uris not quite so.

Two-way PD plots represent the dependence of Ut and ot on the two monomer ratios. They
are shown in the color maps with brighter colors corresponding to higher values and vice versa
(Fig. 5). The data points denoted with star markers correspond to the Pareto frontier points. It is
important to note that not all Pareto frontier points are situated in regions with the highest values
of the displayed objective. This observation underscores a fundamental aspect of this optimization
challenge: the two objectives largely conflict with each other. Fig. Sa-ii shows dependence of Ut
on Rz and R4. We can see that with Rz of <20% Ut shows less dependence on R4, while for Rz >

20%, increasing R4 up to ~ 20% increases Ut. But further increases in R4 above 20% decreases
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Ur. Fig. 5b-ii shows dependence of ot on R> and Ra4. It reveals that an increase in R4 leads to
higher ot when maintaining R> of < 20%. Overall, the PDA indicates that the correlation of Ut
and or with the monomer ratios is complicated and cannot be simply delineated. To reach
optimized Ur and ot, the monomer ratios should be meticulously formulated, which is almost
impossible by human. But the results show that the proposed MOBO algorithm would make this

challenging problem possible.
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Figure 5. Partial dependance analysis of (a) Ur and (b) or on ratios of the soft monomers
(blue) and hard monomers (red). Ri: HA, Ry: IA; R3: NVP, R4: AA, Rs: HEAA. Panels (i) and
(i1) are annotated for explanation in the text with (i) shows an example of a one-way PD while (ii)

shows a two-way PD.

3.4. Applications of Pareto front samples with optimal trade-offs

The resin formulations that realize the Pareto set offer valuable materials for designing
structures with tailored performance. Distribution of the five Pareto frontier points of Ut and or
are presented in Fig. 6a. Their representative stress-strain curves and respective 7y are illustrated
in Fig. 6b-f. They show that these thermoplastics printed from the monomer ratios recommended
by the MOBO algorithm can be classified into two categories. One category is characterized by
high Ut with a large stretchability. The other one exhibits exceptional or. It is worth noting that
the constraint in 7, renders these materials with the shape memory properties in a suitable
temperature range of 29—41 °C, which is in the predefined range of 10-60 °C established from the
initial samples. The histograms of 7 for initial and evaluated samples are illustrated in Fig. S9.
Further analysis on the distribution of measured o1, UT, and fractural strain (&r) with respective to
Ty are presented in Fig. S10. As shown in Fig. S10a, elevating 7 up to 60 °C has a positive
correlation to ot, while 7 above 60 °C results in a reduction f or. The relationships between 7
and U, T, and &r are depicted in Fig. S10b and Fig. S10c, respectively. They appear less
straightforward but still highlight that samples falling outside the specified range exhibit notably
lower toughness and strain.

With the Pareto frontier points’ distinct performance attributes in Ur and o1, we illuminate

two distinct applications. The first is to print a high-strength gripper from the set of the monomer
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ratios for Sample 38 (Fig. 6g). Due to phase transition above T, it shows a viscoelasticity property,
thus can be easily programmed to a temporary, opened shape. It recovered to the original close
shape upon heating, allowing it to securely grasp an object. Cooling down below T restores the
stiffness of the gripper, ensuring a secure hold on the object (Movie S1). Additionally, a shape
memory thermoplastic with high Ur finds application for printing a highly stretchable spring using
the set of the monomer ratios for Sample 15. It was programmed to a fully stretched state when
subjected to heat (Fig. 6h). This stretched spring recovered to its original shape when reheated
(Movie S2). Besides, among all the evaluated samples some show quite elastic performance with
an example shown in Fig. S11. Although they do not show the properties in the Pareto front, they
further prove the advantage of using the proposed MOBO algorithm for the resin formulation

recommendation to print materials with the diverse mechanical behaviors.
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Distribution of Ut versus or for the five Pareto front samples shown in Table S4. (b-f) Stress-
strain plots of the five Pareto front samples along with their 7. (g, h) Photographs showing shape

memory behaviors for (g) a gripper printed from the set of the monomer ratios for Sample 38 and

(h) a spring printed from the set of the monomer ratios for Sample 15.

4. Discussion
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In this study, we designed and implemented a multi-objective Bayesian optimization algorithm
with physics-informed constraints to accelerate the LCD 3D printing of thermoplastics with
optimized o1, Ut and with 7§ in a target range. To develop the algorithm, we designed two RF
classifiers as constraint models that are directly integrated in the framework. In our study,
additional physics-based features have been incorporated into the two developed classifiers. These
classifiers were utilized to guide the recommended samples towards feasible regions. It is
important to note that the inputs to the GPs are the ratios of the monomers. Please note that GPs
were primarily utilized as fitting tools to establish connections between the monomer ratios and
the mechanical properties, while this connection is essentially a black-box phenomenon and is very
difficult to be explicitly defined by physics-based models. In each iteration, the classifiers screen
the Pareto sets of the ratios which are predicted to be printable and lead to thermoplastics with 7,
in a target range before their hypervolume indicators are calculated. As a result, the percentage of
nonprintable sets of the monomer ratios was reduced from 16% in the initial samples to 3% in the
recommended samples. The percentage of the printed samples with 7} in the target range increased
from 65% to 83%. The developed MOBO algorithm afforded five Pareto frontier points of or, Ut
within only 36 iterations (72 recommendations). These thermoplastics exhibit 7, in a range of 29—
41 °C, which is suitable for use as shape memory polymers. In summary, the significance of this
work lies in its potential to streamline the design and manufacturing of printable thermoplastics by
VPP meeting multiple requirements of high printability, target 7y, and optimized ot and Ut. To
our best knowledge, such a data driven MOBO algorithm constrained by prior knowledge and
physics laws has not yet been demonstrated. Thus, this innovation holds great promise for a wide

range of applications in materials science and manufacturing.
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Supplementary Tables:

Table S1. Extracted and calculated descriptors for the six monomers.

Features . Energy MW of
Complexity | (Hartree HAs od Op Oh o

Monome ) (g/mol)
HA 221.00 -766.60 208.13 17.49 | 5.66 | 12.09 | 22.00
1A 55.90 -581.70 164.12 15.57 | 4.14 489 | 16.84
NVP 120.00 -364.00 102.07 17.87 | 1039 | 8.09 | 22.20
AA 55.90 -267.20 68.03 16.04 | 13.39 | 17.91 | 27.52
HEAA 90.40 -401.20 106.06 17.34 | 9.07 | 15.55 | 25.00
IBOA 306.00 -657.90 188.14 17.99 | 4.11 4.86 | 19.08
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Note: 0 is the total solubility that was calculated from three components of dq, Jp, and dyn, which

are the dispersion force, polar force, and hydrogen bonding, respectively. The unit for all solubility

components is (MJ.m™>)*°. MW stands for molecular weight. HAs stands for heavy atoms.

Table S2. Hyperparameters of the trained random forest (RF) models used as constraints.

Hyperparameter Value
max_depth 5
min_sample_split 2
n_estimators 50
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Table S3. List and definitions of acronyms used throughout the paper.

Abbreviation Definition
AA Acrylic Acid
BO Bayesian Optimization
DFT Density-Functional Theory
DIW Direct Ink Writing
DLP Digital Light Processing
DSC Scanning Calorimetry
EGO Efficient Global Optimization
EHVI Expected Hypervolume Improvement
FDM Fused Deposition Modeling
GP Gaussian Process
HA 2-Hydroxy-3-Phenoxypropyl Acrylate
HEAA N-(2-Hydroxyethyl)Acrylamide
IA Isooctyl Acrylate
IBOA Isobornyl Acrylate
LCD Liquid-Crystal Display
LHS Latin Hypercube Sampling
MD Molecular Dynamics
ML Machine Learning
MOBO Multi Objective Bayesian Optimization
MOO Multi-Objective Optimization
NSGA Non-Dominated Sorting Genetic Algorithm
NVP 1-Vinyl-2-Pyrrolidone
PCA Principal Component Analysis
PDA Partial Dependance Analysis
PI Physics Informed
RE Relative Error
RF Random Forest
SLA Stereolithography
SLS Selective Laser Sintering
SOO Single Objective Optimization
TS Thompson Sampling
TSEMO Thompson Sampling Efficient Multi-Objective
Optimization
VPP Vat Photopolymerization

Table S4. Ratios, mechanical properties, and transition temperature of the discovered five Pareto

frontier points.
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R1 R3 | R4 | RS R6 ot Ur
Sample ID | (HA (?:) (NVP | (AA | (HEAA | IBOA | (MPa | (MJ.mr (OTCg)
) ) ) ) ) ) %)
15 027 | 041 | 0.00 | 0.11 | 021 | 000 | 15.10 | 2576 | 29.7
17 028 | 0.34 | 0.00 | 0.10 | 028 | 000 | 31.22 | 2256 | 343
37 0.53 | 025 | 0.00 | 003 | 018 | 001 | 17.82 | 25.02 | 302
38 051 | 021 | 0.00 | 0.11 | 0.15 | 002 | 49.99 | 275 | 40.7
70 052 | 021 | 005 | 0.11 | 009 | 002 | 3203 | 758 | 357

Supplementary Figures:
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Figure S1. Distribution of ratios for the monomers employed in the optimization algorithm.
The initial samples are represented by red points, while the evaluated samples are denoted by blue
points. The intensity of the blue points corresponds to the iteration at which the samples were
collected, with darker colors indicating later iterations in the algorithm. The samples highlighted

with stars are the discovered Pareto frontier points.
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Acrylic acid (AA) N-(2-Hydroxyethyl)acrylamide
(HEAA) h
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N'\/ - \\
1-Vinyl-2-pyrrolidone (NVP) Isobornyl Acrylate (IBOA) \\

b) Soft monomers

‘\\‘)Lo/\(lj:“oD

2-Hydroxy-3-phenoxypropyl acrylate

Isooctyl acrylate

Figure S2. LCD 3D printing of thermoplastics consisting of hard and soft monomers. Pool of
(a) hard and (b) soft monomers. (¢) Schematic of LCD 3D printing.
SMILES of the six monomers shown in Fig. Sla and Fig. S1b:

1. 2-Hydroxy-3-phenoxypropyl acrylate (HA): “C=CC(=0)OCC(COC1=CC=CC=C1)0O”

N

Isooctyl acrylate (IA): “CC(C)CCCCCOC(=0)C=C”

3. 1-Vinyl-2-pyrrolidone(NVP): “C=CN1CCCC1=0"

4. acrylic acid (AA): “C=CC(=0)0O”

5. N-(2-Hydroxyethyl)acrylamide (HEAA): “C=CC(=0)NCCO”

6. Isobornyl acrylate (IBOA): “CC1(C2CCC1(C(C2)OC(=0)C=C)C)C”
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Figure S3. Stress-strain curves for deriving the two performance objectives for optimization

by the MOBO algorithm: (a) Tensile toughness; (b) Tensile strength.
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Figure S4. A differential scanning calorimetry (DSC) curve of a thermoplastic (Sample 72)
from which Tg is calculated. Sample 72 was printed from HA, IA, NVP, AA, HEAA, and IBOA

with monomer ratios of 16, 40, 21, 10, 3, and 10%, respectively.
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Figure S5. Two RF classifiers employed as constraint models. On the left side are the structures
of the monomers along with the extracted descriptors. Those were included with the monomer
ratios as the input to train the two RF classifiers. The first one is to predict if a recommended resin
formulation leads to a printable thermoplastic. The second one is to predict if the recommended

resin formulation realizes a thermoplastic with 7 in a target range (10 °C < 73 < 60 °C).
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Figure S6. Distribution of (a) tensile toughness and (b) tensile strength in relation to transition

temperature (7). Only successfully printed samples are represented.
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Figure S7. Visualization of the hypervolume improvement. The hypervolume of the existing
Pareto front consisting of {a, b, ¢, d} is highlighted in red. In this figure, r represents the reference
point, chosen as the anti-ideal point relative to the approximate Pareto front of the GP samples. r
has the lowest f1 and f2 with fi value from Ci and f2 value from Ce. The yellow area indicates the
potential contribution of point C2 added to the new Pareto front. From candidate set (C1-Cs), C:

has the highest hypervolume improvement.
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Figure S8. Evolved average relative errors of Ut and ot of the evaluated samples as function

of the iteration numbers: (a) tensile toughness and (b) tensile strength.
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Figure S9. The histogram of 7. The dashed lines show the acceptable T, range of 10 and 60 °C,

used in the constraint model.

42



75 100 125

50

25

Ty (°C)

T (°C)

43

_ 0 _ 1o
o X% s s I3 o
228 - 228 \
§ o § e

oo o oo o
' a1= 8o
® o |~ %% |~
[ ] ®
ey ®e|n
F e~ ~
gt §
IIIIIIIIIIIIIIIIIIIIIIII ﬂ . —
=3 -2
° n
ot~ "
®
ooo“o % o 10 oo od °|w
[ ]
-IIlIlIIlIlIIIIIIIIIIIlI“-‘-I IIIIIIIIIIIIIIIIIIIIIIIIII
L O
. I©
[ ]
p - o o - o o
& & 2 2 % ° g 8 K/ ¢
— . 1 —
) (g-wrrin) 4n T) (%) urens

Figure S10. Correlation of mechanical properties over Tg for the initial and evaluated

samples. The dashed lines show the predefined 7, range of 10°C-60 °C.
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Figure S11. Tensile testing curve of a discovered thermoplastic showing an elastomer behavior.
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