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Abstract 

Performance of 3D printed thermoplastics largely depends on the ink formulation, which is 

composed of tremendous chemical space as increased number of monomers, making it very 

difficult to identify an optimum one with desired properties. To tackle this challenge, we 

demonstrate a virtual experimentation platform that is enabled by a physics-informed machine 

learning algorithm. As a case study, the algorithm was trained based on a multilayer perceptron 

(MLP) model to predict the experimental stress-strain curves of the 3D printed thermoplastics 

given the ink compositions made of six monomers. To solve the issue of experimental data 

scarcity, we first reduced the dimensions of the curves to eight principal components (PCs), 

which serve as the outputs of the model. In addition, we incorporated the physics-informed 

descriptors into the input dataset. These two strategies afford the model with prediction accuracy 

of R2 of 0.97 and RMSE values of 1.01 for fracture strength, R2 of 0.95 and RMSE of 0.40 for 

toughness. To perform virtual experimentation, the well-trained model was then utilized to 

predict 100,000 sets of the PCs from the randomly given 100,000 ink formulations. The PC sets 

were then converted back to the corresponding stress-strain curves. To validate the prediction 

results, some of the virtual experiments were performed. The results showed a good match 

between the predicted and experimental curves. This methodology offers a general and efficient 

pathway to virtual experimentation for establishing the correlation between the complex input 

variables and the output performance metrics of new materials. 

Keywords: physics-informed, machine learning, 3D printing, thermoplastics, virtual 
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1. Introduction 

Virtual experimentation represents a pivotal advancement in scientific research, enabling 

extensive pre-experimental screening that refines the scope of physical trials, thus saving 

resources on the most promising inquiries.1 Such preliminary simulations are especially critical 

in fields where experimental setups are costly and time-intensive. A prime example is 3D 

printing, which offers rapid prototyping and manufacturing capabilities that have become 

indispensable across industries—from aerospace to healthcare—due to their ability to cost-

effectively create objects with complex geometries.2,3 Despite these advantages, the development 

and testing of new materials for 3D printing, especially thermoplastics, present significant 

challenges. The mechanical properties of thermoplastics, crucial for their functional applications, 

depend heavily on the precise formulation of inks. The complex interactions and subsequent 

polymerization of various monomers profoundly impact their mechanical properties.4,5 The 

traditional experimental process, which involves the exploration of vast ink formulations to 

pinpoint the desired mechanical properties of 3D printed thermoplastics, requires extensive 

experimentation. This process becomes particularly laborious and time-consuming as the 

combinational chemical space dramatically increases. Virtual experimentation provides a 

significant advantage over traditional methods by allowing researchers to bypass the initial 

phases of testing, where intuition alone may not suffice to optimize experimental conditions. 

Virtual experimentation has often relied on theoretical calculations or computational 

simulation techniques, such as Density Functional Theory (DFT) and molecular dynamics (MD). 

These methods have been extensively applied in fields such as materials science6,7 and chemical 

engineering8 to predict properties of materials at various scales. However, these approaches often 

face challenges in accurately scaling predictions to complex macroscopic phenomena. For 
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instance, in the 3D printing processes, while molecular simulations are adept at modeling the 

intricate interactions between monomers,9 they struggle to extend these predictions to the overall 

mechanical properties of materials. This limitation suggests that alternative approaches, such as 

data-driven methods that bypass detailed microstructural modeling, may be necessary. 

Additionally, deriving practical characteristic curves, such as stress-strain (S-S) ones, poses 

another significant challenge because physics-based simulation results often rely on idealized 

material systems under conceptualized conditions, which may not accurately reflect real-world 

behaviors. 

In contrast, data-driven algorithms, such as machine learning (ML), have recently emerged 

as a complementary approach,10 increasingly pervading the materials science in design,11,12 

property prediction,13-15 synthesis planning,16-18 and automated data analysis.19-21 They are 

forming a new paradigm for the virtual experimentation.1 For instance, in predicting material 

performance, integration of vast datasets with advanced algorithms has enabled more precise and 

efficient predictions than ever before. By leveraging extensive data obtained from DFT 

simulations, ML algorithms can now be applied to predict the performance of composites22,23 and 

metamaterials24 with unprecedented accuracy and efficiency. To mitigate the data scarcity issue, 

physics-informed ML (PIML) by incorporating known physical laws into the ML training have 

been developed.5,25,26 This hybrid approach not only enhances prediction accuracy with limited 

amount of data but also extends the capability of simulations to cover unexplored material 

systems. For example, our group incorporated the chemical and physical properties of metal salts 

and organic linkers as physics-informed descriptors to unravel complex synthesis parameters for 

accurately predicting the crystallization propensity of metal–organic nanocapsules.12 In our 

another work, we trained a scientific ML model that includes intermediate reaction variables 
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obtained by simulations for predicting the reaction outcomes.27 Du and coworkers utilized six 

mechanistic variables that represent the physics of balling defects to train a ML model for 

predicting defects formed during the 3D printing processes.28 Use of PIML in virtual 

experimentation holds vast potential, particularly in refining the design and optimization 

processes in 3D printing, where understanding the detailed physical and chemical interactions 

crossing the multiple scales is often impractical. Despite the vast potentials and recent research 

progress, in most literature reports that involve ML algorithms for property prediction, typically 

singular numerical features (e.g. strength and fractural strain) rather than a total performance 

profile were reported. In our recent work, we employed a multi-objective Bayesian optimization 

method to identify materials for 3D printing of thermoplastics that are both strong and tough, 

focusing specifically on optimizing these two singular numerical values.5 In contrast, the current 

study utilizes Physics-Informed Machine Learning (PIML) to conduct virtual experiments that 

simulate the complete mechanical performance of materials, thereby providing a more 

comprehensive understanding of their behaviors under various conditions. 

Herein, to tackle the challenge, we demonstrate a PIML for predicting full stress-strain 

curves of 3D printed thermoplastics, which serves as an efficient virtual experimentation 

platform for screening ink formulations that lead to thermoplastics with desired mechanical 

properties. To realize this goal, a total of 216 S-S curves were first collected from thermoplastics 

that were 3D printed using six monomers. Then, dimensions of these S-S curves were reduced by 

principal component analysis (PCA) into eight principal components (PCs). After that, the 

compositions of the six monomers together with the physics-informed descriptors (including 

Molecular Weight, Lipophilicity, Hbond Donor/Acceptor, Rotatable Bonds, Polar Surface Area, 

Heavy Atoms, Complexity, Total Energy and several Solubility scores) serve as the inputs while 
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the corresponding sets of PCs serve as the outputs to train a multiple layer perceptron (MLP) 

model. Given 100,000 sets of the hypothesized ink compositions, the MLP can predict the new 

PCs, which were then converted back to the corresponding S-S curves. Among them, the six ink 

formulations featuring three different types of the mechanical profiles were chosen for 

experimental validation. The obtained S-S curves from these experiments fell within the ranges 

predicted by the virtual experiments. Quantitative study shows that the model achieves 

prediction accuracy with satisfactory R2 of 0.97 and root mean squared error (RMSE) of 1.01 for 

fracture strength, R2 of 0.95 and RMSE of 0.40 for toughness. These results affirm the success of 

the virtual experimentation for large scale screening, opens a way to designing new 

thermoplastics with desired properties.  

 

2. Results and Discussion 

Workflow. Figure 1 illustrates the workflow of developing a PIML based virtual 

experimentation platform for 3D thermoplastics printing. First, 2-Hydroxy-3-phenoxypropyl 

acrylate (HA), iso-octyl acrylate (IA), N-vinylpyrrolidone (NVP), acrylic acid (AA), N-(2-

hydroxyethyl) acrylamide (HEAA) and isobornyl acrylate (IBOA) were selected as the six 

monomers.5 This diverse selection was strategically chosen to demonstrate the robustness and 

adaptability of our machine learning model across a complex chemical space, showcasing the 

necessity and effectiveness of the proposed virtual experimentation workflow. Then, inks were 

prepared via mixing these six monomers in different weight ratios for printing by a liquid crystal 

display (LCD) printer. After that, the S-S curves of the resulting thermoplastics were collected by 

a tensile testing machine (Mark-10) according to American Society for Testing and Materials 

standards. The collected curves were preprocessed and reduced in dimensions by PCA detailed 
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as follows. Following this, a multiple layer perceptron (MLP) model was trained by using the ink 

compositions together with the physics-informed descriptors as the input to predict these 

dimension-reduced representations. The culmination of this process employed an inverse PCA 

technique to reconstruct the S-S curves from the predicted PCs. 

 

Figure 1. Workflow of developing a PIML based virtual experimentation platform. 

 

Data collection and preprocessing. Experimental datasets were collected from 62 ink 

formulations, with each formulation represented by 2-4 individual S-S curves. 3D thermoplastics 

printed from the six monomers involve enormous chemical space. Training ML models with only 

the ratio of the six monomers to predict the high dimensional outputs could suffer from a serious 

overfitting issue. To overcome this issue, additional thirteen physics-informed descriptors were 

chosen as the inputs. They are the molecular weight, lipophilicity, h-bond donor, n-bond acceptor, 

rotatable bonds, polar surface area, heavy atoms, complexity, total energy, and solubility 

parameters.29-32 After normalization, these physics-informed descriptors were multiplied by the 
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ratios of six monomers, leading to 78 cross-features.25 Details on these descriptors and more 

information about the methodology can be found in Supplementary Note S1 and Table S1. 

The S-S curves of the specimens with the same ink formulation underwent analysis to 

ensure the high quality of training data. As depicted in Figure 2a, the three stress-strain curves of 

three specimens exhibit variation even though they were printed from the same ink formulation, 

indicating the unavoidable experimental uncertainty. If using the ink formulation and the 

corresponding S-S curves as the input and output for the model training, a ‘one-to-many’ 

prediction issue may arise, where each input corresponds to multiple outputs.33,34 It underscores 

the importance of using a model capable of adeptly handling such inherent data variability. To 

address this uncertainty, an e_value based on a normal distribution was introduced to encapsulate 

the inherent experimental variation. This e_value, analogous to the Z-score in a normal 

distribution, quantifies how many standard deviations that experimental data point deviates from 

the mean. Implementation of the e_value is elaborated in the Methods section. The e_value is 

combined with the ratios of the six monomers and the 78 cross-features to form a total of 85 

features into the model. 

Depending on different monomer ratios of the inks from which the samples were printed, 

these S-S curves represent four distinct soft/elastic, soft/tough, strong/tough, and hard/brittle 

samples, presenting the diversity of the training data, which imposes additional challenge for the 

model training (Figure 2b). The stress-strain curve for the soft/elastic sample shows typical 

elastomer behavior, with minimal stress at low strains and a constant stress level during 

significant elongation. The soft/tough and strong/tough samples begin with a steep initial slope, 

indicating stiffness, but as strain increases, the curves show continuous stress rise without 

peaking, reflecting substantial plastic deformation. Conversely, the hard/brittle sample's curve 
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displays a linear increase followed by a sharp stress drop, characteristic of minimal plastic 

deformation before fracture. Due to significant variations in the length of data collected, 

preprocessing steps such as trimming, and interpolation were necessary to standardize the 

datasets for model training. Detailed descriptions of these preprocessing methods are provided in 

Methods Section 4.4. 

Further observation shows that the numerical range of the strain axis varies considerably, 

even though both the strain and stress axes consisting of 50 data points each in the standardized 

data format. Given the limited datasets and a 100-dimension output, a concern known as the 

‘curse of dimensionality’ arises, a phenomenon where the volume of the space increases so fast 

that the available data become sparse.35 This sparsity is problematic as it can severely impact the 

performance of machine learning models by making it difficult to extract meaningful patterns 

without overfitting. Given the limited datasets and the high-dimensional output, dimension 

reduction becomes essential to mitigate these issues. Previous studies adopted a manual 

extraction strategy to identify five feature points, i.e., linear limit, maximum yielding, strain 

softening end, steady flow limit, and fracture points.24,33 In our research, however, the S-S curves 

in our dataset are more diverse, making the manual extraction of these critical points either 

cumbersome or inconsistent. To address those concerns, PCA, a powerful dimension reduction 

technique, was employed.36  PCA is an unsupervised method that does not require predefined 

criteria for extracting information. It simplifies the dataset by transforming it into a new 

coordinate system, where the most significant features are summarized in the principal 

components (PCs). This process not only makes the data more manageable for the ML model but 

also preserves essential information, thereby facilitating accurate predictions. Instead of directly 
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predicting the whole S-S curves, our model predicts the PC values, which can be then converted 

back to the S-S curves. 

 

Figure 2. (a) Calculation of e_value based on normal distribution of fracture points of the S-S 

curves obtained from multiple samples printed with the same ink formulation. (b) Four typical S-

S curves for the printed representative thermoplastic samples. 

 

PCA on Stress-Strain Curves. The impact of the number of principal components (denoted 

as n) on the capacity of the ML model to encapsulate data variance was initially investigated, 

with a focus on the explained variance which refers to the cumulative proportion of the dataset 

variance explained with the increase of n. As shown in Figure 3a, the cumulative explained 

variance (CEV) increases sharply as n reaches 5, beyond which there is negligible change, 

indicating the efficacy of PCA in capturing key information from the S-S curves (see 

Supplementary Note S2 for details). This trend is also evident when using the PCs to 

reconstruct the S-S curves (Figure 3b-c). The RMSE37 was chosen to determine the difference 

between the reconstructed and original values of both stress and strain axes (Supplementary 

Note S3). Specifically, the strain RMSE decreases to ~0.02 % when n reaches 4, while the stress 

RMSE remains nearly unchanged (~0.03 MPa) at n of 7. Furthermore, the impact of n on the 
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accuracy of the reconstructed S-S curves was also investigated visually across the collected 

datasets. Figures 3d-g show a few examples, illustrating typical representatives S-S curves as 

discussed in Figure 2b. It is found that samples show good agreement between the original and 

reconstructed curves when n reaches 6. Based on these observations, to encapsulate more subtle 

variations, the n value is set to 8 for the subsequent analysis. 

 

Figure 3. (a) Cumulative explained variance (CEV) with respect to different number of principal 

components (n). Change of stress RMSE (b) and strain RMSE (c) vs. n. The reconstructed stress-

strain curves as the increase of n for (d) soft/elastic, (e) soft/ductile, (f) strong/tough, and (g) soft 

and elastic samples.  

 

Interpretability of PCA. After exploring the influence of n on the reconstructed S-S curves, 

we thoroughly examined the interpretability of each PC during the reconstruction process. By 

analyzing how the PC values influence the S-S curves, we demonstrate how the PCs reflect 

essential features of the S-S curves. To do it, each PC is varied by ±100%, ±50%, ±20%, and 

±5%, while keeping other PCs the same. As shown in Figure 4a and Figure S1, increase in PC1 
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prompts shift of the S-S curves towards larger strains, while increase in PC2 results in a decrease 

in the slope of the plastic deformation region. It is determined that PC1 has the most pronounced 

effect on the variations of the S-S curves.  Increase in PC3 leads to a decrease in the slope of the 

post-yield hardening region, whereas increase in PC4 results in a decrease in the slopes of the 

plastic deformation region while an increase in the post-yield hardening region. Furthermore, the 

fractural strain remains constant regardless of the changes in PC2, PC3, and PC4. While the 

influence of PC5 to PC8 is not dramatically significant to be directly interpreted by material 

scientists analyzing the core material properties, these components still contribute to the finer 

details of the curves, such as minor fluctuations or inflection points in certain regions of the 

curves. For a brittle sample (Figure S2), close observation reveals that increase in PC1 leads to a 

shift of the curve toward smaller strain, while increase in PC2 results in the increase in the slope 

of the elastic deformation, fracture strength and fracture strain. There are no obvious changes in 

the S-S curves with the changes in PCs from PC3 to PC8. To further explore the hidden 

information, the relationship between PCs and mechanical properties was analyzed (Figure S3). 

Clearly, PC1 exhibits a linear relationship with the fractural strain. PC2 is proportional to 

toughness. PC3 is positively and negatively correlated to the fracture strength and the slope in 

the strain-hardening area, respectively. The observations are well aligned with the fundamental 

mechanical characteristics observed in the S-S curves (Figure 4b). 
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Figure 4. (a) Changes of each PC (PC1 to PC5) vs. change of the reconstructed S-S curves of a 

strong/tough sample. (b) A typical S-S curve with labeled characteristic points.  

 

Machine Learning Model. After establishing the input and output datasets, it is about to 

train an MLP model. The model takes 85 distinct and cross-features as the inputs to predict 

outputs of the eight PCs. Given the relatively small data size, a combined approach of dropout 

and L1 regularization was employed to prevent overfitting. Dropout operates by randomly 

deactivating a subset of neurons during the training process, which is beneficial for reducing the 

model's dependency on specific features.38 Meanwhile, the L1 regularization introduces a penalty 

to the loss function proportional to the absolute magnitude of the feature coefficients.39 It 

prioritizes more influential features by pushing the coefficients of less significant ones towards 

zero. Both the dropout and L1 regularization work in concert to enhance the model's capacity to 

be generalized effectively. Furthermore, the model is designed to favor the utilization of 

beneficial physics informed descriptors, while reducing reliance on those with less impact. This 

selective approach ensures that the model not only stays accurate but also remains relevant and 

grounded in the practical aspects of domain science. Mean squared error between the eight 
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predicted and true PCs is chosen as the loss function since it can effectively reflect the hierarchy 

of significance by preserving the original difference among the PCs. 

Out of the 62 ink formulations, 50 (representing180 S-S curves) were chosen as the training 

datasets, while the remaining 12 (representing 36 S-S curves) were the testing datasets. Here, the 

test set comprises a balanced combination of materials consisting of 7 elastic ones and 5 brittle 

ones. Details on the model's intricacies, computation specifics, and information about the 

hardware and software utilized in this study are comprehensively documented in 

Supplementary Note S4. 

Based on the test set, performance of the MLP model in predicting the eight PCs is 

presented in Table 1. While the specific PC values lack direct physical meanings, the R2 values 

in comparison of the predicted PCs and respectively true PCs reveal the model’s accuracy. The 

R2 values were notably high for the first three principal components (0.97, 0.76, and 0.77 for 

PC1, PC2, and PC3, respectively) and gradually declined for the remaining five PCs. This trend 

is expected, i.e., the importance of PCs slightly decreases as the number of PCs increases. This 

trend also holds true for other evaluation metrics including RMSE, MAE, and MSE, indicating 

that the MLP model prioritizes the key PCs. RMSE exhibits an opposite trend, starting at 5.40% 

for PC1 and 10.94% for PC2, and then gradually increasing to 25.18 % for PC8. It also 

underlines the model’s ability to concentrate on the most impactful PCs for balancing the 

accuracy by prevention of overfitting. This inherent characteristic originates from the L1 

regularization and dropout to ensure a robust fit for the most significant features. 

Table 1. Evaluation of the MLP model based on PCs 

PC 

values 
R2 RMSE MAE MSE Max Min Range RMSE/Range 

1 0.97 78.84 44.48 6215.58 1263.16 -197.45 1460.61 5.40% 
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2 0.76 9.79 7.58 95.82 65.84 -23.65 89.49 10.94% 

3 0.77 6.47 5.32 41.86 31.38 -26.13 57.51 11.25% 

4 0.58 4.63 3.82 21.43 16.21 -12.54 28.76 16.10% 

5 0.29 2.17 1.78 4.69 3.4 -6.33 9.72 22.32% 

6 0.21 1.21 0.97 1.47 2.84 -2.96 5.79 20.99% 

7 0.41 1.25 0.9 1.55 6.96 -2.71 9.67 12.93% 

8 0.19 0.69 0.53 0.48 1.13 -1.61 2.74 25.18% 

 

    Evaluating Stress-Strain Curves. The results indicate the high accuracy of the MLP 

model in predicting the eight PCs. We then evaluated how well the reconstructed S-S curves 

from these predicted PCs agree with the true ones. It is impractical to evaluate the reconstruction 

performance by directly calculating the difference between the reconstructed and true value at 

each point of the S-S curves. This is because the complexities of material behaviors and testing 

conditions lead to the huge variations of the S-S curves. To mitigate this issue, two critical 

mechanical performance matrices, i.e., fracture strength and toughness, which can be derived 

from the S-S curves, were deployed for evaluation. As shown in Table 2, the R2 values are 

relatively high for fracture strength (0.97) and toughness (0.95), while RMSE and MAE of the 

fracture strength are 1.01 and 0.82 MPa and for toughness they are 0.40 and 0.31 MJ/m3. After 

considering their ranges, RMSE of the fracture strength and toughness are relatively low, i.e., ~4% 

for the fracture strength and ~6% for the toughness. These results indicate the model's robust 

ability to account for a significant portion of the observed data variance. 

Table 2. Evaluation of the ML model based on fracture strength and toughness. 

Metric R2 RMSE MAE Max Min Range RMSE/Range 

Fracture strength 0.97 1.01 0.82 39.29 11.76 27.53 4.43% 

Toughness 0.95 0.40 0.31 10.48 4.03 6.45 5.90% 
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To visually evaluate the model prediction performance, the true and predicted S-S curves 

(reconstructed from the predicted PCs by the MLP) of the four samples from test set with various 

fracture strength and ductility are shown in Figure 5a. Additionally, all 36 S-S curves from the 

test set are provided in Figure S4. The yellow lines correspond to the original S-S curves, while 

the blue lines represent the reconstructed S-S curves with the corresponding e_values. To 

effectively adapt to the variations originated from the experimental and testing conditions, the 

e_values varying from -2 to 2 were incorporated to reconstruct multiple S-S curves (grey lines). 

The grey range encompasses 95% of probability about the cases according to the Z-score 

definition in a normal distribution. It is found that these reconstructed S-S curves all fall within 

the grey areas. And their shapes and trends are matched well with the ground truth S-S curves. 

These results affirm the high effectiveness of the combination of the MLP model and PCA 

technique in predicting the S-S curves. 
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Figure 5. (a) The comparison between ground-truth curve (yellow) and predicted (blue) stress-

strain curves of four representative samples. Considering the uncertainty, the e_values varying 

from -2 to 2 were used to predict the S-S curves with 95% probability (grey lines). (b) 

Importance ranking of the 13 physics-informed features. δd: solubility influenced by the 

molecule's dipole moment, δp: solubility parameter, δh: the hydrogen-bonding component of 

solubility, δ: solubility expressed in terms of energy density (MJ/m³). (c) Importance ranking of 

ratios of the six monomers and e_values. 

 

Feature importance. Importance of the physics-informed descriptors was explored via a 

comparative study training the MLP model using only the ratios of six monomers and the 

e_value without PI inputs. As shown in Table S2, the MLP model attained the highest R2 value 
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for PC1, while delivering much lower R2 values for PC3 and PC4. This indicates that the model 

cannot effectively capture the underlying characteristics of the training datasets if only using PC3 

and PC4. Furthermore, presence of negative R2 values for PC2, PC5, PC6, PC7 and PC8 reveals 

that predictive accuracy of the MLP model is even worse than the prediction results using the 

average of all sampling data. This underscores a substantial limitation in the MLP model without 

the physics-informed descriptors. This phenomenon was also found in the predicted S-S curves 

(Table S3 and Figure S5). The R2 values for both true stress (0.52) and toughness (0.38) are 

lower than those of the MLP model trained with included physics-informed descriptors. As 

shown in Figure S5, nearly all the predicted S-S curves exhibited huge variations, revealing the 

poor prediction capability of the model without the physics-informed descriptors. These results 

indicate that the incorporation of physics-informed descriptors not only increases the predictive 

accuracy but also aid in accurately capturing the nuances of the S-S curves. 

The significance of these physics-informed descriptors was further quantified. An integrated 

gradients (IG) method was applied to investigate the interpretability of the MLP model.40 The IG 

method works by examining how change in the gradients of each feature influences the output. 

Specifically, for each PI descriptor, we calculated its interaction feature importance with each of 

the six monomers. To synthesize this information and provide a clearer understanding of the 

overall impact of each PI, we averaged the importance scores across these six monomers for 

every individual PI. The feature importance scores for 13 physics-informed descriptors, the ratio 

of six monomers, and e_values were shown in Figure 5b and 5c. Detailed methodologies 

regarding this process are elaborated in the Methods section. As shown in Figure 5b, total 

energy is the primary dominant descriptor among these physics-informed descriptors, which well 

agrees with expertise and domain knowledge. It is reported that total energy plays a crucial role 
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in determining the structural cohesion, arrangement, and consequent mechanical properties of 

polymeric materials.41 Other physics-informed descriptors such as solubility, molecular weight, 

polar surface area, and the number of heavy atoms exhibit relatively lower importance. This 

suggests that the model effectively leverages these classical features to capture complementary 

information related to chain entanglement, intermolecular forces, and steric effects, which are 

known to influence polymer performance.42,43 The remaining descriptors,  including complexity, 

lipophilicity, Hbond donor, Hbond acceptor, and rotatable bonds, exhibit comparatively lower 

feature importance scores. These descriptors primarily pertain to molecular size, hydrophobicity, 

and conformational flexibility. The direct impact of these descriptors on intermolecular 

interactions and electronic structures, which play pivotal roles in determining the mechanical 

properties of polymers, may be relatively limited.  

As shown in Figure 5c, the e_value, used to account for the experimental uncertainty, was 

notably discernible. This highlights the model's capability to establish a predictive range based 

on e_value rather than a simple one-to-one prediction. The feature importance scores for the six 

monomers follow the order of AA > HEAA > IA > IBOA > NVP > HA. Monomers like AA and 

HEAA are noteworthy for their propensity to form hydrogen bonds, significantly impacting the 

intermolecular interactions of the 3D printed thermoplastics.44 Presence of IA can be attributed to 

its function as a softer segment than HA, contributing significantly to the flexibility and 

toughness of 3D printed thermoplastics, despites the potential of HA to form hydrogen bonds.5 

These feature importance scores well agree with the empirical understanding of the experiments, 

thus reinforcing the significance and practical applicability of these descriptors in the MLP 

model. This method underscores the effectiveness of combining data-driven machine learning 
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with domain-specific expertise, paving the way to more sophisticated and accurate predictive 

models in materials science. 

Virtual experimentation for screening new ink formulation candidates. We expect that the 

developed MLP can be used as a surrogate model to virtually explore the combination space to 

accelerate the ink formulation to make the thermoplastics that show desired S-S curves. First of 

all, 100,000 virtual ink formulations were randomly generated using the Dirichlet distribution 

method since it ensures a uniform distribution of each monomer.45 This approach guarantees an 

equitable representation of all possible monomer ratios, providing a balanced and comprehensive 

exploration of the design space. Details on generating virtual ink formulations are provided in 

Method. After that, a pre-trained random forest model that we previously demonstrated was 

employed to predict the printability of these ink formulations.5 Only the printable ink 

formulations were fed into the MLP model to predict the corresponding eight PCs. It is 

noteworthy that the prediction of these ink formulations took only 1 minute, highlighting the 

exceptional speed and efficiency of the virtual screening. Then, the S-S curves were 

reconstructed from the predicted PCs. Then, the fracture strength, maximum strain and toughness 

were extracted from these reconstructed S-S curves and plotted in Figure 6a. It was observed 

that most datapoints were clustered in the region associated with lower toughness, possibly 

because out of six monomers, four of them are harder monomers including NVP, HA, HEAA and 

IBOA. If they are dominant in the ratio combinations, they considerably favor formation of 

brittle thermoplastics with low toughness. 

Following the virtual screening guided by MLP model, new experiments were conducted to 

validate the prediction results. We chose these experiments with an aim of identifying the ink 

formulations leading to three types of thermoplastics (strong/tough, strong/brittle, and 
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soft/elastic). For each type, two ink formulations were randomly selected to print three 

specimens. Figures 6b-g show the profiles and trend of the predicted S-S curves by the MLP 

model.  

The first one showing the strong/tough S-S curve has a fracture strength in the range of 15-

20 MPa and a toughness in the range of 15-20 MJ/m3. As a result, a total of 143 ink formulations 

were screened, from which two ink formulations with HA: IA: NVP: AA: HEAA: IBOA weight 

ratios 0.16: 0.39: 0.25: 0.13: 0.02: 0.05 (Figure 6b) and 0.34: 0.32: 0.21: 0.09: 0.02: 0.02 

(Figure 6c) were randomly selected for experiments. As depicted in Figures 6b-c the resulting 

S-S curves from these two selections conform to the trend predicted by the MLP model, in which 

both cases exhibited an instance of premature fracture. Moreover, to further support our 

mechanical testing data and elucidate the failure mechanisms, we conducted microstructural 

analysis of the fracture surfaces for the sample corresponding to Figure 6b. For this more ductile 

formulation, digital microscope observations reveal plastic deformation at the fracture points 

(Supplementary Figure S6a). These microstructural observations robustly support our claims 

regarding the mechanical properties of the material and provide deeper insights into the fracture 

behavior. The second type is the strong/brittle one with a fracture strength exceeding 35 MPa and 

a fracture strain of 2-5%, resulting in > 10,000 ink formulations. This is because lots of 

formulations in the virtual experiments show hard and brittle behaviors due to dominant 

compositions of NVP, HA HEAA or IBOA in the formula. The experimental S-S curves of the 

six specimens from the selected two ink formulations with HA: IA: NVP: AA: HEAA: IBOA 

weight ratios 0.16: 0.18: 0.05: 0.42: 0.18: 0.01 and 0.26: 0.29: 0.05: 0.29: 0.03: 0.08 are within 

the predicted range (Figures 6d-e). For the more brittle formulation represented in Figure 6d, 

the fracture surfaces are notably smoother (Supplementary Figure S6b), indicating a different 
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failure mechanism. These microstructural observations further validate our experimental results 

and provide deeper insights into the different fracture behaviors. The third type is the soft/elastic 

one. The ink formulations with a predicted fractural strain of > 250% and a fracture strength in 

the range of 10-15 MPa were screened, resulting in 148 formulations. The selected two ink 

formulations with HA: IA: NVP: AA: HEAA: IBOA weight ratios of 0.4: 0.28: 0.01: 0.0: 0.09: 

0.22 and 0.35: 0.38: 0.02: 0.18: 0.07: 0.0 led to the soft/elastic thermoplastics. Their S-S curves 

are shown in Figures 6f-g. We can see that the predicted S-S profiles agree well with the 

experimental ones despite the little discrepancy in their fractural strains. They are out of the 

range of the predicted uncertainty range. These experimental validation results show that the 

developed MLP for virtual experiment is reliable and rapid because the prediction of 100,000 ink 

formulations is within one minute. This rapid and efficient virtual experimentation process can 

significantly facilitate the exploration of design space for identification of ink formulations that 

lead to materials with desired properties, thus accelerating the development of new materials. 

 

Figure 6. (a) Plot of fracture strength, fracture stain, and toughness extracted from the predicted 

S-S curves. Red stars i, ii, and iii indicate the chosen ink formulations shown in Panel b-c, d-e, 

and f-g, respectively. The S-S curves for the three samples (red, green, and blue) printed with the 

ink formulations that are predicted to result in the (b-c) strong/tough, (d-e) hard/brittle, and (f-g) 
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soft/elastic type of thermoplastics. The grey areas represent the uncertainty range of the predicted 

S-S curves. 

 

3. Conclusions 

In this study, a PIML model was developed for virtual experimentation to accelerate the 

discovery of 3D printed thermoplastics. The collected 216 S-S curves from 62 ink formulations 

were dimensionally reduced into eight PCs. Meanwhile, 13 physics-informed descriptors were 

included using domain knowledge to increase the robustness and generalization of the model. 

The developed physics informed MLP model achieved superior R2 and RMSE values when 

predicting the values of the eight PCs. The reconstructed S-S curves from the predicted PCs were 

well matched with the true ones. Feature importance analysis confirmed the importance of 

physics-informed descriptors, showing that the total energy is the most important one. After 

mapping the mechanical properties of 100,000 ink formulations by the MLP model, six 

representative ink formulations that are expected to lead to three different types of thermoplastics 

were chosen. Validation experiments demonstrated a strong agreement between the predicted and 

experimental S-S curves. The methodologies and workflow can be readily extended to other 

materials for predicting other performance curves such as Raman, electrochemistry curves. This 

underscores the versatility and potential of this approach in a range of material science and 

chemical research scenarios, offering a robust framework for expedited and accurate material and 

chemical analysis. 

  

4. Materials and Methods 
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4.1 Materials. 2-Hydroxy-3-phenoxypropyl acrylate (HA), isooctyl acrylate (IA, > 90%), 

and acrylic acid (AA, 98%) were purchased from Sigma Aldrich (St. Louis, MO, U.S.). 

Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, >97%), isobornyl acrylate (IBOA, > 

90%), N-vinylpyrrolidone (NVP, > 99%), and N-(2-hydroxyethyl) acrylamide (HEAA, >98%) 

were purchased from Fisher Scientific (Pittsburgh, PA, U.S.). 

4.2 3D Printing and Mechanical Testing. In this study, the LCD 3D printing process was 

executed using a resin mixture comprising six monomers: HA, IA, AA, IBOA, NVP, and HEAA 

with carefully measured weight ratios. Each monomer's ratio in the mixture can vary 

continuously from 0 to 1. For the sake of experimental precision, the ratios have two decimal 

places. The total sum of the ratios for all monomers equals 1. To make the mixture, a 

photoinitiator, diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), was added at a 

concentration of 2 wt%. The mixture was then subjected to magnetic stirring for one minute to 

ensure thorough and uniform mixing. The resulting homogenized resin was used in an Anycubic 

Photon Mono 4K printer, operating at a 405 nm irradiation wavelength. The printing parameters 

included a power density of about 5 mW/cm2, a layer thickness of 50 µm, and an exposure time 

of 15 seconds per layer. Following the printing process, the samples were further cured under 

405-nm UV light for 60 seconds. For the mechanical assessment of the 3D-printed samples, 

tensile testing was carried out using a Mark-10 universal testing machine at a loading rate of 50 

mm/min. To ensure a comprehensive statistical analysis, a minimum of 5 samples were printed 

and tested for each monomer ratio.  

4.3 S-S Curve Collection.  326 S-S curves were collected from 62 distinct formulations, 

each of which was subjected to 5-7 independent mechanical tensile tests. To ensure the reliability 

and quality, the S-S curves with significant errors such as measurement inconsistencies, 
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premature breakage, or excessive mechanical testing noise were excluded. Consequently, a 

refined dataset comprising 216 S-S curves was obtained, with each thermoplastic represented by 

2-4 individual curves. To demonstrate the diversity and balance of the dataset, when considering 

a maximum strain of 10% as threshold, the data showed a distribution where approximately half 

of the materials displayed brittle properties (106 samples), while the other half exhibited higher 

ductility (80 samples).  

4.4 Data Processing of S-S Curves. The preliminary cleaning of the raw data from the 

tensile testing machine involves trimming the initial segments of each S-S curve to eliminate any 

measurements taken before the machine commenced operation by standardizing the starting 

points to a baseline of zero stress and zero strain (0,0). Then, a critical aspect of the 

preprocessing involves identifying the point of failure within each sample's S-S curve. By 

pinpointing and marking the exact location of sample failure on each curve, the final data point is 

represented the moment of fracture by capturing the complete mechanical profile of each 

specimen. The last step in the data preprocessing routine is to apply an interpolation technique to 

standardize the data representation. Each S-S curve is interpolated to consist of 50 data points 

uniformly distributed in the x axis (strain). 

4.5 Experimental Uncertainty. In this study, the e_value is calculated based on normal 

distribution to capture the inherent uncertainties in the S-S data at the fracture point. This 

refinement involves analyzing the final strain values at fracture for each dataset as illustrated in 

Figure 2a. By aggregating these values, a comprehensive picture of the strain behavior at 

fracture across various samples was obtained. To encapsulate the variability in the fracture 

strains of the materials, first their means are calculated, providing a reference for the average 

material behavior under stress. Then the standard deviation is computed to quantify the 
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dispersion among these values, a crucial step in highlighting the heterogeneity in material 

responses. This approach normalizes each fracture strain relative to this mean, adjusting for 

variance. This process results in the e_values, the standard deviations indicating the deviation of 

each sample's fracture point from the average, Mathematically, this normalization is expressed as: 

 𝜇 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

where: 𝜇 is the mean of the fracture strain for all samples, 𝑛 is the number of samples (S-S 

curves) and 𝑥𝑖 is the fracture strain value for each sample. 

       𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
 

where: 𝜎  is the standard deviation, (𝑥𝑖 − 𝜇 ) represents the deviation of each sample’s 

fracture strain value. 

        𝑒−𝑣𝑎𝑙𝑢𝑒 =
𝑥 − 𝜇

𝜎
 

4.6 Uncovering Features' Importance. Due to the inherent complexity and 'black box' 

characteristic of the MLP model, we utilized the Integrated Gradients (IG) method for 

interpretability study.40 This approach is particularly adept to illuminate the contribution of each 

input feature to the model's output. It works by calculating the gradient of the model's prediction 

with respect to each input feature. It then integrates these gradients along a path from a baseline 

input (a zero vector) to the actual input. This process effectively captures the importance of each 

feature in the model’s prediction, highlighting both linear and non-linear relationships within the 

model. To do that, the analysis was expanded to include the entire dataset (both training and 

testing datasets) to ensure a comprehensive assessment on the feature importance. The IG 

method, applied to each data point, calculated the significance of every feature in relation to the 

model’s predictions, thereby providing a quantitative measure of each feature's contribution. This 
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process involved aggregating importance scores across all samples to derive an average 

importance for each feature. Additionally, focused analysis was conducted on cross-features: 

where Physics-Informed (PI) descriptors interact with monomer ratios. For each PI descriptor, 

the average importance across all its interactions was calculated, allowing for an assessment of 

the overall influence of each PI descriptor on the model's predictions. 

 4.7 Virtual Experiments Ratio Generation Details. In the generation of random experiment 

formulations within our study, we employed the Dirichlet distribution. This distribution is 

commonly utilized for generating random proportions under specific constraints, like that the 

sum of the monomer ratios equals to 1, making it particularly suitable for simulating a diverse 

range of monomer mixtures.45 Additionally, an important characteristic of the Dirichlet 

distribution is its uniformity and symmetry, when the parameters of the distribution, known as 

'alpha', are all set equal to 1. This equal setting means that each component of the distribution has 

an equal chance of being sampled, leading to an evenly spread of probabilities across all ratios. 

For each generated combination, the first five ratios were rounded to two decimal places. The 

sixth ratio in each combination was then determined by subtracting the sum of these first five 

rounded ratios from one. 
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Supplementary Notes 

Supplementary Note S1: Detailed information of physics informed descriptors. 

Molecular Weight (MW): This descriptor represents the molecular weight of the compounds, 

a fundamental property affecting various material characteristics. 

Lipophilicity (xlogp3): A measure of lipophilicity, xlogp3 indicates the distribution 

coefficient of the compound between water and a non-aqueous phase, impacting solubility and 

material interactions. 

Hbond_donor and Hbond_acceptor: The number of hydrogen bond donors and acceptors in 

a molecule, crucial for understanding molecular interactions and binding capabilities. 

Rotatable Bonds (Rot_bond): This parameter denotes the flexibility of a molecule, which 

can influence its mechanical and physical properties. 

Polar Surface Area: Relating to the molecule's ability to interact with other molecules, the 

polar surface area is key in determining solubility and reactivity. 

Heavy Atoms (HA): The count of heavy atoms within a molecule, providing insight into the 

molecular size and complexity. 

The above descriptors are sources from PubChem. 1 

Complexity: A descriptor of the molecule's structural complexity, which can affect its 

physical behavior and interactions.2  

Total Energy (dft_sp_E_RB3LYP): Calculated using Density Functional Theory (DFT), this 

value represents the total energy of the molecule, indicative of its stability and reactivity.3 
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Solubility_dipole: It refers to the solubility influenced by the molecule's dipole moment, a 

measure of the separation of positive and negative charges. It affects the interaction of the 

molecule with polar solvents like water. 

 Solubility_p: This indicates the solubility parameter, representing the cohesive energy 

density of a material. Substances with similar solubility parameters are generally soluble in each 

other, following the 'like dissolves like' principle. 

Solubility_h: This descriptor relates to the hydrogen-bonding component of solubility, 

reflecting the compound's capacity to form hydrogen bonds and its consequent solubility in 

hydrogen-bonding solvents. 

Solubility_sqrt_MJperm3: This is a measure of solubility expressed in terms of energy 

density (MJ/m³). The square root transformation is applied for normalization or to linearize 

relationships in the data. The total solubility was calculated from Eq. 1 and Eq. 2. 

𝛿2 = 𝛿𝑑
2 + 𝛿𝑝

2 + 𝛿ℎ
2                                                                                                                         

(1) 

𝛿𝑑 =
∑ 𝑭𝑑𝑖

𝑉
; 𝛿𝑝 =

√∑ 𝑭𝑝𝑖
2

𝑉
; 𝛿ℎ = √

∑ 𝑬ℎ𝑖

𝑉
                                                                                             

(2) 

Fdi, Fpi, and Ehi for different functional groups were extracted from Table 7.10 in the book by 

Krevelen.4 V is the molar volume of the monomers. 

The above solubility parameters were predicted from monomers’ group contributions.4 

  



   

 

34 

 

Supplementary Note S2: Discussion in High Explained Variance of the First Principal 

Component (PC1) 

In the datasets, each sample is composed of two-dimensional data, consisting of X (Strain) 

and Y (Stress) values. During the PCA process, the data is initially reshaped into a single row 

before the PCA analysis is applied. Similarly, to reconstruct the S-S curves from PCs, the single 

row of data is reshaped back into two rows. Given the dimensionality of 100 data points, there is 

a significant degree of freedom involved. 

During PCA, the model first identifies a "collinearity" structure in the data. In this context, 

"collinearity" refers to the linear dependency between variables commonly encountered in 

statistics and machine learning, where one variable can be well predicted by a linear combination 

of another. For example, the first 50 values of the 100 data points, which correspond to the strain 

component, are continuously increased. Thus, the fact that PC1 accounts for 99% of the variance 

can be intuitively understood because these 100 values adhere to a foundational structure akin to 

a S-S curve. This interpretation is supported by a related work, where Yang et al. conducted PCA 

on the stress component of the S-S curves and found that the first three PCs could explain > 85% 

of the variance.5 This suggests a generalization of the data's underlying structure by PCA. 

The fact that PC1 explains 99% of the variance does not imply that other PC values are 

unimportant. Since explained variance is a relative measure, it merely highlights that the 

variances of PCs following PC1 are comparatively smaller. In Figure 4, we conduct an 

interpretability analysis of the PCA results to further elucidate these observations. 
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Supplementary Note S3: Root Mean Squared Error 

Root mean squared error (RMSE) is a standard metric used in statistical modeling to 

evaluate the differences between values predicted by a model and the observed values. RMSE 

represents the square root of the average of the squared differences between the predicted values 

and the actual values. This metric is particularly sensitive to large errors, as it disproportionately 

weighs these errors more heavily than smaller ones, making it a useful tool for highlighting 

significant prediction errors. Additionally, compared to Mean Squared Error (MSE), RMSE has a 

scale that is closer to the original data, making it easier to be interpreted in the context of the 

problem domain. 

The mathematical formula for RMSE is as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 

where: 

𝑛 is the number of observations, 

𝑦𝑖 represents the actual observed values, 

𝑦̂𝑖 represents the predicted values. 
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Supplementary Note S4: Details of the MLP Model  

In this study, we utilized a Multilayer Perceptron (MLP) model to process a wide array of 85 

inputs, encompassing both independent and cross-features. The model is structured with four 

hidden layers, each featuring a descending number of neurons (200, 100, 50, 25 respectively), 

ultimately leading to an output of 8 principal component (PC) values. These PC values are then 

reconstructed from these PCs to generate the corresponding stress-strain (S-S) curves. The 

model's training was facilitated using the Adam optimizer, characterized by a learning rate of 

0.001 and a L1 regularization factor of 0.1. This configuration ensures effective learning and 

regularization to achieve accurate and reliable predictions of material properties. The architecture 

of the model, along with its dropout rate, learning rate, and L1 regularization, was fine-tuned 

through a process of grid search optimization. The performance metrics presented in Table 1 and 

Supplementary Table S2 represent the averages obtained over 10 experimental runs.  

All computational tasks in this study were performed on a desktop computer configured with 

an Intel Core i7-12700K processor, an NVIDIA GeForce 2080 GPU, and 64GB of RAM. The 

operating system used was Ubuntu 22.04.2. Programming and implementation were carried out 

in Python 3.7.9. For handling data processing, we employed NumPy (version 1.19.2), Scikit-

learn (version 1.0.2), and Pandas (version 1.2.1). The MLP model was developed using PyTorch 

version 1.13.1+cu117.  

Given the relatively small size of the dataset and the simplicity of the model, training could 

be conducted using either CPU or GPU, with each training session taking less than 15 seconds to 

complete. The demonstration of 100,000 virtual experiments conducted in this study was 

performed using CPU inference, with the entire process taking less than 1 minute to complete. 
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Supplementary Figures 

 

Figure S1. The impact of the changes in each principal component (PC1 to PC8) on the 

reconstructed stress-strain curves of a strong/tough sample. 
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Figure S2. The impact of the changes in each principal component (PC1 to PC8) on the 

reconstructed stress-strain curves of a hard/brittle sample. 
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Figure S3. (a) Relationship between various PC1 values and the corresponding maximum strain 

across the entire dataset. (b) Relationship between different PC2 values and the corresponding 

toughness. Based on S-S curves in Figure 4 and Figure S1, we control the other PC values and 

modify PC2 values to calculate the corresponding toughness. (c) Relationship between different 

PC3 values vs. the corresponding slope of the strain Hardening Area (red) and Yield Strength 

(blue). Based on S-S curve data in Figure 4 and Figure S1, control the other PC values and 

modify PC3 values to calculate the corresponding features. 

         



   

 

41 

 

 

Figure S4. Comparison between 36 original (yellow) and the predicted (blue) S-S curves of the 

stress-strain curves (12 ink formulations). The predicted curves were reconstructed from the 

predicted PCs by the MLP model with the physics-informed descriptors. To effectively adapt to 

the variations originated from the experimental and testing conditions, the e_values were varied 

from -2 to 2 to reconstruct the S-S curves (grey lines). 
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Figure S5. The comparison between original curve (yellow) and reconstructed (blue) stress-

strain curves of the test set (12 ink formulation consisting of 36 stress-strain curves) using MLP 

model without the physics-informed descriptors. To effectively adapt to the variations originated 

from the experimental and testing conditions, the e_value varying from -2 to 2 were further 

incorporated to reconstruct the stress-strain curves (grey lines). 
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Figure S6. Digital microscope images of fracture surfaces for samples corresponding to the 

formulations shown in Figures 6b and 6d. (a) Fracture surface of the more ductile formulation 

(Figure 6b), revealing plastic deformation at the fracture points. (b) Fracture surface of the more 

brittle formulation (Figure 6d), exhibiting smoother surfaces indicative of a brittle failure 

mechanism. 
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Supplementary Tables 

Table S1: Extracted and calculated descriptors for the six monomers. 

 

 

 

 

 

 

 

 

 

 

 

Physics-informed 

descriptors 
HA IA NVP AA HEAA IBOA 

Molecular Weight 222.24 184.27 111.14 72.06 115.3 208.3 

Lipophilicity 1.8 4.2 0.4 0.3 -0.6 3.9 

Hbond_donor 1 1 0 1 2 0 

Hbond_acceptor 4 2 1 2 2 2 

Rot_bond 7 1 1 1 3 3 

Polar Surface Area 55.8 37.3 20.3 37.3 49.3 26.3 

Heavy Atoms 16 5 8 5 8 15 

Complexity 221 55.9 120 55.9 90.4 306 

Total Energy -766.6 -581.7 -364 -267.2 -401.2 -657.9 

Solubility_dipole 17.49 15.57 17.87 16.04 17.34 17.99 

Solubility_p 5.66 4.14 10.39 13.39 9.07 4.10 

Solubility_h 12.09 4.89 8.09 17.91 15.55 4.86 

Solubility_sqrt_MJperm3 22.00 16.83 22.20 27.52 25.00 19.08 
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Table S2: MLP model performance evaluation based on PCs without physics-informed 

descriptors. 

PCs R2 RMSE MAE Max Min Range RMSE/Range 

1 0.91 132.66 63.36 1263.16 -197.45 1460.61 9.08% 

2 -0.11 21.03 15.94 65.84 -23.65 89.49 23.50% 

3 0.37 10.77 8.79 31.38 -26.13 57.51 18.72% 

4 0.13 6.66 5.16 16.21 -12.54 28.76 23.15% 

5 -0.37 3 2.11 3.4 -6.33 9.72 30.86% 

6 -0.37 1.29 0.99 2.84 -2.96 5.79 22.27% 

7 -0.1 1.71 1.17 6.96 -2.71 9.67 17.68% 

8 -0.4 0.67 0.46 1.13 -1.61 2.74 24.45% 

 

Table S3: MLP model performance evaluation based on the tensile strength and toughness 

without physics-informed descriptors. 

Metric R2 RMSE MAE Max Min Range RMSE/Range 

Fracture strength 0.52 6.27 4.91 39.29 11.76 27.53 28.70% 

Toughness 0.38 1.50 1.21 10.48 4.03 6.45 21.95% 
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