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Abstract

Performance of 3D printed thermoplastics largely depends on the ink formulation, which is
composed of tremendous chemical space as increased number of monomers, making it very
difficult to identify an optimum one with desired properties. To tackle this challenge, we
demonstrate a virtual experimentation platform that is enabled by a physics-informed machine
learning algorithm. As a case study, the algorithm was trained based on a multilayer perceptron
(MLP) model to predict the experimental stress-strain curves of the 3D printed thermoplastics
given the ink compositions made of six monomers. To solve the issue of experimental data
scarcity, we first reduced the dimensions of the curves to eight principal components (PCs),
which serve as the outputs of the model. In addition, we incorporated the physics-informed
descriptors into the input dataset. These two strategies afford the model with prediction accuracy
of R? of 0.97 and RMSE values of 1.01 for fracture strength, R? of 0.95 and RMSE of 0.40 for
toughness. To perform virtual experimentation, the well-trained model was then utilized to
predict 100,000 sets of the PCs from the randomly given 100,000 ink formulations. The PC sets
were then converted back to the corresponding stress-strain curves. To validate the prediction
results, some of the virtual experiments were performed. The results showed a good match
between the predicted and experimental curves. This methodology offers a general and efficient
pathway to virtual experimentation for establishing the correlation between the complex input
variables and the output performance metrics of new materials.
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1. Introduction

Virtual experimentation represents a pivotal advancement in scientific research, enabling
extensive pre-experimental screening that refines the scope of physical trials, thus saving
resources on the most promising inquiries.! Such preliminary simulations are especially critical
in fields where experimental setups are costly and time-intensive. A prime example is 3D
printing, which offers rapid prototyping and manufacturing capabilities that have become
indispensable across industries—from aerospace to healthcare—due to their ability to cost-
effectively create objects with complex geometries.>* Despite these advantages, the development
and testing of new materials for 3D printing, especially thermoplastics, present significant
challenges. The mechanical properties of thermoplastics, crucial for their functional applications,
depend heavily on the precise formulation of inks. The complex interactions and subsequent
polymerization of various monomers profoundly impact their mechanical properties.*> The
traditional experimental process, which involves the exploration of vast ink formulations to
pinpoint the desired mechanical properties of 3D printed thermoplastics, requires extensive
experimentation. This process becomes particularly laborious and time-consuming as the
combinational chemical space dramatically increases. Virtual experimentation provides a
significant advantage over traditional methods by allowing researchers to bypass the initial
phases of testing, where intuition alone may not suffice to optimize experimental conditions.

Virtual experimentation has often relied on theoretical calculations or computational
simulation techniques, such as Density Functional Theory (DFT) and molecular dynamics (MD).
These methods have been extensively applied in fields such as materials science®’ and chemical
engineering® to predict properties of materials at various scales. However, these approaches often

face challenges in accurately scaling predictions to complex macroscopic phenomena. For



instance, in the 3D printing processes, while molecular simulations are adept at modeling the
intricate interactions between monomers,’ they struggle to extend these predictions to the overall
mechanical properties of materials. This limitation suggests that alternative approaches, such as
data-driven methods that bypass detailed microstructural modeling, may be necessary.
Additionally, deriving practical characteristic curves, such as stress-strain (S-S) ones, poses
another significant challenge because physics-based simulation results often rely on idealized
material systems under conceptualized conditions, which may not accurately reflect real-world
behaviors.

In contrast, data-driven algorithms, such as machine learning (ML), have recently emerged

as a complementary approach,'’ increasingly pervading the materials science in design,'!:!?
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property prediction, synthesis planning, and automated data analysis.'®?! They are
forming a new paradigm for the virtual experimentation.! For instance, in predicting material
performance, integration of vast datasets with advanced algorithms has enabled more precise and
efficient predictions than ever before. By leveraging extensive data obtained from DFT
simulations, ML algorithms can now be applied to predict the performance of composites**** and
metamaterials®* with unprecedented accuracy and efficiency. To mitigate the data scarcity issue,
physics-informed ML (PIML) by incorporating known physical laws into the ML training have
been developed.’?>* This hybrid approach not only enhances prediction accuracy with limited
amount of data but also extends the capability of simulations to cover unexplored material
systems. For example, our group incorporated the chemical and physical properties of metal salts
and organic linkers as physics-informed descriptors to unravel complex synthesis parameters for

accurately predicting the crystallization propensity of metal-organic nanocapsules.'” In our

another work, we trained a scientific ML model that includes intermediate reaction variables



obtained by simulations for predicting the reaction outcomes.?’” Du and coworkers utilized six
mechanistic variables that represent the physics of balling defects to train a ML model for
predicting defects formed during the 3D printing processes.”® Use of PIML in virtual
experimentation holds vast potential, particularly in refining the design and optimization
processes in 3D printing, where understanding the detailed physical and chemical interactions
crossing the multiple scales is often impractical. Despite the vast potentials and recent research
progress, in most literature reports that involve ML algorithms for property prediction, typically
singular numerical features (e.g. strength and fractural strain) rather than a total performance
profile were reported. In our recent work, we employed a multi-objective Bayesian optimization
method to identify materials for 3D printing of thermoplastics that are both strong and tough,
focusing specifically on optimizing these two singular numerical values.’ In contrast, the current
study utilizes Physics-Informed Machine Learning (PIML) to conduct virtual experiments that
simulate the complete mechanical performance of materials, thereby providing a more
comprehensive understanding of their behaviors under various conditions.

Herein, to tackle the challenge, we demonstrate a PIML for predicting full stress-strain
curves of 3D printed thermoplastics, which serves as an efficient virtual experimentation
platform for screening ink formulations that lead to thermoplastics with desired mechanical
properties. To realize this goal, a total of 216 S-S curves were first collected from thermoplastics
that were 3D printed using six monomers. Then, dimensions of these S-S curves were reduced by
principal component analysis (PCA) into eight principal components (PCs). After that, the
compositions of the six monomers together with the physics-informed descriptors (including
Molecular Weight, Lipophilicity, Hbond Donor/Acceptor, Rotatable Bonds, Polar Surface Area,

Heavy Atoms, Complexity, Total Energy and several Solubility scores) serve as the inputs while



the corresponding sets of PCs serve as the outputs to train a multiple layer perceptron (MLP)
model. Given 100,000 sets of the hypothesized ink compositions, the MLP can predict the new
PCs, which were then converted back to the corresponding S-S curves. Among them, the six ink
formulations featuring three different types of the mechanical profiles were chosen for
experimental validation. The obtained S-S curves from these experiments fell within the ranges
predicted by the virtual experiments. Quantitative study shows that the model achieves
prediction accuracy with satisfactory R? of 0.97 and root mean squared error (RMSE) of 1.01 for
fracture strength, R? of 0.95 and RMSE of 0.40 for toughness. These results affirm the success of
the virtual experimentation for large scale screening, opens a way to designing new

thermoplastics with desired properties.

2. Results and Discussion

Workflow. Figure 1 illustrates the workflow of developing a PIML based virtual
experimentation platform for 3D thermoplastics printing. First, 2-Hydroxy-3-phenoxypropyl
acrylate (HA), iso-octyl acrylate (IA), N-vinylpyrrolidone (NVP), acrylic acid (AA), N-(2-
hydroxyethyl) acrylamide (HEAA) and isobornyl acrylate (IBOA) were selected as the six
monomers.” This diverse selection was strategically chosen to demonstrate the robustness and
adaptability of our machine learning model across a complex chemical space, showcasing the
necessity and effectiveness of the proposed virtual experimentation workflow. Then, inks were
prepared via mixing these six monomers in different weight ratios for printing by a liquid crystal
display (LCD) printer. After that, the S-S curves of the resulting thermoplastics were collected by
a tensile testing machine (Mark-10) according to American Society for Testing and Materials

standards. The collected curves were preprocessed and reduced in dimensions by PCA detailed



as follows. Following this, a multiple layer perceptron (MLP) model was trained by using the ink
compositions together with the physics-informed descriptors as the input to predict these
dimension-reduced representations. The culmination of this process employed an inverse PCA

technique to reconstruct the S-S curves from the predicted PCs.
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Figure 1. Workflow of developing a PIML based virtual experimentation platform.

Data collection and preprocessing. Experimental datasets were collected from 62 ink
formulations, with each formulation represented by 2-4 individual S-S curves. 3D thermoplastics
printed from the six monomers involve enormous chemical space. Training ML models with only
the ratio of the six monomers to predict the high dimensional outputs could suffer from a serious
overfitting issue. To overcome this issue, additional thirteen physics-informed descriptors were
chosen as the inputs. They are the molecular weight, lipophilicity, #-bond donor, n-bond acceptor,
rotatable bonds, polar surface area, heavy atoms, complexity, total energy, and solubility

parameters.”>3? After normalization, these physics-informed descriptors were multiplied by the



ratios of six monomers, leading to 78 cross-features.?> Details on these descriptors and more
information about the methodology can be found in Supplementary Note S1 and Table S1.

The S-S curves of the specimens with the same ink formulation underwent analysis to
ensure the high quality of training data. As depicted in Figure 2a, the three stress-strain curves of
three specimens exhibit variation even though they were printed from the same ink formulation,
indicating the unavoidable experimental uncertainty. If using the ink formulation and the
corresponding S-S curves as the input and output for the model training, a ‘one-to-many’
prediction issue may arise, where each input corresponds to multiple outputs.*>** It underscores
the importance of using a model capable of adeptly handling such inherent data variability. To
address this uncertainty, an e value based on a normal distribution was introduced to encapsulate
the inherent experimental variation. This e value, analogous to the Z-score in a normal
distribution, quantifies how many standard deviations that experimental data point deviates from
the mean. Implementation of the e value is elaborated in the Methods section. The e value is
combined with the ratios of the six monomers and the 78 cross-features to form a total of 85
features into the model.

Depending on different monomer ratios of the inks from which the samples were printed,
these S-S curves represent four distinct soft/elastic, soft/tough, strong/tough, and hard/brittle
samples, presenting the diversity of the training data, which imposes additional challenge for the
model training (Figure 2b). The stress-strain curve for the soft/elastic sample shows typical
elastomer behavior, with minimal stress at low strains and a constant stress level during
significant elongation. The soft/tough and strong/tough samples begin with a steep initial slope,
indicating stiffness, but as strain increases, the curves show continuous stress rise without

peaking, reflecting substantial plastic deformation. Conversely, the hard/brittle sample's curve



displays a linear increase followed by a sharp stress drop, characteristic of minimal plastic
deformation before fracture. Due to significant variations in the length of data collected,
preprocessing steps such as trimming, and interpolation were necessary to standardize the
datasets for model training. Detailed descriptions of these preprocessing methods are provided in
Methods Section 4.4.

Further observation shows that the numerical range of the strain axis varies considerably,
even though both the strain and stress axes consisting of 50 data points each in the standardized
data format. Given the limited datasets and a 100-dimension output, a concern known as the
‘curse of dimensionality’ arises, a phenomenon where the volume of the space increases so fast
that the available data become sparse.>® This sparsity is problematic as it can severely impact the
performance of machine learning models by making it difficult to extract meaningful patterns
without overfitting. Given the limited datasets and the high-dimensional output, dimension
reduction becomes essential to mitigate these issues. Previous studies adopted a manual
extraction strategy to identify five feature points, i.e., linear limit, maximum yielding, strain
softening end, steady flow limit, and fracture points.?*** In our research, however, the S-S curves
in our dataset are more diverse, making the manual extraction of these critical points either
cumbersome or inconsistent. To address those concerns, PCA, a powerful dimension reduction
technique, was employed.®® PCA is an unsupervised method that does not require predefined
criteria for extracting information. It simplifies the dataset by transforming it into a new
coordinate system, where the most significant features are summarized in the principal
components (PCs). This process not only makes the data more manageable for the ML model but

also preserves essential information, thereby facilitating accurate predictions. Instead of directly



predicting the whole S-S curves, our model predicts the PC values, which can be then converted

back to the S-S curves.
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Figure 2. (a) Calculation of e value based on normal distribution of fracture points of the S-S
curves obtained from multiple samples printed with the same ink formulation. (b) Four typical S-

S curves for the printed representative thermoplastic samples.

PCA on Stress-Strain Curves. The impact of the number of principal components (denoted
as n) on the capacity of the ML model to encapsulate data variance was initially investigated,
with a focus on the explained variance which refers to the cumulative proportion of the dataset
variance explained with the increase of n. As shown in Figure 3a, the cumulative explained
variance (CEV) increases sharply as n reaches 5, beyond which there is negligible change,
indicating the efficacy of PCA in capturing key information from the S-S curves (see
Supplementary Note S2 for details). This trend is also evident when using the PCs to
reconstruct the S-S curves (Figure 3b-¢). The RMSE?” was chosen to determine the difference
between the reconstructed and original values of both stress and strain axes (Supplementary
Note S3). Specifically, the strain RMSE decreases to ~0.02 % when n reaches 4, while the stress

RMSE remains nearly unchanged (~0.03 MPa) at n of 7. Furthermore, the impact of » on the
9



accuracy of the reconstructed S-S curves was also investigated visually across the collected
datasets. Figures 3d-g show a few examples, illustrating typical representatives S-S curves as
discussed in Figure 2b. It is found that samples show good agreement between the original and
reconstructed curves when n reaches 6. Based on these observations, to encapsulate more subtle

variations, the n value is set to 8 for the subsequent analysis.
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Figure 3. (a) Cumulative explained variance (CEV) with respect to different number of principal
components (n). Change of stress RMSE (b) and strain RMSE (¢) vs. n. The reconstructed stress-
strain curves as the increase of n for (d) soft/elastic, (e) soft/ductile, (f) strong/tough, and (g) soft

and elastic samples.

Interpretability of PCA. After exploring the influence of # on the reconstructed S-S curves,
we thoroughly examined the interpretability of each PC during the reconstruction process. By
analyzing how the PC values influence the S-S curves, we demonstrate how the PCs reflect
essential features of the S-S curves. To do it, each PC is varied by £100%, £50%, £20%, and
+5%, while keeping other PCs the same. As shown in Figure 4a and Figure S1, increase in PC1

10



prompts shift of the S-S curves towards larger strains, while increase in PC2 results in a decrease
in the slope of the plastic deformation region. It is determined that PC1 has the most pronounced
effect on the variations of the S-S curves. Increase in PC3 leads to a decrease in the slope of the
post-yield hardening region, whereas increase in PC4 results in a decrease in the slopes of the
plastic deformation region while an increase in the post-yield hardening region. Furthermore, the
fractural strain remains constant regardless of the changes in PC2, PC3, and PC4. While the
influence of PC5 to PCS8 is not dramatically significant to be directly interpreted by material
scientists analyzing the core material properties, these components still contribute to the finer
details of the curves, such as minor fluctuations or inflection points in certain regions of the
curves. For a brittle sample (Figure S2), close observation reveals that increase in PC1 leads to a
shift of the curve toward smaller strain, while increase in PC2 results in the increase in the slope
of the elastic deformation, fracture strength and fracture strain. There are no obvious changes in
the S-S curves with the changes in PCs from PC3 to PC8. To further explore the hidden
information, the relationship between PCs and mechanical properties was analyzed (Figure S3).
Clearly, PC1 exhibits a linear relationship with the fractural strain. PC2 is proportional to
toughness. PC3 is positively and negatively correlated to the fracture strength and the slope in
the strain-hardening area, respectively. The observations are well aligned with the fundamental

mechanical characteristics observed in the S-S curves (Figure 4b).
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Figure 4. (a) Changes of each PC (PC1 to PC5) vs. change of the reconstructed S-S curves of a

strong/tough sample. (b) A typical S-S curve with labeled characteristic points.

Machine Learning Model. After establishing the input and output datasets, it is about to
train an MLP model. The model takes 85 distinct and cross-features as the inputs to predict
outputs of the eight PCs. Given the relatively small data size, a combined approach of dropout
and L1 regularization was employed to prevent overfitting. Dropout operates by randomly
deactivating a subset of neurons during the training process, which is beneficial for reducing the
model's dependency on specific features.’® Meanwhile, the L1 regularization introduces a penalty
to the loss function proportional to the absolute magnitude of the feature coefficients.® It
prioritizes more influential features by pushing the coefficients of less significant ones towards
zero. Both the dropout and L1 regularization work in concert to enhance the model's capacity to
be generalized effectively. Furthermore, the model is designed to favor the utilization of
beneficial physics informed descriptors, while reducing reliance on those with less impact. This
selective approach ensures that the model not only stays accurate but also remains relevant and

grounded in the practical aspects of domain science. Mean squared error between the eight
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predicted and true PCs is chosen as the loss function since it can effectively reflect the hierarchy
of significance by preserving the original difference among the PCs.

Out of the 62 ink formulations, 50 (representing1 80 S-S curves) were chosen as the training
datasets, while the remaining 12 (representing 36 S-S curves) were the testing datasets. Here, the
test set comprises a balanced combination of materials consisting of 7 elastic ones and 5 brittle
ones. Details on the model's intricacies, computation specifics, and information about the
hardware and software utilized in this study are comprehensively documented in
Supplementary Note S4.

Based on the test set, performance of the MLP model in predicting the eight PCs is
presented in Table 1. While the specific PC values lack direct physical meanings, the R? values
in comparison of the predicted PCs and respectively true PCs reveal the model’s accuracy. The
R? values were notably high for the first three principal components (0.97, 0.76, and 0.77 for
PC1, PC2, and PC3, respectively) and gradually declined for the remaining five PCs. This trend
is expected, i.e., the importance of PCs slightly decreases as the number of PCs increases. This
trend also holds true for other evaluation metrics including RMSE, MAE, and MSE, indicating
that the MLP model prioritizes the key PCs. RMSE exhibits an opposite trend, starting at 5.40%
for PC1 and 10.94% for PC2, and then gradually increasing to 25.18 % for PC8. It also
underlines the model’s ability to concentrate on the most impactful PCs for balancing the
accuracy by prevention of overfitting. This inherent characteristic originates from the L1

regularization and dropout to ensure a robust fit for the most significant features.

Table 1. Evaluation of the MLP model based on PCs

V;Ses R? RMSE | MAE MSE Max Min Range | RMSE/Range
1 0.97 78.84 4448 | 6215.58 | 1263.16 | -197.45 | 1460.61 5.40%
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2 0.76 9.79 7.58 95.82 65.84 [ -23.65 | 89.49 10.94%
3 0.77 6.47 5.32 41.86 31.38 | -26.13 | 57.51 11.25%
4 0.58 4.63 3.82 21.43 16.21 -12.54 | 28.76 16.10%
5 0.29 2.17 1.78 4.69 3.4 -6.33 9.72 22.32%
6 0.21 1.21 0.97 1.47 2.84 -2.96 5.79 20.99%
7 0.41 1.25 0.9 1.55 6.96 -2.71 9.67 12.93%
8 0.19 0.69 0.53 0.48 1.13 -1.61 2.74 25.18%

Evaluating Stress-Strain Curves. The results indicate the high accuracy of the MLP
model in predicting the eight PCs. We then evaluated how well the reconstructed S-S curves
from these predicted PCs agree with the true ones. It is impractical to evaluate the reconstruction
performance by directly calculating the difference between the reconstructed and true value at
each point of the S-S curves. This is because the complexities of material behaviors and testing
conditions lead to the huge variations of the S-S curves. To mitigate this issue, two critical
mechanical performance matrices, i.e., fracture strength and toughness, which can be derived
from the S-S curves, were deployed for evaluation. As shown in Table 2, the R? values are
relatively high for fracture strength (0.97) and toughness (0.95), while RMSE and MAE of the
fracture strength are 1.01 and 0.82 MPa and for toughness they are 0.40 and 0.31 MJ/m>. After
considering their ranges, RMSE of the fracture strength and toughness are relatively low, i.e., ~4%
for the fracture strength and ~6% for the toughness. These results indicate the model's robust
ability to account for a significant portion of the observed data variance.

Table 2. Evaluation of the ML model based on fracture strength and toughness.

Metric R? | RMSE | MAE | Max | Min | Range | RMSE/Range
Fracture strength | 0.97 | 1.01 0.82 39.29 | 11.76 | 27.53 4.43%
Toughness 095| 040 | 031 |10.48 | 4.03 | 6.45 5.90%
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To visually evaluate the model prediction performance, the true and predicted S-S curves
(reconstructed from the predicted PCs by the MLP) of the four samples from test set with various
fracture strength and ductility are shown in Figure Sa. Additionally, all 36 S-S curves from the
test set are provided in Figure S4. The yellow lines correspond to the original S-S curves, while
the blue lines represent the reconstructed S-S curves with the corresponding e values. To
effectively adapt to the variations originated from the experimental and testing conditions, the
e values varying from -2 to 2 were incorporated to reconstruct multiple S-S curves (grey lines).
The grey range encompasses 95% of probability about the cases according to the Z-score
definition in a normal distribution. It is found that these reconstructed S-S curves all fall within
the grey areas. And their shapes and trends are matched well with the ground truth S-S curves.
These results affirm the high effectiveness of the combination of the MLP model and PCA

technique in predicting the S-S curves.

15



(a)
18 | 15 18
30
15 15
~25 - - ~12 -
© © © ©
o -3 o Q12
=20 Z 2o 3
915 9 ° a 9 °
g g 26 g
10 H e o Be
5 3 3 3
%0 15 30 45 60 75 0 30 60 90 120 150 180 % 40 80 120 160 200 za0 % 25 50 75 160 135 150
Strain (%) Strain (%) Strain (%) Strain (%)
(b) (c)
0.7 4
30 4
Q Q 4
2 2 "
254
g g 0.5 -
O 20 o
E- 2-0.4-
= 154 -—
o o 031
- et
=] J =1
= 10 = 0.2
(1] m
7] Q
L 54 L 0.1
0 T T T T T T T T T T T T T 0.0 T T T
EZzE LS8 E 2 B0Oab0On0 g = & 3 3§ 3§ &
29 2 &8 £ g o0 X § 2 w Q ®
s = 5 & 28 < & v g T = 3
= £ o0 9 ¢ < 3 u o
T 2 5 9 5 8 2 E =
o o E < ° + > o B
- Q. - L] ]
3 = 0 g ® 3 @ Y 0o
o = 8 g & o0 T =
9 I o © .
o 2 £ &
= I o
o

Figure 5. (a) The comparison between ground-truth curve (yellow) and predicted (blue) stress-
strain curves of four representative samples. Considering the uncertainty, the e values varying
from -2 to 2 were used to predict the S-S curves with 95% probability (grey lines). (b)
Importance ranking of the 13 physics-informed features. d4: solubility influenced by the
molecule's dipole moment, 6p: solubility parameter, on: the hydrogen-bonding component of
solubility, o: solubility expressed in terms of energy density (MJ/m?). (¢) Importance ranking of

ratios of the six monomers and e _values.

Feature importance. Importance of the physics-informed descriptors was explored via a
comparative study training the MLP model using only the ratios of six monomers and the

e_value without PI inputs. As shown in Table S2, the MLP model attained the highest R? value
16



for PC1, while delivering much lower R? values for PC3 and PC4. This indicates that the model
cannot effectively capture the underlying characteristics of the training datasets if only using PC3
and PC4. Furthermore, presence of negative R? values for PC2, PC5, PC6, PC7 and PC8 reveals
that predictive accuracy of the MLP model is even worse than the prediction results using the
average of all sampling data. This underscores a substantial limitation in the MLP model without
the physics-informed descriptors. This phenomenon was also found in the predicted S-S curves
(Table S3 and Figure S5). The R? values for both true stress (0.52) and toughness (0.38) are
lower than those of the MLP model trained with included physics-informed descriptors. As
shown in Figure S5, nearly all the predicted S-S curves exhibited huge variations, revealing the
poor prediction capability of the model without the physics-informed descriptors. These results
indicate that the incorporation of physics-informed descriptors not only increases the predictive
accuracy but also aid in accurately capturing the nuances of the S-S curves.

The significance of these physics-informed descriptors was further quantified. An integrated
gradients (IG) method was applied to investigate the interpretability of the MLP model.** The IG
method works by examining how change in the gradients of each feature influences the output.
Specifically, for each PI descriptor, we calculated its interaction feature importance with each of
the six monomers. To synthesize this information and provide a clearer understanding of the
overall impact of each PI, we averaged the importance scores across these six monomers for
every individual PI. The feature importance scores for 13 physics-informed descriptors, the ratio
of six monomers, and e values were shown in Figure Sb and S5c. Detailed methodologies
regarding this process are elaborated in the Methods section. As shown in Figure Sb, total
energy is the primary dominant descriptor among these physics-informed descriptors, which well

agrees with expertise and domain knowledge. It is reported that total energy plays a crucial role
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in determining the structural cohesion, arrangement, and consequent mechanical properties of
polymeric materials.*! Other physics-informed descriptors such as solubility, molecular weight,
polar surface area, and the number of heavy atoms exhibit relatively lower importance. This
suggests that the model effectively leverages these classical features to capture complementary
information related to chain entanglement, intermolecular forces, and steric effects, which are
known to influence polymer performance.*** The remaining descriptors, including complexity,
lipophilicity, Hbond donor, Hbond acceptor, and rotatable bonds, exhibit comparatively lower
feature importance scores. These descriptors primarily pertain to molecular size, hydrophobicity,
and conformational flexibility. The direct impact of these descriptors on intermolecular
interactions and electronic structures, which play pivotal roles in determining the mechanical
properties of polymers, may be relatively limited.

As shown in Figure Sc, the e value, used to account for the experimental uncertainty, was
notably discernible. This highlights the model's capability to establish a predictive range based
on e _value rather than a simple one-to-one prediction. The feature importance scores for the six
monomers follow the order of AA > HEAA >IA > IBOA > NVP > HA. Monomers like AA and
HEAA are noteworthy for their propensity to form hydrogen bonds, significantly impacting the
intermolecular interactions of the 3D printed thermoplastics.** Presence of IA can be attributed to
its function as a softer segment than HA, contributing significantly to the flexibility and
toughness of 3D printed thermoplastics, despites the potential of HA to form hydrogen bonds.’
These feature importance scores well agree with the empirical understanding of the experiments,
thus reinforcing the significance and practical applicability of these descriptors in the MLP

model. This method underscores the effectiveness of combining data-driven machine learning
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with domain-specific expertise, paving the way to more sophisticated and accurate predictive
models in materials science.

Virtual experimentation for screening new ink formulation candidates. We expect that the
developed MLP can be used as a surrogate model to virtually explore the combination space to
accelerate the ink formulation to make the thermoplastics that show desired S-S curves. First of
all, 100,000 virtual ink formulations were randomly generated using the Dirichlet distribution
method since it ensures a uniform distribution of each monomer.*’ This approach guarantees an
equitable representation of all possible monomer ratios, providing a balanced and comprehensive
exploration of the design space. Details on generating virtual ink formulations are provided in
Method. After that, a pre-trained random forest model that we previously demonstrated was
employed to predict the printability of these ink formulations.> Only the printable ink
formulations were fed into the MLP model to predict the corresponding eight PCs. It is
noteworthy that the prediction of these ink formulations took only 1 minute, highlighting the
exceptional speed and efficiency of the virtual screening. Then, the S-S curves were
reconstructed from the predicted PCs. Then, the fracture strength, maximum strain and toughness
were extracted from these reconstructed S-S curves and plotted in Figure 6a. It was observed
that most datapoints were clustered in the region associated with lower toughness, possibly
because out of six monomers, four of them are harder monomers including NVP, HA, HEAA and
IBOA. If they are dominant in the ratio combinations, they considerably favor formation of
brittle thermoplastics with low toughness.

Following the virtual screening guided by MLP model, new experiments were conducted to
validate the prediction results. We chose these experiments with an aim of identifying the ink

formulations leading to three types of thermoplastics (strong/tough, strong/brittle, and

19



soft/elastic). For each type, two ink formulations were randomly selected to print three
specimens. Figures 6b-g show the profiles and trend of the predicted S-S curves by the MLP
model.

The first one showing the strong/tough S-S curve has a fracture strength in the range of 15-
20 MPa and a toughness in the range of 15-20 MJ/m>. As a result, a total of 143 ink formulations
were screened, from which two ink formulations with HA: TA: NVP: AA: HEAA: IBOA weight
ratios 0.16: 0.39: 0.25: 0.13: 0.02: 0.05 (Figure 6b) and 0.34: 0.32: 0.21: 0.09: 0.02: 0.02
(Figure 6¢) were randomly selected for experiments. As depicted in Figures 6b-c the resulting
S-S curves from these two selections conform to the trend predicted by the MLP model, in which
both cases exhibited an instance of premature fracture. Moreover, to further support our
mechanical testing data and elucidate the failure mechanisms, we conducted microstructural
analysis of the fracture surfaces for the sample corresponding to Figure 6b. For this more ductile
formulation, digital microscope observations reveal plastic deformation at the fracture points
(Supplementary Figure S6a). These microstructural observations robustly support our claims
regarding the mechanical properties of the material and provide deeper insights into the fracture
behavior. The second type is the strong/brittle one with a fracture strength exceeding 35 MPa and
a fracture strain of 2-5%, resulting in > 10,000 ink formulations. This is because lots of
formulations in the virtual experiments show hard and brittle behaviors due to dominant
compositions of NVP, HA HEAA or IBOA in the formula. The experimental S-S curves of the
six specimens from the selected two ink formulations with HA: IA: NVP: AA: HEAA: IBOA
weight ratios 0.16: 0.18: 0.05: 0.42: 0.18: 0.01 and 0.26: 0.29: 0.05: 0.29: 0.03: 0.08 are within
the predicted range (Figures 6d-e). For the more brittle formulation represented in Figure 6d,

the fracture surfaces are notably smoother (Supplementary Figure S6b), indicating a different
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failure mechanism. These microstructural observations further validate our experimental results
and provide deeper insights into the different fracture behaviors. The third type is the soft/elastic
one. The ink formulations with a predicted fractural strain of > 250% and a fracture strength in
the range of 10-15 MPa were screened, resulting in 148 formulations. The selected two ink
formulations with HA: IA: NVP: AA: HEAA: IBOA weight ratios of 0.4: 0.28: 0.01: 0.0: 0.09:
0.22 and 0.35: 0.38: 0.02: 0.18: 0.07: 0.0 led to the soft/elastic thermoplastics. Their S-S curves
are shown in Figures 6f-g. We can see that the predicted S-S profiles agree well with the
experimental ones despite the little discrepancy in their fractural strains. They are out of the
range of the predicted uncertainty range. These experimental validation results show that the
developed MLP for virtual experiment is reliable and rapid because the prediction of 100,000 ink
formulations is within one minute. This rapid and efficient virtual experimentation process can
significantly facilitate the exploration of design space for identification of ink formulations that

lead to materials with desired properties, thus accelerating the development of new materials.
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Figure 6. (a) Plot of fracture strength, fracture stain, and toughness extracted from the predicted
S-S curves. Red stars i, ii, and iii indicate the chosen ink formulations shown in Panel b-c, d-e,

and f-g, respectively. The S-S curves for the three samples (red, green, and blue) printed with the

ink formulations that are predicted to result in the (b-c) strong/tough, (d-e) hard/brittle, and (f-g)
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soft/elastic type of thermoplastics. The grey areas represent the uncertainty range of the predicted

S-S curves.

3. Conclusions

In this study, a PIML model was developed for virtual experimentation to accelerate the
discovery of 3D printed thermoplastics. The collected 216 S-S curves from 62 ink formulations
were dimensionally reduced into eight PCs. Meanwhile, 13 physics-informed descriptors were
included using domain knowledge to increase the robustness and generalization of the model.
The developed physics informed MLP model achieved superior R> and RMSE values when
predicting the values of the eight PCs. The reconstructed S-S curves from the predicted PCs were
well matched with the true ones. Feature importance analysis confirmed the importance of
physics-informed descriptors, showing that the total energy is the most important one. After
mapping the mechanical properties of 100,000 ink formulations by the MLP model, six
representative ink formulations that are expected to lead to three different types of thermoplastics
were chosen. Validation experiments demonstrated a strong agreement between the predicted and
experimental S-S curves. The methodologies and workflow can be readily extended to other
materials for predicting other performance curves such as Raman, electrochemistry curves. This
underscores the versatility and potential of this approach in a range of material science and
chemical research scenarios, offering a robust framework for expedited and accurate material and

chemical analysis.

4. Materials and Methods
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4.1 Materials. 2-Hydroxy-3-phenoxypropyl acrylate (HA), isooctyl acrylate (IA, > 90%),
and acrylic acid (AA, 98%) were purchased from Sigma Aldrich (St. Louis, MO, U.S.).
Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, >97%), isobornyl acrylate (IBOA, >
90%), N-vinylpyrrolidone (NVP, > 99%), and N-(2-hydroxyethyl) acrylamide (HEAA, >98%)
were purchased from Fisher Scientific (Pittsburgh, PA, U.S.).

4.2 3D Printing and Mechanical Testing. In this study, the LCD 3D printing process was
executed using a resin mixture comprising six monomers: HA, 1A, AA, IBOA, NVP, and HEAA
with carefully measured weight ratios. Each monomer's ratio in the mixture can vary
continuously from 0 to 1. For the sake of experimental precision, the ratios have two decimal
places. The total sum of the ratios for all monomers equals 1. To make the mixture, a
photoinitiator, diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), was added at a
concentration of 2 wt%. The mixture was then subjected to magnetic stirring for one minute to
ensure thorough and uniform mixing. The resulting homogenized resin was used in an Anycubic
Photon Mono 4K printer, operating at a 405 nm irradiation wavelength. The printing parameters
included a power density of about 5 mW/cm?, a layer thickness of 50 um, and an exposure time
of 15 seconds per layer. Following the printing process, the samples were further cured under
405-nm UV light for 60 seconds. For the mechanical assessment of the 3D-printed samples,
tensile testing was carried out using a Mark-10 universal testing machine at a loading rate of 50
mm/min. To ensure a comprehensive statistical analysis, a minimum of 5 samples were printed
and tested for each monomer ratio.

4.3 S-S Curve Collection. 326 S-S curves were collected from 62 distinct formulations,
each of which was subjected to 5-7 independent mechanical tensile tests. To ensure the reliability

and quality, the S-S curves with significant errors such as measurement inconsistencies,
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premature breakage, or excessive mechanical testing noise were excluded. Consequently, a
refined dataset comprising 216 S-S curves was obtained, with each thermoplastic represented by
2-4 individual curves. To demonstrate the diversity and balance of the dataset, when considering
a maximum strain of 10% as threshold, the data showed a distribution where approximately half
of the materials displayed brittle properties (106 samples), while the other half exhibited higher
ductility (80 samples).

4.4 Data Processing of S-S Curves. The preliminary cleaning of the raw data from the
tensile testing machine involves trimming the initial segments of each S-S curve to eliminate any
measurements taken before the machine commenced operation by standardizing the starting
points to a baseline of zero stress and zero strain (0,0). Then, a critical aspect of the
preprocessing involves identifying the point of failure within each sample's S-S curve. By
pinpointing and marking the exact location of sample failure on each curve, the final data point is
represented the moment of fracture by capturing the complete mechanical profile of each
specimen. The last step in the data preprocessing routine is to apply an interpolation technique to
standardize the data representation. Each S-S curve is interpolated to consist of 50 data points
uniformly distributed in the x axis (strain).

4.5 Experimental Uncertainty. In this study, the e value is calculated based on normal
distribution to capture the inherent uncertainties in the S-S data at the fracture point. This
refinement involves analyzing the final strain values at fracture for each dataset as illustrated in
Figure 2a. By aggregating these values, a comprehensive picture of the strain behavior at
fracture across various samples was obtained. To encapsulate the variability in the fracture
strains of the materials, first their means are calculated, providing a reference for the average

material behavior under stress. Then the standard deviation is computed to quantify the
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dispersion among these values, a crucial step in highlighting the heterogeneity in material
responses. This approach normalizes each fracture strain relative to this mean, adjusting for
variance. This process results in the e values, the standard deviations indicating the deviation of

each sample's fracture point from the average, Mathematically, this normalization is expressed as:

n
i=1%i

==

where: u is the mean of the fracture strain for all samples, n is the number of samples (S-S

curves) and x; is the fracture strain value for each sample.

Diq (X — 1)?
n

where: o is the standard deviation, (x; — p) represents the deviation of each sample’s

fracture strain value.

X —p
o

e_value =

4.6 Uncovering Features' Importance. Due to the inherent complexity and 'black box'
characteristic of the MLP model, we utilized the Integrated Gradients (IG) method for
interpretability study.*® This approach is particularly adept to illuminate the contribution of each
input feature to the model's output. It works by calculating the gradient of the model's prediction
with respect to each input feature. It then integrates these gradients along a path from a baseline
input (a zero vector) to the actual input. This process effectively captures the importance of each
feature in the model’s prediction, highlighting both linear and non-linear relationships within the
model. To do that, the analysis was expanded to include the entire dataset (both training and
testing datasets) to ensure a comprehensive assessment on the feature importance. The IG
method, applied to each data point, calculated the significance of every feature in relation to the

model’s predictions, thereby providing a quantitative measure of each feature's contribution. This
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process involved aggregating importance scores across all samples to derive an average
importance for each feature. Additionally, focused analysis was conducted on cross-features:
where Physics-Informed (PI) descriptors interact with monomer ratios. For each PI descriptor,
the average importance across all its interactions was calculated, allowing for an assessment of
the overall influence of each PI descriptor on the model's predictions.

4.7 Virtual Experiments Ratio Generation Details. In the generation of random experiment
formulations within our study, we employed the Dirichlet distribution. This distribution is
commonly utilized for generating random proportions under specific constraints, like that the
sum of the monomer ratios equals to 1, making it particularly suitable for simulating a diverse

range of monomer mixtures.®

Additionally, an important characteristic of the Dirichlet
distribution is its uniformity and symmetry, when the parameters of the distribution, known as
'alpha', are all set equal to 1. This equal setting means that each component of the distribution has
an equal chance of being sampled, leading to an evenly spread of probabilities across all ratios.
For each generated combination, the first five ratios were rounded to two decimal places. The

sixth ratio in each combination was then determined by subtracting the sum of these first five

rounded ratios from one.
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Supplementary Notes

Supplementary Note S1: Detailed information of physics informed descriptors.

Molecular Weight (MW): This descriptor represents the molecular weight of the compounds,

a fundamental property affecting various material characteristics.

Lipophilicity (xlogp3): A measure of lipophilicity, xlogp3 indicates the distribution
coefficient of the compound between water and a non-aqueous phase, impacting solubility and

material interactions.

Hbond_donor and Hbond acceptor: The number of hydrogen bond donors and acceptors in

a molecule, crucial for understanding molecular interactions and binding capabilities.

Rotatable Bonds (Rot_bond): This parameter denotes the flexibility of a molecule, which

can influence its mechanical and physical properties.

Polar Surface Area: Relating to the molecule's ability to interact with other molecules, the

polar surface area is key in determining solubility and reactivity.

Heavy Atoms (HA): The count of heavy atoms within a molecule, providing insight into the

molecular size and complexity.
The above descriptors are sources from PubChem. !

Complexity: A descriptor of the molecule's structural complexity, which can affect its

physical behavior and interactions.?

Total Energy (dft sp E RB3LYP): Calculated using Density Functional Theory (DFT), this

value represents the total energy of the molecule, indicative of its stability and reactivity.
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Solubility dipole: It refers to the solubility influenced by the molecule's dipole moment, a
measure of the separation of positive and negative charges. It affects the interaction of the

molecule with polar solvents like water.

Solubility p: This indicates the solubility parameter, representing the cohesive energy
density of a material. Substances with similar solubility parameters are generally soluble in each

other, following the 'like dissolves like' principle.

Solubility h: This descriptor relates to the hydrogen-bonding component of solubility,
reflecting the compound's capacity to form hydrogen bonds and its consequent solubility in
hydrogen-bonding solvents.

Solubility sqrt MJperm3: This is a measure of solubility expressed in terms of energy
density (MJ/m?). The square root transformation is applied for normalization or to linearize
relationships in the data. The total solubility was calculated from Eq. 1 and Eq. 2.

8% =65+ 6, + 67

(1)

. [EFZ; ’ )
6d — ZFdl . 6p — Vp ’ 6’1 — Zshl

2)

Fai, Fpi, and Ep; for different functional groups were extracted from Table 7.10 in the book by

Krevelen.* V is the molar volume of the monomers.

The above solubility parameters were predicted from monomers’ group contributions.*
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Supplementary Note S2: Discussion in High Explained Variance of the First Principal

Component (PC1)

In the datasets, each sample is composed of two-dimensional data, consisting of X (Strain)
and Y (Stress) values. During the PCA process, the data is initially reshaped into a single row
before the PCA analysis is applied. Similarly, to reconstruct the S-S curves from PCs, the single
row of data is reshaped back into two rows. Given the dimensionality of 100 data points, there is

a significant degree of freedom involved.

During PCA, the model first identifies a "collinearity" structure in the data. In this context,
"collinearity" refers to the linear dependency between variables commonly encountered in
statistics and machine learning, where one variable can be well predicted by a linear combination
of another. For example, the first 50 values of the 100 data points, which correspond to the strain
component, are continuously increased. Thus, the fact that PC1 accounts for 99% of the variance
can be intuitively understood because these 100 values adhere to a foundational structure akin to
a S-S curve. This interpretation is supported by a related work, where Yang et al. conducted PCA
on the stress component of the S-S curves and found that the first three PCs could explain > 85%

of the variance.’ This suggests a generalization of the data's underlying structure by PCA.

The fact that PC1 explains 99% of the variance does not imply that other PC values are
unimportant. Since explained variance is a relative measure, it merely highlights that the
variances of PCs following PC1 are comparatively smaller. In Figure 4, we conduct an

interpretability analysis of the PCA results to further elucidate these observations.
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Supplementary Note S3: Root Mean Squared Error

Root mean squared error (RMSE) is a standard metric used in statistical modeling to
evaluate the differences between values predicted by a model and the observed values. RMSE
represents the square root of the average of the squared differences between the predicted values
and the actual values. This metric is particularly sensitive to large errors, as it disproportionately
weighs these errors more heavily than smaller ones, making it a useful tool for highlighting
significant prediction errors. Additionally, compared to Mean Squared Error (MSE), RMSE has a
scale that is closer to the original data, making it easier to be interpreted in the context of the

problem domain.

The mathematical formula for RMSE is as follows:

1 n
RMSE = =3 (7= 9,)?
n =1

where:

n is the number of observations,

y; represents the actual observed values,

y; represents the predicted values.
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Supplementary Note S4: Details of the MLP Model

In this study, we utilized a Multilayer Perceptron (MLP) model to process a wide array of 85
inputs, encompassing both independent and cross-features. The model is structured with four
hidden layers, each featuring a descending number of neurons (200, 100, 50, 25 respectively),
ultimately leading to an output of 8 principal component (PC) values. These PC values are then
reconstructed from these PCs to generate the corresponding stress-strain (S-S) curves. The
model's training was facilitated using the Adam optimizer, characterized by a learning rate of
0.001 and a L1 regularization factor of 0.1. This configuration ensures effective learning and
regularization to achieve accurate and reliable predictions of material properties. The architecture
of the model, along with its dropout rate, learning rate, and L1 regularization, was fine-tuned
through a process of grid search optimization. The performance metrics presented in Table 1 and

Supplementary Table S2 represent the averages obtained over 10 experimental runs.

All computational tasks in this study were performed on a desktop computer configured with
an Intel Core 17-12700K processor, an NVIDIA GeForce 2080 GPU, and 64GB of RAM. The
operating system used was Ubuntu 22.04.2. Programming and implementation were carried out
in Python 3.7.9. For handling data processing, we employed NumPy (version 1.19.2), Scikit-
learn (version 1.0.2), and Pandas (version 1.2.1). The MLP model was developed using PyTorch

version 1.13.1+cull7.

Given the relatively small size of the dataset and the simplicity of the model, training could
be conducted using either CPU or GPU, with each training session taking less than 15 seconds to
complete. The demonstration of 100,000 virtual experiments conducted in this study was

performed using CPU inference, with the entire process taking less than 1 minute to complete.

36



37



Supplementary Figures
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Figure S1. The impact of the changes in each principal component (PC1 to PC8) on the

reconstructed stress-strain curves of a strong/tough sample.
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Figure S2. The impact of the changes in each principal component (PC1 to PC8) on the

reconstructed stress-strain curves of a hard/brittle sample.
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Figure S3. (a) Relationship between various PC1 values and the corresponding maximum strain
across the entire dataset. (b) Relationship between different PC2 values and the corresponding
toughness. Based on S-S curves in Figure 4 and Figure S1, we control the other PC values and
modify PC2 values to calculate the corresponding toughness. (¢) Relationship between different
PC3 values vs. the corresponding slope of the strain Hardening Area (red) and Yield Strength
(blue). Based on S-S curve data in Figure 4 and Figure S1, control the other PC values and

modify PC3 values to calculate the corresponding features.

40



18 30 30
15 15 30
15 25 25
T 12 I3 -12 - ~25 -
& £ & & & £
20 20
Z, z z, z E20 z
@ @ ° H @is @15 ?1s
o o o o o o
s © 56 - 510 5 510
0 0 0 ] n 10 o
3 3 3 5 5 5
40 80 120 160 200 24 40 80 120 160 200 24 40 80 120 160 200 24 0.0 15 30 45 6.0 7.5 9.0 0.0 30 45 60 7. 0.0 30 45 60 7.
Strain (%) Strain (%) Strain (%) Strain (%) Strain (%) Strain (%)
25 25 18 18 18
20
15 15
~20 ~20 - - - P
& & £1s & & &
12 12 12
Z1s 215 Z £ - =
s s s s « w
@ @ 0 10 @ ° @ ° a9
10 P10 <4 g g 4
1 1 5 56 56 5 6
7] 7] 0 7] 7] 0
s
s s 3 3 3
00 15 30 45 60 7.5 00 15 30 45 60 7.5 a2 6 8 30 60 90 120 150 180 30 60 90 120 150 180 30 60 90 120 150 180
Strain (%) Strain (%) Strain (%) Strain (%) Strain (%) Strain (%)
18 18, 18
12 12 12 p
15 y 15 15
~10 ~10 ~10 - - P
& & & & & £
12 12 12
s s s z z z
86 36 36 @ e @0 a0
o o o o o o
- - - 5 & 5
0 a 04 n 4 0 * [ 0 ®
2 2 2 3 3 3
50 100 150 200 250 300 60 120 180 240 300 360 50 100 150 200 250 300 40 80 120 160 200 40 80 120 160 200 40 80 120 160 200
Strain (%) Strain (%) Strain (%) Strain (%) Strain (%) Strain (%)
a0 a0 a0 15 15 15
35 35 35
=30 =30 =30 ~12 —~12 -1
& & & & & &
=2 =25 =25 Z Z o =
=) £ £ £ £ £,
§ 20 ﬁ 20 ﬁ 20 g ﬁ ﬁ
6 3
s B g E 5 £
0 0 0 0 n n
10 10 10
3 3 3
B 5 B
2 6 8 10 2 6 8 10 2 6 8 40 80 120 160 200 240 40 80 120 160 200 240 40 80 120 160 200 2a
Strain (%) Strain (%) Strain (%) Strain (%) Strain (%) Strain (%)
35 35
25 25 25 35
30
- - - - =30 _*
m 20 © 20 ® 20 © © ©
-4 -4 -4 a2 & 25 &25
= = = = 2 = = 2
Pt PEL] w15 @ 20 w
o o o o o o
4 g g g $1s g1s
S10 S10 S0 s s s
7] 7] 7] 010 (2 0
s s s 5 H 5
0.0 08 16 2.4 3.2 40 438 00 0B 16 24 32 40 48 00 08 16 24 32 40 438 00 08 16 24 32 4.0 00 08 16 24 32 4.0 00 08 16 24 32 40
Strain (%) Strain (%) Strain (%) Strain (%) Strain (%) Strain (%)
18
14 14 14, 18
15 15
~12 ~12 ~12 - - ~15
© © © © : © ©
210 & 10 = & 10 a 12 & 12 4 [
£ £ £ : ~ £ £ —
w 8 w 8 w 8 w9 w9 w
o 0 a @ o w9
96 [ [ o o o
£ £ £ 4 £ 2
-1 ] ] 56 s 6 -
n , n, 0, 0 7] 0
2 2 2 3 3 3
40 80 120 160 200 24 40 80 120 160 200 24 40 80 120 160 200 24 25 50 75 100 125 150 25 50 75 100 125 150 25 50 75 100 125 150
Strain (%) Strain (%) Strain (%) Strain (%) Strain (%) Strain (%)

Figure S4. Comparison between 36 original (yellow) and the predicted (blue) S-S curves of the

stress-strain curves (12 ink formulations). The predicted curves were reconstructed from the

predicted PCs by the MLP model with the physics-informed descriptors. To effectively adapt to

the variations originated from the experimental and testing conditions, the e values were varied

from -2 to 2 to reconstruct the S-S curves (grey lines).
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Figure S5. The comparison between original curve (yellow) and reconstructed (blue) stress-

strain curves of the test set (12 ink formulation consisting of 36 stress-strain curves) using MLP

model without the physics-informed descriptors. To effectively adapt to the variations originated

from the experimental and testing conditions, the e value varying from -2 to 2 were further

incorporated to reconstruct the stress-strain curves (grey lines).
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Figure S6. Digital microscope images of fracture surfaces for samples corresponding to the
formulations shown in Figures 6b and 6d. (a) Fracture surface of the more ductile formulation
(Figure 6b), revealing plastic deformation at the fracture points. (b) Fracture surface of the more
brittle formulation (Figure 6d), exhibiting smoother surfaces indicative of a brittle failure

mechanism.
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Supplementary Tables

Table S1: Extracted and calculated descriptors for the six monomers.

Physics-informed

: HA 1A NVP | AA HEAA | IBOA
descriptors
Molecular Weight 222.24 | 184.27 | 111.14 | 72.06 | 115.3 | 208.3
Lipophilicity 1.8 4.2 0.4 0.3 -0.6 3.9
Hbond donor 1 1 01 2 0
Hbond acceptor 4 2 1|2 2 2
Rot bond 7 1 1|1 3 3
Polar Surface Area 55.8 373 20.3 373 1493 26.3
Heavy Atoms 16 5 8 5 8 15
Complexity 221 55.9 120 559 1904 306
Total Energy -766.6 | -581.7 | -364 | -267.2 | -401.2 | -657.9
Solubility dipole 17.49 | 15.57 |17.87 [16.04 | 17.34 |17.99
Solubility p 5.66 4.14 10.39 [ 13.39 [9.07 4.10
Solubility h 12.09 |4.89 8.09 1791 | 15.55 |4.86
Solubility sqrt MJperm3 | 22.00 | 16.83 | 22.20 |27.52 | 25.00 | 19.08
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Table S2: MLP model performance evaluation based on PCs without physics-informed

descriptors.
PCs R? RMSE | MAE | Max Min Range | RMSE/Range
1 0.91 | 132.66 | 63.36 | 1263.16 | -197.45 | 1460.61 | 9.08%
2 -0.11 | 21.03 | 15.94 | 65.84 -23.65 | 89.49 23.50%
3 0.37 | 10.77 | 8.79 | 31.38 -26.13 | 57.51 18.72%
4 0.13 | 6.66 5.16 | 16.21 -12.54 | 28.76 23.15%
5 -0.37 | 3 2.11 |34 -6.33 9.72 30.86%
6 -0.37 | 1.29 0.99 |2.84 -2.96 5.79 22.27%
7 -0.1 1.71 1.17 | 6.96 -2.71 9.67 17.68%
8 -04 |0.67 0.46 | 1.13 -1.61 2.74 24.45%

Table S3: MLP model performance evaluation based on the tensile strength and toughness

without physics-informed descriptors.

Metric R? RMSE | MAE | Max | Min | Range | RMSE/Range

Fracture strength 0.52 6.27 | 491 |39.29 | 11.76 | 27.53 28.70%

Toughness 0.38 1.50 | 1.21 | 10.48 | 4.03 | 6.45 21.95%
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