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A B S T R A C T

Understanding surface water quality and managing river systems that span a variety of climatic, lithology, and 
land cover types requires regional data analysis approaches. At this scale, spatial and temporal variations and 
irregularities in publicly available stream chemical data limit the application of many traditional techniques for 
evaluating controls on water quality. This work uses publicly available measurements of major ion concentra
tions (>31,000 solute measurements from 670 sites; 1944–2018) from the Colorado, Brazos, Red, and Pecos 
Rivers in Texas to parse out controls on stream water chemical variations across space. We used an emergent self- 
organizing map (ESOM) to identify structures in the data. K-means clustering was then performed on the ESOM 
structure (e.g., proportional node weights for each solute) and six clusters were most optimal for characterizing 
distinct spatial patterns in stream chemistry. For example, a unique chemical signature marked by elevated 
concentration of magnesium relative to calcium and bicarbonate was observed over the Balcones fault zone and 
elevated silicon concentrations were observed in the wetter, more weathered eastern portion of Texas where 
forest cover is more dominant. A random forest classification model was used to predict cluster membership from 
sub-basin characteristics and had an overall accuracy rate of 78.9 %. Mean annual precipitation was found to be 
the most important variable for distinguishing between clusters. The melding of ESOM, clustering, and random 
forest machine learning approaches reveals complex hydrogeochemical processes, informs regional watershed 
management, and pinpoints areas needing further study.
Plain Language Summary: Water quality measurements are geographically widespread across the United States 
but are irregularly distributed in space and time, which can make it difficult to use them with traditional data 
analysis approaches for understanding watershed processes. Here, we used machine learning to examine data 
from four large watersheds in Texas to understand the influence of different land use, geologic, and climate 
factors on water quality. The four rivers cross a range of rock types, land uses, and precipitation regimes and have 
different chemical compositions. We found tens of thousands of observations from this large area could be 
summarized using only six chemical groups and that there were strong relationships between watershed char
acteristics and water chemistry. Overall, these techniques were effective in capturing major spatial water quality 
trends across these watersheds and could be used to target watershed management and monitoring efforts.

1. Introduction

River chemistry in regional scale watersheds is of crucial importance 
for managing environmental and anthropogenic water uses as well as 
understanding global biogeochemical cycling (Dupré et al., 2003; Gail
lardet et al., 1999). At the regional scale, a critical zone approach that 

examines the integrated processes from the top of the canopy to the 
depths of circulating groundwater (National Research Council, 2012) 
can help elucidate the network of complex and heterogeneous factors 
that control stream water chemistry. In the United States (US) and 
Europe large bodies of publicly available data from various agencies are 
widely available but are challenging to use in scientific investigations. 
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Their irregularity in space and time limits applications of many tech
niques such as the assessment of concentration-discharge relationships, 
or application of physically-based hydrologic models that are commonly 
applied at smaller scales with more detailed sampling (e.g., Zhi et al., 
2024; Stewart et al., 2022). However, these large-scale datasets contain 
information that can improve our understanding of how critical zone 
processes influence the dynamics of large river systems (e.g., Jankowski 
et al., 2023; Johnson et al., 2024a; Zhi et al., 2023) and can be used to 
improve further sampling efforts and water quality management (Wai 
et al., 2022).

Stream chemical composition can be used to understand structure, 
function, and processes occurring within watersheds draining various 
environments (Li et al., 2021; Singha et al., 2024). However, in large and 
complex watersheds, even where there are extensive bodies of publicly 
available data and hypothesis-driven knowledge, such as in the Mis
sissippi and Chesapeake Bay river watersheds in the US (Giri, 2021), 
subsurface, land cover, and climate processes that influence stream 
water composition are not fully understood (Li et al., 2024). Lithology 
and flow regime have been identified as two of the primary drivers of 
stream chemical composition at the regional scale (Baronas et al., 2017; 
Gaillardet et al., 1999; Godsey et al., 2009; Kirchner, 2009; Torres et al., 
2017). Often land use and climate also emerge as important influences 
across a range of scales (Allan, 2004; Shi et al., 2017). Particularly, 
climate patterns control the degree of chemical weathering, recharge, 
and therefore solute transport at local to regional scales (Brantley et al., 
2017). Land use and land cover (LULC) characteristics also influence 
many hydrologic factors including infiltration rates, timing of peak 
discharge, erosion, and surface runoff volumes (Brooks et al., 2012; 
Keen et al., 2023; Sadayappan et al., 2023). Additionally, LULC can act 
as point and non-point source inputs of solutes, collectively these factors 
impact water quality (e.g., fertilizers, deicers; Li et al., 2024).

Multivariate techniques, including machine learning methods, are 
necessary to understand and depict complex hydrochemical relation
ships within the critical zone. Applications of machine learning to crit
ical zone science have facilitated greater understanding of the influence 
of watershed characteristics on flow metrics across space and through 
time (Addor et al., 2018; Hammond et al., 2021; Wlostowski et al., 2021; 
Xu Fei & Harman, 2020). Applying these techniques to publicly avail
able, noisy and spatiotemporally complex data could illuminate known 
and additional relationships between stream water quality and critical 
zone factors (Fleming et al., 2019; Melo et al., 2019; Nearing et al., 2021; 
Zhi et al., 2023). Studies of variations in major ion chemistry have 
revealed aquifer structure, contaminant flow paths, and groundwater 
solute sources using machine learning techniques including self- 
organizing maps (SOMs), also known as a Kohonen neural network 
(Chen et al., 2018; Haselbeck et al., 2019; Sahour et al., 2020). SOMs are 
an unsupervised neural network algorithm that converts non-linear re
lationships in large, high-dimensional datasets into a two-dimensional 
grid of nodes to facilitate visual assessment or further quantitative 
analysis, and can augment, improve, or outperform other techniques 
such as principal components analysis and hierarchical cluster analysis 
(Chavoshi et al., 2012; Kohonen, 2001; Wehrens & Buydens, 2007). 
They are useful in reducing dimensionality while preserving key char
acteristics, or topology, of the input datasets (Haselbeck et al., 2019; 
Melo et al., 2019; Sinha et al., 2010). SOMs have advantages over other 
multivariate techniques in that they are highly flexible (can capture 
nonlinear relationships) and rely on fewer assumptions of the input data 
(i.e., non-standard distribution). Emergent Self-Organizing Maps 
(ESOMs) are SOMs constructed using many nodes (n > 4,000) such that 
emergent structures in high-dimensional data are visible (Thrun et al., 
2016; Ultsch, 1999). While almost identical to SOMs, ESOMs have the 
ability to organize intricate datasets and delineate clusters with complex 
geometries due to their capacity to accommodate hundreds to thousands 
of nodes (Ultsch, 2007). When observations are matched to nodes on the 
ESOM, each node can be viewed as a proto-cluster, where each obser
vation belongs to the cluster (node) with the highest degree of similarity 

(Vesanto et al., 2000). This proto-clustering can be applied as the first 
step in a two-step clustering process where the ESOM nodes are then 
clustered using an additional method such as k-means. This two-step 
clustering process reduces the influence of outlying data points and 
simplifies structures in the data to highlight overarching patterns 
(Vesanto et al., 2000). Thus, the application of a two-step clustering 
process holds the promise of providing the flexibility and adaptability to 
elucidate patterns in water quality data collected irregularly in space 
and time.

Supervised machine learning algorithms such as random forests and 
extreme gradient boosting (XGBoost) models can then be applied to 
these emergent water quality patterns or clusters generated from ESOMs 
to understand the possible factors that control a particular chemical 
signature (Bolotin et al., 2023; Nasir et al., 2022; Sadayappan et al., 
2022; Yang & Olivera, 2023). The random forest algorithm consists of an 
ensemble of decision trees generated using bootstrapped subsamples of 
the dataset. Random forests are a flexible multivariate technique that is 
appropriate for analyzing multiple predictor variables and nonlinear 
relationships and has been widely applied in hydrologic sciences (Addor 
et al., 2018; Brown et al., 2014; Fleming et al., 2021a; Hammond et al., 
2021; Konapala & Mishra, 2020; Oppel & Schumann, 2020; Singh et al., 
2019). Random forest classification can be used to predict cluster 
membership using watershed factors (e.g., lithology, land cover), and 
assess the importance of each watershed factor in differentiating be
tween clusters. The success in cluster membership prediction indicates 
the overall quality of model training, uniqueness of the cluster attri
butes, and the strength of the connection between stream chemistry and 
the landscape factors of interest. The importance of each watershed 
factor within the random forest algorithm gives an indication of the 
strength of the relationship between that attribute and stream chemistry 
in the watersheds of interest.

Detailed analyses of water quality data using multivariate and ma
chine learning approaches could provide a pathway for modeling critical 
zone structure and function at a regional scale and be used to evaluate 
and target large-scale sampling campaigns to areas where hydro
chemical behaviors are not well understood. Large bodies of water 
quality data have been collected over the preceding decades and are now 
easily accessible. These data have been collected for myriad purposes 
and are therefore spatially and temporally heterogeneous and may not 
be well-suited for traditional hydrochemical analyses. However, pat
terns and relationships can be identified from large scale, publicly 
available datasets to understand water quality responses to critical zone 
characteristics. Therefore, we investigate hydrochemical data at a 
regional scale to address the research question: To what degree can 
patterns in surface water chemistry across large regions be identified 
based on critical zone characteristics using emergent self-organizing 
maps (ESOMs), k-means clustering, and random forest classification, 
and can these tools shed light on water quality management strategies?

In particular, we investigate the relationships between major ion 
chemistry of four major rivers in Texas; the Colorado, Brazos, Red, and 
Pecos rivers. These four rivers run roughly in parallel across low-relief 
environments which cross precipitation, lithology, and LULC gradi
ents. Previous analysis suggests that much of the variation in stream 
chemical composition in the Colorado river, Texas, was controlled by 
interactions between underlying lithology and processes impacting flow 
paths and residence times (including climate and LULC factors; Gold
rich-Middaugh et al., 2022). Studies in the region have also shown that 
urbanization, especially in large metropolitan areas within these wa
tersheds, has impacted surface and groundwater quality (Aitkenhead- 
Peterson et al., 2011). Other land uses in the region include widespread 
irrigated agriculture, pastures and grazing, and oil and gas production in 
the Midland and Eagle Ford basins (Jiang et al., 2022) and along the 
Colorado river (Goldrich-Middaugh et al., 2022), which may impact 
water quality and quantity. Additionally, the region is sensitive to the 
impacts of a changing climate, with water resources projected to become 
scarcer and decline in quality as the population continues to grow and 
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water demand increases (Harwell et al., 2020; Jager et al., 2015). Thus, 
the large, publicly available water chemistry datasets from these four 
watersheds may help us understand the critical zone controls on stream 
chemistry.

2. Site Description

The Brazos, Colorado, Pecos, and Red are four adjacent rivers that 
run roughly parallel across Texas with watershed areas extending into 
New Mexico, Oklahoma, and Louisiana (Fig. 1). Each river has a 

Fig. 1. Maps showing A) Sampling point locations colored by tributary position and mapped faults including the Balcones Fault Zone, B) Land use and land cover 
data at 30 m resolution from 2019, C) Mean annual precipitation (PRISM) in mm from 1985 to 2019, and D) Simplified lithology class. For reference of each site to 
the contributing tributaries see Fig. S1. E) Depiction of the number of observations for any given year in each of the four watersheds.
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watershed area of over 100,000 km2 and a main-stem river length of 
over 1,300 km (Table 1). The rivers flow across diverse lithologies, with 
geologic units oriented roughly perpendicular to flow. Climate, LULC, 
and lithology across the watersheds set the stage for spatially contrasting 
chemical compositions. A total of 670 surface water sampling sites 
across these watersheds were accessed using the National Water Quality 
Monitoring Council water quality portal (WQP).

2.1. Land use and land cover

Land use varies roughly perpendicular to flow directions, particu
larly across the Colorado, Brazos, and Red river watersheds. The west
ernmost portion of these watersheds and most of the Pecos River 
watershed are dominated by barren and grass/shrub cover (Fig. S2). The 
headwaters of the Colorado, Brazos, and Red rivers also support large 
swaths of agriculture. Forested land covers the central reaches of these 
watersheds and the Pecos headwaters and western most section. Larger 
portions of developed area occur closer to the outlets of the Colorado 
and Brazos rivers surrounding Houston and Austin (Fig. 1B). The density 
distribution of sites across these landcover types for each watershed can 
be found in the supplemental material (Fig. S2). Access to LULC data 
between 1985 and 2022 (see methods), show that across the sub-basins 
in the four watersheds the LULC change in any given land cover type 
ranged from < 1 % to nearly 40 % (Fig. S3), with the largest increases 
observed for impervious surfaces in the Brazos river watershed (38 %), 
while the largest decreases were observed for shrub and grass in the 
Pecos river watershed (31 % decline) and forest across all four water
sheds (19–25 % decline). Over the same period the sub-basins in the 
Brazos, Colorado, and Pecos watersheds showed a general increase in 
cropland, while the Red showed a decline. The inverse pattern was 
generally observed for grass and shrub land. Finally, both the Brazos and 
the Colorado river watershed showed some degree of increase in the 
amount of impervious surface (Fig. S3).

2.2. Climate

The western portion of the study area, where a greater density of sites 
in the Pecos are located, is dominantly semi-arid receiving approxi
mately 300 mm of precipitation per year (Fig. 1, Fig. S3). Mean annual 
precipitation (MAP) increases to the east until the Gulf Coast, which 
receives approximately 1,800 mm of precipitation per year (Fig. 1C), 
particularly in the Red River. These regional climate patterns strongly 
influence the availability of surface water resources and the distribution 
of land cover. The Red river watershed encompasses the largest climatic 
gradient and receives the highest MAP in the study area near its outlet 
(Fig. 1C) where the Pecos river watershed is the most homogeneous in 
terms of climate and receives little precipitation along its entire length. 
The Colorado and Brazos watersheds receive MAP with intermediate 
gradients of the four watersheds.

2.3. Lithology

Texas exposes a wide variety of lithologic units that span more than a 
billion years of geologic time. Mesozoic and Cenozoic sedimentary rocks 
form linear belts that trend SW-NE and become progressively younger 
towards the Gulf of Mexico (Fig. 1D; Collins, 1993). This pattern is 
interrupted by exposures of Proterozoic igneous and metamorphic rock 
of the Llano uplift in central Texas. Most of the recent tectonic activity is 
concentrated along the western edge of Texas, although the Balcones 
fault zone sweeps NE across the state and crosses the watersheds of in
terest in this study (Fig. 1A). The Pecos river (westernmost watershed) 
has large surface expressions of carbonates in the northern portion of the 
watershed and evaporites near the center. Small areas of igneous- 
metamorphic rock are present in the extreme north and south. The 
Colorado river watershed has smaller areas of evaporites in the head
waters with large portions of the central reaches dominated by car
bonates. The Brazos river is dominantly covered by sedimentary units of 
varying textures underlain by carbonate rocks which show surface 
expression in the central reaches of the watershed. The Red river is also 
dominantly covered by sedimentary units with some large areas of 
evaporites and gypsum within Permian sandstone and surface expres
sion of the underlying carbonates. Additionally, coal dominated areas 
are present in the lower-middle reaches of the Red river (Fig. 1D). The 
density distribution of sites across these lithologies for each watershed 
can be found in the supplemental material (Fig. S2).

3. Methods

3.1. Data Collection and Processing

3.1.1. Hydrologic data
All water chemistry data were obtained using the water quality 

portal (WQP) R package dataRetrieval to access all chemical measure
ments within the Pecos, Colorado, Brazos, and Red river watersheds (De 
Cicco et al., 2018). This dataset included 31,324 measurements of 
alkalinity as HCO3

–, K+, Na+, Mg2+, SO4
2-, Ca2+, Cl-, and Si collected at 

670 sites between 1944–2021 (Fig. 1A). Stream discharge was not 
available at each of the sites, and thus stream discharge was not included 
in the analyses. Water chemistry data were used for the development of 
the ESOM. The water quality data were spatially and temporally irreg
ular with a minimum of one and a maximum of 39 samples collected at 
each site per year. Of the sites included in our dataset, 91 have at least 
100 total samples collected over the period of record and 175 sites have 
at least 50 observations (see Fig. S4 for the distribution of observation 
per site). Measurements were filtered to include sites where all solutes 
were measured on the same date (termed complete cases). Samples 
included in analysis were assumed to be representative of major con
stituents and free of significant analytical error if they had a low charge 
balance error (≤ 10 %; Godsey et al., 2009; Güler et al., 2002). Samples 
were transformed into compositional data by converting measurements 
to meq/L and calculating the contribution to the overall charge of the 
sample. Observations were then centered to a mean of zero and unit 
variance so that parameters with larger magnitudes did not dominate 
the training of the ESOM. Piper diagrams of these data show that while 
latitude (proxy for aridity) plays a role in water chemistry patterns 
(Fig. S5), nonlinearity in the data warrants the use of machine learning 
and clustering algorithms.

3.1.2. Spatial data
The contributing area for each sampling point (termed sub-basin) 

was delineated using the NASA Advanced Spaceborne Thermal Emis
sion and Reflection Radiometer (ASTER) digital elevation model (30 m 
resolution) (NASA/METI/AIST/Japan Spacesystems and U.S./Japan 
ASTER Science Team, 2019). Sub-basin delineation was conducted using 
ArcGIS Pro 2.9 (ESRI, 2021) functions. Flow directions were generated 
using the D8 method in which flow is routed to one of eight neighboring 

Table 1 
Summary of watershed characteristics and available data for the Brazos, Colo
rado, Pecos, and Red Rivers. Complete cases indicate the observations where all 
solutes were present for the analysis. Mean observations indicates the number of 
samples collected on average at a site in each watershed.

Brazos Colorado Pecos Red

Complete Cases: 
Observations

8,980 5,441 4,249 12,654

Sites 153 112 92 313
Mean Observations per 

Site
59 49 46 40

Watershed Area 115,565 
km2

103,340 
km2

115,000 
km2

169,900 
km2

River Length 1,352 km 1,387 km 1,490 km 2,189 km
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cells selected by calculating maximum downhill steepness (Qin et al., 
2007). Next, flow accumulation was calculated based on the flow di
rection raster with zones of high accumulation representing stream 
channels. Water chemistry sampling points were used as pour points and 
were snapped to nearest zones of flow accumulation with a maximum 
snapping threshold. Contributing areas for each sampling point were 
then delineated using the watershed tool. Snapping of pour points and 
delineation of watersheds was conducted iteratively using a range in 
maximum snapping distances, 0.005–0.25 degrees, to obtain the 
appropriate delineation. We verified the delineation of each sampling 
point visually. Results were assessed for goodness of fit with reference 
measurements such as contributing areas referenced for USGS stations, 
where available. This approach was employed to ensure that summa
rized characteristics were site-specific for each sampling point, rather 
than summarized at a sub-watershed scale such as the National Hy
drography Dataset (NHD) HUC 12 subbasins or similar. A variety of 
spatial datasets were employed to examine factors influencing stream 
chemistry at each point within the watershed. Lithologic data was ob
tained from the state-level preliminary integrated geologic map data
bases for the United States for Texas, Oklahoma, Arkansas, and 
Louisiana (Stoesser et al., 2007). Rock types were merged to convey 
major classes (i.e., carbonates, sandstone, mudstone, etc.; Schweitzer, 
2011; Texas Water Development Board − https://www.twdb.texas. 
gov). Comprehensive land use data are from the Global Land Cover 
Change Dataset (GLC-FCSD 30; Liu et al., 2023; Zhang et al., 2024) that 
documents land use change across seven major land use‘ classes from 
1985 to 2022 at a 30-meter resolution. This data product provides land 
cover data every five years from 1985 to 2000, annually thereafter. As 
such we set all samples with dates at or prior to 1985 equal to the 1985 
land cover, we then applied a linear interpolation using the five-year 
data (e.g., 1985–1990) for every year between 1985–2000, we then 
used the annual data thereafter in the model. Land cover types were then 
merged to convey major classes. Annual precipitation data was accessed 
from PRISM (PRISM Climate Group, 2014) using the USGS GEODATA 
portal and provides gridded estimates of annual precipitation at the 4 
km scale. Mean annual precipitation across the study area was calcu
lated from the annual datasets for 1985–2019 (Fig. 1C), thus over
lapping with the same period of record as LULC. Average effective 
precipitation (i.e., precipitation – evapotranspiration) was calculated for 
the upstream contributing area of each sampling point. Lithology and 
land use classes were expressed as percent cover for the contributing 
area upstream of each sampling point.

3.2. Machine learning analyses

We used stream chemical measurements of eight major solutes across 
nearly 32,000 observations from 670 distinct geographic sampling 

locations to develop an ESOM, whose structure was then clustered using 
K-means. Finally, we used sub-basin characteristics to predict cluster 
membership using random forest classification. Below we provide more 
details on this machine learning framework.

3.2.1. Emergent Self-Organizing maps ESOMs
We used an ESOM to examine the spatial and temporal structure of 

stream chemical observations. ESOMs were constructed with toroidal 
structure and 50 x 82 nodes for a total of 4,100 nodes using the R 
package Umatrix (Lerch et al., 2020; Fig. 2). The ESOM nodes were 
initialized with random samples selected from a normal distribution 
around the mean of the data. A gaussian neighborhood function was 
used, the search radius was initiated at 24 nodes and decreased linearly 
to 1, and the learning rate was initiated at 0.5 and decreased linearly to 
0.1. The ESOM was trained on 100 epochs where each epoch represents 
one presentation of all observations to the map (Sinha et al., 2010; 
Vesanto et al, 2000). The distance between the observation vectors and 
each of the node vectors was compared, where a vector represents the 
normalized, compositional chemistry for each observation. The obser
vation was then matched to the node vector with the minimum distance 
(Vesanto et al, 2000). Thus, each node can represent more than one of 
the nearly 32,000 samples and multiple sites based on similarity in 
chemistry. Toroidal structures were utilized to eliminate any edge ef
fects, where the neurons at the edges of the map have much fewer ob
servations than those in the center, by creating a cyclical structure in the 
output SOM (Thrun et al., 2016). The resulting unified distance matrix 
(Umatrix) was then plotted and assessed for stability. Umatrices for 
ESOMs depict the sum of the distance for each weight between each 
node and its neighbors, highlighting the topology of the dataset wherein 
valleys show zones of high similarity and peaks show zones of higher 
dissimilarity (Thrun et al., 2016; Ultsch, 1999). Stability of the Umatrix 
was assessed by examining root mean square error (RMSE) between 
each observation and its “BestMatch”, which was the node with the 
smallest distance to a given observation, as described above. The 
acceptability of a RMSE value depends on the range of input data; thus, a 
normalized RMSE (RMSE divided by the range of population data) that 
is close to 0 would indicate a good model fit, while a value closer to 1 
indicates a poor fit.

3.2.2. Clustering
Clustering of ESOM outputs assists in interpretation of the map 

output and further analysis of differences in chemical composition 
across map regions (Gamble & Babbar-Sebens, 2012; Haselbeck et al., 
2019; Melo et al., 2019). Cluster analysis is also a powerful tool for 
identifying spatial and temporal gradients and their drivers at the 
regional scale (Brown et al., 2014). Final node weights (each a vector of 
dimension 8x1, where each weight in the vector represents one solute) 

Fig. 2. Steps for training of emergent self organizing maps (ESOM).
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from the ESOM were clustered using the k-means clustering algorithm 
using R package stats (R Core Team, 2021). Using the node weights 
rather than the raw data for k-means clustering reduced noisiness in the 
dataset while reflecting key properties of the underlying data (Vesanto 
et al., 2000). K-means clustering partitions observations into k number 
of clusters, where k is set by the user. The optimal k value was selected 
using a scree plot of within sum of squares, which is the sum of the 
variance from each observation to its centroid (Fig. S9). The structure of 
the resulting clusters was analyzed using silhouette plots showing the 
distinctness of each cluster. Silhouette plots were constructed using the 
squared Euclidean distance between each observation and others within 
the same cluster. Values closer to 1 show cluster similarity, while values 
closer to −1 indicate disagreement in cluster membership. A site’s 
cluster membership was also displayed across the four river watersheds 
to explore spatial patterns. Here a site could be displayed more than 
once if it fell into more than one cluster over its period of record.

3.2.3. Random forests and SHapley Additive exPlanations (SHAP)
A random forest classification model was used to predict the cluster 

membership of each observation based on mean annual precipitation, 
lithology, and LULC using the R package randomForest (Liaw and 
Wiener, 2002). The model was trained on a random split of 70 % of the 
data and tested on the other 30 % of the data. Random forests models 
can be tuned to improve model performance by altering the number of 
trees generated in each forest (ntree) and the number of parameters 
evaluated at each split (mtry). The model was tuned to minimize the out- 
of-bag error (OOB) on the training data. Tuning began by searching for 
the optimal mtry value, the model was initialized with the default mtry 
(square root of number of input variables) and then integer values on 
either side of the default mtry were tried. A new value of mtry was only 
retained if improved the OOB error by 0.01 %. During mtry tuning, ntree 
was set to 500 trees. Once the optimal mtry value was found, ntree 
values between 1 and 1000 were tested using the optimal mtry value 
(Fig. S1) and the smallest number of trees where the OOB was minimized 
and stable was selected. Due to the unequal distribution of observations 
in each cluster, a stratified sampling method was used to train the 
random forests model on an equal number of observations from each 
cluster. The number of observations in the smallest cluster was used to 
set the sample size of the number of training observations. Observations 
were sampled with replacement. Model performance was evaluated 
using the accuracy of cluster membership prediction on the test dataset.

To interpret the importance of each feature to the cluster member
ship predictions of our random forest, we used SHapley Additive ex
Planations (SHAP) values, a permutation method that relies on game- 
theory to provide consistent and locally accurate feature importance 
measures (Shapley 1953; Lundberg and Lee, 2017; Merrick et al., 2020). 
SHAP values are distinct in their ability to quantify feature importance 
within subsets of the data. This contrasts with other permutation 
methods, which typically provide feature importance information based 
solely on the average prediction across the entire dataset (Aas et al., 
2021; Lundberg et al., 2019). SHAP values can indicate the degree to 
which input features (e.g., mean annual precipitation) contribute posi
tively or negatively to the random forest model’s prediction, in this case 
the tendency of a given sample to be assigned to one of the clusters. To 
understand the overall measure of a given feature’s importance, we 
averaged the absolute value of the SHAP values for a given feature across 
all clusters. To understand how a feature’s values (e.g., MAP at a site) 
contributed to its corresponding SHAP values we constructed strip plots 
to examine potential dependencies.

4. Results

4.1. ESOM

The trained Umatrix achieved an RMSE of 0.4 (normalized value of 
0.03) between each node and its BestMatch (Fig. S6). Continuous low- 

lying valleys (blue and green) in the ESOM-derived topology indicates 
zones of similar water chemistry, while ridgelines of brown and white 
indicate strong differences in water chemistry and help to differentiate 
distinct chemical signatures across the four watersheds (Fig. 3).

The distribution of solutes across the ESOM (Fig. 4) reveals trends 
and structure present in the ESOM that become obscured in the overall 
Umatrix (Fig. 3). In the solute maps, white and yellow colors represent 
generally lower compositional concentrations, while orange and red 
colors represent high compositional concentrations (Fig. 4). The most 
homogeneous zones in the overall Umatrix were located on the edges of 
the rendered 2-D map of the toroidal shape (Fig. 3) and were concurrent 
with high Na+, Cl-, and SO4

2- and low HCO3
–, and Ca2+ compositional 

concentrations (displayed on individual maps; Fig. 4). Other solutes K+, 
Mg2+, and Si have smaller spatial extents with high values occurring 
dominantly in the center (Mg2+) and at the upper (Si, K+) and lowermost 
extents of the center (K+) which overlap with areas of high HCO3

– and 
Ca2+.

4.2. Clustering

Six clusters emerged as the optimal number of clusters to minimize 
the within sum of squares distance from each observation to its cluster 
centroid and fit the heterogenous structure of the ESOM (Fig. S9). All 
clusters show a positive average silhouette width, with an average 
silhouette width of 0.514, which is deemed satisfactory given a silhou
ette width of 1 indicates each data point is unlikely to be assigned to 
another cluster, while values closer to −1 indicates each data point is 
misclassified (Haselbeck et al., 2019; Oppel and Schumann, 2020). Fig. 5
shows the cluster membership of ESOM nodes projected onto the trained 
ESOM. Cluster 1 (yellow, n = 13,817) has the largest number of obser
vations and occurs on the sides of the map. Cluster 2 (light blue, n =
5,834) occurs mainly on the right side of the map, with another grouping 
on the bottom left side of the map. Cluster 3 (green, n = 4,627) occurs on 
the upper left side of the map. Cluster 4 (dark blue, n = 3,074) and 
cluster 6 (pink, n = 1,255) occur in the center of the map near the top 
and bottom. Lastly, cluster 5 (orange, n = 2,717) occurs in the middle of 
the map. Evaluating solute distributions across the clusters aids in un
derstanding dominant chemical makeups of observations within a given 
cluster (Fig. 6). In general, Cluster 1 shows high Cl-, Na+, and SO4

2-; 
Cluster 2 shows high Na+ and Cl- but lower SO4

2- than Cluster 1; Cluster 3 
shows high SO4

2- but low in Cl- and Na+; Cluster 4 is high in HCO3
– and 

Ca2+; Cluster 5 is dominated by Mg2+, and Cluster 6 shows observations 
high in Si. When the temporal characteristics of the nodes within each 
cluster were evaluated (Fig. S7), neither mean month nor mean decade 
coincided with any given cluster indicating clusters do not represent 
seasonal nor long term temporal variability in observations.

Observations from the same site could be assigned to more than one 
cluster over their period of record. Thus, we evaluated cluster mem
bership over time at the sites to understand a sites stability. Here we 
selected sites with at least 10 years of data and at least 6 observations per 
year, which resulted in 90 unique sites of the original 670 (Fig. S8). We 
found that 9 sites had membership in one cluster, 28 sites had mem
bership in two clusters, 23 sites had membership in 3 clusters, 23 sites 
had membership in 4 clusters, and 7 had membership in 5 clusters. 
However, when we evaluated the proportion of time sites spent in each 
cluster, we found that 44 % of sites spent at least 90 % of their time in 
their modal cluster, and 83 % of sites spend at least 50 % of their time in 
their modal cluster. This suggest that while sites generally have one 
dominant chemical composition, they can change over time though the 
patterns in cluster membership for the 90 sites with enough data do not 
show systematic changes over time (Fig. S8).

4.3. Random forest classification

Random forest classification was applied to the dataset using MAP, 
lithologic classes, and LULC classes from each sub-basin to predict 
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cluster membership. The optimal performance of the model occurred 
with a ntree value of 500 and a mtry value of 1 (Fig. S10) and accurately 
classified sites into their clusters 78 % of the time. Within-cluster error 
rates varied across classes with cluster 5 having the highest accuracy 
rate (89 %), and cluster 2 having the lowest accuracy rate (61 %) (Fig. 7, 
green boxes). Assessment of variable importance conducted using the 
SHAP values showed that MAP was the most important predictor vari
able. This was followed by the percent of marsh and swamp land, then 
evaporite, mudstone and carbonate lithologies (Fig. 7).

5. Discussion

The application of multiple machine learning methods is improving 
our understanding of controls on stream and groundwater chemistry at a 
range of scales (Haselbeck et al., 2019; Melo et al., 2019; Nguyen et al., 
2015; Vesanto et al., 2000). When paired with clustering algorithms and 
random forest classification, ESOMs can help to identify major critical 
zone drivers of hydrogeochemical processes (Addor et al., 2018; Ham
mond et al., 2021). Here we applied these techniques to regional scale 
watersheds, focusing on four parallel rivers across Texas with long-term, 
temporally and spatially variable hydrochemical datasets and their 
associated spatial attributes (e.g., MAP, lithology, and LULC). Even 
given spatial and temporal heterogeneity in the 60-year dataset with 
over 31,000 observations collected from an area spanning 500,000 km2, 
the multivariate structures identified in the ESOM and k-means clus
tering led to six groups with distinct chemical compositions that were 
well predicted by random forest classification (testing accuracy of 78.9 
%). Below we discuss these findings, the potential drivers of each cluster, 
and implications of this framework for management.

5.1. ESOMs revealed six stream signatures across four large watersheds in 
Texas

Our results show the potential application of pairing ESOMs and k- 
means clustering to large datasets to help inform watershed managers on 
stream quality patterns. When examined spatially across the four wa
tersheds, four of the clusters (1, 3, 5, and 6) demonstrated spatial re
lationships to known watershed characteristics (Fig. 8), while two 

clusters (2 and 4) were distributed more heterogeneously in space and 
are discussed in section 5.3 below.

First, Cluster 1 exhibited chemistry that was dominated by Na+, Cl-, 
and SO4

2- and comprised a homogeneous zone (blue and green). It 
formed the cluster with the largest number of observations that were 
predominately located in the lower main stem of the Pecos river, the 
upper main stem of the Colorado and Brazos rivers, and the upper and 
middle tributaries and main stem of the Red river (Fig. 8; Cluster 1 – 
yellow). These regions include substantial areas of cropland, and large 
bodies of evaporite bedrock outcrops and semi-arid soils containing both 
halite and gypsum (Richter et al., 1991; Richter & Kreitler, 1986). The 
presence of evaporite bedrock outcrops can contribute Na+, Cl-, and SO4

2- 

to streams via flushing from rainfall events in these watersheds. In 
addition, irrigated agriculture and related amendments have been hy
pothesized to contribute Na+ and Cl- to soils and nearby surface waters 
in this region (Kondash et al., 2020; Yurtseven et al., 2018). Further
more, irrigated agriculture in the region relies heavily on extracted 
groundwater which contains higher concentrations of Na+, Cl-, and SO4

2- 

(Bruun et al., 2016).
Second, Cluster 3 had a stream chemistry that was dominated by 

high SO4
2- and Ca2+. When mapped back onto the watersheds, Cluster 3 

occurred on tributaries in the upper portions of all four rivers but was 
most extensive in the upper portion of the Red river (Fig. 8– green). 
While other watersheds contain sandstone, the Red has multiple sub- 
basins with over 50 % sandstone (Fig. S2b). The chemical signature 
here is likely derived from the unique gypsum deposits known to occur 
in the Permian sandstone underlying this region (Clark et al., 2020; 
Slade & Buszka, 1994).

Third, Cluster 5 was marked by samples with higher Ca2+, HCO3
– and 

Mg2+ concentrations. When mapped across Texas, it appeared these 
samples were located along major mapped faults, particularly in the 
Colorado and Red river watersheds (Fig. 8; Cluster 5– orange). These 
samples are located within and surrounding the Llano uplift and the 
Balcones fault zone (Fig. 8). It has been suggested that faults in these 
areas may act as conduits to bring deeper groundwater sources to the 
surface, facilitating local changes in water chemistry (e.g., Ferrill et al., 
2008; Schindel, 2019). For example, existing spring samples from along 
the Balcones fault zone have distinctly higher 234U/238U values 

Fig. 3. Umatrix showing the distance from each node to its neighbors in the ESOM after training (RMSE of 0.40). z represents the maximum distance from a node to 
each of its four neighbors (up, down, right, left) as a proportion (Thrun et al., 2016). The topographic color scales represent the degree of similarity among nodes 
where blues and greens indicate small distances and homogeneous zones and brown and white indicate larger distances and areas that are anomalous (Lerch et al., 
2020). The Umatrix is a toroidal structure that has been unwrapped in this depiction to eliminate the influence of edge effects, with the standard arrangement of a 50 
x 82 node mesh.
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compared to surrounding springs, indicating deeper fluid sources 
(Kronfeld, 1974). The Balcones fault zone has a prolonged tectonic 
history spanning 100′s of millions of years, although it is not tectonically 
active today (Collins, 1993; Ewing, 2005).

Finally, Cluster 6 was distinguished by high Si concentrations and 
occurred predominantly in the lower Red river watershed (Fig. 8– pink). 
This region has distinctly higher MAP than the other regions of the four 
rivers (Fig. 1C). Cluster 6 also within the Colorado and Brazos river 

watersheds, and again these samples are concentrated within the lower 
reaches of each river where lithology is dominated by siliciclastic units, 
and carbonate units are notably absent.

Our overall results support the distinctness of approximately four 
major water chemical classes (as well as two classes that are less well- 
defined by chemical variations) and when examined spatially across 
the four watersheds the chemistry can be discussed in terms of known 
spatial differences in MAP, lithology, and spatial variability in land use.

Fig. 4. Maps showing the distribution of each solute (as the proportion of total composition) across the trained ESOM, whites and yellows indicate lower pro
portional composition, while reds and blacks indicate higher value.
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5.2. Random forests accurately predicted membership of the stream 
signatures using sub-basin characteristics

Random forest classification was shown to be a useful tool in com
bination with ESOM node clustering (Ultsch and Lötsch, 2017; Ultsch 
et al., 2016; Park et al., 2013), and predicted cluster membership with 
an acceptable overall accuracy rate using long-term MAP and lithologic 
and land use classes. Our model performed comparably (78.9 % accu
racy) to other random forest classification applications in hydrology, 
which have been shown to range from 59 % to 90 % (e.g., Johnson et al., 
2024; Baudron et al., 2013; Mobley et al., 2021), and allowed for 
identification of important watershed variables controlling variations in 
river water chemistry (Addor et al., 2018; Hammond et al., 2021; Olson 
and Hawkins, 2012).

By examining the range in SHAP and feature values across each of the 
clusters (Fig. 9), we were able to attribute the critical zone features that 
best predicted each cluster. Overall, clusters where the ESOM had the 
smallest distance between nodes were also those best-predicted by the 
random forests. Samples high in Ca2+, HCO3

– and Mg2+ concentrations 
were the best predicted by the random forest algorithm (i.e., cluster 5 – 
orange). In this region, SHAP values indicate carbonate lithology has the 
most positive contribution to the prediction of cluster five, while the 
feature value revealed the proportion of carbonate rocks exceeds that of 

any of the other clusters (Fig. 9). Cluster 1, 3 and 6 were predicted with 
similar accuracies. SHAP values indicate the presence of evaporites, and 
lack of sedimentary deposits contributed to the highest SHAP values for 
Cluster 3, while greater precipitation, forest cover and a lack of cropland 
contributed the most to the prediction of Cluster 6. Interestingly, Cluster 
1 showed several inverse patterns to that of Cluster 5 and 6, where lower 
precipitation, greater crop cover and a lower concentration of carbon
ates contributed positively to its prediction. Overall, differences in MAP, 
distinct differences in underlying lithology, and vegetation patterns 
which mirror the available amount of water, emerged across the six 
clusters.

5.3. Esom-random forest framework offers a tool for identifying unknown 
controls on stream chemistry

One advantage of using ESOMs compared to more traditional 
multivariate tools such as piper diagrams and principal components 
analysis is the ability to capture non-linear relationships or structures in 
the data (Melo et al., 2019; Thrun et al., 2016). In addition, ESOMs help 
to define biogeochemical groups of large, complex, and highly variable 
data. As discussed above, our analysis revealed six distinct biogeo
chemical groups in these four Texas rivers, which could be predicted by 
simple watershed parameters. Areas where watershed parameters less 

Fig. 5. (a) Umatrix with best matching units colored by cluster membership (k = 6), and (b) silhouette plot showing cluster widths as squared Euclidean distance. 
Red line shows mean cluster silhouette width (0.514).
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accurately predicted the cluster groups (Cluster 2 and 4) may warrant 
further investigation of underlying controls on water chemistry.

Potential explanations of chemistry observed in Cluster 2 and Cluster 
4 are deep brines where reduction has removed SO4

2- increasing the ratio 
of Na+ and Cl- to SO4

2- (McMahon et al., 2016) or by water discharging 
from carbonate aquifers that is not associated with the fault zone, 

respectively (elevated Ca2+ and HCO3–). Other processes that can con
trol water chemistry are large reservoirs and wetlands, which were 
rudimentarily incorporated into our model as open water and swamp/ 
marsh, may explain the challenges in predicting these clusters. Violin 
plots (Fig. 9) reveal that the greatest SHAP values for Cluster 2 were 
linked to a greater degree of open water and land classified as swamp/ 

Fig. 6. Boxplots showing the distribution of composition for all observations assigned to Clusters 1–6. Boxplots indicate the mean, 25th, and 75th percentiles as 
horizontal lines and points show outliers. Boxplot colors indicate clusters as shown on Umatrix.

Fig. 7. (a) Confusion matrix showing performance of random forest algorithm on the testing dataset, where the overall accuracy rate was 78.9%. Green diagonal 
boxes give the proportion of sites, within a given cluster, that were accurately classified. Salmon colored boxes in the same row show the proportion of time sites 
within a given cluster were misclassified into another cluster. For example, Cluster 1 was accurately classified 84% of the time, while 10% of the time, sites in Cluster 
1 were classified as Cluster 2, and 6% of the time sites in Cluster 1 were classified as Cluster 3. For the confusion matrix all rows sum to 1. (b) Mean absolute SHAP 
values of each considered variable explaining the prediction of a given cluster. Larger values indicate the variable contributes more to the prediction and is thus more 
important to the model’s performance. Bars are colored by their general feature class: climate (blue), lithology (gray), and land use land cover (LULC; green). Gini 
impurity is provided in Fig. S11 and the correlation matrix of input features is provided in Fig. S12.
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marsh, yet this was not observed for Cluster 4. Land cover changes such 
as the increase in cropland and impervious surface may also contribute 
to changes in water chemistry. While we were able to account for land 
cover changes between 1985-present, data availability did not support 
analysis of earlier land cover changes. In our study, sub-basins across all 
watersheds have experienced some change in landcover with the 
greatest degree of impervious surface created in the Brazos and Colorado 
river sub-basins and some increase in cropland cover in all but the Red 
river, yet these two land cover types did not emerge as highly important 
in Cluster 2 or 4. Additional monitoring and analysis of different 
watershed characteristics is required to better understand the dominant 
controls on stream chemistry represented by Clusters 2 and 4.

While this work accounts for spatial variability in MAP and lithology, 
and both spatial and temporal variability in LULC, there are additional 
metrics that would be valuable to include in future work. Stream 
discharge and precipitation metrics beyond MAP were not incorporated 
into the model, which could provide insight into the temporal dynamics 
in flowpath variability that contribute to river chemical composition 
(Bush et al., 2023; Warix et al., 2023). Additionally, the included LULC 
and MAP data only captured dynamics from 1985 to present, while our 
stream chemistry data stretch back to 1944, this temporal incongruity 
increases the uncertainty in our models and likely contributes to 

underperformance. However, given that the dominant control on ESOM 
structure was spatial rather than temporal (Fig. S7), the combination of 
machine learning analyses presented above provide a robust framework 
for assessing regional controls on stream chemical composition. Lastly, 
our work hints that some sites exhibit temporal variability in their 
chemical composition and cluster membership; future work could 
leverage the frequency of observations of stream chemistry, LULC, and 
climate measurements to understand temporal variations in stream 
chemistry composition and behavior including interannual and seasonal 
shifts.

6. Conclusions

We present a robust framework for predicting stream chemistry from 
spatially and temporally inconsistent hydrochemical data by leveraging 
emergent self-organizing maps (ESOMs), k-means clustering, and 
random forest classification algorithms. These methods support analysis 
of one-off and disparate time period samples; as such we are able to learn 
from traditionally excluded data that is typically removed due to low 
sampling frequency or temporal irregularity. Our results show that 
water chemistry across Texas can be described using six major classes 
that are generally well-predicted using only a few climate, land use, and 

Fig. 8. Map of observations across the four watersheds showing the ESOM informed k-means cluster membership.
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lithology factors. Important factors in predicting classes were dominated 
by MAP, proportion of land classified as swamp and marsh, and reactive 
lithologies.

Improved understanding of dominant controls on stream chemistry, 
especially using widely available spatial data products, could support 
improved decision making based on fewer observations. For example, 
this type of analysis could show that controls on stream water chemistry 
for given reaches are dominated by underlying lithology and climate 
patterns, while other areas are more directly influenced by land use. This 
information could highlight areas where restoration efforts focused on 
ameliorating land use impacts on water quality have the largest poten
tial benefits. These techniques also allow us to identify areas that are 
more chemically variable or more uncertain and facilitate improved 
sampling protocols to target these areas. For example, our work high
lights areas where management and additional monitoring is needed to 
assess controls on water quality not captured by sub-basin 

characteristics such as climate, land use, and lithology (Clusters 2 and 
4).

Our framework demonstrates significant potential for applying ma
chine learning to explore the relationships between watershed factors 
and stream chemistry, thereby enhancing regional water management 
strategies. Additionally, previous studies utilizing random forest and 
clustering analyses (Bolotin et al., 2023; Johnson et al., 2024b) have 
successfully elucidated large-scale controls on river chemistry, indi
cating that this framework may be adaptable to larger scales. In addi
tion, this study demonstrates machine learning has value not only in its 
stereotypical use as a black-box predictor, but also as a toolkit for un
derstanding physical processes, such as the potential controls of open 
water and swamp and marshes (Cluster 2) or cropland (Cluster 1) on 
stream chemistry across varied lithology. This is consistent with an 
emerging body of literature on interpretable AI, and in particular the use 
of machine learning for knowledge-discovery, in the Earth and 

Fig. 9. SHAP strip plots for each cluster. Each point represents one observation, and the attributes are ordered by overall importance. Positive SHAP values indicates 
the feature contributes towards the prediction of that cluster. Larger SHAP values indicate a greater contribution of the feature toward the prediction. Color ramp 
indicates the normalized feature value with 0 indicating low values (red) and 1 indicating high values (blue). For example, a MAP value of 400 mm would be low, 
while a value of 1600 mm would be high.
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environmental sciences (for reviews and syntheses, refer to e.g., Fleming 
et al., 2021b; McGovern et al., 2019; Nearing et al., 2021; Reichstein 
et al., 2019).

CRediT authorship contribution statement

G.M. Goldrich-Middaugh: Writing – review & editing, Writing – 
original draft, Visualization, Validation, Methodology, Formal analysis, 
Data curation, Conceptualization. K.R. Johnson: Writing – review & 
editing, Visualization, Methodology. L. Ma: Writing – review & editing, 
Funding acquisition. M.A. Engle: Writing – review & editing, Visuali
zation, Validation, Methodology, Formal analysis. S.W. Fleming: 
Writing – review & editing, Methodology, Formal analysis. J.W. Rick
etts: Writing – review & editing, Funding acquisition. P.L. Sullivan: 
Writing – review & editing, Writing – original draft, Visualization, Su
pervision, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

We acknowledge funding support from the National Science Foun
dation (EAR-1933261; EAR-1933259; EAR - 2012796). Any opinions, 
findings, and conclusions or recommendations expressed in this article 
are those of the author(s) and do not necessarily reflect the views of the 
National Science Foundation. The authors would like to thank Lourdes 
Moreu for her support in initial site selection and project setup. We are 
grateful for the thoughtful feedback from Florian Lerch, Nuria Andreu 
Garcia, and Jennifer Herrera. Finally, we would like to acknowledge the 
thoughtful and constructive comments from the three reviewers that 
made this manuscript stronger.

Data Availability Statement

Stream water quality data can be accessed from the USGS Water 
Quality Portal (https://www.water-qualitydata.us/), rock types can be 
found at the Texas Water Development Board (www.twdb.texas.gov), 
comprehensive land use data are from the Global Land Cover Change 
Dataset (https://gee-community-catalog.org/projects/glc_fcs/), annual 
precipitation data can be accessed from PRISM (https://prism.oregons 
tate.edu/). Codes and input files used for analysis can be found on 
Zenoto (Johnson, 2025).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2025.133319.

Data availability

All code is available on Gi

References

Addor, N., Nearing, G., Prieto, C., Newman, A.J., Le Vine, N., Clark, M.P., 2018. 
A Ranking of Hydrological Signatures Based on Their Predictability in Space. Water 
Resour. Res., i 8792–8812. https://doi.org/10.1029/2018WR022606.

Aitkenhead-Peterson, J.A., Nahar, N., Harclerode, C.L., Stanley, N.C., 2011. Effect of 
urbanization on surface water chemistry in south-central Texas. Urban Ecosystems 
14 (2), 195–210. https://doi.org/10.1007/s11252-010-0147-2.

Allan, J.D., 2004. Landscapes and Riverscapes: The Influence of Land Use on Stream 
Ecosystems. Annu. Rev. Ecol. Evol. Syst. 35 (1), 257–284. https://doi.org/10.1146/ 
annurev.ecolsys.35.120202.110122.

Aas, K., Jullum, M., Løland, A., 2021. Explaining individual predictions when features 
are dependent: More accurate approximations to Shapley values. Artif. Intell. 298, 
103502.

Baronas, J. J., Torres, M. A., Clark, K. E., & West, A. J. (2017). Mixing as a driver of 
temporal variations in river hydrochemistry: 2. Major and trace element 
concentration dynamics in the Andes-Amazon transition. Water Resources Research. 
https://doi.org/10.1111/j.1752-1688.1969.tb04897.x.
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