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Understanding surface water quality and managing river systems that span a variety of climatic, lithology, and
land cover types requires regional data analysis approaches. At this scale, spatial and temporal variations and
irregularities in publicly available stream chemical data limit the application of many traditional techniques for
evaluating controls on water quality. This work uses publicly available measurements of major ion concentra-
tions (>31,000 solute measurements from 670 sites; 1944-2018) from the Colorado, Brazos, Red, and Pecos
Rivers in Texas to parse out controls on stream water chemical variations across space. We used an emergent self-
organizing map (ESOM) to identify structures in the data. K-means clustering was then performed on the ESOM
structure (e.g., proportional node weights for each solute) and six clusters were most optimal for characterizing
distinct spatial patterns in stream chemistry. For example, a unique chemical signature marked by elevated
concentration of magnesium relative to calcium and bicarbonate was observed over the Balcones fault zone and
elevated silicon concentrations were observed in the wetter, more weathered eastern portion of Texas where
forest cover is more dominant. A random forest classification model was used to predict cluster membership from
sub-basin characteristics and had an overall accuracy rate of 78.9 %. Mean annual precipitation was found to be
the most important variable for distinguishing between clusters. The melding of ESOM, clustering, and random
forest machine learning approaches reveals complex hydrogeochemical processes, informs regional watershed
management, and pinpoints areas needing further study.

Plain Language Summary: Water quality measurements are geographically widespread across the United States
but are irregularly distributed in space and time, which can make it difficult to use them with traditional data
analysis approaches for understanding watershed processes. Here, we used machine learning to examine data
from four large watersheds in Texas to understand the influence of different land use, geologic, and climate
factors on water quality. The four rivers cross a range of rock types, land uses, and precipitation regimes and have
different chemical compositions. We found tens of thousands of observations from this large area could be
summarized using only six chemical groups and that there were strong relationships between watershed char-
acteristics and water chemistry. Overall, these techniques were effective in capturing major spatial water quality
trends across these watersheds and could be used to target watershed management and monitoring efforts.

1. Introduction

River chemistry in regional scale watersheds is of crucial importance
for managing environmental and anthropogenic water uses as well as
understanding global biogeochemical cycling (Dupré et al., 2003; Gail-
lardet et al., 1999). At the regional scale, a critical zone approach that
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examines the integrated processes from the top of the canopy to the
depths of circulating groundwater (National Research Council, 2012)
can help elucidate the network of complex and heterogeneous factors
that control stream water chemistry. In the United States (US) and
Europe large bodies of publicly available data from various agencies are
widely available but are challenging to use in scientific investigations.
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Their irregularity in space and time limits applications of many tech-
niques such as the assessment of concentration-discharge relationships,
or application of physically-based hydrologic models that are commonly
applied at smaller scales with more detailed sampling (e.g., Zhi et al.,
2024; Stewart et al., 2022). However, these large-scale datasets contain
information that can improve our understanding of how critical zone
processes influence the dynamics of large river systems (e.g., Jankowski
et al., 2023; Johnson et al., 2024a; Zhi et al., 2023) and can be used to
improve further sampling efforts and water quality management (Wai
et al., 2022).

Stream chemical composition can be used to understand structure,
function, and processes occurring within watersheds draining various
environments (Li et al., 2021; Singha et al., 2024). However, in large and
complex watersheds, even where there are extensive bodies of publicly
available data and hypothesis-driven knowledge, such as in the Mis-
sissippi and Chesapeake Bay river watersheds in the US (Giri, 2021),
subsurface, land cover, and climate processes that influence stream
water composition are not fully understood (Li et al., 2024). Lithology
and flow regime have been identified as two of the primary drivers of
stream chemical composition at the regional scale (Baronas et al., 2017;
Gaillardet et al., 1999; Godsey et al., 2009; Kirchner, 2009; Torres et al.,
2017). Often land use and climate also emerge as important influences
across a range of scales (Allan, 2004; Shi et al., 2017). Particularly,
climate patterns control the degree of chemical weathering, recharge,
and therefore solute transport at local to regional scales (Brantley et al.,
2017). Land use and land cover (LULC) characteristics also influence
many hydrologic factors including infiltration rates, timing of peak
discharge, erosion, and surface runoff volumes (Brooks et al., 2012;
Keen et al., 2023; Sadayappan et al., 2023). Additionally, LULC can act
as point and non-point source inputs of solutes, collectively these factors
impact water quality (e.g., fertilizers, deicers; Li et al., 2024).

Multivariate techniques, including machine learning methods, are
necessary to understand and depict complex hydrochemical relation-
ships within the critical zone. Applications of machine learning to crit-
ical zone science have facilitated greater understanding of the influence
of watershed characteristics on flow metrics across space and through
time (Addor et al., 2018; Hammond et al., 2021; Wlostowski et al., 2021;
Xu Fei & Harman, 2020). Applying these techniques to publicly avail-
able, noisy and spatiotemporally complex data could illuminate known
and additional relationships between stream water quality and critical
zone factors (Fleming et al., 2019; Melo et al., 2019; Nearing et al., 2021;
Zhi et al., 2023). Studies of variations in major ion chemistry have
revealed aquifer structure, contaminant flow paths, and groundwater
solute sources using machine learning techniques including self-
organizing maps (SOMs), also known as a Kohonen neural network
(Chen et al., 2018; Haselbeck et al., 2019; Sahour et al., 2020). SOMs are
an unsupervised neural network algorithm that converts non-linear re-
lationships in large, high-dimensional datasets into a two-dimensional
grid of nodes to facilitate visual assessment or further quantitative
analysis, and can augment, improve, or outperform other techniques
such as principal components analysis and hierarchical cluster analysis
(Chavoshi et al., 2012; Kohonen, 2001; Wehrens & Buydens, 2007).
They are useful in reducing dimensionality while preserving key char-
acteristics, or topology, of the input datasets (Haselbeck et al., 2019;
Melo et al., 2019; Sinha et al., 2010). SOMs have advantages over other
multivariate techniques in that they are highly flexible (can capture
nonlinear relationships) and rely on fewer assumptions of the input data
(i.e., non-standard distribution). Emergent Self-Organizing Maps
(ESOMs) are SOMs constructed using many nodes (n > 4,000) such that
emergent structures in high-dimensional data are visible (Thrun et al.,
2016; Ultsch, 1999). While almost identical to SOMs, ESOMs have the
ability to organize intricate datasets and delineate clusters with complex
geometries due to their capacity to accommodate hundreds to thousands
of nodes (Ultsch, 2007). When observations are matched to nodes on the
ESOM, each node can be viewed as a proto-cluster, where each obser-
vation belongs to the cluster (node) with the highest degree of similarity
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(Vesanto et al., 2000). This proto-clustering can be applied as the first
step in a two-step clustering process where the ESOM nodes are then
clustered using an additional method such as k-means. This two-step
clustering process reduces the influence of outlying data points and
simplifies structures in the data to highlight overarching patterns
(Vesanto et al., 2000). Thus, the application of a two-step clustering
process holds the promise of providing the flexibility and adaptability to
elucidate patterns in water quality data collected irregularly in space
and time.

Supervised machine learning algorithms such as random forests and
extreme gradient boosting (XGBoost) models can then be applied to
these emergent water quality patterns or clusters generated from ESOMs
to understand the possible factors that control a particular chemical
signature (Bolotin et al., 2023; Nasir et al., 2022; Sadayappan et al.,
2022; Yang & Olivera, 2023). The random forest algorithm consists of an
ensemble of decision trees generated using bootstrapped subsamples of
the dataset. Random forests are a flexible multivariate technique that is
appropriate for analyzing multiple predictor variables and nonlinear
relationships and has been widely applied in hydrologic sciences (Addor
et al., 2018; Brown et al., 2014; Fleming et al., 2021a; Hammond et al.,
2021; Konapala & Mishra, 2020; Oppel & Schumann, 2020; Singh et al.,
2019). Random forest classification can be used to predict cluster
membership using watershed factors (e.g., lithology, land cover), and
assess the importance of each watershed factor in differentiating be-
tween clusters. The success in cluster membership prediction indicates
the overall quality of model training, uniqueness of the cluster attri-
butes, and the strength of the connection between stream chemistry and
the landscape factors of interest. The importance of each watershed
factor within the random forest algorithm gives an indication of the
strength of the relationship between that attribute and stream chemistry
in the watersheds of interest.

Detailed analyses of water quality data using multivariate and ma-
chine learning approaches could provide a pathway for modeling critical
zone structure and function at a regional scale and be used to evaluate
and target large-scale sampling campaigns to areas where hydro-
chemical behaviors are not well understood. Large bodies of water
quality data have been collected over the preceding decades and are now
easily accessible. These data have been collected for myriad purposes
and are therefore spatially and temporally heterogeneous and may not
be well-suited for traditional hydrochemical analyses. However, pat-
terns and relationships can be identified from large scale, publicly
available datasets to understand water quality responses to critical zone
characteristics. Therefore, we investigate hydrochemical data at a
regional scale to address the research question: To what degree can
patterns in surface water chemistry across large regions be identified
based on critical zone characteristics using emergent self-organizing
maps (ESOMs), k-means clustering, and random forest classification,
and can these tools shed light on water quality management strategies?

In particular, we investigate the relationships between major ion
chemistry of four major rivers in Texas; the Colorado, Brazos, Red, and
Pecos rivers. These four rivers run roughly in parallel across low-relief
environments which cross precipitation, lithology, and LULC gradi-
ents. Previous analysis suggests that much of the variation in stream
chemical composition in the Colorado river, Texas, was controlled by
interactions between underlying lithology and processes impacting flow
paths and residence times (including climate and LULC factors; Gold-
rich-Middaugh et al., 2022). Studies in the region have also shown that
urbanization, especially in large metropolitan areas within these wa-
tersheds, has impacted surface and groundwater quality (Aitkenhead-
Peterson et al., 2011). Other land uses in the region include widespread
irrigated agriculture, pastures and grazing, and oil and gas production in
the Midland and Eagle Ford basins (Jiang et al., 2022) and along the
Colorado river (Goldrich-Middaugh et al., 2022), which may impact
water quality and quantity. Additionally, the region is sensitive to the
impacts of a changing climate, with water resources projected to become
scarcer and decline in quality as the population continues to grow and
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water demand increases (Harwell et al., 2020; Jager et al., 2015). Thus, 2. Site Description

the large, publicly available water chemistry datasets from these four

watersheds may help us understand the critical zone controls on stream The Brazos, Colorado, Pecos, and Red are four adjacent rivers that
chemistry. run roughly parallel across Texas with watershed areas extending into

New Mexico, Oklahoma, and Louisiana (Fig. 1). Each river has a
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Fig. 1. Maps showing A) Sampling point locations colored by tributary position and mapped faults including the Balcones Fault Zone, B) Land use and land cover
data at 30 m resolution from 2019, C) Mean annual precipitation (PRISM) in mm from 1985 to 2019, and D) Simplified lithology class. For reference of each site to
the contributing tributaries see Fig. S1. E) Depiction of the number of observations for any given year in each of the four watersheds.
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watershed area of over 100,000 km? and a main-stem river length of
over 1,300 km (Table 1). The rivers flow across diverse lithologies, with
geologic units oriented roughly perpendicular to flow. Climate, LULC,
and lithology across the watersheds set the stage for spatially contrasting
chemical compositions. A total of 670 surface water sampling sites
across these watersheds were accessed using the National Water Quality
Monitoring Council water quality portal (WQP).

2.1. Land use and land cover

Land use varies roughly perpendicular to flow directions, particu-
larly across the Colorado, Brazos, and Red river watersheds. The west-
ernmost portion of these watersheds and most of the Pecos River
watershed are dominated by barren and grass/shrub cover (Fig. S2). The
headwaters of the Colorado, Brazos, and Red rivers also support large
swaths of agriculture. Forested land covers the central reaches of these
watersheds and the Pecos headwaters and western most section. Larger
portions of developed area occur closer to the outlets of the Colorado
and Brazos rivers surrounding Houston and Austin (Fig. 1B). The density
distribution of sites across these landcover types for each watershed can
be found in the supplemental material (Fig. S2). Access to LULC data
between 1985 and 2022 (see methods), show that across the sub-basins
in the four watersheds the LULC change in any given land cover type
ranged from < 1 % to nearly 40 % (Fig. S3), with the largest increases
observed for impervious surfaces in the Brazos river watershed (38 %),
while the largest decreases were observed for shrub and grass in the
Pecos river watershed (31 % decline) and forest across all four water-
sheds (19-25 % decline). Over the same period the sub-basins in the
Brazos, Colorado, and Pecos watersheds showed a general increase in
cropland, while the Red showed a decline. The inverse pattern was
generally observed for grass and shrub land. Finally, both the Brazos and
the Colorado river watershed showed some degree of increase in the
amount of impervious surface (Fig. S3).

2.2. Climate

The western portion of the study area, where a greater density of sites
in the Pecos are located, is dominantly semi-arid receiving approxi-
mately 300 mm of precipitation per year (Fig. 1, Fig. S3). Mean annual
precipitation (MAP) increases to the east until the Gulf Coast, which
receives approximately 1,800 mm of precipitation per year (Fig. 1C),
particularly in the Red River. These regional climate patterns strongly
influence the availability of surface water resources and the distribution
of land cover. The Red river watershed encompasses the largest climatic
gradient and receives the highest MAP in the study area near its outlet
(Fig. 1C) where the Pecos river watershed is the most homogeneous in
terms of climate and receives little precipitation along its entire length.
The Colorado and Brazos watersheds receive MAP with intermediate
gradients of the four watersheds.

Table 1

Summary of watershed characteristics and available data for the Brazos, Colo-
rado, Pecos, and Red Rivers. Complete cases indicate the observations where all
solutes were present for the analysis. Mean observations indicates the number of
samples collected on average at a site in each watershed.

Brazos Colorado Pecos Red
Complete Cases: 8,980 5,441 4,249 12,654
Observations
Sites 153 112 92 313
Mean Observations per 59 49 46 40
Site
Watershed Area 115,565 103,340 115,000 169,900
km? km? km? km?
River Length 1,352 km 1,387 km 1,490 km 2,189 km
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2.3. Lithology

Texas exposes a wide variety of lithologic units that span more than a
billion years of geologic time. Mesozoic and Cenozoic sedimentary rocks
form linear belts that trend SW-NE and become progressively younger
towards the Gulf of Mexico (Fig. 1D; Collins, 1993). This pattern is
interrupted by exposures of Proterozoic igneous and metamorphic rock
of the Llano uplift in central Texas. Most of the recent tectonic activity is
concentrated along the western edge of Texas, although the Balcones
fault zone sweeps NE across the state and crosses the watersheds of in-
terest in this study (Fig. 1A). The Pecos river (westernmost watershed)
has large surface expressions of carbonates in the northern portion of the
watershed and evaporites near the center. Small areas of igneous-
metamorphic rock are present in the extreme north and south. The
Colorado river watershed has smaller areas of evaporites in the head-
waters with large portions of the central reaches dominated by car-
bonates. The Brazos river is dominantly covered by sedimentary units of
varying textures underlain by carbonate rocks which show surface
expression in the central reaches of the watershed. The Red river is also
dominantly covered by sedimentary units with some large areas of
evaporites and gypsum within Permian sandstone and surface expres-
sion of the underlying carbonates. Additionally, coal dominated areas
are present in the lower-middle reaches of the Red river (Fig. 1D). The
density distribution of sites across these lithologies for each watershed
can be found in the supplemental material (Fig. S2).

3. Methods
3.1. Data Collection and Processing

3.1.1. Hydrologic data

All water chemistry data were obtained using the water quality
portal (WQP) R package dataRetrieval to access all chemical measure-
ments within the Pecos, Colorado, Brazos, and Red river watersheds (De
Cicco et al., 2018). This dataset included 31,324 measurements of
alkalinity as HCO3, K+, Na™, Mg?*t, SO%, Ca2*, CI', and Si collected at
670 sites between 1944-2021 (Fig. 1A). Stream discharge was not
available at each of the sites, and thus stream discharge was not included
in the analyses. Water chemistry data were used for the development of
the ESOM. The water quality data were spatially and temporally irreg-
ular with a minimum of one and a maximum of 39 samples collected at
each site per year. Of the sites included in our dataset, 91 have at least
100 total samples collected over the period of record and 175 sites have
at least 50 observations (see Fig. S4 for the distribution of observation
per site). Measurements were filtered to include sites where all solutes
were measured on the same date (termed complete cases). Samples
included in analysis were assumed to be representative of major con-
stituents and free of significant analytical error if they had a low charge
balance error (< 10 %; Godsey et al., 2009; Giiler et al., 2002). Samples
were transformed into compositional data by converting measurements
to meq/L and calculating the contribution to the overall charge of the
sample. Observations were then centered to a mean of zero and unit
variance so that parameters with larger magnitudes did not dominate
the training of the ESOM. Piper diagrams of these data show that while
latitude (proxy for aridity) plays a role in water chemistry patterns
(Fig. S5), nonlinearity in the data warrants the use of machine learning
and clustering algorithms.

3.1.2. Spatial data

The contributing area for each sampling point (termed sub-basin)
was delineated using the NASA Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) digital elevation model (30 m
resolution) (NASA/METI/AIST/Japan Spacesystems and U.S./Japan
ASTER Science Team, 2019). Sub-basin delineation was conducted using
ArcGIS Pro 2.9 (ESRI, 2021) functions. Flow directions were generated
using the D8 method in which flow is routed to one of eight neighboring
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cells selected by calculating maximum downbhill steepness (Qin et al.,
2007). Next, flow accumulation was calculated based on the flow di-
rection raster with zones of high accumulation representing stream
channels. Water chemistry sampling points were used as pour points and
were snapped to nearest zones of flow accumulation with a maximum
snapping threshold. Contributing areas for each sampling point were
then delineated using the watershed tool. Snapping of pour points and
delineation of watersheds was conducted iteratively using a range in
maximum snapping distances, 0.005-0.25 degrees, to obtain the
appropriate delineation. We verified the delineation of each sampling
point visually. Results were assessed for goodness of fit with reference
measurements such as contributing areas referenced for USGS stations,
where available. This approach was employed to ensure that summa-
rized characteristics were site-specific for each sampling point, rather
than summarized at a sub-watershed scale such as the National Hy-
drography Dataset (NHD) HUC 12 subbasins or similar. A variety of
spatial datasets were employed to examine factors influencing stream
chemistry at each point within the watershed. Lithologic data was ob-
tained from the state-level preliminary integrated geologic map data-
bases for the United States for Texas, Oklahoma, Arkansas, and
Louisiana (Stoesser et al., 2007). Rock types were merged to convey
major classes (i.e., carbonates, sandstone, mudstone, etc.; Schweitzer,
2011; Texas Water Development Board — https://www.twdb.texas.
gov). Comprehensive land use data are from the Global Land Cover
Change Dataset (GLC-FCSD 30; Liu et al., 2023; Zhang et al., 2024) that
documents land use change across seven major land use‘ classes from
1985 to 2022 at a 30-meter resolution. This data product provides land
cover data every five years from 1985 to 2000, annually thereafter. As
such we set all samples with dates at or prior to 1985 equal to the 1985
land cover, we then applied a linear interpolation using the five-year
data (e.g., 1985-1990) for every year between 1985-2000, we then
used the annual data thereafter in the model. Land cover types were then
merged to convey major classes. Annual precipitation data was accessed
from PRISM (PRISM Climate Group, 2014) using the USGS GEODATA
portal and provides gridded estimates of annual precipitation at the 4
km scale. Mean annual precipitation across the study area was calcu-
lated from the annual datasets for 1985-2019 (Fig. 1C), thus over-
lapping with the same period of record as LULC. Average effective
precipitation (i.e., precipitation — evapotranspiration) was calculated for
the upstream contributing area of each sampling point. Lithology and
land use classes were expressed as percent cover for the contributing
area upstream of each sampling point.

3.2. Machine learning analyses

We used stream chemical measurements of eight major solutes across
nearly 32,000 observations from 670 distinct geographic sampling
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locations to develop an ESOM, whose structure was then clustered using
K-means. Finally, we used sub-basin characteristics to predict cluster
membership using random forest classification. Below we provide more
details on this machine learning framework.

3.2.1. Emergent Self-Organizing maps ESOMs

We used an ESOM to examine the spatial and temporal structure of
stream chemical observations. ESOMs were constructed with toroidal
structure and 50 x 82 nodes for a total of 4,100 nodes using the R
package Umatrix (Lerch et al., 2020; Fig. 2). The ESOM nodes were
initialized with random samples selected from a normal distribution
around the mean of the data. A gaussian neighborhood function was
used, the search radius was initiated at 24 nodes and decreased linearly
to 1, and the learning rate was initiated at 0.5 and decreased linearly to
0.1. The ESOM was trained on 100 epochs where each epoch represents
one presentation of all observations to the map (Sinha et al., 2010;
Vesanto et al, 2000). The distance between the observation vectors and
each of the node vectors was compared, where a vector represents the
normalized, compositional chemistry for each observation. The obser-
vation was then matched to the node vector with the minimum distance
(Vesanto et al, 2000). Thus, each node can represent more than one of
the nearly 32,000 samples and multiple sites based on similarity in
chemistry. Toroidal structures were utilized to eliminate any edge ef-
fects, where the neurons at the edges of the map have much fewer ob-
servations than those in the center, by creating a cyclical structure in the
output SOM (Thrun et al., 2016). The resulting unified distance matrix
(Umatrix) was then plotted and assessed for stability. Umatrices for
ESOMs depict the sum of the distance for each weight between each
node and its neighbors, highlighting the topology of the dataset wherein
valleys show zones of high similarity and peaks show zones of higher
dissimilarity (Thrun et al., 2016; Ultsch, 1999). Stability of the Umatrix
was assessed by examining root mean square error (RMSE) between
each observation and its “BestMatch”, which was the node with the
smallest distance to a given observation, as described above. The
acceptability of a RMSE value depends on the range of input data; thus, a
normalized RMSE (RMSE divided by the range of population data) that
is close to 0 would indicate a good model fit, while a value closer to 1
indicates a poor fit.

3.2.2. Clustering

Clustering of ESOM outputs assists in interpretation of the map
output and further analysis of differences in chemical composition
across map regions (Gamble & Babbar-Sebens, 2012; Haselbeck et al.,
2019; Melo et al., 2019). Cluster analysis is also a powerful tool for
identifying spatial and temporal gradients and their drivers at the
regional scale (Brown et al., 2014). Final node weights (each a vector of
dimension 8x1, where each weight in the vector represents one solute)

Nodes are
generated (50X82

structure, 4,100

Next observation
is presented to the
map

Nodes are
rearranged based
on similarity and
weight vectors are
recalculated

Input data is
presented to the
ESOM

Observation is
matched to nodes
with most similar

ights

Weights of each
node are
recalculated

Fig. 2. Steps for training of emergent self organizing maps (ESOM).
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from the ESOM were clustered using the k-means clustering algorithm
using R package stats (R Core Team, 2021). Using the node weights
rather than the raw data for k-means clustering reduced noisiness in the
dataset while reflecting key properties of the underlying data (Vesanto
et al., 2000). K-means clustering partitions observations into k number
of clusters, where k is set by the user. The optimal k value was selected
using a scree plot of within sum of squares, which is the sum of the
variance from each observation to its centroid (Fig. S9). The structure of
the resulting clusters was analyzed using silhouette plots showing the
distinctness of each cluster. Silhouette plots were constructed using the
squared Euclidean distance between each observation and others within
the same cluster. Values closer to 1 show cluster similarity, while values
closer to —1 indicate disagreement in cluster membership. A site’s
cluster membership was also displayed across the four river watersheds
to explore spatial patterns. Here a site could be displayed more than
once if it fell into more than one cluster over its period of record.

3.2.3. Random forests and SHapley Additive exPlanations (SHAP)

A random forest classification model was used to predict the cluster
membership of each observation based on mean annual precipitation,
lithology, and LULC using the R package randomForest (Liaw and
Wiener, 2002). The model was trained on a random split of 70 % of the
data and tested on the other 30 % of the data. Random forests models
can be tuned to improve model performance by altering the number of
trees generated in each forest (ntree) and the number of parameters
evaluated at each split (mtry). The model was tuned to minimize the out-
of-bag error (OOB) on the training data. Tuning began by searching for
the optimal mtry value, the model was initialized with the default mtry
(square root of number of input variables) and then integer values on
either side of the default mtry were tried. A new value of mtry was only
retained if improved the OOB error by 0.01 %. During mtry tuning, ntree
was set to 500 trees. Once the optimal mtry value was found, ntree
values between 1 and 1000 were tested using the optimal mtry value
(Fig. S1) and the smallest number of trees where the OOB was minimized
and stable was selected. Due to the unequal distribution of observations
in each cluster, a stratified sampling method was used to train the
random forests model on an equal number of observations from each
cluster. The number of observations in the smallest cluster was used to
set the sample size of the number of training observations. Observations
were sampled with replacement. Model performance was evaluated
using the accuracy of cluster membership prediction on the test dataset.

To interpret the importance of each feature to the cluster member-
ship predictions of our random forest, we used SHapley Additive ex-
Planations (SHAP) values, a permutation method that relies on game-
theory to provide consistent and locally accurate feature importance
measures (Shapley 1953; Lundberg and Lee, 2017; Merrick et al., 2020).
SHAP values are distinct in their ability to quantify feature importance
within subsets of the data. This contrasts with other permutation
methods, which typically provide feature importance information based
solely on the average prediction across the entire dataset (Aas et al.,
2021; Lundberg et al., 2019). SHAP values can indicate the degree to
which input features (e.g., mean annual precipitation) contribute posi-
tively or negatively to the random forest model’s prediction, in this case
the tendency of a given sample to be assigned to one of the clusters. To
understand the overall measure of a given feature’s importance, we
averaged the absolute value of the SHAP values for a given feature across
all clusters. To understand how a feature’s values (e.g., MAP at a site)
contributed to its corresponding SHAP values we constructed strip plots
to examine potential dependencies.

4. Results
4.1. ESOM

The trained Umatrix achieved an RMSE of 0.4 (normalized value of
0.03) between each node and its BestMatch (Fig. S6). Continuous low-
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lying valleys (blue and green) in the ESOM-derived topology indicates
zones of similar water chemistry, while ridgelines of brown and white
indicate strong differences in water chemistry and help to differentiate
distinct chemical signatures across the four watersheds (Fig. 3).

The distribution of solutes across the ESOM (Fig. 4) reveals trends
and structure present in the ESOM that become obscured in the overall
Umatrix (Fig. 3). In the solute maps, white and yellow colors represent
generally lower compositional concentrations, while orange and red
colors represent high compositional concentrations (Fig. 4). The most
homogeneous zones in the overall Umatrix were located on the edges of
the rendered 2-D map of the toroidal shape (Fig. 3) and were concurrent
with high Na™, CI', and SO7 and low HCO3, and Ca®* compositional
concentrations (displayed on individual maps; Fig. 4). Other solutes K,
Mg?", and Si have smaller spatial extents with high values occurring
dominantly in the center (Mg2+) and at the upper (Si, K7) and lowermost
extzents of the center (K") which overlap with areas of high HCO3 and
Ca*t.

4.2. Clustering

Six clusters emerged as the optimal number of clusters to minimize
the within sum of squares distance from each observation to its cluster
centroid and fit the heterogenous structure of the ESOM (Fig. S9). All
clusters show a positive average silhouette width, with an average
silhouette width of 0.514, which is deemed satisfactory given a silhou-
ette width of 1 indicates each data point is unlikely to be assigned to
another cluster, while values closer to —1 indicates each data point is
misclassified (Haselbeck et al., 2019; Oppel and Schumann, 2020). Fig. 5
shows the cluster membership of ESOM nodes projected onto the trained
ESOM. Cluster 1 (yellow, n = 13,817) has the largest number of obser-
vations and occurs on the sides of the map. Cluster 2 (light blue, n =
5,834) occurs mainly on the right side of the map, with another grouping
on the bottom left side of the map. Cluster 3 (green, n = 4,627) occurs on
the upper left side of the map. Cluster 4 (dark blue, n = 3,074) and
cluster 6 (pink, n = 1,255) occur in the center of the map near the top
and bottom. Lastly, cluster 5 (orange, n = 2,717) occurs in the middle of
the map. Evaluating solute distributions across the clusters aids in un-
derstanding dominant chemical makeups of observations within a given
cluster (Fig. 6). In general, Cluster 1 shows high CI', Na*, and S0%;
Cluster 2 shows high Na* and Cl” but lower SO than Cluster 1; Cluster 3
shows high SO?{ but low in Cl" and Na*; Cluster 4 is high in HCO3 and
Ca?*; Cluster 5 is dominated by Mg2", and Cluster 6 shows observations
high in Si. When the temporal characteristics of the nodes within each
cluster were evaluated (Fig. S7), neither mean month nor mean decade
coincided with any given cluster indicating clusters do not represent
seasonal nor long term temporal variability in observations.

Observations from the same site could be assigned to more than one
cluster over their period of record. Thus, we evaluated cluster mem-
bership over time at the sites to understand a sites stability. Here we
selected sites with at least 10 years of data and at least 6 observations per
year, which resulted in 90 unique sites of the original 670 (Fig. S8). We
found that 9 sites had membership in one cluster, 28 sites had mem-
bership in two clusters, 23 sites had membership in 3 clusters, 23 sites
had membership in 4 clusters, and 7 had membership in 5 clusters.
However, when we evaluated the proportion of time sites spent in each
cluster, we found that 44 % of sites spent at least 90 % of their time in
their modal cluster, and 83 % of sites spend at least 50 % of their time in
their modal cluster. This suggest that while sites generally have one
dominant chemical composition, they can change over time though the
patterns in cluster membership for the 90 sites with enough data do not
show systematic changes over time (Fig. S8).

4.3. Random forest classification

Random forest classification was applied to the dataset using MAP,
lithologic classes, and LULC classes from each sub-basin to predict
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Fig. 3. Umatrix showing the distance from each node to its neighbors in the ESOM after training (RMSE of 0.40). z represents the maximum distance from a node to
each of its four neighbors (up, down, right, left) as a proportion (Thrun et al., 2016). The topographic color scales represent the degree of similarity among nodes
where blues and greens indicate small distances and homogeneous zones and brown and white indicate larger distances and areas that are anomalous (Lerch et al.,
2020). The Umatrix is a toroidal structure that has been unwrapped in this depiction to eliminate the influence of edge effects, with the standard arrangement of a 50

x 82 node mesh.

cluster membership. The optimal performance of the model occurred
with a ntree value of 500 and a mtry value of 1 (Fig. S10) and accurately
classified sites into their clusters 78 % of the time. Within-cluster error
rates varied across classes with cluster 5 having the highest accuracy
rate (89 %), and cluster 2 having the lowest accuracy rate (61 %) (Fig. 7,
green boxes). Assessment of variable importance conducted using the
SHAP values showed that MAP was the most important predictor vari-
able. This was followed by the percent of marsh and swamp land, then
evaporite, mudstone and carbonate lithologies (Fig. 7).

5. Discussion

The application of multiple machine learning methods is improving
our understanding of controls on stream and groundwater chemistry at a
range of scales (Haselbeck et al., 2019; Melo et al., 2019; Nguyen et al.,
2015; Vesanto et al., 2000). When paired with clustering algorithms and
random forest classification, ESOMs can help to identify major critical
zone drivers of hydrogeochemical processes (Addor et al., 2018; Ham-
mond et al., 2021). Here we applied these techniques to regional scale
watersheds, focusing on four parallel rivers across Texas with long-term,
temporally and spatially variable hydrochemical datasets and their
associated spatial attributes (e.g., MAP, lithology, and LULC). Even
given spatial and temporal heterogeneity in the 60-year dataset with
over 31,000 observations collected from an area spanning 500,000 kmz,
the multivariate structures identified in the ESOM and k-means clus-
tering led to six groups with distinct chemical compositions that were
well predicted by random forest classification (testing accuracy of 78.9
%). Below we discuss these findings, the potential drivers of each cluster,
and implications of this framework for management.

5.1. ESOM:s revealed six stream signatures across four large watersheds in
Texas

Our results show the potential application of pairing ESOMs and k-
means clustering to large datasets to help inform watershed managers on
stream quality patterns. When examined spatially across the four wa-
tersheds, four of the clusters (1, 3, 5, and 6) demonstrated spatial re-
lationships to known watershed characteristics (Fig. 8), while two

clusters (2 and 4) were distributed more heterogeneously in space and
are discussed in section 5.3 below.

First, Cluster 1 exhibited chemistry that was dominated by Na™, CI,
and SOF and comprised a homogeneous zone (blue and green). It
formed the cluster with the largest number of observations that were
predominately located in the lower main stem of the Pecos river, the
upper main stem of the Colorado and Brazos rivers, and the upper and
middle tributaries and main stem of the Red river (Fig. 8; Cluster 1 —
yellow). These regions include substantial areas of cropland, and large
bodies of evaporite bedrock outcrops and semi-arid soils containing both
halite and gypsum (Richter et al., 1991; Richter & Kreitler, 1986). The
presence of evaporite bedrock outcrops can contribute Na*, CI', and SO3
to streams via flushing from rainfall events in these watersheds. In
addition, irrigated agriculture and related amendments have been hy-
pothesized to contribute Na' and CI to soils and nearby surface waters
in this region (Kondash et al., 2020; Yurtseven et al., 2018). Further-
more, irrigated agriculture in the region relies heavily on extracted
groundwater which contains higher concentrations of Na*, CI’, and SO7
(Bruun et al., 2016).

Second, Cluster 3 had a stream chemistry that was dominated by
high SO and Ca?*. When mapped back onto the watersheds, Cluster 3
occurred on tributaries in the upper portions of all four rivers but was
most extensive in the upper portion of the Red river (Fig. 8- green).
While other watersheds contain sandstone, the Red has multiple sub-
basins with over 50 % sandstone (Fig. S2b). The chemical signature
here is likely derived from the unique gypsum deposits known to occur
in the Permian sandstone underlying this region (Clark et al., 2020;
Slade & Buszka, 1994).

Third, Cluster 5 was marked by samples with higher Ca®*, HCO3 and
Mg?" concentrations. When mapped across Texas, it appeared these
samples were located along major mapped faults, particularly in the
Colorado and Red river watersheds (Fig. 8; Cluster 5- orange). These
samples are located within and surrounding the Llano uplift and the
Balcones fault zone (Fig. 8). It has been suggested that faults in these
areas may act as conduits to bring deeper groundwater sources to the
surface, facilitating local changes in water chemistry (e.g., Ferrill et al.,
2008; Schindel, 2019). For example, existing spring samples from along
the Balcones fault zone have distinctly higher 2%4U/?%®U values
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Fig. 4. Maps showing the distribution of each solute (as the proportion of total composition) across the trained ESOM, whites and yellows indicate lower pro-

portional composition, while reds and blacks indicate higher value.

compared to surrounding springs, indicating deeper fluid sources
(Kronfeld, 1974). The Balcones fault zone has a prolonged tectonic
history spanning 100’s of millions of years, although it is not tectonically
active today (Collins, 1993; Ewing, 2005).

Finally, Cluster 6 was distinguished by high Si concentrations and
occurred predominantly in the lower Red river watershed (Fig. 8- pink).
This region has distinctly higher MAP than the other regions of the four
rivers (Fig. 1C). Cluster 6 also within the Colorado and Brazos river

watersheds, and again these samples are concentrated within the lower
reaches of each river where lithology is dominated by siliciclastic units,
and carbonate units are notably absent.

Our overall results support the distinctness of approximately four
major water chemical classes (as well as two classes that are less well-
defined by chemical variations) and when examined spatially across
the four watersheds the chemistry can be discussed in terms of known
spatial differences in MAP, lithology, and spatial variability in land use.
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Fig. 5. (a) Umatrix with best matching units colored by cluster membership (k = 6), and (b) silhouette plot showing cluster widths as squared Euclidean distance.

Red line shows mean cluster silhouette width (0.514).

5.2. Random forests accurately predicted membership of the stream
signatures using sub-basin characteristics

Random forest classification was shown to be a useful tool in com-
bination with ESOM node clustering (Ultsch and Lotsch, 2017; Ultsch
et al., 2016; Park et al., 2013), and predicted cluster membership with
an acceptable overall accuracy rate using long-term MAP and lithologic
and land use classes. Our model performed comparably (78.9 % accu-
racy) to other random forest classification applications in hydrology,
which have been shown to range from 59 % to 90 % (e.g., Johnson et al.,
2024; Baudron et al., 2013; Mobley et al., 2021), and allowed for
identification of important watershed variables controlling variations in
river water chemistry (Addor et al., 2018; Hammond et al., 2021; Olson
and Hawkins, 2012).

By examining the range in SHAP and feature values across each of the
clusters (Fig. 9), we were able to attribute the critical zone features that
best predicted each cluster. Overall, clusters where the ESOM had the
smallest distance between nodes were also those best-predicted by the
random forests. Samples high in Ca®*, HCO3 and Mg2+ concentrations
were the best predicted by the random forest algorithm (i.e., cluster 5 —
orange). In this region, SHAP values indicate carbonate lithology has the
most positive contribution to the prediction of cluster five, while the
feature value revealed the proportion of carbonate rocks exceeds that of

any of the other clusters (Fig. 9). Cluster 1, 3 and 6 were predicted with
similar accuracies. SHAP values indicate the presence of evaporites, and
lack of sedimentary deposits contributed to the highest SHAP values for
Cluster 3, while greater precipitation, forest cover and a lack of cropland
contributed the most to the prediction of Cluster 6. Interestingly, Cluster
1 showed several inverse patterns to that of Cluster 5 and 6, where lower
precipitation, greater crop cover and a lower concentration of carbon-
ates contributed positively to its prediction. Overall, differences in MAP,
distinct differences in underlying lithology, and vegetation patterns
which mirror the available amount of water, emerged across the six
clusters.

5.3. Esom-random forest framework offers a tool for identifying unknown
controls on stream chemistry

One advantage of using ESOMs compared to more traditional
multivariate tools such as piper diagrams and principal components
analysis is the ability to capture non-linear relationships or structures in
the data (Melo et al., 2019; Thrun et al., 2016). In addition, ESOMs help
to define biogeochemical groups of large, complex, and highly variable
data. As discussed above, our analysis revealed six distinct biogeo-
chemical groups in these four Texas rivers, which could be predicted by
simple watershed parameters. Areas where watershed parameters less
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Fig. 6. Boxplots showing the distribution of composition for all observations assigned to Clusters 1-6. Boxplots indicate the mean, 25th, and 75th percentiles as
horizontal lines and points show outliers. Boxplot colors indicate clusters as shown on Umatrix.

MAP

Swamp & Marsh

=)

Evaporites

Mudstone

W

Carbonates

cropand | |

Forest

£ 3

Sedimentary Dep.
Water

Igneous & Metamor.

w

Sandstone

Impervious

N

Barren or Sparse

K—-Means Estimated Cluster

Conglomerate

1 Shrub & Grass
0.00 0.02 0.04 0.06 0.08
Mean Absolute SHAP value
1 2 3 4 5 6
Random Forest Predicted Cluster M climate [ lithology [l LULC

Fig. 7. (a) Confusion matrix showing performance of random forest algorithm on the testing dataset, where the overall accuracy rate was 78.9%. Green diagonal
boxes give the proportion of sites, within a given cluster, that were accurately classified. Salmon colored boxes in the same row show the proportion of time sites
within a given cluster were misclassified into another cluster. For example, Cluster 1 was accurately classified 84% of the time, while 10% of the time, sites in Cluster
1 were classified as Cluster 2, and 6% of the time sites in Cluster 1 were classified as Cluster 3. For the confusion matrix all rows sum to 1. (b) Mean absolute SHAP
values of each considered variable explaining the prediction of a given cluster. Larger values indicate the variable contributes more to the prediction and is thus more
important to the model’s performance. Bars are colored by their general feature class: climate (blue), lithology (gray), and land use land cover (LULC; green). Gini
impurity is provided in Fig. S11 and the correlation matrix of input features is provided in Fig. S12.

accurately predicted the cluster groups (Cluster 2 and 4) may warrant respectively (elevated Ca?" and HCO®"). Other processes that can con-
further investigation of underlying controls on water chemistry. trol water chemistry are large reservoirs and wetlands, which were

Potential explanations of chemistry observed in Cluster 2 and Cluster rudimentarily incorporated into our model as open water and swamp/
4 are deep brines where reduction has removed SO increasing the ratio marsh, may explain the challenges in predicting these clusters. Violin
of Na™ and CI to SO%’ (McMahon et al., 2016) or by water discharging plots (Fig. 9) reveal that the greatest SHAP values for Cluster 2 were
from carbonate aquifers that is not associated with the fault zone, linked to a greater degree of open water and land classified as swamp/

10
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Fig. 8. Map of observations across the four watersheds showing the ESOM informed k-means cluster membership.

marsh, yet this was not observed for Cluster 4. Land cover changes such
as the increase in cropland and impervious surface may also contribute
to changes in water chemistry. While we were able to account for land
cover changes between 1985-present, data availability did not support
analysis of earlier land cover changes. In our study, sub-basins across all
watersheds have experienced some change in landcover with the
greatest degree of impervious surface created in the Brazos and Colorado
river sub-basins and some increase in cropland cover in all but the Red
river, yet these two land cover types did not emerge as highly important
in Cluster 2 or 4. Additional monitoring and analysis of different
watershed characteristics is required to better understand the dominant
controls on stream chemistry represented by Clusters 2 and 4.

While this work accounts for spatial variability in MAP and lithology,
and both spatial and temporal variability in LULC, there are additional
metrics that would be valuable to include in future work. Stream
discharge and precipitation metrics beyond MAP were not incorporated
into the model, which could provide insight into the temporal dynamics
in flowpath variability that contribute to river chemical composition
(Bush et al., 2023; Warix et al., 2023). Additionally, the included LULC
and MAP data only captured dynamics from 1985 to present, while our
stream chemistry data stretch back to 1944, this temporal incongruity
increases the uncertainty in our models and likely contributes to

11

underperformance. However, given that the dominant control on ESOM
structure was spatial rather than temporal (Fig. S7), the combination of
machine learning analyses presented above provide a robust framework
for assessing regional controls on stream chemical composition. Lastly,
our work hints that some sites exhibit temporal variability in their
chemical composition and cluster membership; future work could
leverage the frequency of observations of stream chemistry, LULC, and
climate measurements to understand temporal variations in stream
chemistry composition and behavior including interannual and seasonal
shifts.

6. Conclusions

We present a robust framework for predicting stream chemistry from
spatially and temporally inconsistent hydrochemical data by leveraging
emergent self-organizing maps (ESOMs), k-means clustering, and
random forest classification algorithms. These methods support analysis
of one-off and disparate time period samples; as such we are able to learn
from traditionally excluded data that is typically removed due to low
sampling frequency or temporal irregularity. Our results show that
water chemistry across Texas can be described using six major classes
that are generally well-predicted using only a few climate, land use, and
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lithology factors. Important factors in predicting classes were dominated
by MAP, proportion of land classified as swamp and marsh, and reactive
lithologies.

Improved understanding of dominant controls on stream chemistry,
especially using widely available spatial data products, could support
improved decision making based on fewer observations. For example,
this type of analysis could show that controls on stream water chemistry
for given reaches are dominated by underlying lithology and climate
patterns, while other areas are more directly influenced by land use. This
information could highlight areas where restoration efforts focused on
ameliorating land use impacts on water quality have the largest poten-
tial benefits. These techniques also allow us to identify areas that are
more chemically variable or more uncertain and facilitate improved
sampling protocols to target these areas. For example, our work high-
lights areas where management and additional monitoring is needed to
assess controls on water quality not captured by sub-basin
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characteristics such as climate, land use, and lithology (Clusters 2 and
4).

Our framework demonstrates significant potential for applying ma-
chine learning to explore the relationships between watershed factors
and stream chemistry, thereby enhancing regional water management
strategies. Additionally, previous studies utilizing random forest and
clustering analyses (Bolotin et al., 2023; Johnson et al., 2024b) have
successfully elucidated large-scale controls on river chemistry, indi-
cating that this framework may be adaptable to larger scales. In addi-
tion, this study demonstrates machine learning has value not only in its
stereotypical use as a black-box predictor, but also as a toolkit for un-
derstanding physical processes, such as the potential controls of open
water and swamp and marshes (Cluster 2) or cropland (Cluster 1) on
stream chemistry across varied lithology. This is consistent with an
emerging body of literature on interpretable Al, and in particular the use
of machine learning for knowledge-discovery, in the Earth and
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environmental sciences (for reviews and syntheses, refer to e.g., Fleming
et al., 2021b; McGovern et al., 2019; Nearing et al., 2021; Reichstein
et al., 2019).
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