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Abstract
We prove that the permutation computed by a reversible circuit with Õ(nk · log(1/ε)) random 3-bit gates

is ε-approximately k-wise independent. Our bound improves on currently known bounds in the regime when
the approximation error ε is not too small and is optimal up to logarithmic factors when ε is a constant.
We obtain our results by analyzing the log-Sobolev constants of appropriate Markov chains rather than their
spectral gaps.

A corollary of our result concerns the incompressibility of random reversible circuits as pointed out by
concurrent work of Chen et al. [7], who showed that a linear-in-k bound for a multiplicative approximation to
a k-wise independent permutation implies the linear growth of circuit complexity (a generalization of Shannon’s
argument).

1 Introduction
We consider the extent to which small random reversible circuits compute almost k-wise independent permutations.
The (almost) k-wise independence of permutations was first considered by Gowers [12] as a proxy for
pseudorandomness properties of practical cryptosystems, such as block ciphers.

Definition 1.1. (Approximate k-wise independent permutations) A distribution P on the symmetric group
S[N ] is said to be ε-approximate k-wise independent if for all distinct x1, . . . , xk ∈ [N ], the distribution of
(g(x1), . . . , g(xk)) for g ∼ P has total variation distance at most ε from the uniform distribution on distinct
k-tuples over [N ].

A commonly studied construction of approximate k-wise independent permutations is a reversible circuit on
n wires in which each gate computes a randomly chosen width-2 (see Definition 2.2) permutation on a random
subset of 3 wires. From here on, when referring to a random reversible circuit, we mean a random circuit
whose gates are drawn randomly from a set of 3-bit gates. Gowers [12] introduced this construction and proved
that a random reversible circuit with poly(n, k, log(1/ε)) gates computes an ε-approximate k-wise independent
permutation of the cube {0, 1}n using the canonical paths technique from Markov chain mixing [16]. Since then,
follow-up works by Hoory et al. and Brodsky and Hoory [15, 4] improved on the analysis of Gowers and proved
that if k ≤ 2n/50, then random reversible circuits with O(n2k2 log(1/ε)) gates compute an ε-approximate k-wise
independent permutation using the comparison method [9, 8]. Finally, using quantum-inspired techniques for
proving spectral gaps, He and O’Donnell [14] improved the number of gates needed to Õ(nk) · (nk + log(1/ε)),
and showed that these gates can even be geometrically local and can be parallelized into Õ(k) · (nk + log(1/ε))
many layers.

Random circuits have gained attention following the recent interest in random quantum circuits. The natural
quantum analog of a (approximate) k-wise independent permutation is that of a (approximate) unitary k-design.1
Unitary designs are widely studied in quantum computation and quantum physics as basic pseudorandom objects
and models for equilibration in quantum many-body systems [3]. A line of work on unitary k-designs [2, 13] shows
that for constant ε, a reversible circuit on n wires with Õ(n2 · poly(k)) random 2-qubit quantum gates chosen
from some finite gate set (a random quantum circuit) gives a construction of an ε-approximate unitary k-design.

∗The full version of the paper can be accessed at https://arxiv.org/abs/2406.08499
†UC Berkeley. Email: lucas_gretta@berkeley.edu. Supported in part by NSF grant CCF-2231095.
‡Carnegie Mellon University. Email: wrhe@cs.cmu.edu. Supported in part by ARO grant W911NF2110001.
§UC Berkeley. Email: apelecan@berkeley.edu. Supported by DARPA under Agreement No. HR00112020023.
1A (approximate) unitary k-design is a distribution on the unitary group that (approximately) matches the Haar distribution up

to kth moments.
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Recent works [19, 6] obtain k-designs with size linear in k from classical k-wise independent permutations
whose size is also linear in k. Even though we demonstrate that a linear-in-k number of random width-2 gates
suffices to ε-approximate k-wise independence, we remark that our dependence on ε is not sufficiently tight for
their k-design construction. In particular, both works employ a theorem of Alon and Lovett [1] which requires
an exponentially small ε to translate from approximate to exact k-wise independent permutations. Plugging in
such a small ε in our theorem would increase our size bound by polynomial factors in n and k. Still, we view such
black-box reductions from the construction of approximate unitary k-designs to the construction of approximate
k-wise independent permutations as further motivation for our work.

Another line of work, motivated by the design of practical cryptosystems (such as block ciphers), studies the
computational pseudorandomness properties of random reversible circuits. He and O’Donnell [14] consider the
computational hardness of inverting the permutation computed by short reversible circuits with 3-bit gates.
Canetti et al. [5] proposed more advanced cryptographic primitives based on the cryptographic properties
of random reversible circuits. In particular, using the assumption that random reversible circuits achieve
computational pseudorandomness after a modest number of rounds (much less than the super-polynomial number
of rounds required to reach statistical pseudorandomness), they suggest candidate obfuscation schemes along
with possible ways to prove their computational security. Their approach is inspired by thermalizing processes of
statistical mechanics.

In this paper, we revisit the problem of random circuits with reversible 3-bit gates and show that a random
reversible circuit with Õ(nk · log(1/ε)) gates gives an ε-approximate k-wise independent permutation. The
following is our main theorem, which we prove in Section 6.

Theorem 1.1. For any n and k ≤ 2n/50, a random reversible circuit with Õ(nk · log(1/ε)) width-2 gates (a
subset of 3-bit gates) computes an ε-approximate k-wise independent permutation, where the Õ hides polylog(n, k)
factors.

Note that Theorem 1.1 is tight up to polylogarithmic factors in n and k in the regime where ε is a constant.
This is because Fannes’ inequality ([11]) shows that when ε < 1

2 is a constant, a distribution that is ε-close to the
uniform distribution on the set of k-tuples in TV distance has Shannon entropy that is Ω(nk). On the other hand,
the distribution on random reversible circuits with s gates has only O(s log n) bits of entropy. Thus, in order for
a random reversible circuit to compute an ε-approximate k-wise independent permutation, which gives a way to
sample from a distribution that is ε-close to the unifrom distribution on the set of k-tuples in TV distance, we
need s ≥ Ω̃(nk). This matches, up to polylogarithmic factors, Theorem 1.1.

We note here that for applications of approximate k-wise independent permutation distributions P in
derandomization, one is generally concerned with the number of truly random “seed” bits needed to generate
a draw from P. See, for example [20]. By using techniques such as derandomized squaring (see [17]), one can
often reduce the seed length to O(nk) for any construction. This is true for the results in our paper, and we don’t
discuss the seed length any further, as we are generally focused on the circuit complexity of our permutations.

An interesting corollary of our result concerns the incompressibility of random reversible circuits. Since the
release of the first version of this paper subsequent work of Chen et al. ([7], Corollary 1.8) showed that a linear-in-k
bound for a multiplicative approximation to a k-wise independent permutation implies the linear growth of circuit
complexity (a generalization of Shannon’s argument). Using a similar log-Sobolev analysis as in Theorem 1.1, we
can also obtain a linear-in-k multiplicative approximation bound and conclude the incompressibility of random
reversible circuits.

Corollary 1.1. (Random reversible circuits are incompressible, informal) A random reversible circuit with L ≤
O(2n) gates cannot be compressed to less than O

(
L

n2 logn logL

)
≥ O

(
L

n3 logn

)
gates without losing functionality,

except with negligible probability.

In their paper, Chen et al. [7] are interested in the setting where the number of gates L is exponentially large.
For other applications of random reversible circuits (for example in cryptography) one may be interested in the
incompressibility of circuits with only a polynomial number of gates L. For that parameter regime, we use their
argument with our Theorem 1.1 in total variation distance to obtain a tradeoff between the incompressibility and
the error guarantee.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited5583

D
ow

nl
oa

de
d 

05
/0

6/
25

 to
 1

57
.1

31
.3

3.
77

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Corollary 1.2. (Incompressibility versus error for polynomial size circuits, informal) Let λ be a large enough
constant. A random reversible circuit with L ≤ 2n/50 gates, where L ≥ λ2, cannot be compressed to less than
Ω̃
(

L
λ

)
gates without losing functionality, except with probability 2−λ.

Here we write Õ to hide polylog(L, n) factors. We prove the above corollaries in Section 7.

1.1 Proof overview We use the comparison method in a similar way as [4]. In particular, we bound the
log-Sobolev constant of the natural Markov chain associated with the computation of a random reversible circuit,
by comparing it to the log-Sobolev constant of the k-clique 2n-coloring Markov chain. By working with the
log-Sobolev constant rather than the spectral gap of this random walk as [4, 14] do, we obtain an improved
mixing time since the log-Sobolev constant gives a mixing time bound that depends doubly logarithmically on
the smallest probability of the stationary distribution. In contrast, the spectral gap gives bounds that depend
logarithmically on this quantity.

While it is generally more difficult to bound the log-Sobolev constant of a Markov chain, recent work of
Salez [21] has used the martingale method of Lee and Yau [18] to obtain sharp estimates for the log-Sobolev
constant of a natural random walk on the multislice. Using this method, we estimate the log-Sobolev constant
of a variant of k-clique 2n-coloring chain, which we call the uniform k-clique 2n-coloring chain. The log-Sobolev
constant for the standard k-clique 2n-coloring chain is then obtained via a simple application of the comparison
method.

In more detail, our starting point is the work of Salez which bounds the log-Sobolev of the multislice. The
multislice corresponds to the random walk over the set of colorings of 2n items, where each step of the walk swaps
the colors of any two items chosen uniformly at random. The colorings are comprised of k + 1 colors, where
the first k colors appear once and the last color appears in the remaining 2n − k items. The first observation is
that this random walk captures the k-wise independence of a random walk with transpositions. Unfortunately,
the log-Sobolev constant of this walk is too small: (n · 2n)−1. In contrast, we would expect a random set of
transpositions to mix to a k-wise independent permutation within a time that is dependent on k.

The reason that the log-Sobolev constant of the multislice chain is independent of k is because it applies a
random transposition from the entire set of

(
2n

2

)
transpositions. In the case when k is much smaller than 2n,

a random transposition will most likely exchange the colors of two of the 2n − k items that have color k + 1.
Thus, with high probability, roughly 1 − k

2n , the multislice chain will not move to a new state. To avoid this
artificial slowdown, we study the uniform k-clique 2n-coloring chain, which requires that every step applies one
transposition with an element that doesn’t have color k+ 1. Equivalently, one may think of the uniform k-clique
2n-coloring chain as a random walk on the multislice that takes 2n

k steps per time step and thus would hope that
the log-Sobolev constant scales down by a factor of k

2n . Indeed, we employ the martingale method and prove that
the log-Sobolev constant of the uniform k-clique 2n-coloring chain is Ω

(
1
nk

)
as expected.

One can compute the log-Sobolev constant of the uniform k-clique 2n-coloring chain by using Salez’s result
as a black box and viewing the multislice chain as a lazy version of the uniform k-clique 2n-coloring chain. We
instead present an alternative proof by adapting the martingale method used by Salez.

The next step is to transfer our log-Sobolev bound from the uniform k-clique 2n-coloring chain to the k-clique
2n-coloring chain, which has slightly different transition probabilities than its uniform counterpart. We give a
randomized paths construction with only a constant amount of congestion. The comparison method implies that
the log-Sobolev constant of the k-clique 2n-coloring chain is also Ω

(
1
nk

)
.

Finally, we obtain an estimate for the log-Sobolev constant of the random reversible circuits Markov chain
by employing the comparison with the k-clique 2n-coloring chain from [4]. More specifically, Brodsky and Hoory
give a randomized paths construction with a comparison constant of Θ(n2). This concludes our Ω

(
1

n3k

)
bound

for the log-Sobolev constant of the reversible circuits Markov chain.
To improve our bound on the mixing time of the reversible circuits Markov chain, we use another argument

from [4]. The observation is that after a short random walk of Õ(n) steps, the state of the reversible circuits
Markov chain is very likely to be in a generic state. Thus it suffices to bound the mixing time of the Markov
chain when restricted to generic states. We do this by bounding its log-Sobolev constant, using the log-Sobolev
inequality of the clique coloring chain, which we proved earlier. This allows us to bring down the mixing time of
the reversible circuits Markov chain to O(nk · polylog(n, k)).
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2 Preliminaries
Notation. In this paper we will use the symbols &,. to compare two quantities in the asymptotic sense,

in particular, these symbols hide constant factors. For example, f(n) . g(n) ⇐⇒ f(n) ≤ O(g(n)). When
x = (x1, . . . , xk) is a tuple, we use the notation ` ∈ x whenever ` = xi for some i ∈ [k] and otherwise, we write
` 6∈ x.

Definition 2.1. (Tuples with distinct elements) Let S be a set. We define the set of k-tuples with distinct
elements from S as follows:

Θk,S :=
{
(x1, . . . , xk) ∈ Sk : xi’s distinct

}
.

We frequently write Θk,N in the place of Θk,[N ].

We recall the definition of width-2 simple permutations from [4].

Definition 2.2. (Width-2 simple permutations) The set of width-2 simple permutations is the following set of
permutations on {0, 1}n

Σ :=

{
fi,j1,j2,h :

i, j1, j2 ∈ [n], i 6= j1, j2
h Boolean function on {0, 1}2

}
.

The permutation fi,j1,j2,h maps (x1, . . . , xn) to (x1, . . . , xi−1, xi ⊕ h(xj1 , xj2), xi+1, . . . , xn).

In words, a width-2 permutation chooses 3 random indices from [n]: i and j1, j2. It further samples a random
Boolean function on 2 bits. Then it XORs the value of h(xj1 , xj2) on the ith bit of the input.

2.1 Log-Sobolev constant and mixing time We recall some background on Markov chains from [22]. Let
P be the transition matrix of an ergodic Markov chain over finite state space V , and let π denote its stationary
distribution. We identify a Markov chain with its transition matrix, so we will often say that P is both the
transition matrix for a Markov chain and also the Markov chain itself. We let ptx denote the probability distribution
of P , starting at state x, at timestep t.

Definition 2.3. (Mixing time) The ε-mixing time of an ergodic Markov chain P is defined as:

τε(P ) := min

{
t ≥ 0 : max

x∈V

∥∥ptx − π
∥∥

TV

}
.

When the subscript is dropped, we mean τ(P ) = τ1/4(P ).

Throughout this paper, we deal only with reversible Markov chains.

Definition 2.4. (Reversible Markov chain) We say that a Markov chain P is reversible if for all x, y ∈ V ,

π(x)P (x, y) = π(y)P (y, x).

One powerful way of bounding the mixing time of Markov chains is by functional inequalities using the
Dirichlet form.

Definition 2.5. (Dirichlet form) For function f : V → R≥0, the Dirichlet form of f with respect to P is

EP (f, f) :=
1

2

∑
x,y∈Ω

(
f(x)− f(y)

)2
π(x)P (x, y).

Intuitively, the Dirichlet form measures the “local variation” of f with respect to the (weighted) graph
underlying a Markov chain P .

Definition 2.6. (Entropy) For a function f : V → R≥0, we define its entropy

Entπ[f ] :=
∑
x∈V

π(x)f(x) log
f(x)

Eπ[f ]
,

where Eπ[f ] =
∑

x∈V π(x)f(x).
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The ratio of these two quantities defines the log-Sobolev constant of the Markov chain.

Definition 2.7. (Log-Sobolev constant of Markov chain) The log-Sobolev constant of P is defined by

α(P ) := inf
f≥0

f non-constant

EP (
√
f,

√
f)

Entπ[f ]
.

The log-Sobolev constant of a Markov chain bounds the mixing time of the chain according to the following
theorem. Note the doubly-logarithmic dependence on 1/πmin, which is the conceptual advantage of using log-
Sobolev inequalities over a spectral gap analysis, whenever ε is not exponentially small.

Theorem 2.1. ([10], Theorem 3.7) Let P be the transition matrix of a reversible Markov chain whose stationary
distribution is π, and πmin to be the smallest stationary probability. For ε ≤ 1

e , the ε-mixing time is bounded by

τε(P ) .
1

α

(
log log

1

πmin
+ log

1

ε

)
.

In fact, the log-Sobolev constant bounds the `∞ mixing time, which gives pointwise distance bounds.

Theorem 2.2. ([10], Corollary 3.8) For reversible P , and for all x, y ∈ V∣∣ptx(y)− π(y)
∣∣ ≤ επ(y)

when t & 1
α

(
log log 1

πmin
+ log 1

ε

)
.

2.2 The comparison method We bound the log-Sobolev constant of a reversible circuits Markov chain by
repeated application of the comparison method [9, 23] which we introduce below. The comparison method is used
to estimate the Dirichlet form of a target Markov chain with transition matrix P by relating it to the Dirichlet
form of a reference Markov chain with transition matrix P̃ , for which we have previously-known estimates. This
relation between Dirichlet forms can be trivially extended to an inequality between log-Sobolev constants when
P̃ and P are over the same state space V and have the same stationary distribution π.

The comparison is achieved by “simulating” the transition probabilities of the P̃ Markov chain using paths
from P . Formally, for each (x, y) ∈ V 2 we assign a random path

∆(x, y) =
(
(x,u1), (u1,u2), (u2,u3), . . . , (u`, y)

)
,

where the ui’s are random elements of V that satisfy P (x,u1), P (u`, y) > 0 and P (ui,ui+1) > 0. The quantity `
is a random non-negative integer equal to the length of the path |∆(x, y)|. The congestion of these paths (which
is captured by the comparison constant A(∆)) provides a lower bound of E with respect to Ẽ as shown formally
in Lemma 2.1.

Without loss of generality, we assume that the paths ∆(x, y) are simple, since one can remove all loops
without affecting the endpoints x, y of a path and without increasing the congestion.

Lemma 2.1. ([23], Corollary 13.23) Let P̃ and P be transition matrices for two ergodic Markov chains on the
same state space V . Assume that for each (x, y) ∈ V 2 there exists a random path

∆(x, y) =
(
(x,u1), (u1,u2), (u2,u3), . . . , (u`, y)

)
.

Then we have for any f : V → R that

Ẽ(f, f) ≤ A(∆) · E(f, f)

where the comparison constant of ∆ is defined to be

A(∆) := max
(a,b)∈V 2,
P (a,b)>0

 1

π(a)P (a, b)

∑
(x,y)∈V 2

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
· π̃(x) · P̃ (x, y)

.

Here π and π̃ are the (unique) stationary distributions for P and P̃ , respectively, and 1(a,b)∈Q is the indicator
variable which captures whether the edge (a, b) appears in the sequence Q.
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3 The Markov chains
We now set up the Markov chains we use in the proof of Theorem 1.1. Throughout this section (and the rest of
the paper) fix positive integers n, k, and N (which will typically be equal to 2n). Our Markov chains all have
domains isomorphic to Θk,U for some set U :

Definition 3.1. (Reversible circuit Markov chain) The chain {X rev
t }t≥0 on the state space of k distinct n-bit

strings is given by the following distribution on X rev
t+1|X rev

t . Given the current state x = (x1, . . . , xk), to draw the
next state Xt+1 = (y1, . . . ,yk), draw a uniformly random width-2 permutation σ ∈ Σ and set

(y1, . . . ,yk) = (σx1, . . . ,σxk).

Let P rev
k,n be the transition matrix of this Markov chain.

This Markov chain exactly captures the evolution of k inputs to a random reversible circuit whose gates are
uniformly drawn from the set of width-2 permutations Σ. Thus the statement of Theorem 1.1 that a random
reversible circuit with s width-2 gates is an ε-approximate k-wise independent permutation is implied by the
statement that τε

(
P rev
k,n

)
≤ s. We typically write P rev and omit the parameters k and n whenever they are clear

from the context or not important.
Following [4], we prove that this Markov chain mixes fast by comparing it to the k-clique 2n-coloring Markov

chain. In this paper we deal with two clique coloring chains, thus we will refer to this chain as the standard clique
coloring, or simply the clique coloring chain.

Definition 3.2. (Standard k-clique N -coloring Markov chain) Let N be the number of colors and k be the
number of clique vertices. The k-clique N -coloring chain {Xcc

t }t≥0 on the set of colorings Θk,N is given by
the following distribution on Xcc

t+1|Xcc
t . To sample Xcc

t+1 = (y1, . . . ,yk) given the current state Xcc
t = x =

(x1, . . . , xk), uniformly sample i ∈ [k] and ` ∈ {` ∈ [N ] : ` 6∈ x} ∪ {xi} and set

yj =

{
` j = i

xj j 6= i
.

Let P cc
k,N be the transition matrix for this Markov chain.

In other words, the clique coloring chain samples a uniformly random coloring of the k-clique with N colors,
by randomly choosing a vertex and randomly assigning it one of the (N − k + 1) available colors (including its
current color).

We directly bound the log-Sobolev constant of a related Markov chain, which we call the uniform clique
coloring chain.

Definition 3.3. (Uniform k-clique N -coloring Markov chain) Let N be the number of colors and k be the
number of clique vertices. The uniform k-clique N -coloring chain {Xucc

t }t≥0 on the set of colorings Θk,N

is given by the following distribution on Xucc
t+1|Xucc

t . To sample Xucc
t+1 = (y1, . . . ,yk) given the current state

Xucc
t = x = (x1, . . . , xk) uniformly sample i ∈ [k] and ` ∈ [N ] and set

yj =


` j = i

xi ` = xj

xj otherwise
.

Let P ucc
k,N be the transition matrix for this Markov chain.

We call this the uniform clique coloring chain, since at every step a random vertex i is re-colored with a
uniformly random color from the entire set [N ]. If this color is already taken by another vertex j, the two vertices
swap colors. This additional symmetry allows us to obtain a bound on the log-Sobolev constant of this chain by
adapting the martingale method of Lee and Yau [18]. Moreover, it is not hard to relate the log-Sobolev constants
of the uniform and standard clique coloring chains using the comparison method.

With all of our Markov chains defined, we now state the sequence of inequalities that will allow us to conclude
Theorem 1.1, deferring the proofs of the auxiliary results to later sections.
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Theorem 3.1. Let P rev
k,n be the Markov chain from Definition 3.1. Then

α(P rev
k,n) ≥ Ω

(
1

n3k

)
.

Proof. We will show the following sequence of inequalities (recall that & hides constant factors):

α(P rev
k,n) &

Corollary 5.2

1

n2
· α(P cc

k,2n) &
Lemma 5.1

1

n2
· α(P ucc

k,2n) &
Lemma 4.1

1

n3k
.

Theorem 3.1 immediately gives a mixing time of Õ(n3k · log(1/ε)) for the reversible circuits chain by
Theorem 2.1; in Section 6 we improve the mixing time to Õ(nk · log(1/ε)) by applying ideas of [4], thus proving
Theorem 1.1.

It may then seem that Theorem 3.1 is strictly weaker than Theorem 1.1. However, the proof of Theorem 1.1
does not yield a good log-Sobolev inequality for the reversible circuits Markov chain. Thus we cannot use that
proof to conclude results about pointwise convergence as we can from log-Sobolev bounds using Theorem 2.2,
such as the following result:

Corollary 3.1. Let ptx be the distribution over V after t & n3k
(
log nk + log 1

ε

)
steps of P rev

k,n. For all x, y,∈ V

1− ε

2n(2n − 1) · · · (2n − k + 1)
≤ Pr[ptx = y] ≤ 1 + ε

2n(2n − 1) · · · (2n − k + 1)
.

4 The Log-Sobolev Constant of the Uniform Clique Coloring Chain
The goal of this section is to lower bound the log-Sobolev constant of the uniform clique coloring Markov chain.

Recall that the uniform k-clique N -coloring Markov chain has state space Θk,N of size N(N−1) . . . (N−k+1).
Given some x = (x1, . . . , xk) ∈ Θk,N , the action of choosing vertex i ∈ [k] and coloring it with color ` ∈ [N ]
(where this color can already exist in the clique, as per Definition 3.3) will be denoted by xi,`. Namely

xi,` :=

{
(. . . , xi−1, `, xi+1, . . . ) if ` 6∈ x

(. . . , xj−1, xi, xj+1 . . . , xi−1, xj , xi+1, . . . ) if ` = xj .

Let f : Θk,N → R be a function on the state space of this chain. Since the stationary distribution is the
uniform, the expectation of f over its state space is

E
Θk,N

[f ] :=
1

|Θk,N |
∑

x∈Θk,N

f(x).

Moreover, the Dirichlet form of this chain can be written as

EP ucc
k,N

(
√

f,
√
f) =

1

2
E

x∈Θk,N

 E
i∈[k]

 E
`∈[N ]

[(√
f(xi,`)−

√
f(x)

)2
]


=

1

2kN · |Θk,N |
∑

x∈Θk,N

∑
i∈[k]

∑
`∈[N ]

(√
f(xi,`)−

√
f(x)

)2

.

With this notation in mind, we now prove that this Markov chain has a large log-Sobolev constant.

Lemma 4.1. The log-Sobolev constant of the uniform k-clique N -coloring Markov chain satisfies

α(P ucc
k,N ) ≥ 1

12k logN

when k ≤ N/2, N ≥ 3.
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Proof. Our starting point is the recursive structure of the uniform clique coloring problem, which allows us to
apply the martingale method of [18]. In particular, let x be uniformly distributed over the state space Θk,N . Then
if we condition on the ith vertex having color `, the distribution of the colors of the remaining k − 1 vertices is
isomorphic to the uniform distribution over Θk−1,N−1, the state space of the uniform (k−1)-clique (N−1)-coloring
Markov chain.

For any vertex i ∈ [k] and color c ∈ [N ] define the conditional function

fi,c :
{
(x1, . . . , xk) ∈ Θk,N : xi = c

}
→ R

to be simply the restriction of f to this domain: fi,c(x) = f(x) for all x ∈ Θk,N with xi = c. Since{
(x1, . . . , xk) ∈ Θk,N : xi = c

}
is isomorphic to Θk−1,N−1, by a slight abuse of notation we also regard fi,c :

Θk−1,N−1 → R.
Moreover, for every vertex i ∈ [k], define the marginal function Fi : [N ] → R by defining for every color

c ∈ [N ]

Fi(c) := E
x∈Θk,N
xi=c

[f(x)].

The chain rule of conditional entropy ([21], Equation 13) implies that for any i ∈ [k],

(4.1) Ent(f) = E
c
[Ent(fi,c)] + Ent(Fi).

By summing over all vertices i ∈ [k], we get

k · Ent(f) =
∑
i∈[k]

E
ci

[Ent(fi,ci)] +
∑
i∈[k]

Ent (Fi) .(4.2)

We bound the two summations of the right-hand side separately in Proposition 4.1 and Proposition 4.2 and
conclude that

k · Ent(f) ≤ kN

N − 1
· α(P ucc

k−1,N−1)
−1 · EP ucc

k,N
(
√
f,

√
f) + 3k logN · EP ucc

k,N
(
√
f,

√
f).

=⇒ Ent(f) ≤
[

N

N − 1
· α(P ucc

k−1,N−1)
−1 + 3 logN

]
· EP ucc

k,N
(
√
f,

√
f).

This gives us a recurrence relation for the log-Sobolev constant of the uniform clique coloring chain. For every k
and N , we have

α(P ucc
k,N )−1 ≤ N

N − 1
· α(P ucc

k−1,N−1)
−1 + 3 logN.(4.3)

For the base case of k = 1, we observe that uniform 1-clique (N − k+ 1)-coloring has transition probabilities
that correspond to the complete graph over N −k+1 vertices. We use known results for the log-Sobolev constant
of the complete graph ([10], Corollary A.4) to deduce that

α(P ucc
1,N−k+1)

−1 ≤ 3 log(N − k + 1).

We now obtain our bound on the log-Sobolev constant by induction. Our inductive hypothesis will be
that Equation (4.3) holds up to α(P ucc

k−1,N−1)
−1. Using the inductive hypohtesis on Equation (4.3) we get:

α(P ucc
k,N )−1 ≤ N

N − 1
· α(P ucc

k−1,N−1)
−1 + 3 logN

≤ N

N − 1
·
(
N − 1

N − 2
· α(P ucc

k−2,N−2)
−1 + 3 log(N − 1)

)
+ 3 logN

≤ N

N − 2
· α(P ucc

k−2,N−2)
−1 + 3 logN

(
1 +

N

N − 1

)
.
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We continue this process until we reach our base case of k = 1. We observe that our terms telescope and we
obtain the following simple inequality:

α(P ucc
k,N )−1 ≤ N

N − k + 1
· α(P ucc

1,N−k+1)
−1 + 3 logN

(
1 +

N

N − 1
+ · · ·+ N

N − k + 2

)
.

Since k ≤ N/2, we can upper bound the coefficient of α(P ucc
1,N−k+1)

−1 by 2, and the second term as follows:

α(P ucc
k,N )−1 ≤ 2 · logN + 3N logN

(
1

N
+

1

N − 1
+ · · ·+ 1

N − k + 2

)
≤ 2 · logN + 3N logN · log N

N − k + 1

≤ 2 · logN + 3N logN · k − 1

N − k + 1

≤ 2 · logN + 6k logN.

Where we used log(1 + x) ≤ x for the third inequality and the fact that k ≤ N/2 for the final inequality.

It remains to prove the two propositions used in the proof of Lemma 4.1.

Proposition 4.1. For any f : Θk,N → R we have∑
i∈[k]

E
ci

[
Ent(fi,ci)

]
≤ kN

N − 1
· α(P ucc

k−1,N−1)
−1 · EP ucc

k,N
(
√

f,
√
f).

Proof. Recall that when we condition f on vertex i having color ci, its domain is isomorphic to the state space
of the uniform (k − 1)-clique (N − 1)-coloring chain. The log-Sobolev constant of this smaller restricted chain
implies that

Ent(fi,ci) ≤ α(P ucc
k−1,N−1)

−1 · EP ucc
k−1,N−1

(√
fi,ci ,

√
fi,ci

)
.

Our goal is to relate the Dirichlet form of P ucc
k−1,N−1 to the Dirichlet form of P ucc

k,N . We start by expanding the
right-hand side while keeping in mind that fi,ci has fixed the color of vertex i to ci.

Ent(fi,ci) ≤
α(P ucc

k−1,N−1)
−1

2(N − 1)(k − 1)|Θk−1,N−1|
∑

x∈Θk,N
xi=ci

∑
j∈[k]
j 6=i

∑
`∈[N ]
`6=ci

(√
f(xj,`)−

√
f(x)

)2

Let us take the expectation now over all N values of ci. We note that the log-Sobolev of P ucc
k−1,N−1 is not dependent

on the value of ci due to symmetry, thus we factor it outside the summation.

E
ci

[
Ent(fi,ci)

]
≤

α(P ucc
k−1,N−1)

−1

2N(N − 1)(k − 1)|Θk−1,N−1|
∑

ci∈[N ]

∑
x∈Θk,N
xi=ci

∑
j∈[k]
j 6=i

∑
`∈[N ]
`6=ci

(√
f(xj,`)−

√
f(x)

)2

.

Summing over all i ∈ [k] yields the following

∑
i∈[k]

E
ci

[
Ent(fi,ci

)
]
≤

α(P ucc
k−1,N−1)

−1

2N(N − 1)(k − 1)|Θk−1,N−1|
∑
i∈[k]

∑
ci∈[N ]

∑
x∈Θk,N
xi=ci

∑
j∈[k]
j 6=i

∑
`∈[N ]
`6=ci

(√
f(xj,`)−

√
f(x)

)2

.

Notice that each tuple x is counted k times in the summation of the right-hand side, one time for each (i, ci) that
satisfies ci = xi. Then each

(√
f(xj′,`)−

√
f(x)

)2

term appears at most (k − 1) times, since out of the k times
that x appears, one of them satisfies j′ = i, and thus it does not contribute to the sum.
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This implies that the sum above is at most (k − 1) times the summation that corresponds to the Dirichlet
form of EP ucc

k,N
.∑

i∈[k]

E
ci

[
Ent(fi,ci)

]
≤

α(P ucc
k−1,N−1)

−1

2N(N − 1)(k − 1)|Θk−1,N−1|
· (k − 1) · 2kN · |Θk,N | · EP ucc

k,N
(
√
f,

√
f)

=
kN

N − 1
· α(P ucc

k−1,N−1)
−1 · EP ucc

k,N
(
√
f,

√
f).

Proposition 4.2. Let f : Θk,N → R be a function, and for all i ∈ [k], Fi : [N ] → R is the ith marginal function
of f that maps color c to Fi(c) := Ex∈Θk,N ,xi=c[f(x)]. Then it holds that

k∑
i=1

Ent(Fi) ≤ k logN · EP ucc
k,N

(
√
f,

√
f).

Proof. Consider the random walk on the set [N ] of colors where at every step we move to a uniformly random
color (including the color we are currently in). The transition matrix of this walk is the complete graph over N

vertices and we denote it by P compl
N . Let us apply the log-Sobolev inequality of P compl

N to the function Fi:

Ent (Fi) ≤ α(P compl
N )−1 · EP compl

N

(√
Fi,

√
Fi

)
=

α(P compl
N )−1

2N2
·
∑
`∈[N ]

∑
`′∈[N ]

(√
Fi(`′)−

√
Fi(`)

)2

.(4.4)

We would like to rewrite the Dirichlet form of P compl
N in terms of P ucc

k,N . We start by expanding the definition of Fi

(√
Fi(`′)−

√
Fi(`)

)2

=

√
E

x∈Θk,N

xi=`′

[
f(x)

]
−

√
E

x∈Θk,N

xi=`

[
f(x)

]
2

.

Observe that sampling a random x ∈ Θk,N such that xi = `′, is equivalent to sampling a random x with xi = `,
and then outputting xi,`′ :

(√
Fi(`′)−

√
Fi(`)

)2

=

√
E

x∈Θk,N

xi=`

[
f(xi,`′)

]
−
√

E
x∈Θk,N

xi=`

[
f(x)

]
2

.

Since the function on the right-hand side is convex, Jensen’s inequality implies that(√
Fi(`′)−

√
Fi(`)

)2

≤ E
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]
.

Plugging in the above inequality to Equation (4.4) we get

Ent(Fi) ≤
α(P compl

N )−1

2N2

∑
`∈[N ]

∑
`′∈[N ]

E
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]
.

We sum over all i ∈ [k] to get
k∑

i=1

Ent(Fi) ≤
α(P compl

N )−1

2N2

∑
`∈[N ]

∑
`′∈[N ]

∑
i∈[k]

E
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]

=
α(P compl

N )−1

2N |Θk,N |
∑
`∈[N ]

∑
`′∈[N ]

∑
i∈[k]

∑
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]
.
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The right-hand side now contains all
(√

f(xi,`′)−
√
f(x)

)2

terms that appear in EP ucc
k,N

exactly once. Thus we
can substitute this Dirichlet form (and adjust its scaling). Moreover, the log-Sobolev constant of the complete
graph over N vertices is well-studied and satisfies α(P compl

N )−1 ≤ 3 · logN ([10], Corollary A.4). We conclude that

k∑
i=1

Ent(Fi) ≤ 3k logN · EP ucc
k,N

(
√

f,
√
f).

5 The Log-Sobolev Constant of the Standard Clique Coloring Chain
The goal of this section is to translate the log-Sobolev bound from the uniform clique coloring chain Lemma 4.1
to the standard clique coloring chain. Since the two chains are very similar, applying the comparison method is
a natural approach.

Lemma 5.1. The log-Sobolev constant of the k-clique N -coloring Markov chain satisfies

α(P cc
k,N ) ≥ 1

19
· α(P ucc

k,N ).

Proof. Define the following (randomized) map ∆ that maps edges of P ucc
k,N to paths in P cc

k,N . Each edge of P ucc
k,N

that connects x and xi,` is determined by a vertex x ∈ Θk,N and the pair (i, `) ∈ [k]× [N ]. We assign to this edge
a path in P cc

k,N drawn according to the following distribution:

∆(x, xi,`) =


(x, xi,`) ` 6∈ x \ {xi},
(x, xi,`′︸︷︷︸

y

) || (y, yj,xi︸︷︷︸
z

) || (z, zi,xj ) ` = xj for j 6= i, `′ ∼ [N ] \ x.

Here the symbol “||” denotes the concatenation of edges to make a path. Intuitively, the path assigned to edge
(x, xi,`) is either itself (whenever (x, xi,` is also an edge of P cc

k,N ), or a sequence of three edges that swap the colors
xi and xj by using a random unused color `′.

Now we bound the comparison constant A(∆).

A(∆) = max
(a,b)∈Ecc

 1

πcc(x)P cc(a, b)

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
· πucc(x) · P ucc(x, y)


The stationary distributions of both chains are the uniform over Θk,N , and thus the stationary probabilities
cancel.

A(∆) = max
(a,b)∈Ecc

k(N − k + 1)
∑

(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
· 1

kN


= max

(a,b)∈Ecc

N − k + 1

N

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

].

Our goal will be to bound the sum of expectations. First, let us partition the paths into the ones with length
1 and length 3. To do that, we observe that the length of each path ∆(x, y) is deterministic and only depends on
x and y. ∑

(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
=

∑
(x,y)∈Eucc

|∆(x,y)|=1

E
∆

[
1(a,b)∈∆(x,y)

]
+ 3

∑
(x,y)∈Eucc

|∆(x,y)|=3

E
∆

[
1(a,b)∈∆(x,y)

]
.
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We can now easily bound the first term. For a path with a single edge to include (a, b), it must hold that
(x, y) = (a, b). Thus the first term is at most 1. To bound the second term, we consider the location t ∈ {1, 2, 3}
where (a, b) appears in ∆(x, y). We write (a, b) = ∆(x, y)t if (a, b) appears as the tth edge of the path. Formally,∑

(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
≤ 1 + 3

∑
t∈{1,2,3}

∑
(x,y)∈Eucc

|∆(x,y)|=3

E
∆

[
1(a,b)=∆(x,y)t

]
.

Observe now that once we fix the tth edge to be (a, b), there are only k− 1 possible 3-edge paths. This is because
our map ∆ performs three transpositions between the elements xi, xj , `

′. The edge (a, b) specifies two of the
elements, and the third element is one of the remaining k − 1 elements of the tuples at the endpoints of (a, b).
Once this third element is specified, the edge (x, y) and its respective path ∆(x, y) is fully determined.

Each 3-edge path has a probability of 1
N−k to appear, since it depends on the random choice of `′ from the

set [N ] \ x. Thus we bound the expectation above to be at most

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
≤ 1 +

9(k − 1)

N − k
.

We conclude that the comparison constant of ∆ is

A(∆) = max
(a,b)∈Ecc

N − k + 1

N

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
≤ N − k + 1

N

(
1 +

9(k − 1)

N − k

)
=

N − k + 1

N
+

9(k − 1)

N
· N − k + 1

N − k

≤ 1 + 9 · 2 = 19.

Our log-Sobolev bound for the standard clique-coloring chain now follows directly from Lemma 4.1 and
Lemma 5.1.

Corollary 5.1. The log-Sobolev constant of the k-clique N -coloring Markov chain satisfies

α(P cc
k,N ) ≥ Ω

(
1

k logN

)
.

5.1 Clique-Coloring Walk to Random Circuits Walk We would like to transfer our log-Sobolev constant
bound of the k-clique N -coloring Markov chain from Corollary 5.1, to the random circuits Markov chain. This is
done via the randomized paths construction of Brodsky and Hoory to compare this walk to clique coloring.

Lemma 5.2. ([4]) When k ≤ 2n/3 there exists a randomized map Φ that takes as input an edge (x, y) of P cc
k,2n

and outputs a sequence of edges in P rev
k,n connecting x and y such that the comparison constant satisfies

A(Φ) = O(n2).

Corollary 5.2. If k ≤ 2n/3 then

α(Prev) &
1

n2
· α(Pcc).

Proof. This follows immediately from Lemma 5.2 and Lemma 2.1.
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6 Even Faster Mixing of the Random Circuits Walk via Generic States
We can improve the dependence on n of the mixing time of the random reversible circuits Markov chain P rev

k,n from
cubic to linear using an idea of [4]. The main observation is that after n · polylog (n, k) steps of P rev

k,n, the chain
is very likely to be in a generic state, that is a state where no two of the bit-strings agree on many bits. Generic
states happen with good probability and are nicer to work with, thus when we restrict our Markov chain P rev

k,n to
generic states we apply the comparison theorem with a better (logarithmic) comparison constant.

Definition 6.1. (Generic states, [4]) Let w =
⌈
10 · (log k + log n)

⌉
, p =

⌈
n
2w

⌉
. Let C1, · · ·Cp, C be a partition of

[n] such that |Ct| = w for t ∈ [p], and |C| = n− pw. A state (x1, · · · , xk) is generic if for every part Ct (but not
C), and for every i 6= i′, xi and xi′ are distinct. That is, there are no xi, xi′ that have the same values on every
coordinate in some part Ct. Let Generick,n denote the set of generic states.

In other words, we divide the n bits of the input into two subsets
⋃

t∈[p] Ct and C of roughly equal size. Then
we further divide the first subset into p equal-length blocks that hold a logarithmic number of bits. A state is
generic if no two distinct elements xi, xi′ are equal in any of the Ct parts. Since we now deal with n-bit strings,
we will extend our notation and write xi,j to denote the jth bit of the ith element of the state x.

We define below the generic state reversible circuit Markov chain P grev
k,n to be the restriction of P rev

k,n to generic
states.

Definition 6.2. (Generic state reversible circuit Markov chain) The matrix P grev is the transition matrix of the
Markov chain on Generick,n such that for any x, y ∈ Generick,n,

P grev(x, y) =
P rev(x, y)∑

z∈Generick,n
P rev(x, z)

.

Lemma 6.1. ([4], Equation (3)) There exists a constant ε > 0 such that if τε(P grev) ≤ O(n3k3), and k ≤ 2n/50,
then

τ(P rev) ≤ τε(P
grev) +O(n · polylog(n, k)).

We bound the mixing time of the P grev Markov chain by bounding its log-Sobolev constant. We use the
comparison of [4] as stated in Lemma 6.4 to relate its log-Sobolev constant to the log-Sobolev constant of a
related product chain on generic states, P̃ grev. We get our final estimate by bounding the log-Sobolev constant of
the P̃ grev Markov chain in Lemma 6.3 using results for product chains from [10].

Below we introduce the P̃ grev Markov chain.

Definition 6.3. (Product chain on generic states) Let P̃ grev be the Markov chain on state space Generick,n, where
to sample the next state y = (y1, . . . ,yk) given the current state x = (x1, . . . , xk) ∈ Generick,n we do the following:

• With probability 1
2 , toss a fair coin.

– If the coin has landed heads, set y = x.

– Else, sample uniformly at random c ∼ C, r ∼ [k] and set for all i ∈ [k] and j ∈ [n]

yi,j =

{
xi,j if i 6= r or j 6= c

1− xi,j if i = r and j = c.

• With probability 1
2 , sample uniformly at random ` ∼ [p], r ∼ [k] and a random string u ∈ {0, 1}w such that

u 6= xi,C`
for any i 6= r. Set

yi,j =

{
xi,C`

if i 6= r or ` 6= `

u if i = r and ` = `.
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Informally, given the current state x, one step of this Markov chain performs a change in exactly one of the
two subsets of bits (C or

⋃
i∈[p] Ci) with equal probability. In the first case, it either flips the cth bit from the

subset C of a random element r with probability 1
2 , or it does nothing. In the second case, it samples a uniformly

random subset of bits C` and replaces that subset with a new bit string u for a random element r. All of the
operations above are performed such that the resulting state remains generic.

It is not hard to observe that P̃ grev is a product chain, that is it acts “independently” on different parts of its
state space. This means that we can compute its log-Sobolev constant by breaking it down into smaller chains.

Definition 6.4. (Product Markov chain) Consider t Markov chains {Pi}i∈[t] with state spaces {Vi}i∈[t] respec-
tively. We define the product Markov chain

∏(
{Pi}i∈[t]

)
over the state space

∏
i∈[t] Vi to be the Markov chain

with transition matrix
1

t

∑
i∈[t]

I ⊗ · · · ⊗ Pi ⊗ · · · ⊗ I.

We will refer to the Pi’s as the factors of
∏(

{Pi}i∈[t]

)
.

Lemma 6.2. (Log-Sobolev constant of product chain, Lemma 3.2 of [10]) The log-Sobolev constant of the product
chain

∏(
{Pi}i∈[t]

)
is related to the log-Sobolev constant of its factors as follows:

α

(∏(
{Pi}i∈[t]

))
=

1

t
min
i∈[t]

α(Pi).

Using Lemma 6.2 we obtain the following bound by decomposing P̃ grev into factor chains whose log-Sobolev
constants are known.

Lemma 6.3. The following bound on the log-Sobolev constant of P̃ grev holds:

α
(
P̃ grev

)
≥ Ω

(
1

nk

)
.

Proof. We first write the state space Generick,n in the form of a product

Generick,n =

∏
i∈[p]

Θk,{0,1}w

×
(
{0, 1}k(n−wp)

)
.2

Then decompose P̃ grev as the product of two Markov chains
∏({

P̃1, P̃2

})
. The first chain P̃1 corresponds to

performing a change in the
⋃

i∈[p] Ci subset of the bits, and the second chain P̃2 corresponds to operating in the
C subset of the bits.

The chain P̃1. The state space of this chain is
∏

i∈[p] Θk,{0,1}w . We further decompose3 this chain as

P̃1 =
∏({

P̃1,`

}
`∈[p]

)
, where P̃1,` corresponds to performing an operation on the C` subset of the bits. Thus

the chain P̃1,` has state space Θk,{0,1}w , since it corresponds to the size-w subset C`. To sample the next
state y = (y1, . . . ,yk) from the current state x = (x1, . . . , xk), we choose a random i ∈ [k] and a random
z ∈ {z ∈ {0, 1}w | z /∈ x} ∪ {xi} and set for each j ∈ [k]

yj =

{
xj if j 6= i.
z if j = i.

2Recall from Definition 2.1 that Θk,{0,1}w denotes the set of k-tuples of distinct elements of {0, 1}w.
3We don’t directly decompose P̃ grev into all of its t+1 factors because to use Lemma 6.2 we need each factor of the product chain

to have equal weight.
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Notice that the transition matrix of this chain is equal to the transition matrix P cc
k,{0,1}w of the standard k-clique

2w-coloring chain. Therefore, by Corollary 5.1, we have for all ` ∈ [p] that

α
(
P̃1,`

)
&

1

k log |{0, 1}w|
=

1

kw
.

Applying Lemma 6.2, we have

α
(
P̃1

)
=

1

p
min
`∈[p]

α
(
P̃1,`

)
&

1

p
· 1

kw
&

1

nk
.(6.5)

The chain P̃2. We will “flatten” the bits from the subset C of the k elements into a sequence of k(n− wp)

bits. Then the P̃2 Markov chain corresponds to the random walk on the hypercube {0, 1}k(n−wp) where to sample
the next state y from the current state x we sample i ∈ [k(n−wp)] uniformly at random and flip the ith bit with
probability 1

2 . This chain is the product chain of k(n−wp) chains on the space {0, 1} with transition probabilities
1
2 to each state. We can write the transition matrix of P̃2 as the product∏({

P̃2,`

}
`∈[k(n−wp)]

)
,

where each P̃2,` is the 2× 2 matrix with 1
2 ’s. Equivalently, it corresponds to the transition matrix of the complete

graph on two states. It is easy to see (e.g. [10], Corollary A.4) that α(P̃2,`) ≥ 1
3 for all `. Therefore, by Lemma 6.2

we have

α
(
P̃2

)
=

1

k(n− wp)
min

`∈[k(n−wp)]
α
(
P̃2,`

)
&

1

k(n− wp)
&

1

nk
.(6.6)

Applying Lemma 6.2 with Equation (6.5) and Equation (6.6) yields

α
(
P̃ grev

)
=
1

2
min

{
α
(
P̃1

)
, α

(
P̃2

)}
= Ω

(
1

nk

)
.

Armed with the log-Sobolev constant of P̃ grev, we employ the comparison method of [4] to bound the log-
Sobolev constant of P̃ rev.

Lemma 6.4. ([4], Lemma 16) There exists a randomized map Ψ that takes as input an edge (x, y) of P̃ grev and
outputs a sequence of edges in P grev connecting x and y with congestion A(Ψ) = polylog(n, k). Consequently,

α(P grev) ≥
α
(
P̃ grev

)
polylog(n, k)

.

Corollary 6.1. It holds that

α(Pgrev) &
1

nk · polylog(n, k)

Using now the well-known relation between the log-Sobolev constant and the mixing time of a Markov chain
in total variation distance, we conclude with the proof of Theorem 1.1.

Proof. [Theorem 1.1] Combining Lemma 6.3 and Lemma 6.4 we find that α(P grev) ≥ Ω
(

1
nk

)
. This implies that

for the constant ε′ > 0 referenced in Lemma 6.1, we have τε′(P
grev) ≤ O(nk · polylog(n, k)). Then applying

Lemma 6.1 we have

τ(P rev) ≤τε′(P
grev) +O(nk · polylog(n, k)) ≤ O(nk · polylog(n, k)).

Finally, we can decrease the total variation distance down to an arbitrary ε > 0 by increasing the length of the
walk by a multiplicative factor of O(log(1/ε)), and the statement follows.
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7 The Incompressibility of Random Reversible Circuits
Concurrent work by Chen et al. [7] pointed out that our Corollary 3.1 implies the incompressibility of random
circuits. In this section we use our two mixing time results (one for pointwise and one for total variation distance)
to obtain two incompressibility corollaries with different parameter settings. We largely follow the argument and
notation from [7].

Let CR(m) be the set of permutations with circuit complexity at most m, that is

CR(m) := {π | ∃ reversible circuit with ≤ m gates computing π}.

Moreover, we will define the circuit complexity cc(π) of a permutation π to be the number of gates of the
smallest reversible circuit that computes π.

Our first corollary uses our pointwise convergence result Corollary 3.1. It states that a random reversible
circuit with L gates cannot be compressed more than a factor of n3 without losing its functionality with high
probability.

Corollary 7.1. (Linear growth of reversible circuit complexity) Let π be the permutation computed by a ran-
dom reversible circuit on n bits with L ≤ O(2n) gates. Then with probability at least 1− 2−Ω(L/(n2 logL)),

cc(π) ≥ Ω

(
L

n2 log n · logL

)
≥ Ω

(
L

n3 log n

)
.

Proof. Let N = 2n. Let ν denote the distribution of a random reversible circuit on n bits with L gates. Then by
Corollary 3.1 there exists k = Ω

(
L

n3 logL

)
such that k ≤ 0.1N and ν is pointwise (1± ε) multiplicatively close to

a k-wise independent distribution, for a small constant ε. Therefore, the probability that π can be computed by
a circuit with at most c gates is upper bounded by

Prπ∼ν [π ∈ CR(c)] =
∑

ρ∈CR(c)

Prπ∼ν [π = ρ] ≤ (1 + ε) · |CR(c)|
N(N − 1) · · · (N − k + 1)

.

Here the number of permutations |CR(c)| computed by a circuit of size at most c is at most
((

n
3

)
· 16 · 3

)c

≤(
16n3

)c, since at each step we are choosing a gate out of
(
n
3

)
· 16 · 3 possibilities. Setting c = Θ

(
L

n2 logL logn

)
, we

get (
16n3

)c
N(N − 1) · · · (N − k + 1)

=
2O(c logn)

2Ω(nk)
=

2O(L/(n2 logL))

2Ω(L/(n2 logL))
= 2−Ω(L/(n2 logL))

for appropriately chosen constants.

We can also get a similar bound using our total variation distance result from Theorem 1.1, with a parameter
λ that allows us to tradeoff the incompressibility guarantee with the error.

Corollary 7.2. (Incompressibility versus error for polynomial size circuits) Let π be a random reversible circuit
on n bits with L ≤ 2n/50 gates. Then with probability at least 1− 2−λ,

cc(π) ≥ Ω̃

(
L

λ

)
,

for λ ≤
√
L being a large enough constant. Here the Ω̃ hides polylog(L, n) factors.

Proof. We use the same notation as Corollary 7.1, and in addition let projk denote the projection from S[N ] to
its action on [k]. Then by Theorem 1.1, there exists k = Ω̃

(
L
nλ

)
, k ≤ 0.1N (again hiding polylog(L, n) factors)

such that the distribution ν of a random reversible circuit on n bits with L gates is 2−λ−1-close to a k-wise
independent distribution in total variation distance from Theorem 1.1. This implies that the probability that π
can be computed by a circuit with at most c gates is upper bounded by

Prπ∼ν [π ∈ CR(c)] ≤ Prπ∼ν [projk(π) ∈ projk(CR(c))] ≤
|CR(c)|

N(N − 1) · · · (N − k + 1)
+ 2−λ−1.
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By substituting c = Θ̃(Lλ ), this is upper bounded by

2Θ̃(L/λ)−Θ̃(L/λ) + 2−λ−1

which is ≤ 2−λ for appropriately chosen polylog factors, and since λ ≤
√
L.
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