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Abstract—

The design space of current quantum computers is expansive,
with no obvious winning solution, leaving practitioners with a
crucial question: ‘“What is the optimal system configuration to
run an algorithm?” This paper explores hardware design trade-
offs across NISQ systems to better guide algorithm and hardware
development. Algorithmic workloads and fidelity models drive the
evaluation to appropriately capture architectural features such
as gate expressivity, fidelity, and crosstalk. As a result of our
analysis, we extend the criteria for gate design and selection
from only maximizing average fidelity to a more comprehensive
approach that additionally considers expressivity with respect
to algorithm structures. A custom synthesis-driven compilation
workflow that produces minimal circuit representations for a
given system configuration drives our methodology and allows
us to analyze any gate set effectively. In this work, we focus on
native entangling gates (CNOT, ECR, CZ, ZZ, XX, Sycamore,
ViSWAP), proposed gates (B Gate, v/CNOT, +/CNOT), as well
as parameterized gates (FSim, XY). By providing a method to
evaluate the suitability of algorithms for hardware platforms, this
work emphasizes the importance of hardware-software codesign
for quantum computing.

I. INTRODUCTION

Quantum computers offer an exciting opportunity to explore
problems previously considered intractable. An assortment of
companies have introduced gate-based quantum machines that
range in qubit technology: superconducting transmon qubits
[4], fluxonium qubits [3], trapped-ion qubits [10], neutral
atoms [20], and several others.

Practical questions have already arisen in the community
related to the comparison of different hardware solutions:
“What computer should I use to run my algorithm? How can
I improve my current quantum processor? What gates should
I provide to end-users?”

In the current Noisy Intermediate Scale Quantum (NISQ)
computing era, the most important performance metric for
current systems is their ability to execute algorithms with the
least amount of error, i.e. maximize algorithmic fidelity.

To this end, hardware designers attempt to improve the
accuracy of an algorithm’s execution using a multi-stage
design process aimed at optimizing behavior across multiple
hardware characterization criteria: gate fidelity, crosstalk (gate
parallelism and qubit connectivity), etc. This process, centered
around gate fidelity, proceeds as follows: First choose a native
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entangling two-qubit gate that can be implemented with high
fidelity that is “good enough” to represent any two qubit
process (unitary). After this, develop additional techniques,
e.g. crosstalk mitigation, to further improve gate fidelity.

We believe that this design process can be improved upon
from both a hardware and end-user perspective. Most hardware
characterization metrics are algorithm agnostic [12], [21], [26];
therefore, these widely accepted metrics (e.g. gate fidelity)
are hard to correlate directly with algorithm performance
across systems with distinct hardware characteristics. Full
algorithm fidelity models that capture hardware characteristics
(gate fidelity and parallelism/crosstalk) have been introduced
in the literature [9]. While they are able to assess the fi-
delity of an algorithm when executed on a single hardware
configuration, these models still lack predictive power when
varying architectural parameters. The problem stems from the
fact that these metrics combine algorithm-agnostic hardware
characterization metrics with metrics that characterize the
program implementation and resource consumption (e.g. gate
count, circuit depth), and implicitly the impact of the program
generators and compilers.

In this paper we argue that gate set design should be driven
by representational power in the context of a given algorithm
or algorithmic workload. In order to attain the most resource
efficient implementation, we use custom compilation work-
flows that combine traditional compilers, such as Cirq [14] or
Tket [40], with circuit synthesis tools [45].

This paper makes the following contributions:

First, we leverage analytical models that combine hardware
(gate fidelity, parallelism and qubit connectivity) and algorithm
implementation (gate count, depth) characteristics to construct
a comparative performance roofline for hardware and com-
piler designers, as well as system end-users. Our quantum
roofline is able to derive which particular metric can lead
to overall improvements in algorithmic fidelity, as well as
upper bounds on these metrics past which no additional end-
user gains can be expected. For example, when comparing
Sycamore (Google) and CNOT (IBM) entangling gates for a
particular algorithmic workload, our analyses show that there
are ranges of relative gate fidelities where one configuration
can always outperform the other! Once a certain threshold
fidelity has been attained, no improvements in one- or two-
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Hardware # Qubits | Technology Connectivity | Gate Set 1Q/2Q Error(RB/XEB)
Google Sycamore 54 Superconducting | Mesh 1Q: XZ, RZ 2Q:FSim,v/iSWAP, Sycamore, CZ | 0.001 / 0.01

IBM Eagle r3 127 Superconducting | Mesh 1Q: SX, RZ, X 2Q: ECR 0.0002 / 0.007

IBM Hummingbird 13 | 65 Superconducting | Mesh 1Q: RZ, SX, X 2Q: CNOT 0.00027/ 0.012

IBM Falcon r5 27 Superconducting | Mesh 1Q: RZ, SX, X 2Q: CNOT 0.0003/ 0.0079

Rigetti Aspen M3 79 Superconducting | Mesh 1Q: RX, RZ 2q: CZ, XY 0.001/ 0.14, 0.092
Quantinuum H2 32 Ton Trap A2A 1Q: Ul, RZ 2Q: ZZ 3e-5/0.002

TonQ Forte (2024) 35 Ion Trap A2A 1Q: GPi, 2Q: ZZ, XX 0.0002/ 0.0040

TonQ Aria 21 Ion Trap A2A 1Q: GPi, 2Q: XX 0.0006/ 0.0040

TABLE 1I: Summary of existing commercial Quantum Computing hardware [2], [14], [19], [34], [37]. As we can see, most devices available now are
superconducting or ion trap devices, with superconducting devices proving to be easier to scale. This contrasts the ion trap devices which show on average
higher RB fidelity. Additionally, superconducting qubits have a mesh (2D Nearest Neighbors) topology while ion traps are all-to-all (A2A).

qubit gate fidelity on any architecture can lead to better relative
performance with respect to the other.

Next, we introduce a circuit synthesis based compilation
procedure which indicates that the existing gate set design
criteria that favors choosing gates based on their attainable fi-
delity and representational power of random two-qubit process
may be misleading. Instead, our analysis shows that the criteria
should be augmented with their representational power for
multi-qubit processes (e.g. three qubit sub-unitaries appearing
within larger circuits) that are drawn from implementations
of existing algorithms. Previous work [42] illustrates that the
the span of unitaries appearing in algorithms is much smaller
than the space of all possible unitaries. As our compilation
tool-chain synthesizes these unitaries, rather than the given
quantum circuit, we can evaluate a gate’s ability to represent
an algorithm. For example, while the B-gate [46] is the most
expressive gate for two qubit unitaries, we cannot uncover ad-
vantages when using it to represent complex programs. When
compared against CNOT, B-gates surprisingly lead to gate
count increases and possible fidelity decreases. At the other
end of the spectrum, we show that several low-entanglement
gates such as v/CNOT and viSWAP are sometimes able to
offer similar expressive performance as maximally entangling
gates for important circuits such as TFIM, QFT, and QAE,
leading to better algorithmic fidelity.

As discussed in Section X, we believe our assessment
procedure extends well beyond NISQ into the Fault Tolerant
era of quantum computing.

II. QUANTUM HARDWARE CHARACTERIZATION AND
BENCHMARKING

Today’s systems are dominated by superconducting (IBM,
Google) and trapped ion (Quantinuum, IonQ) qubits. Neu-
tral Atom (QuEra, Atom Computing) and silicon-spin qubits
(Intel) are starting to gain traction, while several other tech-
nologies are continuously being developed. All these systems
expose to end-users a universal gate set [31], composed of
single-qubit and entangling two-qubit native gates. These gate-
set choices are outlined in Table I. Several methods exist to
characterize today’s quantum machines:

Average Gate Fidelity: The widest used characterization and
processor optimization metric is the average gate fidelity,
which captures the probability that a state does not succumb
to any error when a gate is applied. Fidelity can be measured
using Randomized Benchmarking (RB) protocols [21], [26],

[27], which use random Clifford gates to create a depolariza-
tion channel over a set of qubits with a single probability p, the
average infidelity of the gate’s application. By using variable
lengths of random Clifford circuits, existing protocols calcu-
late the infidelity per gate (pgae): fidelity is then computed as
1 — Dgate-

In 2019, Google introduced the cross entropy benchmarking
(XEB) protocol [1] as another way to compute average gate
fidelity. Importantly, this study also shows that the total
average fidelity of a circuit can be approximated using a simple
digital error model, validated for NISQ size systems.
Process Fidelity: As RB protocols have trouble scaling past
three qubit processes, Cycle Benchmarking (CB) [15] has
been proposed to improve characterization scalability to larger
processes (and hardware). CB based protocols indicate that
besides average gate fidelity, hardware dependent metrics such
as qubit connectivity and algorithm specific metrics such as
gate parallelism per cycle need to be taken into account when
assessing algorithm fidelity.

Quantum Volume: Quantum Volume (QV) [12] characterizes
the capability of hardware to execute random circuits of a
certain size. This metric cannot be used to compare the fidelity
of different process implementations running on the same
machine or that of a single process running across different
machines.

Algorithmic Qubits: TonQ’s Algorithmic Qubits (AQ) metric
[9] captures a system’s ability to execute an algorithmic work-
load. AQ protocols measure the largest number of effectively
perfect qubits you can deploy for a typical quantum program.
It is similar to QV, but it additionally considers quantum error
correction and presents a clear and direct relationship to qubit
count. The AQ metric captures the impact of the compilation
tool-chain.

All of these protocols and metrics reveal different useful
information about a single configuration of quantum ma-
chine. However, they all fail when comparing across different
hardware and gate sets. While we can measure the fidelity
and quantum volume of a CNOT-based machine and of a
Sycamore-based machine, this does not give us any informa-
tion on their respective abilities to run a given algorithm. AQ
encapsulates the algorithmic potential of different hardware,
but it is still unable to quantify the degree to which one needs
make changes to an architecture’s configuration in order to
provide better comparative performance.

In order to make these inferences, we advocate for an
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algorithmic workload based approach centered around circuit
fidelity models that combine hardware characterization metrics
with the hardware’s ability to represent and implement a
particular algorithm. We start with the simple digital model
based on average gate fidelity, which we then extend to
account for crosstalk due to parallel gate execution as well
as qubit connectivity (an idle qubit can be affected when
executing an operation on a neighboring qubits).

A. Roofline

The roofline model [43] provides an intuitive understanding
of performance bottlenecks in classical hardware. The model
outputs the maximum attainable performance on a machine
as a function of the operational intensity of an application.
This allows hardware and software architects to understand the
inherent limits of their design in the context of important uni-
versal metrics: computational power and network bandwidth.

Our paper introduces a quantum analog, which highlights
bottlenecks in algorithmic fidelity when comparing two differ-
ent machines by gate expressivity, fidelity, and connectivity.
While the classical roofline is fixed for a particular hardware,
our relative roofline is fixed for an algorithmic workload. This
allows for simple comparisons to be made between quantum
computers for targeted domains. As a consequence, our model
is compiler dependent, which motivates our custom compiler
workflow and the importance of numerical synthesis based
transpilation (Section III-B).

III. QUANTUM ALGORITHMS AND COMPILERS

The digital model indicates that circuit fidelity is determined
by the average gate fidelity and the circuit gate count: im-
proving both metrics will improve algorithmic fidelity. The
gate count for a given algorithm implementation is determined
by hardware characteristics: 1) representational power of the
native gate set; and 2) qubit interconnection topology.

Due to exponentially compounding gate infidelities, the
dominant factor in the digital model is gate count. This has two
consequences: 1) comparisons between system configurations
should be done using the implementation with the fewest
number of gates attainable, together with the lowest depth
or highest gate parallelism; and 2) the compilation tool-
chain plays a very important role in determining the overall
“performance” of a given configuration.

A. Quantum Algorithms

Domain generators [29], [34] that produce the circuit as-
sociated with a given algorithm tend to have the following
common characteristics:

o They are developed to generate circuits in a restricted
gate set. Most generators use directly the CNOT gate,
while some hardware-vendor-provided generators target
only vendor supported native gates.

The generated circuits have a logical qubit connectivity
that resembles the domain level structure. For example,
optimal QFT circuits are generated assuming an all-to-
all qubit connectivity. Circuits generated for fermionic

807

p
Benchmark suite of
Input " diverse algorithms
&
Compilation

Evaluate a gate’s
ability to express
an algorithm

[]
i
K (]

Measure the impact
of topology

Evaluate the trade
off between
expressivity and
fidelity

Fig. 1: Our Hardware Comparison Procedure: A synthesis-based cross-
compilation process (sometimes called “transpilation”) allows us to explore
multiple gate sets and the ability to express an algorithm in terms of gate
count, depth, and parallelism. From there, we can understand the effects of
topology and fidelity on the overall performance of a quantum machine.

[29] interactions map fermions to qubits using a logical
topology that resembles the structure of the physical
system modeled.

Some generators are deemed optimal. Optimality here
relates only to to asymptotic complexity: a good com-
piler can greatly reduce the constants that appear in the
complexity formula.

Due to these properties, a quantum compiler’s ability to: 1)
eliminate gates that are redundant or can be simplified from
the circuit; 2) map and route the input circuit to the hardware
configuration; and 3) translate (transpile) the input circuit to
a different gate set is paramount for accurate architectural
comparisons.

B. Quantum Compilers

Traditional vendor compilers use peephole optimizations
based on 2-qubit gate synthesis (KAK decomposition [41]),
application of gate commutativity rules, or domain specific
pattern rewriting rules (e.g. Tket’s phase gadgets [11]). They
also provide mapping and routing algorithms [22], [34], [40]
and translation between multiple gate sets (“transpilation”). In
particular, transpilation is performed using a 1:1 gate rewriting
rule: any 2-qubit gate is rewritten directly from one (e.g.
CNOT) to another (e.g. Sycamore).

Circuit synthesis [36], [45] based tools have been intro-
duced recently and have been shown to provide better quality
implementations [13], [25], [42], [44] when compared against
vendor compilers, albeit at the expense of increased compila-
tion time. Some of these tools integrate optimization [13] with
mapping [25] and gate transpilation [44]. They can search a
large space of circuit structures and transformations.

All compilation tools have one thing in common: the
compilation workflow is custom and it consists of repeated
applications of passes and transformations. While it is hard to
quantify the impact of optimization, mapping, and transpila-
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Family Benchmarks (circuit_width) Benchmark | Size | Gate BQSKit Tket Cirq Qiskit
TFIM TFIM_16, TFIM_64, TEXY_16, a2a | mesh | a2a | mesh | a2a | mesh | a2a | mesh
TFXY_64 cz 67 89 104 134 134 227 132 141
mul_10 163
QAE qae_9, qae_13, qae_17, qae_21 b 110 125 208 480 - - - -
QFT qft_4, gft_12, gft_64 syc 103 139 208 319 260 364 - -
QAOA qaoa_10 cz 237 336 240 522 264 563 264 426
QPE gpe_14, qpe_18 qft_16 264 b 242 302 480 | 1044 - - - -
Adder adder_9, adder_63, mul_10, mult_60 syc 241 365 480 828 288 755 - -
Shor shor_12, shor_16, shor_24, shor_28 cz 200 200 240 240 240 240 240 240
Grover grover_5 TFIM_16 240 b 200 202 480 480 - - - -
Hubbard | hubbard_4, hubbard_8, hubbard_12 syc 200 208 480 219 440 440 - -
QML gqml_6, gml_13, qml_22
VQA vge_12 (LiH), vqe_14 (BeH>) TABLE III: Comparison of two qubit gate counts for a subset of the benchmarks and gate sets

across our different compilers. The first number under each compiler is for an all-to-all topology

TABLE II: Our Benchmarks: List of benchmark
circuits organized by family. Each circuit was initially
created with CNOT and U3 gates.

2

[ CZ I 7ZZ B XX W ECR [ Sycamore

mm [iSWAP

system, while the second number is for a mesh topology. Synthesis based compilers, such as BOSKit,
produce the circuits with the least amount of gates. Note that Cirq (Qiskit) is unable to compile to
the B Gate (B and Sycamore Gate).

. ¢[CNOT
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F ig. 2: Normalized two-qubit gate count for existing hardware (top) and theorized hardware (bottom). We plot the relative count with respect to the optimally

compiled CNOT based circuit. The gate count encapsulates logical algorithm connectivity and serves as a proxy for a gate’s ability to represent the algorithm.

tion phases in isolation, we note that compilers can realize up
to an order of magnitude in gate count reduction, even when
the input circuit is “optimally” generated.

IV. EVALUATION PROCEDURE

We used the algorithms shown in Table II for our evaluation.
They include many important categories including Variational
Algorithms (VQA and QAOA) [16], [33], Finance (QAE) [17],
Number Theory (QFT, QPE, Shor) [5], Physical Simulation
(Hubbard, Ising(TFIM)) [7], [39], Search (Grover [28]), and
Quantum Machine Learning (QML). The QML circuit is based
on [8] and has an n-bit encoder and a two-local network.
Most benchmarks were generated using Qiskit circuit gen-
erators [34], while the TFIM circuits were generated with
F3C++ compiler [32]. For each algorithm we generate several
instances across inputs and circuit sizes (number of qubits).
Overall, we believe that our algorithmic workload provides a
good sampling of the space of circuit implementations. We
consider up to 64 qubit programs, with gate counts as high as
37000 accounting for a maximum depth of 44500. The logical
topology of these programs ranges from linear in TFIM to all-
to-all in QFT.

808

We translate and optimize the benchmarks for native gates
present in today’s hardware (CNOT, ECR, CZ, ZZ, XX,
Sycamore, vViSWAP), as shown in Table 1. Additionally, we
examine experimental gates theorized to provide algorithmic
fidelity advantages due to either high expressivity or high
fidelity, B and v/CNOT or v/CNOT respectively.

An overview of our process is shown in Figure 1. We
use a custom compilation workflow that first performs rule-
based and algorithm-level transformations (Tket, Qiskit, Cirq)
and pass these optimized circuits to BQSK:it for transpilation
and mapping ( [25], [44]). We perform a search across all
of these compilers to select the best resultant circuits. Table
IIT shows a sampling of these results. As described in [44],
numerical synthesis partitions a larger circuit into three qubit
blocks. By considering the underlying unitary of each block
rather than the reference circuit, the synthesis algorithm is able
to perform a global optimization over the entire block. This
provides a sizeable advantage when compared to a standard
rule-based gate translation, which only considers the two-
qubit interaction of the original gate. To our knowledge, this
workflow generates the best attainable implementations of a
given algorithm on a given hardware configuration. These

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 06,2025 at 18:49:06 UTC from IEEE Xplore. Restrictions apply.



resource “optimal” circuits! are then run through our fidelity
models described in Section VI in order to compare overall
performance.

V. GATE REPRESENTATIONAL POWER

Given a reference implementation using CNOT gates, in
Figure 2 we show the relative two-qubit gate count (averaged
across all circuits in a circuit family) after re-targeting to
a particular gate. This data shows the ability of a gate to
represent a particular algorithm, i.e. it captures its expres-
sivity and entanglement power. When considering existing
native gates, the {CZ, ZZ, XX, ECR} set seems to have the
same representational power as CNOT gates. The native gates
{Sycamore, viSWAP} have lower representational power than
CNOT, as illustrated by their higher gate counts. When con-
sidering theorized gates, we see that {B, v/CNOT, v/CNOT}
have overall lower representational power than CNOT. This
is surprising as the motivation behind the introduction of the
B-gate was its optimal 2-qubit representational power.

This behavior is also algorithm dependent. The TFIM, QAE,
and QFT circuits require almost the same number of gates,
irrespective of which gate it is used. For the rest of the circuits,
we see more nuanced behavior. The gate set {CZ, ZZ, XX,
ECR, CNOT} leads to the least amount of gates used, with
much higher gate counts for the set {Sycamore, viSWAP, B,
v/CNOT, v/CNOT }.

This data indicates that the machine with the highest gate
fidelity will be best suited to execute TFIM, QFT, and QAE.
For the rest of the algorithms, the best machine will consider
trade offs in both gate fidelity and circuit structure (gate
count, parallelism etc.). Our data also indicates that gate
representational power with respect to full algorithms needs
to be taken into account when selecting a system configura-
tion. We discuss in detail representational power trade-offs in
Section IX.

VI. CircuIT FIDELITY MODELS

In the NISQ era, it is critical to maximize the probability
that a circuit’s output state is correct. The output expectation
can be described a function of the average gate fidelity of the
machine, written as [31]:

Foue(.U) = / dp (| U@ )

where U is the target unitary and £ is the erroneous channel
trying to implement U.

To assess algorithm fidelity on a particular system config-
uration, we use a series of models that capture circuit char-
acteristics together with an increasing number of architectural
features: (1) gate fidelity; (2) gate fidelity and parallelism. In
Section VII-E we discuss a model based on qubit connectivity
as well.

Let F(-) denote a circuit fidelity model, and let A and B
denote two distinct system configurations. In order to enable

system comparisons, we analyze the objective function given
by: m=FA()—F5()

"'Meaning they do not improve with further compilation and optimization.

A. Gate Fidelity

Our first model is derived from [1], in which the authors
verify that the measured fidelity and estimated fidelity based
on this model track almost exactly for their tested circuits.

Definition 1 (Digital Fidelity Model): The average circuit
fidelity F; can be estimated as

Fq = H [
i=1,2,..
where n; is the number of i-qubit gates in the circuit, and f; is
the average fidelity of an ¢-qubit gate. For systems with only
one- and two-qubit native gates this becomes:

_rma no
Fa=/""fa
with the objective function:
A A B B
_ pA™ AT BT B™2
Ta = J1 "J2 - “J2

B. Gate Fidelity and Parallelism

In many systems, parallel execution impacts the attainable
gate average fidelity. To capture this, we use a model based on
Cyclic Benchmarking [15]. The protocol considers circuits as
a series of cycles, with which we can calculate a single cycle
fidelity as function of the 1-qubit and 2-qubit process fidelities
(7). The process fidelity and average fidelity as defined above
are related by a simple linear equation [18].

Definition 2 (Cyclic Fidelity Model):

F. = H(1 —e; - P)"

where P; is the average parallelism of ¢-qubit gates in the cir-
cuit, m is the depth of the circuit, and e; is the average process
infidelity for an ¢ qubit gate (1 —y;). e; can be measured using
the Cycle Benchmarking protocol. The objective function for

our machine compgrison becomes:
e = Fc© — F¢

A A

=(1—ef - P)™ - (1—ey - P"

B B
(e PP (- ef PPy

VII. EVALUATING QUANTUM MACHINES

Now, we can finally answer the question “What machine
should I use to run my algorithm?”.

While the hardware landscape is constantly changing, by
today’s numbers Quantinuum boasts by far the highest 2-
qubit gate fidelity at 0.998 and its ZZ gate can express our
algorithmic workload well. For algorithms that use more qubits
than H2’s capacity, the models suggest the IBM Eagle system.

A more insightful question is how could system configura-
tions be changed in order to improve competitiveness, e.g. :
“How can other machines become better than H2?”.

A. Quantifying Design Trade-offs

Our procedure allows us to quantify the trade-offs between
a gate’s representational power for an algorithm and its
fidelity. This is a comparative analysis where we vary the
models’ parameters and solve for the objective function as
defined in Section VI. As gates continue to improve and
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Fig. 3: Machine capability to execute the adder_9 algorithm. CNOT fidelity
is on the x-axis and the relative Sycamore fidelity on the y-axis. We plot the
winning machine at each point. The middle area shows where the choice
of best machine is a function of the single-qubit fidelity. In the other areas,
each machine wins irrespective of 1-qubit gate fidelity. The published 2-qubit
gate fidelities are shown with the black dotted lines, while the corresponding
rooflines are plotted with solid black lines. The CNOT (Sycamore) gate always
wins when its fidelity is right of (above) the roofline.
calibration/noise-mitigation techniques advance, architects and
end-users must consider:

1) “What gate fidelity do I need in order to out-perform
other machines? How does this vary by algorithm
class?”

2) “Does single-qubit gate count matter for relative perfor-
mance?

3) “Is offering multiple entangling gates worth the devel-
opment and maintenance effort?”

4) “How does the underlying chip topology affect the
relative performance?”

Given that the maximum attainable gate fidelity is 1, in
order to compare NISQ-era devices, we want to use realistic
constraints. First, to simplify the model, we will initially
limit the single-qubit gate type to only the U3 gate. Current
machines have parameterizable rotation gates that can be
composed to perform any arbitrary single-qubit unitary. As 2-
qubit gate errors still dominate, this simplification is justified.
Based on Table I, single-qubit gate fidelities vary from around
0.999 to 0.99999 across all quantum machines considered,
while 2-qubit gates range from 0.990 to 0.999.

B. Two-Qubit Gate Analysis

We use the adder_9 algorithm to directly compare IBM
Falcon (CNOT) with Google Sycamore (Sycamore) machines
as our driving example. The corresponding objective function
(defined in Section VI) is:

ATO

449
Td = J1

tJ2

B9l
—J1

566
"2

For comparisons, we rewrite the objective function to use
the Sycamore fidelity relative to CNOT. We vary the CNOT fi-
delity along the x-axis and the relative Sycamore fidelity along
the y-axis. This leaves the single qubit fidelities (f{*, fZ) free:
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Fig. 4: Gate set comparison against CNOT. CNOT fidelity is fixed to the
IBM Falcon (vertical dotted line in Figure 3). The bars correspond to a
vertical slice of the full analysis (Figure 3) for each of the circuit families:
TFIM, QAE, QFT, QAOA, QPE, Adders, Grover, Shor, Hubbard, QML, and
VQE. Encouragingly, low entanglement gates (/CNOT) can provide better
overall circuit fidelity for several important algorithms.
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Each point represents a two-system configuration we are
comparing, with the 2-qubit fidelities set according to the
x and y position. The fidelities are bounded by our model
constraints, resulting in the colored band as shown in Figure
3. We identify three behavioral regions. In the two outer
regions, one configuration wins against the other no matter
the single-qubit gate fidelity of the system. In these regions 2-
qubit gate fidelity and expressivity fully determine the relative
system behavior. In the central region, the winning machines
depends on the fidelity of single-qubit gates (ratio between
flA and f#): one machine can be improved relative to the
other by tuning their single-qubit gate fidelity. For each system
we also compute a 2-qubit gate threshold fidelity, shown
with continuous lines: once that is reached on a system,
no improvements® in the other system’s 2-qubit gate fidelity
will change the overall ordering. We also plot the published
fidelities of the respective hardware gates with a dotted line.
The distance between actual and threshold fidelity for a gate
indicates a window of opportunity to improve the other system.

We refer to this method of relative comparison as a quantum
hardware roofline, as it allows us to compute bounds on the
required improvements for a particular system configuration.
For example, In Figure 3, once the CNOT gate reaches the
threshold fidelity of 0.9968, no improvements in the Sycamore
fidelity will outperform a CNOT based machine.

Figures 4 and 5 extend these results across algorithm
classes and gatesets. Figure 4 compares several gates against
the CNOT gate whose fidelity is fixed to that of the IBM
Falcon system (each bar is a vertical slice of the plot in
Figure 3 at the IBM Falcon fidelity). Again, configurations

2We vary the fidelities within the constraints of our model.
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Fig. 5: Sycamore Fidelity Compar- CNQOT Fidelity provided by the data-sheets for each machine [14],

ison across algorithm classes using
the cyclic fidelity model [15]. We see
similar trends in terms of machine-
dominant regions and rooflines, how-
ever the single-qubit impact is much
smaller with this model.

of 0.999988 for adder_9.

can be improved by improving only 2-qubit fidelity, or by
improving 1-qubit and 2-qubit gate fidelity together. The exact
behavior is algorithm and gate set dependent. Encouragingly,
low entanglement gates can provide advantages for some
algorithms. Figure 5 shows this behavior when targeting the
Cyclic Model. The trends are similar across models, with the
Cyclic Model placing a much smaller emphasis on the single-
qubit configuration. This is to be expected since the model
emphasizes the impact of 2-qubit gates.

C. Single-Qubit Gate Analysis

To understand the implications for 1-qubit gate design we
consider the closure of the 1-qubit dependent behavior (middle
region) across “any’ algorithm. To this end, we constrain the 1-
qubit gate count as a function of the two-qubit gate count. We
lower bound the 1-qubit gate count as % of the corresponding
2-qubit gate count, far below the ratio found in any of our
experimental data. We upper bound with twice the 2-qubit
gate count: any consecutive U3 gates can be combined into
one, so there are at most two 1-qubit gates in between the
2-qubit gates.

Now, we can vary the 1-qubit gate count between these
bounds (keep n4' and n? as variables). Then, we can analyze
how the objective function behavior changes as we fix single-

qubit fidelity (£) for both machines.

T = (Fl)nf’ . $4153 o (Fl)nf . ?/5944

This analysis for adder_9 on the Falcon and Sycamore
machines is shown in Figure 6. The 1-qubit dependent region
shrinks as the 1-qubit fidelity improves, even as we allow for
any single-qubit gate count. At some 1-qubit fidelity, the region
completely disappears. We denote this as the /-qubit threshold
fidelity: once this is reached, no improvement in 1-qubit gate
fidelity will improve the relative performance between two
machines.

We can solve for the threshold fidelity for different initial
2-qubit gate counts, as present in algorithms. We set up
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Fig. 6: This plot shows the behavior of the I1-qubit
dependent region as we fix the 1-qubit fidelity. The
1-qubit region shrinks as the fidelity increases, and
disappears entirely when you reach a 1-qubit fidelity

[34], [35]. Gate count ratios less than the threshold
ratio signify circuits where tuning I-qubit gates can
improve the relative performance. For Sycamore vs. H2
(1), the only way to improve relative performance is by
improving 2-qubit gate fidelity, while for the Falcon vs.
H2 (1.06) there is a slight window of opportunity.
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Fig. 7: The X-axis shows the 2-qubit gate count ratio when comparing
the implementations on two machines, while the Y-axis shows the resulting
threshold 1-qubit fidelity. We also plot the range of 2-qubit gate count ratios
we see for each gate compared to CNOT. The black dotted lines show the
current NISQ single-qubit fidelity range. When using the upper bound on
gate count ratio, the ordering of most machine comparisons is affected by the
single-qubit gates. This quickly changes when we consider specific machines
as shown in Table 1V.

the objective function such that the 2-qubit counts for each
machine are related by a ratio, and we vary this ratio along
the x-axis in Figure 7.

pnsw

A
AT2 nb .
J2

A
_.n
T=yY"t ] -

As shown in Figure 7, there is an upper bound ratio (3.5)
where the threshold fidelity drops below the current worst
NISQ-era single-qubit fidelity! For any two circuits where the
2-qubit gate ratio is higher than the upper bound (3.5), no
improvements in the 1-qubit gate count on any machine can
change relative performance. This explains why for several
circuit families, the CNOT machine always beats the v CNOT
machine regardless of the single-qubit configuration!

We can then derive hardware-specific upper bound ratios
which give direct information about the potential of changing
relative performance in practice. Instead of using our generic
bounds for our fidelity model, we use the 2-qubit gate fidelity
ranges of existing machines and show results in Table IV. As
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Fig. 9: 2-qubit gate counts averaged across circuit families mapped to each device topology and gate set.

indicated, the actual upper bounds are around 1.6, much lower
than the 3.5 absolute threshold. Overall, this data indicates
that for most systems, relative performance orderings can be
changed by tuning 1-qubit gates. However, when comparing
QML or Shor circuits on Falcon and Sycamore machines,
algorithm and compiler designers should not focus on 1-qubit
gate reduction in order to improve relative performance.

D. Mixing Entangling Gates

Systems such as Aspen and Sycamore offer multiple en-
tangling gates and parameterized entangling gates. These
gates will have different average fidelities and may be used
together within a single circuit. In Figure 8 we show the
2-qubit gate counts for the Sycamore and Aspen machines
when using parameterized and multiple 2-qubit entangling
gates within the same circuit. Heterogeneous gate sets like
Sycamore+viSWAP and CZ+XY express circuits as well
as the Sycamore or CZ gate alone, respectively. Therefore,
on these systems choosing the highest fidelity gate for any
algorithm may be sufficient.

The parameterized FSim gate leads to significant gate count
reduction when compared to the Sycamore and +iSWAP
gates, while the XY Gate provides no benefit over the CZ
gate. The FSim gate takes two parameters, while the XY gate
only has one. This allows the FSim gate to express complex
unitaries more efficiently. Accordingly, FSim implementations
can outperform Sycamore gate implementations even with a
larger (0.4%) drop in fidelity! The circuit quality of the FSim
gate may also point to a finite spanning gate set of FSim
family gates that are able to express circuits as well as the
full parameterized gate. A finite set of constant gates may
prove to be easier to calibrate than a fully parameterized gate,
leading to a higher gate fidelity.

812

QFT QML

s
=3
S
1

. zz
Wl ZZ A2A, Syc Grid
Il One-Qubit Dependent
[0 Syc A2A,ZZ A2A
o syc

Sycamore Fidelity / ZZ Fidelity
E s
&

i
|
1

0.988 0.990 0.992 00994 0.996 0.988 0.990 0.992 0.994 0.996

ZZ Fidelity ZZ Fidelity

Fig. 10: Roofline analysis (ZZ, Sycamore) is mapped to (all-to-all, mesh).
Dark blue region: Relative performance can always be changed by tuning
1-qubit fidelity. Light Blue region: ZZ always performs best, regardless of
topology. Gold region: Sycamore always performs best.
E. Topology

The physical qubit interconnection topology impacts system
behavior by:

1) Increasing gate counts when the algorithm logical topol-

ogy is mismatching, as shown in Figure 9.

2) Adding cross talk due to the device qubit couplings.

Architects can use our models to answer: “What fidelity
improvement is needed to overcome a more restrictive topol-
ogy?”. In Figure 10 we compare the capabilities of H2 (ZZ,
all-to-all) with Sycamore (Sycamore, mesh) using the cyclic
fidelity model. As before, we are able to identify ranges where
one configuration (gate, topology) performs best irrespective
of 1-qubit gate fidelity, as well as ranges where relative perfor-
mance depends on the 1-qubit gate fidelity. The orange region
in the graph shows the fidelity range in which Sycamore loses
on account of being mapped to a more restrictive topology.
The size of this orange region corresponds to the change in
ability to express a circuit, and varies by algorithm.

While Figure 10 is able to model the first effect of topology,
we must turn to the coupling-based model introduced in [15]
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Fig. 11: Validcgti?)n experiments for our fidelity model.( ( 3) Plot against full
simulation on IBM Noisy Simulator and derived depolarization channel. We
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2-qubit gate error of our model vs. a general depolarization model. (c) and
(d) 2-qubit gate analysis for adder_9 and grover_5 respectively using fully
noisy simulation. We see that the roofline numbers and regions closely match
the behavior seen in Figure 3.

in order to understand cross talk:
F = (176C1~Cl)nl ~(176C2'Cg)n2

where C; is the number of other qubits on average that
each qubit is coupled to and e.; is the error per coupling
for an ¢-qubit gate. C; is a direct measure of the physical
chip topology. For a grid topology, usually associated with
superconducting qubits, C'y is a constant between 1 and 4.
For all-to-all connectivities provided by ion traps CY is instead
%N(N — 1). This error per coupling can be measured by the
Cycle Benchmarking protocol.

VIII. VALIDATION
These models trade off accuracy for tractability. While full

noise simulation is able to give the most accurate view of
algorithmic fidelity, it does not scale to system sizes of interest.
However, we can use it as a point of comparison to validate
the fidelity models we have chosen.

We first compare random circuits with varied gate count
(see Figures 11a, 11b). We compare our digital model against
two other models: full simulation and a depolarization chan-
nel model. We use Qiskit’s provided noisy backends which
account for T1 and T2 coherence times of qubits, as well
as explicit error channels for each gate application [34]. We
expect the fidelity model to closely lower bound both other
procedures, which we see in Figure 11a. Secondly, we ensure
that our model outputs similar relative results as we vary the 2-
qubit error for different gate sets. We show these experiments
in Figure 11b for the grover_5 circuit transpiled to a CNOT
machine and a B-gate machine. We see that the relative
performance remains the same as we vary the error.
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Fig. 12: Position in the Weyl chamber of 2-qubit unitaries/blocks that arise
in the Adder group (left) and QFT group (right) for different native gates.
The initial spread of Adder unitaries proves to be a very difficult pattern for
the Sycamore and B-gates to instantiate, while the periodic pattern we see in
QFT (series of controlled rotations) are able to be expressed efficiently.

We add further confirmation by running an full 2-qubit
analysis as shown in Figure 3 using noisy simulation. As
shown in Figure 11c, we see that the roofline numbers across
both experiments closely match. We feel that the correlations
seen in our model across these experiments in addition to the
correlation seen in experiments run on real hardware [1], [15]
validate the utility of our fidelity model.

IX. EVALUATING GATE REPRESENTATIONAL POWER

A gate set’s ability to realize a circuit comes down to
its expressivity and entanglement. Gate expressivity identifies
a gate’s ability to represent a random two-qubit unitary.
Architects often use the Weyl Chamber to directly visual-
ize gate expressivity [24]. The Weyl Chamber removes all
local parameters from a 2-qubit unitary and plots it into a
tetrahedron. Most entangling gates can express any 2-qubit
unitary in three applications (along with single qubit rotation
gates). The most expressive gate, the B-gate, can express any
unitary in two applications. It can also easily be realized
on a superconducting machine [46]. Gate entanglement is
a gate’s ability to maximize the entanglement between two
qubits. CNOTs and most hardware native gates are maximally
entangling: a single application to two qubits will leave them
perfectly correlated. The v/CNOT and +/CNOT gates trade
off entangling power for large potential gains in gate fidelity.

Several trends have become apparent in our research. Most
notably, we see that current state-of-the-art compilers are
unable to generate higher quality circuits when targeting
the B-gate. This is surprising, because the B-gate is the
most expressive 2-qubit gate. On the other hand, we see
some equally surprising positive results for the v/CNOT and
VCNOT gates. These low entangling gates require 4 and 8
applications respectively to represent a single CNOT gate. This
makes their comparable expressivity in important circuits such
as QFT, TFIM, and QAE circuits exciting.

A. Weyl Chamber Distribution of Two-Qubit Algorithm Blocks

Under our procedure, it is clear that the expressivity and
entanglement of a native 2-qubit gate is not strongly correlated
with algorithm performance under currently accepted design
criteria. While expressivity is assessed based on the power to
implement random 2-qubit unitaries, optimal implementations
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to decompose a circuit into maximal 3-qubit gates and then
use direct synthesis to generate circuits targeting each native
gate set. This procedure results in implementations for each
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go 5 ’ block that use the fewest number of 2-qubit gates, irrespective
qé_” . of gate choice. We plot the gate count distribution of blocks in
202 Figure 13. The CNOT family of gates (which includes the CZ
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0.0

4 6
Gates per Block

Fig. 13: The BQSKit partitioner splits the circuit into circuit blocks. We plot
the number of 2-qubit gates (CZ, B, Sycamore) in each block of the Hubbard
circuits as a distribution. Note that the majority of blocks are very simple
(count is < 4 for CZ). These blocks are too simple for the B gate to find
smaller circuits, and usually defaults to using 2 B gates to represent a single
CZ. On the other hand, the B gate is able to find shorter circuits for the rare
longer blocks in the circuit.

of algorithms impose structure on the set of 2-qubit unitaries
that these gates decompose.

In order to analyze the distribution of 2-qubit unitaries that
appear in different algorithm classes, we plot the position
of these unitaries on the Weyl chamber (Figure 12). We
compare the position of points after compiling to different
gate sets. As seen in the figure, the input structure of the
Adder group, while not random, is diverse. Both the B gate
and Sycamore gate struggle to represent this distribution and
their resultant distribution is even more spread out. This occurs
as the new gate sets are unable to map the original distribution
of unitaries, and generate new two-qubit unitaries that are less
efficient in terms of gate count. On the other hand, the QFT has
incredibly periodic unitaries. These unitaries are much simpler
to translate to any gate set, and we see that the resultant spread
is diminished.

B. Synthesis Derived Gate Selection Criteria

The incorporation of circuit synthesis in our compilation
workflow enables us to derive additional criteria for gate
selection and development. The advantages derived from our
flow are due to synthesis’ powerful compilation capabilities.

Given an input circuit, traditional compilers will use lo-
cal peepholes optimization, translating from one gate set to
another using analytical, one-to-one gate rewriting rules for 2-
qubit gates. For example, a CNOT is translated into a sequence
of two Sycamore gates and additional U3 gates. One-to-one
gate rewriting has been shown to be less than optimal [44].
BQSkit’s synthesis based compiler [45] employs a different
strategy. Given an input circuit, BQSKit partitions it into
multi-qubit blocks (partitions). Each partition is optimized
and translated using optimal topology aware direct unitary
synthesis [13], combined with a powerful synthesis based
mapping and routing algorithm [25]. Thus, deploying synthesis
leads to different conclusions than when using vendor provided
compilers. We see that the Sycamore roofline fidelity com-
pletely disappear when running the analysis shown in Figure
3, while the CNOT roofline drops to 0.995.

More insights can be gained by examining gate representa-
tional power to implement 3-qubit blocks/processes that arise
in algorithm implementations. We use the BQSKit partitioner
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changes for the Sycamore and B-gates. Using Sycamore gates
increases gate count, which is to be expected. On the other
hand, we see that the B-gate is able to better express some
more complicated blocks (5-7 CNOT blocks reduce to 4 B-
gates). However, the overall gate count reduction is held back
by the B-gate’s inability to express simpler blocks efficiently.
While a larger block granularity (4+ qubits) would not remove
all simple blocks from these circuits, it remains to be seen
whether the average increased complexity in each block would
allow the B-gate to outperform other gates.

Overall, this analysis indicates that existing gate design
criteria should be augmented. In addition to choosing a gate
based on attainable fidelity and its representational power
for random 2-qubit unitaries, the gate representational power
for multi-qubit blocks (e.g. three qubit unitaries) drawn from
implementations of real workloads should be considered.

X. CONCLUSION

While we have introduced and examined several fidelity
models, we have emphasized the derivation of the roofline
approach for the digital model. A similar approach can be
taken for the cyclic model. Each cycle’s fidelity has an absolute
parallelism threshold of P% according to the model, and this
number will reduce as specific machines/circuits are targeted.

We have also targeted our roofline model for hardware
improvement and algorithmic development by considering
relative gate fidelity across two configurations. By changing
emphasis from fidelity to gate count and circuit depth, a
similar derivation can produce roofline models for compiler
developers to guide circuit optimization decisions: “What mix
of gates to choose?; “Should I reduce gate count or increase
gate parallelism?” etc.

This paper extends the idea of quantum HW/SW co-design
[23], [38] through the consideration of device gate sets that
target specific algorithms. For TFIM, QFT, and QAE circuits,
we have shown that a designer should maximize gate fidelity
even at the cost of expressivity and entanglement capability.
On the other hand, we see that highly expressive gates such
as the B-gate provide little improvement in overall circuit
fidelity. Restricting the topology from an all-to-all connectivity
leads to a potentially massive need for higher gate fidelity,
depending on the algorithm. This means that for Adder-like
circuits, Hubbard models, or QML networks, an ion trap
machine with a ZZ or XX gate is best suited. Our results
indicate that unlike classical benchmarking which is compiler
independent, quantum system evaluation and benchmarking
is sensitive to the quality of compilation tools. For the time
being, compilation workflows require circuit synthesis in order
to make robust inferences.
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We believe our methodology will apply beyond the NISQ
era into the Fault Tolerant (FT) quantum regime. While for
NISQ we directly minimize two-qubit gate count, compilers
targeting FT applications must optimize the number of non-
transversal gates (typically T, Toffoli, or CCZ gates) as well as
the area, latency and error correction overhead [30]. It has been
shown that algorithm-dependent design significantly impacts
resource utilization [6], and this lends itself perfectly for our
roofline analysis.

In summary, we introduce a procedure for performing
comparisons between quantum system configurations. In our
quantum roofline analysis, we derive bounds on system prop-
erties (e.g. gate fidelity) that can be used as a stop criteria
for optimization efforts. We then evaluate machines across
a large set of important algorithms and are able to quantify
the trade-off required between gate fidelity, expressivity, and
entanglement for different circuit families in order to maximize
circuit execution fidelity. Our work also shows that the ability
of circuit synthesis to generate resource minimal circuits is
paramount to performance evaluation, and it enables new
design criteria for gate set adoption. We believe our procedure
is of interest not only to hardware designers, but compiler and
algorithm developers as well.
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