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Hardware-efficient autonomous error correction with linear couplers in superconducting circuits
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Large-scale quantum computers will inevitably need quantum error correction (QEC) to protect information
against decoherence. Given that the overhead of such error correction is often formidable, autonomous quantum
error correction (AQEC) proposals offer a promising near-term alternative. AQEC schemes work by transforming
error states into excitations that can be efficiently removed through engineered dissipation. The recently proposed
AQEC scheme by Li et al., called the Star code, can autonomously correct or suppress all single qubit error
channels using two transmons as encoders with a tunable coupler and two lossy resonators as a cooling source.
The Star code requires only two-photon interactions and can be realized with linear coupling elements, avoiding
experimentally challenging higher-order terms needed in many other AQEC proposals, but needs carefully
selected parameters to achieve quadratic improvements in logical states’ lifetimes. Here, we theoretically and
numerically demonstrate the optimal parameter choices in the Star code. We further discuss adapting the Star
code to other planar superconducting circuits, which offers a scalable alternative to single qubits for incorporation
in larger quantum computers or error correction codes.
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I. INTRODUCTION

Random interactions with the environment accumulate
errors in qubits, strongly degrading the performance of mod-
ern quantum computers. Fundamentally, random errors are a
source of classical entropy that heats the system away from
its target states, and a cooling mechanism—quantum error
correction (QEC)—is required to continuously remove this
entropy. This cooling is particularly important for large-scale
processors where information needs to be stored for longer
periods and shuffled across longer distances. Further, the cor-
rection must be done without learning the state of the qubits. It
is widely believed that fault tolerance will ultimately require
topological codes such as the surface code [1,2], where the
quantum information is encoded in the collective state of a
topological field theory and error correction is performed by
repeated measurement and feedback.

However, the precision control requirements, overhead in
qubit count, wall clock time [3], and classical processing in
fault-tolerant codes pose significant challenges for practical
implementation. A compelling complementary solution, both
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for scaling near-term algorithms and as a component qubit
in larger fault tolerant codes, is autonomous QEC (AQEC)
[4–20]. AQEC methods are based on carefully engineering the
level structure and external drives applied to small clusters of
component devices, such as transmon qubits and resonators,
so that states created by errors are assigned an energy penalty
and can be rapidly corrected using engineered dissipation.
But of necessity, these devices can still be fairly complex,
and in the case of three-dimensional (3D) cavity proposals,
physically large. Finding compact, efficient implementations
of AQEC is thus an important area of research.

A compelling early AQEC proposal is the very small log-
ical qubit (VSLQ) architecture [6,8,21]. The VSLQ encodes
a logical state using just two transmon qubits, each using the
lowest three levels to encode the information. The VSLQ is
able to achieve significant reductions in both idle and gate
error (via error transparency and/or divisibility [6,22]) by
exploiting the empirical structure of noise in superconduct-
ing circuits, which is massively dominated by photon loss
and low-frequency phase noise. The VSLQ uses continuous
four-photon drive terms and blue sideband couplings to lossy
resonators to autonomously correct photon loss, automatically
suppressing phase noise in the process by generating a sub-
stantial energy penalty for local Z operations. However, the
high-order nonlinear terms in its Hamiltonian are very difficult
to implement in practice, requiring unusual circuit elements
and very high-frequency drives, thus far preventing its com-
plete realization. Note that the requirement of four-photon
drive and/or dissipative processes to stabilize the codewords
is found in autonomous implementations of cat codes as well
[5,9–11,15,20,23].
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In this paper, we theoretically discuss the parameter
choices for the recently proposed new AQEC code [24], called
the Star code, to achieve quadratic lifetime improvement. The
Star code decomposes the four-photon processes of the VSLQ
into simpler two-photon transitions (that can be engineered
with a variety of ac-driven tunable coupler designs [24–29])
and encodes the VSLQ codewords as a pair of degenerate
dark states of the resulting rotating-frame Hamiltonian. These
simplifications make the Star code significantly easier to im-
plement and allow it to be adapted to other types of a base
qubit, such as fluxonia [30–33], in a similarly compact, planar
circuit.

The structure of this paper is as follows. We begin by defin-
ing the Star code drive structure, codewords, and Hamiltonian.
From it, we derive the resulting lifetime improvements analyt-
ically and compare them to numerical simulations. In doing
so, we discuss each parameter’s effect on code performance.
We finally discuss gate protocols and extensions to other qubit
types with concluding remarks.

II. STAR CODE PROTOCOL

The Star code encodes a single logical qubit using the
bottom three levels |g〉, |e〉, and | f 〉 of two transmons with
the aim of correcting single-photon loss errors and sup-
pressing dephasing in the process. The logical “zero” and
“one” are defined as |L0〉 = (|gf 〉 − | f g〉)/

√
2 and |L1〉 =

(|gg〉 − | f f 〉)/
√

2, respectively. Any valid quantum error
correction codewords need to satisfy the Knill-Laflame
conditions [34]. With aq j representing the decay opera-
tor on the jth transmon, these conditions can be stated
as (a) logical states are orthogonal, 〈L1|L0〉 = 0; (b) error
states are orthogonal, 〈L1|a†

q jaq j |L0〉 = 0; (c) error states are
orthogonal with logical states, 〈L1|aq j |L0〉 = 〈L0|aq j |L1〉 =
〈L0|aq j |L0〉 = 〈L1|aq j |L1〉 = 0; (d) the error does not distin-
guish logical states, 〈L0|a†

q jaq j |L0〉 = 〈L1|a†
q jaq j |L1〉. Up to an

irrelevant relative phase, these are the same codewords as in
the original VSLQ proposal.

To implement AQEC, we need to engineer a continuously
applied parent Hamiltonian, of which these two codewords are
degenerate eigenstates. In Fig. 1(a), we consider two trans-
mons Q1 and Q2 with frequencies ωq j and anharmonicities
α j , which interact with each other through a tunable coupling
element [24]. Two lossy resonators R1 and R2 dispersively
coupled to the transmons have frequencies ωr1 and ωr2 sep-
arately, and we access the first two energy levels |0〉 and
|1〉. The state for each transmon-resonator pair is labeled as
|q, n〉 ∈ {|g〉, |e〉, | f 〉} ⊗ {|0〉, |1〉}. We assume that the exter-
nal drives can independently modulate the strength of the
transversal interactions between two transmons (QQ) through
the tunable coupling element and between each transmon-
resonator (QR) pair. The laboratory frame Hamiltonian of the
full system is

Hlab =
2∑
j=1

(
ωq ja

†
q jaq j + α j

2
a†
q ja

†
q jaq jaq j + ωr ja

†
r jar j

)

+ HQQ +
2∑
j=1

HQR j,

FIG. 1. Star code protocol. (a) An example of hardware layout.
Two transmons are individually coupled to two resonators disper-
sively. The dashed box between the two transmons represents any
tunable coupling element that can provide sufficiently strong QQ red
and blue sideband interactions. (b) Four QQ sideband mixing con-
figurations in the logical static frame. All sidebands are applied with
an equal rate W and specific detuning choices (±ν0/1) to construct
the logical manifold. (c) Energy diagram in the rotating frame. The
green dashed box covers the logical states and error states involved in
the AQEC protocol, and the grey dashed box includes the other stray
eigenstates that have suppressed population transfer by the energy
gap. Error states from single-photon loss are restored to the parent
logical states through individual correction paths. The QR sidebands
(rate �/2), the resonators’ photon decay (rate κ), and the transmon
T1 decay (rate γ ) are shown in the blue, brown, and black arrows,
respectively.

HQQ =AQQ(t )(a†
q1 + aq1)(a†

q2 + aq2),

HQR j =AQR j (t )(a
†
q j + aq j )(a

†
r j + ar j ),

AQQ(t ) = W√
2

cos ((ωq2 − ωq1 − α1 − ν0)t )

+ W√
2

cos ((ωq2 − ωq1 + α2 + ν0)t )

+W cos ((ωq1 + ωq2 − ν1)t )

+ W

2
cos ((ωq1 + ωq2 + α1 + α2 + ν1)t ),

AQR j (t ) = � j√
2

cos ((ωq j + ωr j + α j )t ). (1)
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In Eq. (1), the QQ modulation is composed of four two-photon
sidebands (two QQ red sidebands and two QQ blue side-
bands) {|ee〉 ↔ |gf 〉, |ee〉 ↔ | f g〉, |ee〉 ↔ |gg〉, |ee〉 ↔ | f f 〉}
with modulation amplitudes {W/

√
2,W/

√
2,W,W/2} and

frequency detunings {±ν0,±ν1}, respectively. The modula-
tion amplitudes are chosen such that the oscillation rates
between levels are the same for each sideband. The two QR
sidebands generate the on-resonance transition |e0〉 ↔ | f 1〉
between transmon-resonator pairs. The QR modulation am-
plitudes � j are kept small compared to W in order to be
treated as a perturbation to the system. The topology of all
4 QQ sidebands {|ee〉} ↔ {|gf 〉, | f g〉, |gg〉, | f f 〉} used in the
Star code is equivalent to a “four-pointed star” in a two-qutrit-
level diagram [see Fig. 1(b)], which gives the Star code its
name [24].

We perform several rotating frame transformations while
restricting the Hilbert space dimension to 3 × 3 × 2 × 2
(Q1Q2R1R2) for simplicity. We first define a series of trans-
formation operators

U1(t ) = exp

⎡
⎣i

∑
j=1,2

(
ωq j + α j

2

)
a†
q jaq jt

⎤
⎦, (2)

U2(t ) = exp

[
−i

α1 + α2

2
Peet

]
, (3)

U3(t ) = exp[iν0
(
Pgf + Pf g + Pge + Peg

)
t], (4)

U4(t ) = exp[iν1
(
Pgg + Pf f + Pe f + Pf e

)
t], (5)

U5(t ) = exp

⎡
⎣i

∑
j=1,2

(
ωr j + α j

2

)
a†
r jar jt

⎤
⎦. (6)

Here we define projectors Pab = |ab〉〈ab| ⊗ I2 ⊗ I2, where I2
is a 2 × 2 identity matrix.

There are two useful frames for intuitive understanding of
the Star code with the transformation matrix Ua = U5U2U1

(where all logical states are time independent) and Ub =
U5U4U3U2U1 (where all interactions are time independent). In
the first frame, the logical states take simple explicit forms,
while the second frame is faster for simulation. With Ua, the
system Hamiltonian is transformed to the logical static frame
Hstatic. If the two frequency detunings ν0 and ν1 are unequal,
there will be two time-independent zero-energy eigenstates
{|L0〉, |L1〉} that form the static logical manifold. Applying
rotating wave approximation (RWA) to HQR j , the full system
Hamiltonian becomes

Hstatic = UaHlabU
†
a + iU̇aU

†
a

= H̃QQ + H̃QR1 + H̃QR2 −
∑
j=1,2

α j

2
a†
r jar j

− α1

2
(Peg + Pe f ) − α2

2
(Pge + Pf e), (7)

H̃QQ = W

2
[(|gf 〉〈ee| + | f g〉〈ee|)e−itν0

+ (|gg〉〈ee| + | f f 〉〈ee|)e−itν1 ] + H.c., (8)

H̃QR1 = �1

2
(|eg〉〈 f g| + |e f 〉〈 f f |) ⊗ |0〉〈1| ⊗ I2 + H.c., (9)

H̃QR2 = �2

2
(|ge〉〈gf | + | f e〉〈 f f |) ⊗ I2 ⊗ |0〉〈1| + H.c..

(10)

In the second frame where all interactions are time inde-
pendent, the system Hamiltonian Hrot is given by

Hrot = UbHlabU
†
b + iU̇bU

†
b

= −α1

2
(Peg + Pe f ) − α2

2
(Pge + Pf e)

− ν0(Pgf + Pf g + Pge + Peg)

− ν1(Pgg + Pf f + Pe f + Pf e)

+ H ′
QQ −

∑
j=1,2

(α j

2
a†
r jar j + H̃QR j

)
, (11)

H ′
QQ = W

2
(|ee〉〈gf | + |ee〉〈 f g|

+ |ee〉〈gg| + |ee〉〈 f f | + H.c.) ⊗ I2 ⊗ I2. (12)

We assume the following hierarchy of rates for per-
turbation treatment of H̃QR j : W 	 � j ∼ κ j 	 γ j . Here
{� j/2, κ j, γ j} represent the QR′

js sideband rate, R′
js decay

rate, and Q′
js decay rate, respectively. Such hierarchies are

generic features of AQEC schemes. For simplicity, in the
following discussion, we assume � j = �, κ j = κ , and −ν1 =
ν0 = ν. Error correction performance is nominally insensitive
to small variations in � j and κ j between the two-component
qubits.

In Fig. 1(c), we plot the eigenstates for Hrot in the absence
of the qutrit-resonator interaction and sideband transitions be-
tween states to explain the AQEC process. The eigenstates can
be grouped into three sets: {|L0〉, |L1〉}, {|eg〉, |ge〉, |e f 〉, | f e〉},
and {|T 〉, |S−〉, |S+〉}. The first set forms the logical space
with eigenenergies {−ν, ν}. The second set contains the states
originating from a single-photon loss error. The third set is
comprised of stray eigenstates (not normalized for brevity)
that are suppressed by the frequency detuning choice ±ν:

|T 〉 = |gg〉 − |gf 〉 − 2ν

W
|ee〉 − | f g〉 + | f f 〉,

|S±〉 = |gg〉 + W 2

W 2 + 2ν2 ± 2ν
√
W 2 + ν2

|gf 〉

− 2(∓ν + √
W 2 + ν2)

W
|ee〉

+ W 2

W 2 + 2ν2 ± 2ν
√
W 2 + ν2

| f g〉 + | f f 〉. (13)

Under the assumption of ν ∼ W , the stray eigenstates main-
tain sufficient energy gap from the logical states. The
on-resonance QR sidebands continuously pump the error
states after single-photon loss to the target logical states, with
an extra photon excitation appearing in the corresponding res-
onator Rj . These excitations in the resonators decay quickly
at a rate κ and recover the logical state.

From another point of view, the detuned QQ red
and blue sideband pairs are topologically equivalent to a
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four-pointed star in the sideband configuration with |ee〉 as
the center, shown in Fig. 1(b). This effectively introduces the
four-photon sidebands |gf 〉 ↔ 〈 f g| and |gg〉 ↔ 〈 f f | to the
system, with |L0〉 and |L1〉 being separately the dark state of
each four-photon sideband. Since all other states are separated
from the logical manifold by O(W ) energy differences, the
four QQ sidebands induce a dynamical decoupling effect that
suppresses dephasing from low-frequency phase noise, just
as in the original VSLQ proposal. The other bright states’
eigenenergies are separated from the codewords through the
QQ sideband frequency detuning {ν0, ν1}, so that passive error
correction does not mix the error states with them. Since |ee〉
is orthogonal to the dark states, the logical manifold stabi-
lization happens through independent paths. Notice that the
superposition state |Lx〉 = (|L0〉 + |L1〉)/

√
2 in the frame of

Eq. (11) will have a fast oscillating phase between logical ba-
sis. The energy shift to codewords comes simply from rotating
frame choices and has no physical consequence.

The Star code also suppresses the no-jump error [35] as
the always-on two-qubit Hamiltonian HQQ maintains the form
of logical states. The suppression has the same scaling as
the suppression of 1/f dephasing noise, achieved through the
dynamical decoupling effect.

III. AQEC PERFORMANCE

Next, we discuss the theoretical lifetime improvement
against single-photon loss. We approximate the lifetime im-
provement semiclassically and verify its agreement using
simulations. First, we consider the case of |L0〉 and ignore the
population lost to the stray eigenstates under the QR sideband.
The logical states’ refilling rate �R is a two-step process: the
QR sidebands that resonantly bring error states to the parent
logical states, and the resonator photon loss. Using Fermi’s
golden rule and assuming Lorentzian distribution of lossy
resonators’ energy [13,36], we have �R = �2κ

κ2+�2 . We label the
population of |L000〉 and |eg00〉 (also for |ge00〉) at time t as
PL(t ) and PE (t ). Due to the choice of symmetric parameters,
the population of error states |eg00〉 and |ge00〉 should be the
same. Assuming the system started with |L000〉 at time t = 0,
we can express the evolution using the following differential
equations:

dPL(t )

dt
= −2γPL(t ) + 2�RPE (t ),

dPE (t )

dt
= γPL(t ) − (γ + �R)PE (t ),

PL(0) = 1,

PE (0) = 0. (14)

The solution of PL(t ) has two parts, a fast exponential decay
term with a small weight, and a dominant slow exponential
decay term:

PL(t ) = −γ + �R + 	

2	
exp (t (	 − 3γ − �R)/2)

+ γ − �R + 	

2	
exp (t (−	 − 3γ − �R)/2)

FIG. 2. Error correction cycle for |L0〉. The effective |L0〉 refilling
rate �R is shown in the purple arrow. A second photon loss can hap-
pen at rate γ before the completion of the refilling cycle. Population
transfer to the grey dashed box is marked with blue dashed arrows,
and the population transfer is suppressed by the energy difference
O(ν ).

≈ (1 − 2γ /�R) exp

(
− 2γ 2t

�R + 3γ

)
,

	 =
√

γ 2 + 6γ�R + �2
R. (15)

Assuming �R 	 γ , the slow decay term shows quadratic life-
time improvement, compared to the physical transmon decay
rate γ .

Now we introduce the stray eigenstates {|S−〉, |T 〉, |S+〉}
into the system. As shown in Fig. 2, the population transfer
from the error states to the stray eigenstates is also a two-step
process. By keeping the closest two eigenstates |S−〉 and |T 〉
in terms of energy, the refilling rates {�S, �T } are given by

�S = κ�2ks

4(−ν + √
W 2 + ν2)2 + κ2 + �2ks

,

�T = κ�2/
(
1 + ν2

W 2

)
16ν2 + 4κ2 + �2/

(
1 + ν2

W 2

) ,

ks = (〈S−| f g〉)2. (16)

Again assuming the initial state at the beginning to be |L000〉
and treating population to {|S−〉, |T 〉} as an uncorrectable
logical coherence loss, we have the following equations of
motion:

dPL(t )

dt
= −2γPL(t ) + 2�RPE (t ),

dPE (t )

dt
= γPL(t ) − (γ + �R + �S + �T )PE (t ),

PL(0) = 1,

PE (0) = 0. (17)

013171-4



HARDWARE-EFFICIENT AUTONOMOUS ERROR … PHYSICAL REVIEW RESEARCH 6, 013171 (2024)

FIG. 3. Logical lifetime (TL) as a function of detunings and side-
band rates. Simulations are performed up to 200 μs with T1 = 20 μs
for both transmons. The logical TL are extracted by fitting the last 180
μs to an exponential decay profile. (a) Two-dimensional (2D) scan of
QQ sideband detunings ν0 and ν1. Other parameters used in the sim-
ulation: {α1, α2,W, �, κ} = {−160, −260, 5, 1, 0.5} MHz. Optimal
performance is obtained around ν0 = −ν1 = ±W/

√
3. (b) 2D scan

of QQ and QR sideband rates W and �. Parameters are set to be
ν0 = −ν1 = W/

√
3, and � = κ for best AQEC performance. Simu-

lations show significantly improved performance around � = W/10.

Given �R 	 γ , �S, �T , the slow decay rate in PL(t ) is

�L0 ∼ 2γ (γ + �S + �T )

3γ + �R + �S + �T
. (18)

The slow decay rate for |L1〉 can be derived similarly:

�L1 ∼ 2γ (3γ + �S + �T )

5γ + �R + �S + �T
. (19)

Note that, for the realistic parameter ranges considered in this
work, �S and �T will be much smaller than γ and contribute
negligibly in determining the logical decay rates, which still
show quadratic improvement compared to bare transmons’
relaxation rates.

Using Eqs. (16), (18), and (19) one can verify that larger
QQ sideband rate W and detunings ν will provide better en-
ergy isolation, leading to a higher logical states’ lifetime. The
ratio �L1/�L0 ∼ 3 indicates that the logical qubit has approx-
imately 3 times faster decay rate than the excitation rate, as
the average photon number of a|L1〉 (error state) is three times
larger than that of a|L0〉. Double-photon loss is the dominant
logical decoherence channel. Since 〈L1|aq1aq1|L0〉 = 1/

√
2,

double-photon loss flips |L0〉 into |L1〉 and vice versa. This
shows that under photon-loss only error, the slow exponential
decay will bring |L0〉 and |L1〉 into each other. Therefore, the
depolarization rate �Z for the logical state is �Z = �L0 + �L1.
For the transversal dephasing rate �X , extra protection comes
from the code structure. When a double-photon loss event
happens on the same physical qubit (with 50% chance), the
state obtains 50% overlap with |Lx〉. Therefore, for a quarter
of the double-photon loss event, |Lx〉 does not experience
coherence loss, and the lifetime for |Lx〉 is TX = 4TZ/3. For
both TZ and TX , the lifetime improvement is quadratic given
�S + �T 
 γ .

We perform rotating-frame simulations to verify the life-
time improvements. Figure 3(a) shows the lifetime of |Lx〉
under different QQ sideband detuning combinations. We ne-
glect short timescale behavior when extracting logical states’

FIG. 4. Logical lifetime improvement as a function of transmon
T1 (considered identical for both transmons). Quadratic lifetime
improvement (roughly linear improvement in the lifetime ratio) un-
der AQEC is clearly seen in the plot. Logical TL are extracted
by fitting traces to the exponential decay curve A exp(−t/TL ) +
C (with A and C being free parameters), and the improve-
ment ratio is TL/T1. Error bars (one standard deviation) for TL
are smaller than the marker size. Each simulation is run up to
800 μs, and the short period is not included in the fitting. Other
parameters used in the simulation are {α1, α2,W, ν0, ν1, �, κ} =
{−160, −260, 10, 5.77, −5.77, 0.71, 0.5} MHz. The analytic ex-
pression (solid lines) matches the simulation result. The depolariza-
tion lifetime of |L1〉 is almost the same as |L0〉 in simulation. All
simulated logical lifetimes here are above the break-even point.

lifetimes. There is a low-coherence strip along the diago-
nal region. This happens when ν0 = ν1, as {|L0〉, |L1〉, |gg〉 +
| f f 〉 − |gf 〉 − | f g〉} become degenerate eigenstates with
nonorthogonal error states and violates the Knill-Laflamme
condition. From Fig. 3(a), the maximum lifetime improve-
ment region appears around ν0 = −ν1 = ±W/

√
3. This can

be intuitively understood as {|S−〉, |L0〉, |T 〉, |L1〉, |S+〉} are
evenly separated in energy [Fig. 1(c)], thus providing close-to-
optimal suppression of leakage to nonlogical state population.

We fix the detuning relation ν0 = −ν1 = W/
√

3 and sweep
W,� for |Lx〉′s lifetime. The results are plotted in Fig. 3(b).
During the sweep, we choose κ = �, where refilling rate �R

are optimal and error correction performance becomes insen-
sitive to small changes in κ . In practice, [W = 10 MHz] and
� = 1 MHz can be achieved in modern devices with some
optimization [24,26,29]. Since larger W is more difficult to
achieve in the system, given maximum W , optimal perfor-
mance appears along the diagonals, where � is roughly an
order of magnitude smaller than W . Finally, we sweep T1

of the transmons and show the ratio of logical to physical
lifetime in Fig. 4. The quadratic improvement in logical states’
lifetime is clearly visible and the data match pretty well with
the analytic expression.

We note that the logical lifetime limit from other error
channels (e.g., 1/ f noise-induced dephasing and compara-
tively rare random photon addition due to finite temperature)
in the Star code protocol is the same as in Ref. [8], because the
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AQEC process is the same except for a different Hamiltonian
construction. The dephasing noise is coupled to a single qutrit
Z operator [13], and the expectation value for this operator is
always 0 for all logical states. Therefore, the only impact of
the dephasing noise comes from the transition to other states.
However, this transition requires finite energy because of the
always-on H ′

QQ. The suppression process becomes equivalent
to sampling 1/ f noise spectrum at a higher frequency, which
is the same as the dynamical decoupling effect in the VSLQ
cases. Another possible error channel is the leakage error.
To prevent leakage to higher transmon energy levels, the two
transmons are chosen to have large but different anharmonic-
ities α j . This difference suppresses blue sideband transitions
such as |gf 〉〈eh|, and red sideband transitions such as | f e〉〈hg|
that populates |h〉 level. Practically, the leakage outside the
codespace is negligible for the range of parameters considered
in simulations.

IV. GATE PROTOCOLS AND DISCUSSION

We now discuss logical operations on the Star code de-
vice. To be fully useful for quantum computing, any small
logical qubit design should reduce gate error, in addition
to extending idle lifetime. This property almost certainly
requires error transparency [6], where gate waveforms are
carefully tuned such that the gate Hamiltonian commutes with
a single-photon loss operator, when acting on the logical-
state manifold. Since the Star code uses the same code
structure as the VSLQ, the error-transparent gate set intro-
duced for the VSLQ can be directly generalized to it with
minor modifications. In particular, since they rely on dynam-
ically generated dispersive shift terms, the error transparent
ZL = (| f 〉〈 f | + |e〉〈e| − |g〉〈g|)(| f 〉〈 f | + |e〉〈e| − |g〉〈g|) and
two-logical-qubit CZ gates using ZL1ZL2 interaction can be
implemented with linear couplers, like the Star code itself.
Here ZL1 and ZL2 are separately the error transparent ZL op-
erator for each Star code unit. Realizing error transparent CZ
gate requires perturbative engineering of ZZ coupling in both
logical units, likely through a pair of tunable couplers. The
single-logical-qubit error-transparent XL operator, however,
requires three-photon processes at the minimum and thus is
much more difficult to engineer with a linear coupler. One
could however implement it using a nonlinear coupler such
as a SNAIL (superconducting nonlinear asymmetric inductive
elements) [25] instead of the inductive shunt used in current
experiments [24], or find alternative ways to generate it not
explored in the original error-transparency work.

One could also implement the Star code using more com-
plex objects as the base qubit. Virtually any superconducting
qubit design can be used in place of the transmons considered
here, provided that it has three workable energy levels, sig-
nificant nonlinearity, an error structure such that | f 〉 decays
directly to |e〉 with no single photon coupling to |g〉, and is
compatible with ac-driven tunable couplers. A particularly
interesting possibility would be to generalize the Star code to
linear objects such as coupled 3D cavities, given the substan-
tially higher base coherence such devices exhibit compared
to planar circuits. This is hardly a trivial enterprise given
that, for example, one can no longer selectively drive |ee〉 →
|gf 〉 without also resonantly driving |ge〉 → |eg〉 in such a

system, but we expect a suitably clever generalization of the
Hilbert space topology and dark state structure of the Star
code could be possible for linear systems as well. Of course, if
the cavities have Kerr nonlinearities (due to interactions with
transmon qubits or similar) then the generalization of the Star
code to them is much simpler, though these nonlinearities are
typically at least two orders of magnitude smaller than in a
transmon. Such extensions could be a fruitful line of future
research [37].

In summary, we demonstrated a physically realistic set of
parameter choices for a novel error-correction code called the
Star code, that can correct single-photon losses and suppress
dephasing fully autonomously using just two tunably coupled
qubits and two resonators. It originates from the earlier VSLQ
protocol but is substantially simpler to implement as it re-
quires only two-photon interactions. It is capable of achieving
quadratic lifetime improvements in the logical state lifetime
by carefully tuning the circuit and drive parameters. As tun-
able couplers have become an increasingly popular route to
the high-fidelity operation of multiqubit circuits, this greatly
simplified logical qubit design can be readily implemented in
many existing superconducting qubit platforms.
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APPENDIX A: LOGICAL LIFETIME LIMITS
FROM NONIDEAL PARAMETERS

The ZZ interactions between transmons (Q) and readout
resonators (R) are needed to distinguish the transmon state.
While Star code only requires the XX interactions between
QR, the presence of QR dispersive coupling χ helps calibrate
the system. Figure 5 shows the simulated lifetimes for logical
states |L0〉, |L1〉, and |Lx〉 in the presence of QR ZZ coupling
obtained from solving the master equation. The logical-state
lifetime is weakly reduced in the low χ regime. This is
because the photon decay from either resonator will have dif-
ferent frequencies depending on the coupled transmon being
in |g〉 or | f 〉. Such a resonator-induced dephasing does not
introduce a logical dephasing error but only distorts the form
of |L0〉 and |L1〉. This noise has a Lorentzian spectrum that
decays in frequency. When the QQ sideband rate W is much
larger than χ , the resonator-induced dephasing is suppressed
strongly as the 1/f dephasing noise. Therefore, in Fig. 5 the
logical T1 is insensitive to the presence of small χ .
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FIG. 5. Simulated logical states’ lifetime in the presence of
qubit-resonator dispersive coupling χ . Parameter used in
the simulation: {α1, α2,W, ν0, ν1, �, κ}={−160,−260, 10, 5.77,
−5.77, 0.71, 0.5} MHz, T1 = 60μs.

Photon excitation in the readout resonators is detrimen-
tal to the Star code. Suppose R1 excites a photon when the
logical state is |L0〉, the QR sideband |L010〉 ↔ |eg00〉 will
be activated and convert the logical state into the error state.
This becomes a potential logical error unless the error state
is flipped back before the second-photon loss from the error
state happens.

The ZZ interactions between two transmons dephase the
logical superposition state. Among all the ZZs between two
qutrits, ZZf f 1 = E| f f 〉 − E|e f 〉 − (E| f g〉 − E|eg〉) and ZZf f 2 =
E| f f 〉 − E|e f 〉 − (E|gf 〉 − E|ge〉) will cause the logical state de-
phasing, as a random phase between |L0〉 and |L1〉 will
accumulate, which is proportional to the product of time error
is corrected and ZZf f j . Longer transmon T1 and faster error
correction rate (increasing QR sideband rate �) help mitigate
such dephasing channel, and the cancellation requires

FIG. 6. Simulated logical states’ lifetime and physical qubit life-
time. Parameter used in the simulation: {α1, α2,W, ν0, ν1, �, κ} =
{−160, −260, 10, 5.77, −5.77, 0.71, 0.5} MHz, T1 = 60μs.

a simultaneous cancellation of ZZf f 1 and ZZf f 2 when
all QQ sidebands are on. This is achievable by adding
extra detuned drives, such as the scheme discussed
in Refs. [38,39].

The Star code is insensitive to the small fluctuation in the
QR sideband rate � j and does not require �1 = �2 (used only
for obtaining simpler analytic expressions in the main text).
Fluctuations in both QQ sideband rateW and detunings ν j are
strongly suppressed as long as they are not comparable to the
energy gap (O(W )) between |L0〉 and |L1〉.

APPENDIX B: LOGICAL STATE PROCESS FIDELITY

Figure 6 shows the simulated process fidelity for |Lx〉,
|L0〉, and physical qubit decay. Operators used for calcu-
lating the process fidelity for {|L0〉, |Lx〉} are {|L0〉〈L0| −
|L1〉〈L1|, |Lx〉〈Lx|}.
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