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Abstract—The increasing use of image sensors across various
domains poses notable privacy challenges. In response, this paper
introduces a novel architecture, namely ResSen, to enhance
the privacy and efficiency of traditional image sensors. Our
approach integrates the Residue Number System (RNS) with
in-sensor digital encryption techniques to forge a robust, dual-
layer encryption mechanism. By embedding RNS within analog-
to-digital converters (ADCs), we significantly strengthen privacy
measures, effectively countering different violations and ensuring
the integrity and confidentiality of data transmissions. A key
feature of our system is its programmable key, which complicates
unauthorized output prediction or replication, providing a supe-
rior encryption methodology. Notably, ResSen demonstrates that
deactivating one of the moduli results in 25% bandwidth savings
at the cost of minor accuracy degradation. This underscores
the practicality and effectiveness of our sensor architecture
in addressing the dual objectives of privacy enhancement and
operational efficiency.

Index Terms—processing-in-sensor, residue number system,
image sensor, privacy

I. INTRODUCTION

A global network of 75+ billion IoT devices, including

smart homes, smart cities, smart industries, wearables, and

implantable systems for healthcare, is expected to reach $1100

billion by 2025. Intelligent IoT (IIoT) has recently gained

significant attention due to its ability to sense, decide, and

act by leveraging artificial neural networks (ANN). Through

various sensors, such as CMOS image sensors (imagers),

IIoT nodes collect and process data. Image sensor technol-

ogy has revolutionized the way we capture and process vi-

sual information, offering wide applications from surveillance

to medical imaging. Nevertheless, ANNs are significantly

storage-/computation-intensive in achieving high accuracy and

acceptable performance in visual systems, making them dif-

ficult to implement on edge devices with limited resources.

Additionally, many vision applications require continuous

monitoring or detection of anomalies by sensory systems,

while low information density wastes bandwidth, storage,

and computing resources. Because of that, these IIoTs still

lack inherent intelligence and depend heavily on cloud-based

decision-making, leading to emerging concerns regarding pri-

vacy and performance efficiency. The desire for privacy in

the digital transmission of data has led to various solutions

aimed at securing sensitive data against unauthorized access.

Previous studies have explored a range of techniques, from

advanced encryption protocols to secure transmission methods,

in an effort to safeguard privacy. However, these solutions

often face limitations, particularly in their ability to balance

stringent privacy requirements with operational efficiency. For

instance, heavy encryption methods, while effective in pro-

tecting data, can impose significant computational burdens on

sensor systems, compromising their performance and respon-

siveness. Moreover, many existing strategies lack the flexibility

to adapt to the dynamic nature of digital threats, leaving

gaps that can be exploited by evolving hacking techniques.

These challenges underscore the need for a more holistic

and integrated approach to privacy that not only enhances

privacy, but also maintains the efficiency and adaptability of

image sensor systems. Incorporating the RNS and a light

encryption technique significantly enhances privacy in image

sensor technology. The RNS, by its design, offers a unique

way to represent numbers, which inherently complicates the

direct interpretation of data by unauthorized parties. When

combined with a light encryption mechanism, the privacy

of captured images is further bolstered. This dual approach

ensures that even if the data were intercepted, reconstructing

the original image would be extremely difficult without access

to the specific RNS configuration and encryption algorithm

used, thereby maintaining the integrity and confidentiality of

sensitive data. The primary contributions of this research are

outlined as follows:

• We proposed ResSen, an adaptive, high-performance im-

age sensor for power-limited devices, enhancing privacy

and performance through RNS.

• We developed an encryptor that enhances privacy by

employing three efficient linear feedback shift registers

to secure data processed with RNS.

• We designed a novel adaptive readout circuit that se-

lectively toggles a specific modulus on or off to save

bandwidth and power.

• We crafted a bottom-up evaluation framework to show-

case the effectiveness of our design, applying it to a wide

range of datasets, network types, and various scenarios,

highlighting the performance advantages.

II. BACKGROUND

A. RNS and cryptography

The RNS represents a powerful paradigm for enhancing the

performance and efficiency of cryptographic systems. By its

very nature, RNS enables parallel and carry-free computations,

which are particularly advantageous for the implementation

of cryptographic algorithms. This unique capability stems

from its non-weighted number system, allowing for oper-

ations within each modulus to be executed independently,

thereby significantly improving computational speed [1]. RNS
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is characterized by a set of L mutually prime moduli mi, for

i = {1, . . . , L}, where L is at least 2. The total dynamic

range, denoted as M, is obtained by multiplying all the

moduli together. This allows any unsigned integer X within

the range [0,M) to be uniquely represented by a tuple of

residues (x1, . . . , xL), where each xi is the remainder of X

divided by mi. The adoption of RNS can lead to hardware

implementations of these algorithms that are not only faster

but also more energy-efficient, addressing a critical need in

devices where power consumption is a concern [2]. Further-

more, the application of RNS extends beyond performance

improvements. It offers a pathway to resilience against certain

types of hardware attacks, such as side-channel attacks, which

exploit information leakage from physical implementations of

cryptographic algorithms [3], [4]. The inherent parallelism

and the carry-free nature of RNS-based1 computations can

obscure the correlation between cryptographic operations and

physical side-channel signatures, like power consumption pat-

terns or electromagnetic emissions, thus improving the privacy

protection of cryptographic devices. However, the integration

of RNS into cryptographic systems raises some challenges.

Among these are selecting appropriate moduli sets, developing

efficient converters between the conventional binary system

and RNS, and managing operations traditionally complex in

RNS, like division. Besides, the implementation of RNSed

cryptographic systems must navigate the trade-offs between

hardware complexity, power consumption, and the additional

overhead introduced by conversions between number systems

[5], [6].

B. Privacy and Encryption

In the digital age, the transmission of images from sen-

sors to cloud services poses significant privacy challenges,

requiring robust measures to safeguard sensitive information

against unauthorized access, use, or exposure. This issue is not

only technical, but encompasses ethical and legal dimensions,

underscoring the importance of maintaining the confidentiality

and integrity of data through potentially vulnerable networks

and systems. In this context, ensuring privacy goes beyond

just preventing unauthorized access to data; it also includes

safeguarding personal and sensitive information and respecting

the consent and rights of data subjects throughout the entire

lifecycle of the data. Despite advances in encryption tech-

niques, secure transmission protocols, and data anonymization,

there remains a considerable gap in addressing privacy com-

prehensively. These solutions, while crucial, often fall short

in considering user-centric controls, transparency, and legal

safeguards, highlighting the need for an integrated approach

that combines technical robustness with ethical and legal con-

siderations to enhance privacy protection in the transmission

of sensitive data from sensors to cloud platforms [7].

Encryption plays a pivotal role in this landscape, serving

as a fundamental mechanism for privacy by rendering data

inaccessible and unintelligible to unauthorized parties without

1Hereafter, referred to as RNSed.

the appropriate decryption key. By rearranging the original

sequence of data, encryption ensures the confidentiality of

sensitive information throughout its lifecycle, from acquisition

through transmission to storage. This is particularly essential

in applications requiring stringent privacy measures, such as

healthcare monitoring systems, secure communications, and

scientific research. Moreover, the evolution of encryption

methodologies aligns with the increasing complexity of cyber

threats, reinforcing the need for advanced protective measures

in our increasingly digital world. As data becomes an ever

more valuable asset, the application of encryption extends

beyond traditional realms into emerging technologies and

platforms, such as cloud computing and sensors. In these

environments, encryption not only ensures data privacy but

also plays a critical role in establishing secure, trust-based

interactions among devices, systems, and users. This expanded

application highlights encryption’s versatility and adaptability,

making it indispensable in ensuring the confidentiality and

integrity of data across a myriad of digital landscapes. The

proactive integration of encryption into the fabric of digital

communication and storage systems thus represents a forward-

thinking approach to privacy [8].

III. RESSEN ARCHITECTURE

Image sensors are categorized into two main types: global

shutter and rolling shutter. In systems employing a global

shutter, each pixel is directly connected to its own ADC to

convert the electrical voltage into a digital format. On the

contrary, the rolling shutter technique involves connecting

pixels to the ADC in a sequential manner, processing them

row by row, which benefits low-power applications [9]. In

our study, we present a new architecture designed to enhance

the privacy and performance of traditional image sensors by

leveraging Residue arithmetic processing in the rolling shutter

Sensor, namely ResSen. The ResSen architecture comprises

five components: a Command Decoder, a Focal Plane, aka a

pixel array, a row selector, an adaptive residual readout, and

an encryptor (Fig. 1). The command decoder acts as an inter-

mediary, interpreting incoming control signals and translating

them into specific actions for the sensor hardware, enabling

dynamic control over the sensor’s operations, such as pixel row

activation, exposure adjustment, and readout initiation. In 1 ,

the pixel array of image sensors converts light into electrical

voltage with respect to a captured image, each pixel including

a photodiode and a capacitor. The Row Selector 2 , managed

by the command decoder, enables the selection of specific

pixel rows for processing by connecting them to source bias

lines (SBLs) and facilitating their values’ readout by the

ADCs. Adaptive Residue Readout in 3 optimizes the captured

image by converting analog signals to digital ones using

RNSed ADCs. It enables efficient resolution adjustment and

privacy enhancement through selective channel deactivation,

which is performed by the Channel Selector in 4 . It can

disable/enable one (or more) specified modules. One of the

most important components of our design is Encrypter ( 5 ),

which secures image data by applying XOR operations with
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Fig. 1: The proposed ResSen Architecture.

pseudo-random sequences generated by shift registers, each

tailored to a modulus, ensuring that each image row is uniquely

encrypted before transmission. Consequently, the captured

image is encrypted before sending it to the cloud/server 6 .

All ResSen components and their functionalities are outlined

in the following sections.

A. Pixel Array

The pixel array, consisting of H × W pixels, retains its

original functionality without any modifications to convert

light intensity into an electrical voltage. As depicted in Fig. 1,

the pixels’ values are connected from SBL1 to SBLW and

read in a row-by-row manner. Figure. 2 depicts the structure

and connection of six pixels. Each pixel comprises four

transistors, denoted as T1, T2, T3, and T4, a photodiode

(PD), and a capacitor (CPD). During the capture phase, by

setting the Rst signal to VDD, all capacitors are charged.

Subsequently, by activating T2, the voltage stored in these

capacitors is discharged through the photodiode’s resistance,

which is sensitive to light. Finally, T3 generates a current based

on the CPD’s voltage upon activating T4.

B. Command Decoder

The command decoder functions as an intermediary to

interpret incoming control signals and translate them into spe-

cific actions/sequences that the image sensor hardware must

execute. This component is crucial for enabling dynamic con-

figuration and control of the sensor’s behavior, including the

activation of pixel rows, the adjustment of exposure settings,

and the initiation of readout processes. The decoder achieves

this by mapping each command signal to a corresponding set

of control lines or switches within the sensor architecture. As

a result, the command decoder facilitates precise control over

the sensor’s functionality, allowing for the efficient capture of

images under varying conditions. This capability is essential

for optimizing image quality and performance across a wide

range of applications, from consumer electronics to advanced

scientific imaging.

Fig. 2: The arraignment of 2× 3 pixels.

C. Row Selector

Another main component, even in conventional imagers, is

the Row Selector, shown in Fig. 1. Command Decoder man-

ages this unit and enables row selection (Rn). As illustrated

in Fig. 2, two row-lines, R1 and R2, are connected to the T4

transistors. For example, activating R1 connects all pixels in

the first row to the Source Bias lines (SBLs) and allows the

ADCs to read their values.

D. Adaptive Residue Readout

Since we target a low-power vision sensor, an 8-to-14-bit

image format capable of generating 256—to 16384 unique

values is sufficient. The resolution of the ADC has a significant

impact on both image quality and energy consumption. To ex-

ploit the strength of RNS encoding and mitigate the overhead

of RNS converters, our previous RNSed ADC is utilized to

improve area and power efficiency. By integrating the RNS

into the design of folding ADCs, our novel approach allows

for high-speed and high-resolution conversions efficiently by

employing multiple folding circuits, each corresponding to

distinct prime moduli within the RNS. This methodology not

only simplifies the hardware architecture but also minimizes

power consumption, enhancing the overall efficiency of digital

signal processing systems. In this paper, we consider the

moduli set of {2n+1, 2n+1−1, 2n+1}, where n ∈ {2, 3, 4}.

The higher value of n offers a larger dynamic range, allowing

the system to obtain more accurate images up to 14-bit. To

do so, we utilized our previously proposed RNSed ADC to

enhance speed and resolution without an exponential increase

in complexity and power usage. In this situation, putting n = 2
employs moduli of {5, 7, 8}, establishing a specific range of

280, which closely approximates the 256-value range for 8-bit

conventional images. The RNSed ADCs within the adaptive

residue readout are connected to a channel selector so that one

or more moduli can be turned off as needed. This capability

not only enhances power efficiency and data transfer within the

chip and cloud but also increases the desired privacy levels. In

the ResSen architecture, the way we send data plays a key role

in improving privacy without losing much quality. The ability

to selectively deactivate one of the ADC channels, which

is made feasible through the parallel processing capabilities

of RNS and the folding technique of ADCs, is a significant

advancement toward ensuring privacy. This feature is crucial

for scenarios where the system does not have enough power

or sensitive information might be captured by the sensor and

must be protected from unauthorized access. When a channel
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Fig. 3: The proposed encryptor, including the LFSR ( 1 , 3 ) and
the XOR arrays ( 2 , 4 ).

is turned off, the data corresponding to that particular modulus

is not recorded or transmitted, making it exceedingly difficult

for an unintended recipient to reconstruct the full gray-scale

image accurately.

E. Light Weight Encryption Block

The proposed encryptor, as a key feature of the ResSen

architecture, is designed to enhance both privacy and image

processing performance. The encryptor operates in harmony

with the rolling shutter technique, enhancing the privacy of the

image data by obfuscating it before storing and/or transmitting.

It consists primarily of three (number of moduli set) linear

feedback shift registers (LFSRs) combined as depicted on 1

in Fig. 3. The size of these LFSRs is equal to the width of the

pixel array, W . The proposed design uses a separate LFSR for

each modulus, making the reverse process more challenging.

The shift registers are initialized with a predefined key, known

only to authorized entities, ensuring that the encryption process

is secure. It generates a pseudo-random sequence of bits by

performing an XOR operation. It should be mentioned that

the number of XORs and the desired input positions can be

varied in the current state shift register. The shift and XOR

operation occurs after reading each row. The detail of an LFSR

unit is depicted in Fig. 3 3 . As mentioned above, for 8-bit

images, each RNSed ADC should have three 3-bit outputs

to show the numbers between 0 and {4, 6, 7} (the largest

remainder of each moduli). Each output of the RNSed ADC

is XORed with the corresponding register in the shift register,

as shown by 2 in Fig. 3. Details of the connections for M3

can be seen in Fig. 3 4 . This process effectively encrypts the

image data, rendering it unintelligible to unauthorized viewers.

The mentioned mechanism ensures that each image row is

encrypted with a different key, further enhancing privacy. The

output of the XOR operation, which is the encrypted image

data, is then ready for transmission.

To exemplify the functionality of the proposed encryptor,

consider the scenario in which the values of two pixels

located in the second column but different rows are 75 and

178, respectively. The binary outputs of the RNSed ADCs

are expressed as {0b000, 0b101, 0b011} and {0b011,

0b011, 0b010}, respectively. Assume that during the encryp-

tion process, we utilize three simple LFSRs, each featuring a

single XOR operation in the two MSBs. The initial values of

these LFSRs, corresponding to the moduli sets, are 0b1101,

8 9 10 11 12 13 14
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Fig. 4: (a) The number of comparators regarding different RNS
implementations, and (b) the required bit. The number of bits is
affected similarly by removing a channel 5, 7, or 8.

0b1111, and 0b0110, respectively. The encryption process

involves XORing the first number with the second bit (due to

the pixel’s location in the second column) of the first LFSR.

Similarly, the second and third numbers are XORed with the

equivalent bits of the second and third LFSRs, respectively.

Consequently, encrypted results are obtained as {0b111,

0b010, 0b011}. For the next row, all LFSRs are moved

to the right, producing new values of 0b1110, 0b0111,

and 0b1011, respectively. Following this shift, the second

row’s values are XORed with the updated LFSR values. The

resulting encrypted values are {0b100, 0b100, 0b010}. It

is important to note that the first result is non-reversible, while

the reverse operation on the second encrypted value yields 74.

IV. ANALYSIS AND EVALUATION

A. Performance

ResSen is engineered to optimize efficiency in image sen-

sors, with special emphasis on the readout and encryption

circuits. A critical innovation in this work is the substantial

reduction in the number of comparators in ADCs, which

directly influences both the area and power consumption of an

imager. For instance, the number of comparators within a flash

ADC is 2n, where n represents the resolution. As depicted

in Fig. 4(a), an 8-bit resolution is achieved by reducing the

number of comparators to 20. Moreover, it illustrates that the

comparator count remains unchanged for resolutions from 9-

to-11 bits and from 12-to-14 bits, attributable to the chosen

moduli set that does not allow for a narrower window size

among the possible resolutions. Thus, the proposed system

is most efficient at resolutions of 8, 11, and 14 bits. Note

that while the storage or transmission requirements do not

vary between modules, their power consumption does. Higher

moduli require a greater number of comparators and additional

subcircuits, as evidenced in Fig. 4(a). Further, Fig. 4(b) reveals

the bit requirements for storing or transferring a single pixel

in ResSen compared to a standard system. For example, a

conventional 12-bit system requires 12 bits per pixel, whereas

ResSen requires 15 bits, representing a 25% overhead. Altering

the resolution to 14 bits reduces this overhead to 7.14%. In

addition to comparator reduction, another significant advan-

tage of ResSen is its channel selector mechanism, which can

deactivate a modulus to decrease the data stored or transferred

to 10 bits, thus offering a 28.57% and 33.33% improvement

over the conventional image sensor and original ResSen,

respectively.
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B. Privacy

The rationale and operation of the chosen method were

modeled using Python, with the results presented in Fig.5. De-

spite the fact that an RNS approach alters the image histogram,

it does not completely obscure every aspect of it. To provide a

clearer understanding, Fig.5 further highlights these remaining

details through the normalization of images processed by RNS

when one channel is off (in this case, modulus 5). To overcome

this challenge and increase the complexity of our model, the

proposed adaptive residue readout is leveraged. It has been ob-

served that turning off one channel decreases the probability of

recovering data because normalizing the modified images does

not result in data recovery. In the conducted analysis, the Mean

Squared Error (MSE) was found to be 3169.41, indicating the

average squared difference between the pixel intensities of the

original and the modified images. The Peak Signal-to-Noise

Ratio (PSNR) was calculated to be 13.12 dB, which quantifies

the ratio between the maximum possible power of a signal

and the power of corrupting noise that affects the fidelity of

its representation. The Number of Pixels Change Rate (NPCR)

was computed at 90.41%, reflecting the percentage of different

pixels’ values between the two images. The Unified Average

Changing Intensity (UACI) was determined to be 16.54%,

which measures the average intensity of differences between

the original and modified images. The correlation analysis

between the corresponding pixels of the two images yielded

correlation coefficients of 0.027 for the horizontal, 0.014 for

the vertical, and 0.014 for the diagonal directions, suggesting a

low degree of linear relationship between the pixel intensities

in these directions. All the obtained results using previous

approaches and ours are summarized in Table I. Our approach

achieves the best UACI. Also, the RNS adds complexity to

the algorithm, thereby enhancing its resilience against attacks

even if we got lower NPCR.

C. Robustness

We conducted ResSen experiments on several datasets

to evaluate the robustness of the proposed approach, in-

cluding MNIST, Fashion-MNIST, CBCL FACE, Minimal-

ist Histopathology (MHIST), Street View House Numbers

(SVHN), and CIFAR-10, illustrated in Figs. 6 (a-f), respec-

tively. RNS-encrypted images are decrypted and classified by

the cloud. The received decrypted RNSed samples are depicted

in Figs. 6 (g-l). MNIST dataset contains 70,000 images of

RNSed only image

�������	


�������	


Encrypted RNSed image

�������	
�

�������	
�

Fig. 5: ResSen efficiency versus RNSed-only approaches.

TABLE I: Performance comparison of various approaches.

Method NPCR (%) UACI (%) Correlation Analysis

Horizontal Vertical Diagonal

[10] 99.6094 33.4635 0.0008 0.0038 0.0028
[11] 99.8122 33.4611 0.9861 0.924 0.9538
[12] 99.6123 33.4512 0.00106 0.0835 0.017
[13] 99.6176 33.4502 0.000033 0.000295 0.000085
[14] 99.60 33.552 0.0016 0.0034 0.0032
[15] 99.6105 33.4656 0.0014 0.0016 0.00882
[16] 99.6261 33.467 0.000027 0.00045 0.00081
[17] 99.60 33.433 0.00296 0.00274 0.00436
[18] 99.5994 33.4183 0.0042 0.0079 0.0361
[19] 99.78342 - 0.0080415 0.089618 0.010518
[20] 99.85 34.25 0.0026 0.0035 0.0027
[21] 99.6192 33.4240 - - -
[22] 99.648 30.752 - - -

Ours 90.41 16.54 0.027 0.014 0.014

handwritten digits from 0 to 9. Similarly to MNIST, Fashion-

MNIST consists of images of ten fashion categories. MHIST

features 3,152 medical images divided into two categories: Hy-

perplastic Polyp (HP) samples, which are benign, and Sessile

Serrated Adenoma (SSA), which are nearly malignant. The

CBCL FACE dataset consists of high-resolution images fea-

turing frontal, semi-profile, and full-profile views. The SVHN

dataset is a real-world image dataset used for developing

machine learning and object recognition algorithms, consisting

of digit images obtained from house numbers in Google Street

View images. Finally, CIFAR-10 is used for its 60,000 images

spread over ten categories. In our experimental setup, we

evaluated various models using modified images alongside the

original dataset, as shown in Table II to validate the robustness

of ResSen. We employed the PyTorch platform to construct

well-known neural network architectures, including multilayer

perception (MLP), VGG16, ResNet18, and AlexNet. In the

preprocessing step, we converted all images to a gray-scale.

In one phase of our experiment, we enhanced the original

dataset by including gray-scaled images encrypted with RNS

sequences 5, 7, and 8, creating a diverse training dataset.

This augmented dataset combined the original images with

their RNSed counterparts using the specified sequences. The

training phase consists of two methods, considering (a) the

original dataset and all three channels off separately, and (b)

the original dataset with only one of the channels off. For

testing purposes, we separately evaluated the model’s accuracy

on RNSed data with each of the sequences 5, 7, and 8 for both

experimental phases, ensuring a thorough assessment of the

model’s generalization capabilities across different encryption

schemes. The performance of these models varied, with the

most notable outcomes reflected in the table. The highest test

accuracy was achieved by the MLP network on the MNIST

dataset, while the lowest was observed with the VGG 16

network on the MHIST dataset. By deactivating the channel

with a modulus of 5, we significantly enhanced privacy and

decreased the volume of data transmission, as this process

eliminates the need to transmit one of the channels. This

adjustment, while resulting in a slight decrease in accuracy

(1.7% in the best-case scenario and 4.6% in the worst-case

scenario), presents a valuable trade-off for scenarios where pri-

vacy enhancement and bandwidth conservation are prioritized.

These results highlight the efficacy of our method, demonstrat-

ing how selective RNS encryption may dramatically balance
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ResSen

Cloud

Fig. 6: (a)-(f) Samples from various datasets and (g)-(l) their reconstructed images.

TABLE II: Test accuracy evaluation using different models on various datasets.

Dataset Network Original RNSed w/o 5 RNSed w/o 7 RNSed w/o 8
Train on RNS w/o 5,7,8

RNSed w/o 5 RNSed w/o 7 RNSed w/o 8
MNIST MLP 98.83 97.13 95.64 95 97.98 97.974 97.971
Fashion-MNIST AlexNet 90.17 88.72 86.9 86.31 89.01 88.99 88.9
SVHN AlexNet 93.651 89.032 87.664 87.004 89.954 89.943 89.897
MHIST VGG 16 75.11 71.98 70.87 70.17 73.1 73.07 72.91
CBCL-Face VGG 16 98.28 96.31 94.82 94.21 97.11 97.05 96.99
CIFAR-10 ResNet 18 93.07 90.01 88.62 88.03 91.96 91.87 91.02

privacy enhancement and bandwidth conservation while main-

taining commendable model accuracy.

V. CONCLUSION

By integrating RNS with digital encryption, we developed

the ReSen architecture to enhance image sensor privacy,

effectively balancing privacy improvement with image fidelity.

This methodology maintains a high degree of privacy by

significantly altering pixel values, as evidenced by our com-

prehensive analysis, while ensuring minimal impact on image

quality. In the normal case, the bandwidth overhead of using

RNS is equal to 12.5%, while thanks to the proposed adaptive

readout circuit in low power mode, the required bandwidth is

reduced to 25%. These results underscore the effectiveness

of our approach in improving privacy without significantly

compromising the usability of the images; when a single

channel is deactivated, there is an average decrease in accuracy

of 3.1%.
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