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Abstract—The increasing use of image sensors across various
domains poses notable privacy challenges. In response, this paper
introduces a novel architecture, namely ResSen, to enhance
the privacy and efficiency of traditional image sensors. Our
approach integrates the Residue Number System (RNS) with
in-sensor digital encryption techniques to forge a robust, dual-
layer encryption mechanism. By embedding RNS within analog-
to-digital converters (ADCs), we significantly strengthen privacy
measures, effectively countering different violations and ensuring
the integrity and confidentiality of data transmissions. A key
feature of our system is its programmable key, which complicates
unauthorized output prediction or replication, providing a supe-
rior encryption methodology. Notably, ResSen demonstrates that
deactivating one of the moduli results in 25% bandwidth savings
at the cost of minor accuracy degradation. This underscores
the practicality and effectiveness of our sensor architecture
in addressing the dual objectives of privacy enhancement and
operational efficiency.

Index Terms—processing-in-sensor, residue number system,
image sensor, privacy

I. INTRODUCTION

A global network of 75+ billion IoT devices, including
smart homes, smart cities, smart industries, wearables, and
implantable systems for healthcare, is expected to reach $1100
billion by 2025. Intelligent IoT (IIoT) has recently gained
significant attention due to its ability to sense, decide, and
act by leveraging artificial neural networks (ANN). Through
various sensors, such as CMOS image sensors (imagers),
IIoT nodes collect and process data. Image sensor technol-
ogy has revolutionized the way we capture and process Vi-
sual information, offering wide applications from surveillance
to medical imaging. Nevertheless, ANNs are significantly
storage-/computation-intensive in achieving high accuracy and
acceptable performance in visual systems, making them dif-
ficult to implement on edge devices with limited resources.
Additionally, many vision applications require continuous
monitoring or detection of anomalies by sensory systems,
while low information density wastes bandwidth, storage,
and computing resources. Because of that, these IIoTs still
lack inherent intelligence and depend heavily on cloud-based
decision-making, leading to emerging concerns regarding pri-
vacy and performance efficiency. The desire for privacy in
the digital transmission of data has led to various solutions
aimed at securing sensitive data against unauthorized access.
Previous studies have explored a range of techniques, from
advanced encryption protocols to secure transmission methods,
in an effort to safeguard privacy. However, these solutions
often face limitations, particularly in their ability to balance
stringent privacy requirements with operational efficiency. For

instance, heavy encryption methods, while effective in pro-
tecting data, can impose significant computational burdens on
sensor systems, compromising their performance and respon-
siveness. Moreover, many existing strategies lack the flexibility
to adapt to the dynamic nature of digital threats, leaving
gaps that can be exploited by evolving hacking techniques.
These challenges underscore the need for a more holistic
and integrated approach to privacy that not only enhances
privacy, but also maintains the efficiency and adaptability of
image sensor systems. Incorporating the RNS and a light
encryption technique significantly enhances privacy in image
sensor technology. The RNS, by its design, offers a unique
way to represent numbers, which inherently complicates the
direct interpretation of data by unauthorized parties. When
combined with a light encryption mechanism, the privacy
of captured images is further bolstered. This dual approach
ensures that even if the data were intercepted, reconstructing
the original image would be extremely difficult without access
to the specific RNS configuration and encryption algorithm
used, thereby maintaining the integrity and confidentiality of
sensitive data. The primary contributions of this research are
outlined as follows:

o We proposed ResSen, an adaptive, high-performance im-
age sensor for power-limited devices, enhancing privacy
and performance through RNS.

o We developed an encryptor that enhances privacy by
employing three efficient linear feedback shift registers
to secure data processed with RNS.

o We designed a novel adaptive readout circuit that se-
lectively toggles a specific modulus on or off to save
bandwidth and power.

o We crafted a bottom-up evaluation framework to show-
case the effectiveness of our design, applying it to a wide
range of datasets, network types, and various scenarios,
highlighting the performance advantages.

II. BACKGROUND

A. RNS and cryptography

The RNS represents a powerful paradigm for enhancing the
performance and efficiency of cryptographic systems. By its
very nature, RNS enables parallel and carry-free computations,
which are particularly advantageous for the implementation
of cryptographic algorithms. This unique capability stems
from its non-weighted number system, allowing for oper-
ations within each modulus to be executed independently,
thereby significantly improving computational speed [1]. RNS
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is characterized by a set of L mutually prime moduli m;, for
it = {1,...,L}, where L is at least 2. The total dynamic
range, denoted as M, is obtained by multiplying all the
moduli together. This allows any unsigned integer X within
the range [0, M) to be uniquely represented by a tuple of
residues (x1,...,2y), where each x; is the remainder of X
divided by m;. The adoption of RNS can lead to hardware
implementations of these algorithms that are not only faster
but also more energy-efficient, addressing a critical need in
devices where power consumption is a concern [2]. Further-
more, the application of RNS extends beyond performance
improvements. It offers a pathway to resilience against certain
types of hardware attacks, such as side-channel attacks, which
exploit information leakage from physical implementations of
cryptographic algorithms [3], [4]. The inherent parallelism
and the carry-free nature of RNS-based! computations can
obscure the correlation between cryptographic operations and
physical side-channel signatures, like power consumption pat-
terns or electromagnetic emissions, thus improving the privacy
protection of cryptographic devices. However, the integration
of RNS into cryptographic systems raises some challenges.
Among these are selecting appropriate moduli sets, developing
efficient converters between the conventional binary system
and RNS, and managing operations traditionally complex in
RNS, like division. Besides, the implementation of RNSed
cryptographic systems must navigate the trade-offs between
hardware complexity, power consumption, and the additional
overhead introduced by conversions between number systems

(51, [6].

B. Privacy and Encryption

In the digital age, the transmission of images from sen-
sors to cloud services poses significant privacy challenges,
requiring robust measures to safeguard sensitive information
against unauthorized access, use, or exposure. This issue is not
only technical, but encompasses ethical and legal dimensions,
underscoring the importance of maintaining the confidentiality
and integrity of data through potentially vulnerable networks
and systems. In this context, ensuring privacy goes beyond
just preventing unauthorized access to data; it also includes
safeguarding personal and sensitive information and respecting
the consent and rights of data subjects throughout the entire
lifecycle of the data. Despite advances in encryption tech-
niques, secure transmission protocols, and data anonymization,
there remains a considerable gap in addressing privacy com-
prehensively. These solutions, while crucial, often fall short
in considering user-centric controls, transparency, and legal
safeguards, highlighting the need for an integrated approach
that combines technical robustness with ethical and legal con-
siderations to enhance privacy protection in the transmission
of sensitive data from sensors to cloud platforms [7].

Encryption plays a pivotal role in this landscape, serving
as a fundamental mechanism for privacy by rendering data
inaccessible and unintelligible to unauthorized parties without

Hereafter, referred to as RNSed.
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the appropriate decryption key. By rearranging the original
sequence of data, encryption ensures the confidentiality of
sensitive information throughout its lifecycle, from acquisition
through transmission to storage. This is particularly essential
in applications requiring stringent privacy measures, such as
healthcare monitoring systems, secure communications, and
scientific research. Moreover, the evolution of encryption
methodologies aligns with the increasing complexity of cyber
threats, reinforcing the need for advanced protective measures
in our increasingly digital world. As data becomes an ever
more valuable asset, the application of encryption extends
beyond traditional realms into emerging technologies and
platforms, such as cloud computing and sensors. In these
environments, encryption not only ensures data privacy but
also plays a critical role in establishing secure, trust-based
interactions among devices, systems, and users. This expanded
application highlights encryption’s versatility and adaptability,
making it indispensable in ensuring the confidentiality and
integrity of data across a myriad of digital landscapes. The
proactive integration of encryption into the fabric of digital
communication and storage systems thus represents a forward-
thinking approach to privacy [8].

III. RESSEN ARCHITECTURE

Image sensors are categorized into two main types: global
shutter and rolling shutter. In systems employing a global
shutter, each pixel is directly connected to its own ADC to
convert the electrical voltage into a digital format. On the
contrary, the rolling shutter technique involves connecting
pixels to the ADC in a sequential manner, processing them
row by row, which benefits low-power applications [9]. In
our study, we present a new architecture designed to enhance
the privacy and performance of traditional image sensors by
leveraging Residue arithmetic processing in the rolling shutter
Sensor, namely ResSen. The ResSen architecture comprises
five components: a Command Decoder, a Focal Plane, aka a
pixel array, a row selector, an adaptive residual readout, and
an encryptor (Fig. 1). The command decoder acts as an inter-
mediary, interpreting incoming control signals and translating
them into specific actions for the sensor hardware, enabling
dynamic control over the sensor’s operations, such as pixel row
activation, exposure adjustment, and readout initiation. In (1}
the pixel array of image sensors converts light into electrical
voltage with respect to a captured image, each pixel including
a photodiode and a capacitor. The Row Selector @), managed
by the command decoder, enables the selection of specific
pixel rows for processing by connecting them to source bias
lines (SBLs) and facilitating their values’ readout by the
ADCs. Adaptive Residue Readout in @) optimizes the captured
image by converting analog signals to digital ones using
RNSed ADCs. It enables efficient resolution adjustment and
privacy enhancement through selective channel deactivation,
which is performed by the Channel Selector in @. It can
disable/enable one (or more) specified modules. One of the
most important components of our design is Encrypter (@),
which secures image data by applying XOR operations with
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Fig. 1: The proposed ResSen Architecture.

pseudo-random sequences generated by shift registers, each
tailored to a modulus, ensuring that each image row is uniquely
encrypted before transmission. Consequently, the captured
image is encrypted before sending it to the cloud/server @.
All ResSen components and their functionalities are outlined
in the following sections.

A. Pixel Array

The pixel array, consisting of H x W pixels, retains its
original functionality without any modifications to convert
light intensity into an electrical voltage. As depicted in Fig. 1,
the pixels’ values are connected from SBL; to SBLy and
read in a row-by-row manner. Figure. 2 depicts the structure
and connection of six pixels. Each pixel comprises four
transistors, denoted as 71y, T», T3, and T, a photodiode
(PD), and a capacitor (C PD). During the capture phase, by
setting the Rst signal to Vpp, all capacitors are charged.
Subsequently, by activating 75, the voltage stored in these
capacitors is discharged through the photodiode’s resistance,
which is sensitive to light. Finally, 75 generates a current based
on the CPD’s voltage upon activating 7.

B. Command Decoder

The command decoder functions as an intermediary to
interpret incoming control signals and translate them into spe-
cific actions/sequences that the image sensor hardware must
execute. This component is crucial for enabling dynamic con-
figuration and control of the sensor’s behavior, including the
activation of pixel rows, the adjustment of exposure settings,
and the initiation of readout processes. The decoder achieves
this by mapping each command signal to a corresponding set
of control lines or switches within the sensor architecture. As
a result, the command decoder facilitates precise control over
the sensor’s functionality, allowing for the efficient capture of
images under varying conditions. This capability is essential
for optimizing image quality and performance across a wide
range of applications, from consumer electronics to advanced
scientific imaging.
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Fig. 2: The arraignment of 2 x 3 pixels.

C. Row Selector

Another main component, even in conventional imagers, is
the Row Selector, shown in Fig. 1. Command Decoder man-
ages this unit and enables row selection (R,,). As illustrated
in Fig. 2, two row-lines, Ry and R,, are connected to the 7}
transistors. For example, activating R; connects all pixels in
the first row to the Source Bias lines (SBLs) and allows the
ADC:s to read their values.

D. Adaptive Residue Readout

Since we target a low-power vision sensor, an 8-to-14-bit
image format capable of generating 256—to 16384 unique
values is sufficient. The resolution of the ADC has a significant
impact on both image quality and energy consumption. To ex-
ploit the strength of RNS encoding and mitigate the overhead
of RNS converters, our previous RNSed ADC is utilized to
improve area and power efficiency. By integrating the RNS
into the design of folding ADCs, our novel approach allows
for high-speed and high-resolution conversions efficiently by
employing multiple folding circuits, each corresponding to
distinct prime moduli within the RNS. This methodology not
only simplifies the hardware architecture but also minimizes
power consumption, enhancing the overall efficiency of digital
signal processing systems. In this paper, we consider the
moduli set of {2"+1, 271 —1, 271} where n € {2, 3, 4}.
The higher value of n offers a larger dynamic range, allowing
the system to obtain more accurate images up to 14-bit. To
do so, we utilized our previously proposed RNSed ADC to
enhance speed and resolution without an exponential increase
in complexity and power usage. In this situation, putting n = 2
employs moduli of {5, 7, 8}, establishing a specific range of
280, which closely approximates the 256-value range for 8-bit
conventional images. The RNSed ADCs within the adaptive
residue readout are connected to a channel selector so that one
or more moduli can be turned off as needed. This capability
not only enhances power efficiency and data transfer within the
chip and cloud but also increases the desired privacy levels. In
the ResSen architecture, the way we send data plays a key role
in improving privacy without losing much quality. The ability
to selectively deactivate one of the ADC channels, which
is made feasible through the parallel processing capabilities
of RNS and the folding technique of ADCs, is a significant
advancement toward ensuring privacy. This feature is crucial
for scenarios where the system does not have enough power
or sensitive information might be captured by the sensor and
must be protected from unauthorized access. When a channel
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is turned off, the data corresponding to that particular modulus
is not recorded or transmitted, making it exceedingly difficult
for an unintended recipient to reconstruct the full gray-scale
image accurately.

E. Light Weight Encryption Block

The proposed encryptor, as a key feature of the ResSen
architecture, is designed to enhance both privacy and image
processing performance. The encryptor operates in harmony
with the rolling shutter technique, enhancing the privacy of the
image data by obfuscating it before storing and/or transmitting.
It consists primarily of three (number of moduli set) linear
feedback shift registers (LFSRs) combined as depicted on (1)
in Fig. 3. The size of these LFSRs is equal to the width of the
pixel array, W. The proposed design uses a separate LFSR for
each modulus, making the reverse process more challenging.
The shift registers are initialized with a predefined key, known
only to authorized entities, ensuring that the encryption process
is secure. It generates a pseudo-random sequence of bits by
performing an XOR operation. It should be mentioned that
the number of XORs and the desired input positions can be
varied in the current state shift register. The shift and XOR
operation occurs after reading each row. The detail of an LFSR
unit is depicted in Fig. 3(3). As mentioned above, for 8-bit
images, each RNSed ADC should have three 3-bit outputs
to show the numbers between 0 and {4,6,7} (the largest
remainder of each moduli). Each output of the RNSed ADC
is XORed with the corresponding register in the shift register,
as shown by (2) in Fig. 3. Details of the connections for M3
can be seen in Fig. 3(4). This process effectively encrypts the
image data, rendering it unintelligible to unauthorized viewers.
The mentioned mechanism ensures that each image row is
encrypted with a different key, further enhancing privacy. The
output of the XOR operation, which is the encrypted image
data, is then ready for transmission.

To exemplify the functionality of the proposed encryptor,
consider the scenario in which the values of two pixels
located in the second column but different rows are 75 and
178, respectively. The binary outputs of the RNSed ADCs
are expressed as {0b000, 0b101, Ob011} and {ObO011,
0b011, 0b010}, respectively. Assume that during the encryp-
tion process, we utilize three simple LFSRs, each featuring a
single XOR operation in the two MSBs. The initial values of
these LESRs, corresponding to the moduli sets, are 0b1101,
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0bl111, and Ob0110, respectively. The encryption process
involves XORing the first number with the second bit (due to
the pixel’s location in the second column) of the first LFSR.
Similarly, the second and third numbers are XORed with the
equivalent bits of the second and third LFSRs, respectively.
Consequently, encrypted results are obtained as {Ob111,
0b010, ObOll}. For the next row, all LFSRs are moved
to the right, producing new values of 0b1110, 0b0111,
and Ob1011, respectively. Following this shift, the second
row’s values are XORed with the updated LFSR values. The
resulting encrypted values are {0b100, 0b100, 0b010}. It
is important to note that the first result is non-reversible, while
the reverse operation on the second encrypted value yields 74.

IV. ANALYSIS AND EVALUATION
A. Performance

ResSen is engineered to optimize efficiency in image sen-
sors, with special emphasis on the readout and encryption
circuits. A critical innovation in this work is the substantial
reduction in the number of comparators in ADCs, which
directly influences both the area and power consumption of an
imager. For instance, the number of comparators within a flash
ADC is 2", where n represents the resolution. As depicted
in Fig. 4(a), an 8-bit resolution is achieved by reducing the
number of comparators to 20. Moreover, it illustrates that the
comparator count remains unchanged for resolutions from 9-
to-11 bits and from 12-to-14 bits, attributable to the chosen
moduli set that does not allow for a narrower window size
among the possible resolutions. Thus, the proposed system
is most efficient at resolutions of 8, 11, and 14 bits. Note
that while the storage or transmission requirements do not
vary between modules, their power consumption does. Higher
moduli require a greater number of comparators and additional
subcircuits, as evidenced in Fig. 4(a). Further, Fig. 4(b) reveals
the bit requirements for storing or transferring a single pixel
in ResSen compared to a standard system. For example, a
conventional 12-bit system requires 12 bits per pixel, whereas
ResSen requires 15 bits, representing a 25% overhead. Altering
the resolution to 14 bits reduces this overhead to 7.14%. In
addition to comparator reduction, another significant advan-
tage of ResSen is its channel selector mechanism, which can
deactivate a modulus to decrease the data stored or transferred
to 10 bits, thus offering a 28.57% and 33.33% improvement
over the conventional image sensor and original ResSen,
respectively.
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B. Privacy

The rationale and operation of the chosen method were
modeled using Python, with the results presented in Fig.5. De-
spite the fact that an RNS approach alters the image histogram,
it does not completely obscure every aspect of it. To provide a
clearer understanding, Fig.5 further highlights these remaining
details through the normalization of images processed by RNS
when one channel is off (in this case, modulus 5). To overcome
this challenge and increase the complexity of our model, the
proposed adaptive residue readout is leveraged. It has been ob-
served that turning off one channel decreases the probability of
recovering data because normalizing the modified images does
not result in data recovery. In the conducted analysis, the Mean
Squared Error (MSE) was found to be 3169.41, indicating the
average squared difference between the pixel intensities of the
original and the modified images. The Peak Signal-to-Noise
Ratio (PSNR) was calculated to be 13.12 dB, which quantifies
the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of
its representation. The Number of Pixels Change Rate (NPCR)
was computed at 90.41%, reflecting the percentage of different
pixels’ values between the two images. The Unified Average
Changing Intensity (UACI) was determined to be 16.54%,
which measures the average intensity of differences between
the original and modified images. The correlation analysis
between the corresponding pixels of the two images yielded
correlation coefficients of 0.027 for the horizontal, 0.014 for
the vertical, and 0.014 for the diagonal directions, suggesting a
low degree of linear relationship between the pixel intensities
in these directions. All the obtained results using previous
approaches and ours are summarized in Table I. Our approach
achieves the best UACI. Also, the RNS adds complexity to
the algorithm, thereby enhancing its resilience against attacks
even if we got lower NPCR.

C. Robustness

We conducted ResSen experiments on several datasets
to evaluate the robustness of the proposed approach, in-
cluding MNIST, Fashion-MNIST, CBCL FACE, Minimal-
ist Histopathology (MHIST), Street View House Numbers
(SVHN), and CIFAR-10, illustrated in Figs. 6 (a-f), respec-
tively. RNS-encrypted images are decrypted and classified by
the cloud. The received decrypted RNSed samples are depicted
in Figs. 6 (g-1). MNIST dataset contains 70,000 images of
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[
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Encrypted RNSed image
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Fig. 5: ResSen efficiency versus RNSed-only approaches.

TABLE I: Performance comparison of various approaches.

Method NPCR (%) UACI (%) Correlation Analysis
Horizontal ~ Vertical  Di
[10] 99.6094 33.4635 0.0008 0.0038 0.0028
[11] 99.8122 33.4611 0.9861 0.924 0.9538
[12] 99.6123 33.4512 0.00106 0.0835 0.017
[13] 99.6176 33.4502 0.000033 0.000295  0.000085
[14] 99.60 33.552 0.0016 0.0034 0.0032
[15] 99.6105 33.4656 0.0014 0.0016 0.00882
[16] 99.6261 33.467 0.000027 0.00045 0.00081
[17] 99.60 33.433 0.00296 0.00274 0.00436
[18] 99.5994 33.4183 0.0042 0.0079 0.0361
[19] 99.78342 - 0.0080415  0.089618  0.010518
[20] 99.85 34.25 0.0026 0.0035 0.0027
[21] 99.6192 33.4240 - - -
[22] 99.648 30.752 - - -
Ours 90.41 16.54 0.027 0.014 0.014

handwritten digits from O to 9. Similarly to MNIST, Fashion-
MNIST consists of images of ten fashion categories. MHIST
features 3,152 medical images divided into two categories: Hy-
perplastic Polyp (HP) samples, which are benign, and Sessile
Serrated Adenoma (SSA), which are nearly malignant. The
CBCL FACE dataset consists of high-resolution images fea-
turing frontal, semi-profile, and full-profile views. The SVHN
dataset is a real-world image dataset used for developing
machine learning and object recognition algorithms, consisting
of digit images obtained from house numbers in Google Street
View images. Finally, CIFAR-10 is used for its 60,000 images
spread over ten categories. In our experimental setup, we
evaluated various models using modified images alongside the
original dataset, as shown in Table II to validate the robustness
of ResSen. We employed the PyTorch platform to construct
well-known neural network architectures, including multilayer
perception (MLP), VGG16, ResNetl8, and AlexNet. In the
preprocessing step, we converted all images to a gray-scale.
In one phase of our experiment, we enhanced the original
dataset by including gray-scaled images encrypted with RNS
sequences 5, 7, and 8, creating a diverse training dataset.
This augmented dataset combined the original images with
their RNSed counterparts using the specified sequences. The
training phase consists of two methods, considering (a) the
original dataset and all three channels off separately, and (b)
the original dataset with only one of the channels off. For
testing purposes, we separately evaluated the model’s accuracy
on RNSed data with each of the sequences 5, 7, and 8 for both
experimental phases, ensuring a thorough assessment of the
model’s generalization capabilities across different encryption
schemes. The performance of these models varied, with the
most notable outcomes reflected in the table. The highest test
accuracy was achieved by the MLP network on the MNIST
dataset, while the lowest was observed with the VGG 16
network on the MHIST dataset. By deactivating the channel
with a modulus of 5, we significantly enhanced privacy and
decreased the volume of data transmission, as this process
eliminates the need to transmit one of the channels. This
adjustment, while resulting in a slight decrease in accuracy
(1.7% 1in the best-case scenario and 4.6% in the worst-case
scenario), presents a valuable trade-off for scenarios where pri-
vacy enhancement and bandwidth conservation are prioritized.
These results highlight the efficacy of our method, demonstrat-
ing how selective RNS encryption may dramatically balance
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TABLE II: Test accuracy evaluation using different models on various datasets.

Train on RNS w/o 5,7,8

Dataset Network Original RNSed w/o 5 RNSed w/o 7 RNSed w/o 8 RNSed wio 5 RNSed wio 7 RNSed wio 8
MNIST MLP 93.83 97.13 95.64 95 97.98 97.974 97.971
Fashion-MNIST __ AlexNet 90.17 88.72 86.0 86.31 89.01 88.99 889
SVAN AlexNet  93.651 §9.032 87.664 87.004 89.954 89.943 §9.897
MHIST VGG 16 75.11 71.98 70.87 70.17 731 73.07 72.91
CBCL-Face VGG 16 93.28 9631 9482 9421 97.11 97.05 96.99
CIFAR-10 ResNet 18 93.07 90.01 88.62 88.03 91.96 91.87 91.02
privacy enhancement and bandwidth conservation while main- [6] A. Roohi and S. Angizi, “Efficient targeted bit-flip attack against the

taining commendable model accuracy.

V. CONCLUSION
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