
DECO: Dynamic Energy-aware Compression and

Optimization for In-Memory Neural Networks

Rebati Gaire†, Sepehr Tabrizchi†, Deniz Najafi‡, Shaahin Angizi‡ and Arman Roohi†

†School of Computing, University of Nebraska–Lincoln, Lincoln, NE, USA
‡Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

aroohi@unl.edu, shaahin.angizi@njit.edu

Abstract—This paper introduces DECO, a framework that
combines model compression and processing-in-memory (PIM)
to improve the efficiency of neural networks on IoT devices. By
integrating these technologies, DECO significantly reduces energy
consumption and operational latency through optimized data
movement and computation, demonstrating notable performance
gains on CIFAR-10/100 datasets. The DECO learning framework
significantly improved the performance of compressed network
modules derived from MobileNetV1 and VGG16, with accu-
racy gains of 1.66% and 0.41%, respectively, on the intricate
CIFAR-100 dataset. DECO outperforms the GPU implementation
by a significant margin, demonstrating up to a two-order-of-
magnitude increase in speed based on our experiment.

Index Terms—Model compression, feature extraction, process-
ing in-memory

I. INTRODUCTION

The Internet of Things (IoT) proliferation has ushered in

an era of pervasive connectivity and data generation. IoT

devices deployed across smart homes, factories, wearables,

and countless other domains offer tremendous potential for

real-time monitoring, intelligent automation, and data-driven

insights. Deep learning (DL) is expected to revolutionize IoT

applications, enabling capabilities such as predictive mainte-

nance, anomaly detection, and personalized user experiences.

However, the integration of DL models with IoT faces signifi-

cant hurdles. Resource-constrained devices, limited network

bandwidth, and the need for low-latency decision-making

create a bottleneck for deploying complex DL algorithms

at the edge. The explosive growth of deep neural networks

(DNNs), fueled by their success in various domains, has led to

increasingly complex architectures featuring millions or even

billions of parameters. This complexity directly translates into

high computational costs, extensive memory requirements,

and substantial energy consumption, all of which conflict

with the realities of IoT environments. To bridge this gap,

researchers and practitioners have turned to software and

hardware-intensive approaches to optimize DL’s efficiency.

Model compression [1]–[3] is a key software-based optimiza-

tion strategy to reduce the size and computational demands

of DNNs. Techniques like pruning, quantization, knowledge

distillation, and network architecture design seek to create

smaller, more efficient models while preserving accuracy.

From the hardware perspective, processing-in-memory (PIM)

architectures offer a paradigm shift. By integrating compu-

tational capabilities directly into or near memory, PIM aims

to minimize data movement, a significant source of latency

and energy consumption in traditional systems [4]. While both

model compression and PIM offer substantial benefits, they

also have limitations. Model compression often involves trade-

offs between compression rates and accuracy. PIM, especially

in its more radical forms, can introduce hardware complexity

and require new programming and system design paradigms.

In this paper, we propose DECO, a novel approach that

strategically combines elements of model compression and

PIM to improve the efficiency of deep learning on IoT devices.

Our method orchestrates a shared feature extractor across var-

ious neural network configurations, each distinguished by tai-

lored model compression and distinct computational profiles,

to cater to the dynamic energy and performance constraints of

edge computing environments. We demonstrate its effective-

ness through a rigorous evaluation, achieving noteworthy im-

provements in model efficiency and accuracy, as evidenced by

the performance gains in classification tasks using the CIFAR-

10 and CIFAR-100 datasets [5]. Our contribution unlocks the

potential for more widespread adoption of DL adoption in IoT.

Enabling intelligent analysis directly at the edge paves the

way for faster, more responsive, and privacy-preserving IoT

applications. Industries ranging from manufacturing to health-

care stand to benefit from this increased efficiency, leading

to new levels of automation, optimization, and personalized

experiences.

II. BACKGROUND

A. Model Compression

The impressive achievements of deep neural networks

(DNNs) in various domains come with the drawback of

substantial computational complexity, memory footprints, and

energy consumption. These factors pose significant obstacles

to deployment on resource-constrained devices or in appli-

cations demanding real-time inference. Model compression

has emerged as a vital area of research to address these

limitations and to reduce the size and computational demands

of DNNs while minimizing accuracy loss. Essential techniques

include pruning redundant elements, quantizing weights and

activations, applying low-rank factorization, distilling knowl-

edge into smaller networks, and designing inherently efficient

architectures. Model compression offers benefits like reduced

storage needs, faster inference, improved energy efficiency,

and expanded deployment possibilities. However, researchers
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must navigate the compression-accuracy trade-off, address

hardware compatibility issues, and often employ quantization-

aware training [6]. Ongoing research in model compression

focuses on automated compression strategies, fine-grained

compression techniques, and hardware-aware optimization,

paving the way for increasingly widespread and efficient use

of DNNs.

B. Processing in-Memory

With their separation of processing and memory, traditional

von Neumann computing architectures create a significant

performance bottleneck due to the constant need for data

movement. This “memory wall” becomes even more restrictive

as datasets and AI workloads increase complexity. Processing-

in-memory (PIM) presents a radical solution by integrating

processing capabilities directly into or near memory units [7]–

[9]. By minimizing data movement, PIM promises significant

reductions in energy consumption and execution time while

enabling massively parallel operations. Critical approaches to

PIM include Processing Near Memory (PNM), which places

processors close to memory, and Processing Using Memory

(PUM), which leverages memory devices’ properties for com-

putation. While PIM holds the potential to transform data-

intensive computing, challenges remain in developing suitable

programming models, efficient data management techniques,

system integration, and managing thermal considerations. With

ongoing research in memory technologies and system design,

PIM’s benefits for applications like machine learning acceler-

ation and real-time analytics make it a promising avenue for

future computing paradigms.

III. DECO ARCHITECTURE

A. Training Approaches

1) Network Architecture Design: In this work, we design

a refined neural network inference framework tailored to the

variable constraints of dynamic computing ecosystems. At the

heart of this framework lies a judicious blend of a shared fea-

ture extractor and an array of task-specific modules anchored

by model compression techniques to enhance adaptability and

efficiency. This hybrid configuration is crafted from leading

network architectures, selectively pared down, and compressed

to yield a spectrum of leaner, differentiated models. Each

model manifests a unique blend of computational complexity

and task performance. By integrating a shared feature extrac-

tor, we eliminate redundant weight loading each time a new

task module is selected, significantly conserving energy and

enhancing efficiency in data movement across multiple neural

network deployments. The inherent modularity of our design,

complemented by model compression, is indispensable in edge

computing scenarios, where it ensures an optimal trade-off

between precision and computational thrift in edge computing,

where the operational conditions can change rapidly.

2) Network Learning: In this segment, we meticulously

outline the training methodologies designed to improve the

performance of the variably configured networks introduced

in Section III-A1.

Independent Learning: To establish a baseline, each task

model undergoes independent training with a separate feature

extractor for each classification module. This approach results

in disparate parameters for the common feature extractor

across task modules, necessitating frequent parameter reload-

ing each time a new task module is selected. Thus, it leads

to energy-inefficient data movement during inference. The

learning objective for an image classification task using this

approach is expressed in Equation 1.

LTMi
= −

m∑

j=1

yj log ŷj (1)

where TMi represents a ith task module and m denotes the

distinct class categories defined for the task. Furthermore, yj
and ŷj denote the ground-truth label and predicted label for a

sample in jth class, respectively.

Joint Learning: In contrast to training each task module

separately, this approach involves training entire modules

together with a common feature extractor. This ensures not

only static weights for the common feature extractor, thus

eradicating energy consumption for data movement, but it

also facilitates mutual learning among modules. Consequently,

the performance of each task module surpasses that achieved

through independent training, serving as an improvement over

the baseline method. The training objective for this approach,

expressed in Equation 2, encompasses a linear combination

of task loss across the different task modules, optimizing the

network to achieve balanced performance that complies with

the diverse requirements of each task.

Lt = −

n∑

i=1

LTMi
(2)

In the context of this training framework, n denotes the total

count of task modules undergoing joint training, while LTMi

signifies the individual training objective for ith task module

as expressed in Equation 1.

B. Digital In-Memory Accelerator

1) Overview: Our proposed PIM accelerator architecture,

adopted from our preliminary work [10], is illustrated in Fig.

1(a), featuring computational sub-arrays, kernel and image

banks, and a Digital Processing Unit (DPU) comprising three

sub-components: Quantizer, Activation Function, and Batch

Normalization. Control (Ctrl), situated within each sub-array,

governs the execution of DNN layers.

The kernels (W ) and input feature maps (I) are initially

stored in Kernel and Image Banks, respectively, to facilitate

mapping into sub-arrays. In phase (1), the operands are dis-

patched to the sub-arrays, tailored to manage the computa-

tional workload through the PIM mechanism. Subsequently, in

phases (2) and (3), as elaborated further, the parallel computa-

tional sub-arrays execute feature extraction in conjunction with

add-on peripherals, i.e., counter and shifter units. Ultimately,

the accelerator’s DPU activates the resulting feature map,

producing the output feature map.
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Fig. 1: (a) MRAM-based accelerator platform, (b) Computa-

tional sub-array design.

2) Sub-array architecture.: Fig. 1(b) depicts the in-memory

computing sub-array architecture implemented utilizing binary

SOT-MRAM cells [10], [11]. This sub-array comprises a

Memory Row Decoder (MRD), a Memory Column Decoder

(MCD), a Write Driver (WD), and Sense Amplifiers (SA),

which are adjustable by Ctrl to enable dual-mode compu-

tation, encompassing memory write/read operations and in-

memory logic operations. Each SOT-MRAM bit-cell within

the computational sub-arrays is linked to five control signals,

namely Write Word Line (WWL), Write Bit Line (WBL),

Read Word Line (RWL), Read Bit Line (RBL), and Source

Line (SL). The computational sub-array is primarily engi-

neered to facilitate computation between in-memory operands

utilizing two distinct mechanisms termed two-row activation

and three-column activation. These mechanisms enable the

implementation of bulk bitwise in-memory AND and addition

operations, respectively.

3) Bit-line computation mode.: In the 2-/3-input in-memory

logic method, pairs/triplets of bits stored in the identical

column are typically selected with the MRD [12] and simul-

taneously sensed by SA connected to the corresponding bit-

line. In this work, we adopted the reconfigurable SA from

our previous work [10], depicted in Fig. 2. It comprises three

Fig. 2: The reconfigurable SA [10].

sub-SAs and a total of five reference-resistance branches that

can be enabled by control bits (CM , COR3, CMAJ , CAND3,

CAND2) under the control of the Ctrl unit, facilitating memory

and computation modes. The SA can execute memory read

and single-threshold logic operations by activating one control

bit in the respective branches simultaneously. Furthermore,

by activating multiple control bits simultaneously, SA can

perform more than one logic function concurrently with the

SAs. This capability can be leveraged to generate complex

multi-threshold logic functions such as XOR3/XNOR3. The

voltage generated after injecting a small reference current

over the selected reference resistor by Ctrl is compared with

the sensed voltage of equivalent resistance of the parallel-

connected bit cells and their cascaded access transistors after

injecting a small sense current over the resistors. By selecting

different reference resistances, such as RM and RAND2, SA

can perform primary memory and 2-input in-memory Boolean

AND functions, respectively.

IV. ANALYSIS AND EVALUATION

A. Experimental Setup

1) Dataset: Our methodology was thoroughly evaluated

on two well-known datasets in image recognition: CIFAR-10

and CIFAR-100 [5]. CIFAR-10, a staple in computer vision,

consists of 60,000 color images (32× 32 pixels) divided into

ten classes. CIFAR-100 expands on this with the same number

and size of images but distributes them across 100 more

detailed classes, increasing the complexity and diversity of

the dataset.

2) Network Architectures: Central to our innovative edge

inference framework is implementing versatile network archi-

tectures underpinned by a shared feature extractor and an array

of specialized task modules. This architecture draws upon

the proven strengths of seminal deep neural network models,

specifically VGG16 [13] and MobileNetV1 [14], acclaimed for

their robust edge inference capabilities in image classification

domains. The initial convolutional layers of these renowned

models form a consistent foundation for feature extraction,

utilized across all classification modules without variation.

Then, four distinct variants of classification modules for each

network are crafted. The first classification module (CM),

CM1, coupled with the common feature extractor (FE), mirrors

the entire structure of the original models. The subsequent

modules — CM2, CM3, and CM4 — are more streamlined

versions, varying in size, computational demand, and energy

requirements to suit different operational needs. The specific

characteristics of each classification module, providing a gran-

ular view of their scale and complexity, are detailed in Table I.

3) Implementation Details: In our implementation, we em-

ployed the PyTorch framework for network creation, train-

ing, and testing, capitalizing on its versatility and efficiency.

As part of our data preprocessing, we performed random

horizontal flips as data augmentation and resized each input

sample to 3 × 64 × 64 to standardize the input dimensions.

Optimization was achieved through stochastic gradient descent

(SGD). We initiated training with a learning rate of 0.01
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TABLE I: Detailed specification and performance evaluation of designed network modules

DNN Model Modules
Convolutional Layers Fully-Connected Layers Total Inference

Time (ms)
Module

Size (MB)# Layers # MAC # Params # Layers # MAC # Params # MAC # Params

VGG16

FE 2 158,072,832 38,720 0 0 0 158,072,832 38,720 8.136 0.156
CM1 11 1,094,713,344 14,675,968 3 3,155,968 3,158,026 1,097,869,312 17,833,994 1.150 71.712
CM2 2 94,371,840 369,024 2 66,176 66,250 94,438,016 435,274 0.319 1.202
CM3 1 75,497,472 73,856 2 66,816 66954 75,564,288 140,810 0.227 0.611
CM4 0 0 0 2 17,024 17,098 17,024 17,098 0.139 0.093

MobileNetV1

FE 1 884,736 928 0 0 0 884,736 928 7.842 0.005
CM1 26 1,572,864,000 3,206,048 1 10,240 10,250 1,572,874,240 3,216,298 2.241 13.361
CM2 10 126,877,696 713,248 1 10,240 10,250 126,887,936 723,498 1.296 3.302
CM3 8 134,217,728 29,728 1 1,280 1,290 134,219,008 31,018 0.797 0.184
CM4 4 92,274,688 11,680 1 1,280 1,290 92,275,968 12,970 0.107 0.539

TABLE II: Performance comparison of the two training approaches across CIFAR-10 and CIFAR-100 datasets.

DNN Model Experiment
CIFAR-10 CIFAR-100

CM1 CM2 CM3 CM4 CM1 CM2 CM3 CM4

VGG16
Independent Learning 89.38 85.09 81.92 75.74 63.57 55.1 53.36 45.31
Joint Learning 90.59 85.07 82.76 76.04 65.44 53.82 53.15 45.94

MobileNetV1
Independent Learning 88.39 85.44 81.67 72.85 64.47 60.64 54.59 42.75
Joint Learning 89.26 86.67 80.57 73.58 64.33 60.26 55.09 45.57

for each classification model, progressively reducing it by

90% after 80 epochs to enhance convergence. Training was

conducted with a batch size of 128 over 200 epochs to ensure

effective learning. Based on the validation set performance,

the best-checkpoint was then evaluated on the test set to assess

model generalization and performance concisely.

On the hardware side, we have configured our in-memory

accelerator with a total capacity of 512Mb and a memory

sub-array organized in a 256×512 layout using H-tree rout-

ing. For device simulations, we employed Non-Equilibrium

Green’s Function (NEGF) and Landau-Lifshitz-Gilbert (LLG)

equations with spin Hall effect to model the SOT-MRAM

bit-cell [11], [15], [16]. At the circuit level, we created a

Verilog-A model for the 2T1R bit-cell, which can be utilized

alongside interface CMOS circuits in Cadence Spectre. The

performance metrics were evaluated using the 45nm NCSU

PDK library [17]. At the architectural level, leveraging insights

from device-circuit results, we extensively modified NVSim

[18]. This modified simulator enables the adjustment of con-

figuration files (.cfg) according to the model size and various

memory array organizations. Subsequently, we developed a

behavioral simulator in MATLAB to evaluate the energy and

latency parameters associated with the accelerator’s operation

in running our PyTorch implementations.

B. Accuracy

A summary of the evaluation results of the various clas-

sification modules using the training frameworks defined in

Section III-A2 across the two test sets is presented in Table II.

It is discernible that the adoption of the joint learning paradigm

engenders notable enhancements in model proficiency, par-

ticularly for streamlined classification modules, with some

exceptions. The joint learning paradigm exhibited an average

accuracy improvement of 0.7% and 0.52% for the VGG16 and

MobileNetV1 architectures, respectively, on CIFAR-10. On the

more complex CIFAR-100 dataset, these improvements were

even more pronounced, with averages of 0.41% for VGG16

and 1.66% for MobileNetV1. These enhancements highlight

the joint learning framework’s ability to leverage synergies

between shared feature extractors and classification modules,

leading to more precise and energy-efficient neural network

configurations.

C. Performance Evaluation

We assessed and reported the execution time and power

consumption of different modules across two DNN models

under examination for both GPU and PIM implementations

in Table III. Regarding execution time, as anticipated PIM

would outperform GPU implementation by a significant mar-

gin, demonstrating up to a two-order-of-magnitude increase

in speed based on our experiment. For instance, with the

CM1 module on MobileNet V1 with 1,572,874,240 multiply-

accumulate (MAC) and 3,216,298 total number of parameters,

PIM achieves a reduction in execution time by approximately

314-fold compared to GPU. This is primarily attributed to the

highly parallelized PIM sub-array, which markedly accelerates

MAC operations compared to the GPU. Furthermore, we note

that as the number of MACs increases, greater parallelism

and PIM sub-array utilization is achieved, resulting in reduced

inference time. With regards to the power consumption of the

TABLE III: Power consumption and execution time compari-

son on CIFAR-100.

Execution time (µs) Power (W)
DNN Model Module GPU PIM GPU PIM

VGG16

FE 8130 24.2 350×2 1.433
CM1 1150 11.6 350×2 0.211
CM2 319 4.6 350×2 0.068
CM3 227 3.8 350×2 0.059
CM4 139 2.9 350×2 0.036

MobileNetV1

FE 7840 23.1 350×2 1.314
CM1 13360 42.6 350×2 2.11
CM2 1296 14.7 350×2 0.236
CM3 797 9.1 350×2 0.132
CM4 107 2.6 350×2 0.036
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GPU, we derived a figure of 350W from the datasheets of

the NVIDIA GeForce RTX 3090, which was then doubled to

account for the use of two GPUs. Note that in this experimental

setup, we have not excluded the power consumption associated

with cooling systems and regulators. Overall, our observations

indicate a significant reduction in power consumption with

PIM implementation compared to GPU. Across a range of

modules, PIM demonstrates a remarkable decrease in power

consumption of up to four orders of magnitude.

V. CONCLUSION

DECO effectively combines model compression and PIM

to improve deep learning efficiency on IoT devices. The

shared feature extractor and joint learning leverage synergies

and reduce redundancy, while the PIM accelerator minimizes

data movement and exploits parallelism, leading to signifi-

cant speedup and energy reduction over GPUs. Evaluation

on CIFAR-10/100 using VGG16 and MobileNetV1 validates

DECO’s effectiveness. Its modular design suits dynamic edge

environments, enabling intelligent edge analysis for respon-

sive, privacy-preserving IoT applications.
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