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Abstract—This paper introduces DECO, a framework that
combines model compression and processing-in-memory (PIM)
to improve the efficiency of neural networks on IoT devices. By
integrating these technologies, DECO significantly reduces energy
consumption and operational latency through optimized data
movement and computation, demonstrating notable performance
gains on CIFAR-10/100 datasets. The DECO learning framework
significantly improved the performance of compressed network
modules derived from MobileNetV1l and VGG16, with accu-
racy gains of 1.66% and 0.41%, respectively, on the intricate
CIFAR-100 dataset. DECO outperforms the GPU implementation
by a significant margin, demonstrating up to a two-order-of-
magnitude increase in speed based on our experiment.

Index Terms—Model compression, feature extraction, process-
ing in-memory

I. INTRODUCTION

The Internet of Things (IoT) proliferation has ushered in
an era of pervasive connectivity and data generation. IoT
devices deployed across smart homes, factories, wearables,
and countless other domains offer tremendous potential for
real-time monitoring, intelligent automation, and data-driven
insights. Deep learning (DL) is expected to revolutionize IoT
applications, enabling capabilities such as predictive mainte-
nance, anomaly detection, and personalized user experiences.
However, the integration of DL models with IoT faces signifi-
cant hurdles. Resource-constrained devices, limited network
bandwidth, and the need for low-latency decision-making
create a bottleneck for deploying complex DL algorithms
at the edge. The explosive growth of deep neural networks
(DNN&s), fueled by their success in various domains, has led to
increasingly complex architectures featuring millions or even
billions of parameters. This complexity directly translates into
high computational costs, extensive memory requirements,
and substantial energy consumption, all of which conflict
with the realities of IoT environments. To bridge this gap,
researchers and practitioners have turned to software and
hardware-intensive approaches to optimize DL’s efficiency.
Model compression [1]-[3] is a key software-based optimiza-
tion strategy to reduce the size and computational demands
of DNNs. Techniques like pruning, quantization, knowledge
distillation, and network architecture design seek to create
smaller, more efficient models while preserving accuracy.
From the hardware perspective, processing-in-memory (PIM)
architectures offer a paradigm shift. By integrating compu-
tational capabilities directly into or near memory, PIM aims

to minimize data movement, a significant source of latency
and energy consumption in traditional systems [4]. While both
model compression and PIM offer substantial benefits, they
also have limitations. Model compression often involves trade-
offs between compression rates and accuracy. PIM, especially
in its more radical forms, can introduce hardware complexity
and require new programming and system design paradigms.

In this paper, we propose DECO, a novel approach that
strategically combines elements of model compression and
PIM to improve the efficiency of deep learning on IoT devices.
Our method orchestrates a shared feature extractor across var-
ious neural network configurations, each distinguished by tai-
lored model compression and distinct computational profiles,
to cater to the dynamic energy and performance constraints of
edge computing environments. We demonstrate its effective-
ness through a rigorous evaluation, achieving noteworthy im-
provements in model efficiency and accuracy, as evidenced by
the performance gains in classification tasks using the CIFAR-
10 and CIFAR-100 datasets [5]. Our contribution unlocks the
potential for more widespread adoption of DL adoption in IoT.
Enabling intelligent analysis directly at the edge paves the
way for faster, more responsive, and privacy-preserving IoT
applications. Industries ranging from manufacturing to health-
care stand to benefit from this increased efficiency, leading
to new levels of automation, optimization, and personalized
experiences.

II. BACKGROUND
A. Model Compression

The impressive achievements of deep neural networks
(DNNs) in various domains come with the drawback of
substantial computational complexity, memory footprints, and
energy consumption. These factors pose significant obstacles
to deployment on resource-constrained devices or in appli-
cations demanding real-time inference. Model compression
has emerged as a vital area of research to address these
limitations and to reduce the size and computational demands
of DNNs while minimizing accuracy loss. Essential techniques
include pruning redundant elements, quantizing weights and
activations, applying low-rank factorization, distilling knowl-
edge into smaller networks, and designing inherently efficient
architectures. Model compression offers benefits like reduced
storage needs, faster inference, improved energy efficiency,
and expanded deployment possibilities. However, researchers
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must navigate the compression-accuracy trade-off, address
hardware compatibility issues, and often employ quantization-
aware training [6]. Ongoing research in model compression
focuses on automated compression strategies, fine-grained
compression techniques, and hardware-aware optimization,
paving the way for increasingly widespread and efficient use
of DNNs.

B. Processing in-Memory

With their separation of processing and memory, traditional
von Neumann computing architectures create a significant
performance bottleneck due to the constant need for data
movement. This “memory wall” becomes even more restrictive
as datasets and Al workloads increase complexity. Processing-
in-memory (PIM) presents a radical solution by integrating
processing capabilities directly into or near memory units [7]—
[9]. By minimizing data movement, PIM promises significant
reductions in energy consumption and execution time while
enabling massively parallel operations. Critical approaches to
PIM include Processing Near Memory (PNM), which places
processors close to memory, and Processing Using Memory
(PUM), which leverages memory devices’ properties for com-
putation. While PIM holds the potential to transform data-
intensive computing, challenges remain in developing suitable
programming models, efficient data management techniques,
system integration, and managing thermal considerations. With
ongoing research in memory technologies and system design,
PIM’s benefits for applications like machine learning acceler-
ation and real-time analytics make it a promising avenue for
future computing paradigms.

III. DECO ARCHITECTURE
A. Training Approaches

1) Network Architecture Design: In this work, we design
a refined neural network inference framework tailored to the
variable constraints of dynamic computing ecosystems. At the
heart of this framework lies a judicious blend of a shared fea-
ture extractor and an array of task-specific modules anchored
by model compression techniques to enhance adaptability and
efficiency. This hybrid configuration is crafted from leading
network architectures, selectively pared down, and compressed
to yield a spectrum of leaner, differentiated models. Each
model manifests a unique blend of computational complexity
and task performance. By integrating a shared feature extrac-
tor, we eliminate redundant weight loading each time a new
task module is selected, significantly conserving energy and
enhancing efficiency in data movement across multiple neural
network deployments. The inherent modularity of our design,
complemented by model compression, is indispensable in edge
computing scenarios, where it ensures an optimal trade-off
between precision and computational thrift in edge computing,
where the operational conditions can change rapidly.

2) Network Learning: In this segment, we meticulously
outline the training methodologies designed to improve the
performance of the variably configured networks introduced
in Section III-Al.

Independent Learning: To establish a baseline, each task
model undergoes independent training with a separate feature
extractor for each classification module. This approach results
in disparate parameters for the common feature extractor
across task modules, necessitating frequent parameter reload-
ing each time a new task module is selected. Thus, it leads
to energy-inefficient data movement during inference. The
learning objective for an image classification task using this
approach is expressed in Equation 1.

Lry, ==Y y;log g, (D
j=1

where T'M; represents a 3" task module and m denotes the
distinct class categories defined for the task. Furthermore, y;
and §J; denote the ground-truth label and predicted label for a
sample in j*" class, respectively.

Joint Learning: In contrast to training each task module
separately, this approach involves training entire modules
together with a common feature extractor. This ensures not
only static weights for the common feature extractor, thus
eradicating energy consumption for data movement, but it
also facilitates mutual learning among modules. Consequently,
the performance of each task module surpasses that achieved
through independent training, serving as an improvement over
the baseline method. The training objective for this approach,
expressed in Equation 2, encompasses a linear combination
of task loss across the different task modules, optimizing the
network to achieve balanced performance that complies with
the diverse requirements of each task.

Ly =— Z L7y, 2
i—1

In the context of this training framework, n denotes the total
count of task modules undergoing joint training, while L7y,
signifies the individual training objective for i*" task module
as expressed in Equation 1.

B. Digital In-Memory Accelerator

1) Overview: Our proposed PIM accelerator architecture,
adopted from our preliminary work [10], is illustrated in Fig.
1(a), featuring computational sub-arrays, kernel and image
banks, and a Digital Processing Unit (DPU) comprising three
sub-components: Quantizer, Activation Function, and Batch
Normalization. Control (Ctrl), situated within each sub-array,
governs the execution of DNN layers.

The kernels (W) and input feature maps ([) are initially
stored in Kernel and Image Banks, respectively, to facilitate
mapping into sub-arrays. In phase (1), the operands are dis-
patched to the sub-arrays, tailored to manage the computa-
tional workload through the PIM mechanism. Subsequently, in
phases (2) and (3), as elaborated further, the parallel computa-
tional sub-arrays execute feature extraction in conjunction with
add-on peripherals, i.e., counter and shifter units. Ultimately,
the accelerator’s DPU activates the resulting feature map,
producing the output feature map.
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Fig. 1: (a) MRAM-based accelerator platform, (b) Computa-
tional sub-array design.

2) Sub-array architecture.: Fig. 1(b) depicts the in-memory
computing sub-array architecture implemented utilizing binary
SOT-MRAM cells [10], [11]. This sub-array comprises a
Memory Row Decoder (MRD), a Memory Column Decoder
(MCD), a Write Driver (WD), and Sense Amplifiers (SA),
which are adjustable by Ctrl to enable dual-mode compu-
tation, encompassing memory write/read operations and in-
memory logic operations. Each SOT-MRAM bit-cell within
the computational sub-arrays is linked to five control signals,
namely Write Word Line (WWL), Write Bit Line (WBL),
Read Word Line (RWL), Read Bit Line (RBL), and Source
Line (SL). The computational sub-array is primarily engi-
neered to facilitate computation between in-memory operands
utilizing two distinct mechanisms termed two-row activation
and three-column activation. These mechanisms enable the
implementation of bulk bitwise in-memory AND and addition
operations, respectively.

3) Bit-line computation mode.: In the 2-/3-input in-memory
logic method, pairs/triplets of bits stored in the identical
column are typically selected with the MRD [12] and simul-
taneously sensed by SA connected to the corresponding bit-
line. In this work, we adopted the reconfigurable SA from
our previous work [10], depicted in Fig. 2. It comprises three
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Fig. 2: The reconfigurable SA [10].

sub-SAs and a total of five reference-resistance branches that
can be enabled by control bits (Cys, Cors, Crrag, Canps,
C4np2) under the control of the Ctrl unit, facilitating memory
and computation modes. The SA can execute memory read
and single-threshold logic operations by activating one control
bit in the respective branches simultaneously. Furthermore,
by activating multiple control bits simultaneously, SA can
perform more than one logic function concurrently with the
SAs. This capability can be leveraged to generate complex
multi-threshold logic functions such as XOR3/XNOR3. The
voltage generated after injecting a small reference current
over the selected reference resistor by Ctrl is compared with
the sensed voltage of equivalent resistance of the parallel-
connected bit cells and their cascaded access transistors after
injecting a small sense current over the resistors. By selecting
different reference resistances, such as Rj; and R4np2, SA
can perform primary memory and 2-input in-memory Boolean
AND functions, respectively.

IV. ANALYSIS AND EVALUATION
A. Experimental Setup

1) Dataset: Our methodology was thoroughly evaluated
on two well-known datasets in image recognition: CIFAR-10
and CIFAR-100 [5]. CIFAR-10, a staple in computer vision,
consists of 60,000 color images (32 x 32 pixels) divided into
ten classes. CIFAR-100 expands on this with the same number
and size of images but distributes them across 100 more
detailed classes, increasing the complexity and diversity of
the dataset.

2) Network Architectures: Central to our innovative edge
inference framework is implementing versatile network archi-
tectures underpinned by a shared feature extractor and an array
of specialized task modules. This architecture draws upon
the proven strengths of seminal deep neural network models,
specifically VGG16 [13] and MobileNetV1 [14], acclaimed for
their robust edge inference capabilities in image classification
domains. The initial convolutional layers of these renowned
models form a consistent foundation for feature extraction,
utilized across all classification modules without variation.
Then, four distinct variants of classification modules for each
network are crafted. The first classification module (CM),
CM1, coupled with the common feature extractor (FE), mirrors
the entire structure of the original models. The subsequent
modules — CM2, CM3, and CM4 — are more streamlined
versions, varying in size, computational demand, and energy
requirements to suit different operational needs. The specific
characteristics of each classification module, providing a gran-
ular view of their scale and complexity, are detailed in Table I.

3) Implementation Details: In our implementation, we em-
ployed the PyTorch framework for network creation, train-
ing, and testing, capitalizing on its versatility and efficiency.
As part of our data preprocessing, we performed random
horizontal flips as data augmentation and resized each input
sample to 3 x 64 x 64 to standardize the input dimensions.
Optimization was achieved through stochastic gradient descent
(SGD). We initiated training with a learning rate of 0.01
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TABLE I: Detailed specification and performance evaluation of designed network modules

DNN Model ‘ Modules Convolutional Layers Fully-Connected Layers Total ‘ Inference Module
# Layers # MAC # Params # Layers # MAC # Params # MAC # Params Time (ms) | Size (MB)

FE 2 158,072,832 38,720 0 0 0 158,072,832 38,720 8.136 0.156
CM1 11 1,094,713,344 14,675,968 3 3,155,968 3,158,026 | 1,097,869,312 17,833,994 1.150 71.712

VGG16 CM2 2 94,371,840 369,024 2 66,176 66,250 94,438,016 435,274 0.319 1.202
CM3 1 75,497,472 73,856 2 66,816 66954 75,564,288 140,810 0.227 0.611
CM4 0 0 0 2 17,024 17,098 17,024 17,098 0.139 0.093
FE 1 884,736 928 0 0 0 884,736 928 7.842 0.005
CM1 26 1,572,864,000 3,206,048 1 10,240 10,250 | 1,572,874,240 3,216,298 2.241 13.361

MobileNetV1l | CM2 10 126,877,696 713,248 1 10,240 10,250 126,887,936 723,498 1.296 3.302
CM3 8 134,217,728 29,728 1 1,280 1,290 134,219,008 31,018 0.797 0.184
CM4 4 92,274,688 11,680 1 1,280 1,290 92,275,968 12,970 0.107 0.539

TABLE II: Performance comparison of the two training approaches across

CIFAR-10 and CIFAR-100 datasets.

- CIFAR-10 CIFAR-100
DNN Model | Experiment CMI CM2 CM3 CM4 | CMI CM2 CM3 CM4
VGG16 Independent Learning | 8038  85.00 8192 7574 | 6357 551 5336 4531
Joint Learning 90.59 8507 8276 7604 | 6544 5382 53.15 4594
MobileNety1 | Idependent Learning | 8830 8544 81.67 7285 | 6447 6064 5459 4275
Joint Learning 89.26 86.67 8057 7358 | 6433 6026 5509 45.57

for each classification model, progressively reducing it by
90% after 80 epochs to enhance convergence. Training was
conducted with a batch size of 128 over 200 epochs to ensure
effective learning. Based on the validation set performance,
the best-checkpoint was then evaluated on the test set to assess
model generalization and performance concisely.

On the hardware side, we have configured our in-memory
accelerator with a total capacity of 512Mb and a memory
sub-array organized in a 256x512 layout using H-tree rout-
ing. For device simulations, we employed Non-Equilibrium
Green’s Function (NEGF) and Landau-Lifshitz-Gilbert (LLG)
equations with spin Hall effect to model the SOT-MRAM
bit-cell [11], [15], [16]. At the circuit level, we created a
Verilog-A model for the 2T1R bit-cell, which can be utilized
alongside interface CMOS circuits in Cadence Spectre. The
performance metrics were evaluated using the 45nm NCSU
PDK library [17]. At the architectural level, leveraging insights
from device-circuit results, we extensively modified NVSim
[18]. This modified simulator enables the adjustment of con-
figuration files (.cfg) according to the model size and various
memory array organizations. Subsequently, we developed a
behavioral simulator in MATLAB to evaluate the energy and
latency parameters associated with the accelerator’s operation
in running our PyTorch implementations.

B. Accuracy

A summary of the evaluation results of the various clas-
sification modules using the training frameworks defined in
Section ITI-A2 across the two test sets is presented in Table II.
It is discernible that the adoption of the joint learning paradigm
engenders notable enhancements in model proficiency, par-
ticularly for streamlined classification modules, with some
exceptions. The joint learning paradigm exhibited an average
accuracy improvement of 0.7% and 0.52% for the VGG16 and
MobileNetV1 architectures, respectively, on CIFAR-10. On the
more complex CIFAR-100 dataset, these improvements were
even more pronounced, with averages of 0.41% for VGG16

and 1.66% for MobileNetV1. These enhancements highlight
the joint learning framework’s ability to leverage synergies
between shared feature extractors and classification modules,
leading to more precise and energy-efficient neural network
configurations.

C. Performance Evaluation

We assessed and reported the execution time and power
consumption of different modules across two DNN models
under examination for both GPU and PIM implementations
in Table IIl. Regarding execution time, as anticipated PIM
would outperform GPU implementation by a significant mar-
gin, demonstrating up to a two-order-of-magnitude increase
in speed based on our experiment. For instance, with the
CMI1 module on MobileNet V1 with 1,572,874,240 multiply-
accumulate (MAC) and 3,216,298 total number of parameters,
PIM achieves a reduction in execution time by approximately
314-fold compared to GPU. This is primarily attributed to the
highly parallelized PIM sub-array, which markedly accelerates
MAC operations compared to the GPU. Furthermore, we note
that as the number of MACs increases, greater parallelism
and PIM sub-array utilization is achieved, resulting in reduced
inference time. With regards to the power consumption of the

TABLE III: Power consumption and execution time compari-
son on CIFAR-100.

Execution time (us) Power (W)

DNN Model ‘ Module GPU PIM GPU PIM
FE 8130 24.2 3502  1.433

CM1 1150 11.6 350x2 0211

VGG16 CM2 319 4.6 350x2  0.068
CM3 227 3.8 350x2  0.059

CM4 139 2.9 3502 0.036

FE 7840 23.1 350x2  1.314

CM1 13360 42.6 350x2  2.11

MobileNetV1 CM2 1296 14.7 3502 0.236
CM3 797 9.1 3502  0.132

CM4 107 2.6 350x2  0.036
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GPU, we derived a figure of 350W from the datasheets of
the NVIDIA GeForce RTX 3090, which was then doubled to
account for the use of two GPUs. Note that in this experimental
setup, we have not excluded the power consumption associated
with cooling systems and regulators. Overall, our observations
indicate a significant reduction in power consumption with
PIM implementation compared to GPU. Across a range of
modules, PIM demonstrates a remarkable decrease in power
consumption of up to four orders of magnitude.

V. CONCLUSION

DECO effectively combines model compression and PIM
to improve deep learning efficiency on IoT devices. The
shared feature extractor and joint learning leverage synergies
and reduce redundancy, while the PIM accelerator minimizes
data movement and exploits parallelism, leading to signifi-
cant speedup and energy reduction over GPUs. Evaluation
on CIFAR-10/100 using VGG16 and MobileNetV1 validates
DECQO’s effectiveness. Its modular design suits dynamic edge
environments, enabling intelligent edge analysis for respon-
sive, privacy-preserving IoT applications.
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