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Abstract

Neural mechanisms and underlying directionality of signaling among brain regions depend

on neural dynamics spanning multiple spatiotemporal scales of population activity. Despite

recent advances in multimodal measurements of brain activity, there is no broadly accepted

multiscale dynamical models for the collective activity represented in neural signals. Here

we introduce a neurobiological-driven deep learning model, termed multiscale neural

dynamics neural ordinary differential equation (msDyNODE), to describe multiscale brain

communications governing cognition and behavior. We demonstrate that msDyNODE suc-

cessfully captures multiscale activity using both simulations and electrophysiological experi-

ments. The msDyNODE-derived causal interactions between recording locations and

scales not only aligned well with the abstraction of the hierarchical neuroanatomy of the

mammalian central nervous system but also exhibited behavioral dependences. This work

offers a new approach for mechanistic multiscale studies of neural processes.

Introduction

The brain is a complex system exhibiting computational structure involving multiple spatial

scales (from molecules to whole brain) and temporal scales (from submilliseconds to the entire

lifespan) [1]. Effective connectivity (EC) is a type of brain connectivity that characterizes rela-

tionships between brain regions [2]. Unlike structural connectivity for anatomical links and

functional connectivity for statistical dependencies, EC refers to a pattern of causal interactions

between distinct areas. Multiscale effective connectivity (msEC) among brain regions provides

essential information about human cognition [3] and behaviors such as motor preparation [4],

motor adaptation [5], motor timing [6], decision making [7], and working memory [8]. To

date, much research has primarily focused on extracting EC from a single modality of neural

measurements (e.g., electrophysiology, functional magnetic resonance imaging, and 18F-
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fludeoxyglucose positron emission tomography [3]) and typically makes simplifying assump-

tions in which neural dynamics are linear [9] or log-linear [10]. However, the lack of the inte-

gration between multiple modalities and the reality of nonlinear neural dynamics prevents us

from uncovering a deeper and more comprehensive understanding of system-level mecha-

nisms of motor behavior [11, 12].

msEC can be divided into within-scale and cross-scale EC, where the former indicates the

causal interactions between neural elements at the same spatial and temporal scales and the lat-

ter specifies the causal interactions between neural elements at different spatial or temporal

scales. Previous work has largely focused on inferring within-scale EC via multivariate autore-

gressive models [13], vector autoregressive models [14], psycho-physiological interactions

[15], structural equation modeling [16–19], or dynamic causal modeling [20]. Despite emer-

gence of the cross-scale analyses such as source localization [21] and cross-level coupling

(CLC) [22], the fidelity of experimental implementation of source localization is limited and

only the statistical dependencies are quantified by CLC. To reveal the directed interactions

across spatiotemporal scales of brain activity, recent work has developed the generalized linear

model-based multi-scale method [23]. However, experimental data indicate that local brain

dynamics rely on nonlinear phenomena [24]. Nonlinear models may be required to generate

the rich temporal behavior matching that of the measured data [25]. Taking the nature of non-

linearity in brain computations, we have previously proposed the NBGNet, a sparsely-con-

nected recurrent neural network (RNN) where the sparsity is based on the electrophysiological

relationships between modalities, to capture cross-scale EC [26]. Despite the success of captur-

ing complex dynamics using a nonlinear model, we still lack an integrative method that can

infer nonlinear msEC.

To analyze multiscale neural activity in an integrative manner, we introduce a multiscale

modeling framework termed msDyNODE (multiscale neural dynamics neural ordinary differ-

ential equation). Neural ordinary differential equation (NODE) is a new family of deep neural

networks that naturally models the continuously-defined dynamics [27]. In our method,

within-scale dynamics are determined based on neurobiological models at each scale, and

cross-scale dynamics are added as the connections between latent states at disparate scales

(Fig 1). Using both simulation and an experimental dataset, we demonstrate that msDyNODE

not only reconstructs well the multi-scale data, even for the perturbation tasks, but also uncov-

ers multi-scale causal interactions driving cognitive behavior.

Results

Validation of msDyNODE framework using simulated Lorenz attractor

Since the Lorenz attractor model is a standard nonlinear dynamical system in the field with its

simplicity and straightforward state space visualization [28, 29], we first demonstrate the

msDyNODE framework using the simulated Lorenz attractor dataset. A Python program is

employed to generate synthetic stochastic neuronal firing rates and local field potentials from

deterministic nonlinear system. Two sets of Lorenz attractor systems are implemented to sim-

ulate activity at two scales: one to simulate firing rates at the single-neuron scale and another

to stimulate local field potentials (LFPs) at the neuronal population scale. Without causal inter-

actions between scales, the msDyNODE reconstructs well the Lorenz attractor parameters,

simulated firing rates and LFPs (mean absolute error = 0.64 Hz for firing rate; = 0.18 μV for

LFPs; Fig 2A). To evaluate the performance of the msDyNODE in the multiscale system, we

mimic cross-scale interactions by adding causal connections between latent states of the two

systems (Fig 2B). Although the fitting accuracy is relatively poorer than the systems without

causal interactions (mean absolute error = 1.43 Hz for firing rate; = 2.58 μV for LFPs), the
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Fig 1. The architecture of msDyNODE applied to multiscale LFP and firing rate. (a) Firing rate-Firing rate model follows the firing-rate model. LFP-LFP

model follows the Jansen-Rit model. Cross-scale connectivity between firing rates and LFPs is added between latent variables of two systems. (b) The

schematics of msDyNODE for multiscale firing rate-LFP model.

https://doi.org/10.1371/journal.pone.0314268.g001
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Fig 2. msDyNODE applied to Lorenz attractor. (a) The evolution of the Lorenz system in its 3-dimensional state space for firing rates

(black) and LFPs (blue; left). The synthetic firing rates (black) and LFPs (blue), as well as the msDyNODE predictions (red dashed line), were

plotted as a function of time (right). (b) The same as a but with cross-scale causal interactions. (c) Ground-truth and identified cross-scale

communication types (left) and causal interactions (right) between synthetic firing rates and LFPs.

https://doi.org/10.1371/journal.pone.0314268.g002
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msDyNODE still captures the signals and the Lorenz attractor parameters (Table 1). Notably,

with the cross-scale interactions between systems, the msDyNODE can reconstruct the ground

truth accurately for 2.5 seconds. Furthermore, we assess if the msDyNODE can identify the

types (excitatory or inhibitory) and the strength of causal interactions (Fig 2C). Positive and

negative causal strengths correspond to excitatory and inhibitory effects, respectively. The pos-

itive causality identified by the msDyNODE is true positive when the ground truth is also posi-

tive. It became a false positive if the ground truth is negative. The identification accuracy is 77

±6% (Fig 2C left). We also find that msDyNODE successfully captures the cross-scale causal

interactions (mean absolute difference between the ground-truth and estimated causal-

ity = 0.07; Fig 2C right). These simulations verify that msDyNODE is a reliable framework for

modeling multiscale systems.

msDyNODE outputs reconstruct well experimentally-acquired firing rate

and field potential signals

Firing rate and LFP activity are simultaneously recorded in the left dorsal premotor (PMd)

and primary motor cortex (M1) of rhesus macaques (N = 2) while performing a center-out

brain-machine interface (BMI) task [30–34] (Fig 3; see Materials and Methods). Multi-scale

firing rate and LFP are acquired with the same set of electrodes but undergoing different pre-

processing procedures (Fig 3A). During the center-out BMI task, the subjects volitionally

modulate brain activity to move the cursor from the center to one of the eight peripheral tar-

gets. When BMI perturbation task is implemented, the subjects need to reassociate the existing

neural patterns with the new direction [32, 35]. The increasing deviation shown in our simula-

tion (Fig 2) is not the problem in our case with the average trial less than 2.5 seconds. The

msDyNODE for the firing rate-LFP modeling is developed based on rate model [36–38] and

Jansen-Rit model [39] (Fig 1; see Materials and Methods). By fitting the msDyNODE to the

experimental datasets, we demonstrate the goodness-of-fit of the proposed multiscale frame-

work in modeling multiscale brain activity using correlation and mean absolute error metrics

(Fig 4). Correlation between ground truth data and the msDyNODE-predicted data defines a

linear relationship between the real and predicted signal, with a strong correlation (> 0.7)

indicating consistent temporal co-variation between the two data up to a constant amplitude

scaling. Mean absolute error (MAE), on the other hand, measures error in signal amplitude

timepoint by timepoint but without describing the overall relationship between the data.

Together, high correlation and low MAE indicate that the data co-vary together and any scal-

ing difference between the real and predicted data is small. We find that indeed there is high

correlation between ground truth data and msDyNODE-predictions, with msDyNODE pri-

marily capturing the LFP activity below 30 Hz (Fig 4A). This observation is consistent with the

fact that LFP neural dynamics are dominated by lower frequencies. Therefore, for the rest of

Table 1. msDyNODE captures the Lorenz attractor parameters. The predictions are summarized from 10 repeats

of model training individually.

Model parameters Ground truth Predictions (n = 10)

σ1 10 10.09 ± 0.04

ρ1 28 28.02 ± 0.06

β1 2.67 2.69 ± 0.03

σ2 8 7.87 ± 0.08

ρ2 20 19.82 ± 0.06

β2 3.33 3.45 ± 0.03

https://doi.org/10.1371/journal.pone.0314268.t001
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the evaluations, we focus on the performance in the frequency range of 0 and 30 Hz. Overall,

the msDyNODE well reconstructed the firing rates (median of MAE = 0.74 Hz) and LFPs

(median MAE = 24.23 μV; Fig 4B). In addition, we find that the performance of the msDy-

NODE is target direction-independent, with a similar MAE over eight target directions for

both firing rates and LFPs (Fig 4C). Interestingly, the reconstruction performances for firing

rates and LFPs are not independent (Fig 4D). Good performance on certain channels indi-

cated similarly good performance for different signal types, and vice versa. Surprisingly, the

modeling performance for firing rates remains high over hundreds of trials even when a per-

turbation is introduced to increase the task difficulty (Fig 4E). However, the modeling perfor-

mance for LFP gradually improves over trials, which may indicate that LFP dynamics become

more predictable. Furthermore, the performance holds when applying the msDyNODE to a

different monkey dataset (i.e., that it is not trained on), indicating that the msDyNODE is gen-

eralizable across different sessions and subjects (Fig 5). With a larger number of spiking units

and LFPs recorded in this subject, it is expected that the msDyNODE can reconstruct LFP

more accurately. The only difference in the reconstruction performance is that the firing rate

predictions were worse during the first half of the experimental sessions, followed by

Fig 3. Data acquisition and experimental task design for multiscale neural signals. (a) Simultaneous recording of

firing rates and LFP signals. (b) The visual feedback task contains eight different cursor movements, each

corresponding to one of the eight outer targets. The color-coded tasks are also indicated in a.

https://doi.org/10.1371/journal.pone.0314268.g003
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increasing accuracy for the second half of the recording sessions (Fig 5E). This may indicate

the neural dynamics were less stable during the first half of the sessions and thus more chal-

lenging to be captured. Beyond MAE in the time domain, we also assess MAE in the frequency

domain and phase synchronization in the phase domain (Figs 4F–4H, 5F–5H; see Materials

and Methods). Overall, the msDyNODE captures the signal’s power for both Monkey A

(Fig 4F and 4G) and Monkey B (Fig 5F and 5G). Notably, phase synchronization is recog-

nized as a fundamental neural mechanism that supports neural communication and plasticity

[40]. Therefore, the model performance in the phase domain is crucial. We demonstrated that

msDyNODE-predictions are in sync with ground truth by showing most of the predictions

have a phase synchrony index greater than 0.5 (Figs 4H and 5H). These experimental results

Fig 4. msDyNODE captures and reconstructs the latent dynamics in the center-out BMI task for Monkey A. (a)

Correlation coefficient between ground truth (GT) signals and msDyNODE predictions (black) as a function of low-

pass cutoff frequency (error bars, s.t.d.). In addition, we show correlation between msDyNODE before and after low-

pass filter (blue). (b) Boxplots and swarmplots of the mean absolute errors in firing rates and LFPs (top). The

representative GT and msDyNODE with the MAE equaling to the median values of all the MAEs (bottom). (c) Error

bars of the MAE over eight different target directions presented in polar coordinates (error bars, s.t.d.). (d) Scatter

plots of the MAE over recording channels (error bars, s.t.d.). (e) MAE values of firing rates and LFPs over trials. Dim

points represent average MAE (n = 10) at each trial. (f) Boxplots and swarmplots of the mean absolute errors in power

spectrum for firing rates and LFPs. (g) The representative power spectrum from GT and msDyNODE with the selected

example in Fig 4B. (h) Scatter plots of PSI values for firing rates and LFPs. Empty circles indicate overall average PSI

values. Dim points represent average PSI over trials for each recording channel.

https://doi.org/10.1371/journal.pone.0314268.g004
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validated that msDyNODE can capture the dynamics hidden in the multiscale brain systems,

and msDyNODE can be generalized to different sessions and different subjects.

msDyNODE decodes underlying behavior via multiscale effective

connectivity

In msDyNODE, the msEC can be derived from the parameters that indicate the causal influ-

ence that the latent states of a neural system exert over those of another system. The average

connectivity for each target direction is calculated by subtracting the grand-averaged

Fig 5. msDyNODE captures and reconstructs the latent dynamics in the center-out BMI task for Monkey B. (a) Correlation

coefficient between ground truths (GT) and msDyNODE (black) and between msDyNODE before and after low-pass filter (blue)

as a function of low-pass cutoff frequency (error bars, s.t.d.). (b) Boxplots and swarmplots of the mean absolute errors in firing

rates and LFPs (top). The representative GT and msDyNODE with the MAE equaling to the median values of all the MAEs

(bottom). (c) Error bars of the MAE over eight different target directions presented in polar coordinates (error bars, s.t.d.). (d)

Scatter plots of the MAE over recording channels (error bars, s.t.d.). (e) MAE values of firing rates and LFPs over trials. Dim

points represent average MAE (n = 38) at each trial. (f) Boxplots and swarmplots of the mean absolute errors in power spectrum

for firing rates and LFPs. (g) The representative power spectrum from GT and msDyNODE with the selected example in Fig 5B.

(h) Scatter plots of PSI values for firing rates and LFPs. Empty circles indicate overall average PSI values. Dim points represent

average PSI over trials for each recording channel.

https://doi.org/10.1371/journal.pone.0314268.g005
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connectivity from the average connectivity within each target (Fig 6A). For each direction, the

bi-directional msEC is divided into two parts (upper and lower triangular connectivity matrix)

and visualized respectively (Fig 6B). Most of the msEC remained similar across target direc-

tions, indicating the common patterns of voluntary movement. To investigate if there existed

unique patterns of excitatory and inhibitory subnetworks across directions, we quantified the

individual subnetworks using common graph properties such as number of edges, average

clustering, and total triangles (Fig 6C). Interestingly, these graph properties are different across

the eight target directions, revealing the excitatory and inhibitory neural dynamics exhibited

unique connectivity patterns relating to target direction. Thus, msDyNODE is demonstrated

to be capable of capturing the multiscale effective connectivity patterns underlying behaviors.

Discussion

Large populations of individual neurons coordinate their activity together to achieve a specific

cognitive task, highlighting the importance of studying the coordination of neural activity.

Over the past decades, we have learned much about the human cognitive behaviors and viewed

an explosive growth in the understanding of single neurons and synapses [41, 42]. However,

we still lack a fundamental understanding of multiscale interactions. For decades a critical bar-

rier to multiscale study was the recording technologies available, forcing scientists to choose

either the microscale or macroscale, with few researchers addressing on the interactions

between scales. Neurophysiologists, for example, often focused on single-neuronal activity to

investigate the sensory consequences of motor commands with the bottom-up approach [43],

without the consideration of brain rhythm. Instead, cognitive neuroscientists pay attention to

the neural oscillations at a larger scale (e.g., electroencephalography) with the top-down

approach to establish the links between brain rhythm and cognitive behaviors [44], disregard-

ing the spiking activity of single neurons. With the advancement of multi-modal measure-

ments, there is an unmet need for an integrative framework to analyze multiscale systems. In

the present study, we propose msDyNODE to model the multiscale signals of firing rates and

field potentials, and then infer multiscale causal interactions that exhibit distinct patterns for

different motor behaviors.

To the best of our knowledge, this is the first demonstration of a NODE applied to model

multiscale neural activity. Assuming brain computation as a nonlinear operator [45–51], we

employ a deep learning technique to approximate the nonlinear mapping of the state variables

in dynamic systems. Different deep learning architectures are tailored for specific tasks. Com-

mon examples include convolution neural networks for image recognition [52], recurrent neu-

ral networks (RNN) for sequential data [53], transformers for natural language processing

tasks [54], and generative adversarial networks for generating authentic new data [55] and

denoising [56]. While RNNs are a powerful approach to solve the dynamic equations [57, 58],

it may fail to capture faster dynamics information or introduce artifacts by matching the sam-

pling rates between signals. In contrast to the RNN which describes the complicated state

transformation at discretized steps for time-series inference, the proposed msDyNODE mod-

els continuous dynamics by learning the derivative of the state variables [27], indicating that

both slow and fast dynamics can be captured. Such a capability is crucial for multiscale model-

ing since the system dynamics vary at different scales. Additionally, NODE allows us to define

the multiscale system by customizing the differential equations in the network, in which we

can investigate the physiological interpretation of the modeled systems. It is worth noting that

the nonconstant sampling can be addressed by preprocessing the NODE output with the

observation mask [59]. Therefore, unmatched sampling rates between modalities can be

resolved by feeding individual observation masks, respectively. Furthermore, in the real world,
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Fig 6. msDyNODE captures msEC patterns underlying behaviors. (a) Workflow to obtain the private pattern of connectivity matrix for each target

direction from msDyNODE-inferred msEC. (b) Circular connectivity graphs of lower (left) and upper (right) triangular msEC matrix for each target

direction. (c) Graph properties (number of edges, average clustering, number of total triangles) over eight different target directions presented in polar

coordinates for Monkey A and B, and excitatory and inhibitory subnetworks, respectively.

https://doi.org/10.1371/journal.pone.0314268.g006
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not all the signals can be measured at fixed time intervals. The missing data issue can thus

introduce artefacts using a conventional approach which assumes the signals are sampled reg-

ularly. While there exists several methods, such as dropping variables, last observation carried

forward and next observation carried backward, linear interpolation, linear regression, or

imputation dealing with missing data [60], none of them serves as good way to deal with this

issue because they add no new information but only increase the sample size and lead to an

underestimate of the errors. The proposed framework also holds great potential to be an alter-

native approach dealing with missing data commonly seen in the real world.

Comparing with existing biophysical models of brain functioning, including NetPyNE [61],

modified spectral graph theory model (M-SGM [62]), and SGM integrated with simulation-

based inference for Bayesian inference (SBI-SGM [63]), we demonstrate that msDyNODE is

superior these approaches. msDyNODE showed smaller MAEs in both time and frequency

domains, and greater phase synchronization with the ground truth signals (S1 Fig). The poten-

tial reason for relatively poor performance in NetPyNE may be due to inaccurate modeling.

Indeed, NetPyNE is a powerful tool to define the model at molecular, cellular, and circuit

scales when the model parameters such as populations, cell properties, and connectivity are

accurate. Although NetPyNE also provides evolutionary algorithms beyond the grid parameter

search to perform parameter optimization and exploration, the improper selection of parame-

ters and their ranges to be optimized can degrade the performance. Furthermore, msDyNODE

exhibits better performance than both versions of SGMs (S2 Fig). The rationale for why msDy-

NODE models the real multiscale brain signals better than SGMs may be due to the consider-

ation of nonlinear brain dynamics and spatially varying parameters. Another advantage of

msDyNODE over NetPyNE, M-SGM, and SBI-SGM is the adaptability of the new model. For

msDyNODE, the user can easily modify the differential equation sections in the script. How-

ever, NetPyNE requires the development of an external module in NEURON [64, 65]. For

M-SGM and SBI-SGM, the new transfer function is required to derive from the new or cus-

tomized models.

While msDyNODE provides accurate analysis for multiscale systems, its cost lies in the

optimal selections of neural models. At the scale of firing rate, integrate-and-fire model and its

variants (leaky integrate-and-fire [66, 67] and quadratic integrate-and-fire [68, 69]) are all

plausible options. At the scale of field potential activity, the candidate model includes Jansen-

Rit model [39] that characterizes three populations (pyramidal cells, excitatory interneurons,

and inhibitory interneurons) and Wilson-Cowan model [70] that refers to two coupled popu-

lations (excitatory and inhibitory). Suboptimal selections of neural models may result in mis-

leading conclusions. To avoid suboptimal model selection, probabilistic statistical measures

such as Akaike Information Criterion [71, 72], Bayesian Information Criterion [73], and mini-

mum description length [74, 75] can be implemented to ensure the correct selection of the

neural models. Furthermore, hours of network training time are another issue for quick imple-

mentation. In future work, transfer learning [76] from the previously trained network may be

a possible strategy to improve computation time by potentially speeding up the convergence of

the learning process.

Recent evidence suggests that signal changes on multiple timescales at multiple levels in the

motor system allow arbitration between exploration and exploitation to achieve a goal [77–

80]. Still, the role of cross-scale, as well as within-scale, causal interactions in motor learning

remains incompletely understood [78, 79, 81]. In this work, we utilize the msDyNODE to

study the essential brain function that modulates the motor commands to achieve desired

actions, showing distinct dynamic patterns underlying different behaviors. Although existing

estimators of causal brain connectivity (e.g., Granger causality [82] and directed transfer func-

tion (DTF [83])) provide disparate graph properties (S3 and S4 Figs), Granger causality
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supports our observation that both excitatory and inhibitory msEC exhibit unique patterns

relating to target directions. In contrast, DTF failed to demonstrate unique patterns, which

may be due to its inability to be divided into excitatory and inhibitory subnetworks. While

both existing estimators are powerful tools for characterizing functional coupling between

brain regions, they primarily reflect the patterns of statistical dependence. To better reveal the

causal interactions that align with the actual mechanisms of brain function, it is suggested to

assess effective connectivity using a mechanistic model, such as msDyNODE. Taken together,

our work represents an important step forward towards multiscale modeling of brain networks

for mechanistic understanding of neural signaling. The underlying multiscale dynamics

embedded in msDyNODE illustrate how the individual neurons and populations of neurons

communicate across scales, which is a key factor in uncovering the mechanisms of brain com-

putations and the mediation of the behaviors.

Materials and methods

Ethics statement

All the experiments were performed in compliance with the regulation of the Institutional

Animal Care and Use Committee at the University of Texas at Austin.

Experimental protocol

Two male rhesus macaques are used in the behavioral and electrophysiological experiments.

Before the experimental session, we run a calibration session. During calibration, the subject

passively observes a cursor moving from the center target toward a randomly generated

peripheral target (in one of eight possible positions), followed by the cursor movement back to

the center. In addition to providing continuous visual feedback, we also reinforce the behavior

and neural activity by delivering a small juice reward directly into the subject’s mouth. The

neural data is recorded for approximately three and a half minutes (or reaching ~6 trials per

target direction). A Kalman filter (KF) is employed as the decoder to map the spike count

from each unit to a two-dimensional cursor control output signal [84, 85]. While the KF

decodes both the intended position and velocity, only the velocity is used to estimate the posi-

tion at the next time point based on kinematic equations of motion. To increase the initial per-

formance and reduce directional bias, we conduct daily, 10-minute closed-loop decoder

adaptation (CLDA) [85–89] sessions. Both the decoder and neural activity adapt to complete

center-out tasks with consistent trial times and straight path lengths to each target. After the

calibration session, the main task is manually initiated. The subject then completes a BMI task

called “center-out” [90–92]. During the task, spiking activity is recorded online to produce

cursor control commands in real-time. Spikes for each unit are summed over a window of 100

millisecond and serve as the input to the decoder. The neural activity is then transformed into

a “neural command” by applying the dot product of the spike count vector to the Kalman gain

matrix. Cursor position is updated iteratively by adding the cursor position to the product of

velocity, which is determined by the neural command, times update time (100 ms). In each

trial, the subjects control the velocity of a computer cursor to move from the center target

toward one of eight outer targets. Only one peripheral target is presented on a given trial. The

order of the appearance of the target is pseudorandomly selected; for every eight consecutive

trials, each target is shown once in a random order. The 8 targets were radially distributed

from 0˚ to 360˚ (0˚, 45˚, 90˚, 135˚, 180˚, 225˚, 270˚, 315˚) at equal distances from the center

(10 centimeters). Upon successful completion of moving and holding the cursor at the periph-

eral target for 0.2 seconds, the target turns green (cue for success), and a small juice reward is

dispensed directly into the subject’s mouth. The cursor then automatically appears at the
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center of the screen to initiate another new trial. Subjects can fail the task in two ways: (1) fail-

ure in holding the cursor at the center target or the peripheral target for 0.2 seconds or (2) fail-

ure in reaching the peripheral target within specified time (10 seconds). The subject has 10

chances to complete a successful trial before the task automatically moves onto the next target.

During the BMI tasks, we also implement perturbation task by perturbing the decoder using a

visuomotor rotation in which the cursor movements are rotated by an angle. The subjects then

need to reassociate the existing neural patterns with new directions [32, 35].

Spike trains and LFP data

The extracellular single and multi-unit activity in the left primary motor cortex (M1) and dor-

sal premotor cortex (PMd) are recorded using a 64- or 128-channel chronic array (Innovative

Neurophysiology, Inc., Durham, NC; Fig 3A) from both subjects. The spike trains are acquired

at 30 kHz sampling frequency, and the LFPs are acquired at 1 kHz sampling frequency. After

excluding the recording channels that fail to capture activity (average firing rate < 1 Hz), 10

(Monkey A) and 38 (Monkey B) channels are considered for analysis. Cursor movements are

tracked using the custom-built Python-based software suite. Neuronal signals are recorded

using Trellis (Ripple Neuro, UT, USA) interfacing with Python (v3.6.5) via the Xipppy library

(v1.2.1), amplified, digitized, and filtered with the Ripple Grapevine System (Ripple Neuro,

UT, USA).

Multiscale dynamics modeling with neurobiological constraints

We define a multi-scale dynamics network as a collection of neural recordings from different

modalities (e.g., spike trains, LFPs, EEGs, fast-scan cyclic voltammetry, calcium imaging, func-

tional magnetic resonance imaging, and functional near-infrared spectroscopy). A generic

multi-scale dynamics system, where the evolution of latent variables and the output was

described by the nonlinear functions of latent states and corresponding inputs, for M modali-

ties is as follows,

_x i ¼
XM

j¼1

fijðxj; yj; tÞ; i 2 ½1; 2; . . . ;M�

yi ¼ giiðxi; yi; tÞ; i 2 ½1; 2; . . . ;M�

where xi, yi represent the latent state variables and the observations for ith modality, respec-

tively, fij denotes within-scale (i = j) and cross-scale (i6¼j) dynamics parameterized by θj, and gii
is the observation model in each modality. In this work, we focus on firing rates and LFPs

(Figs 1 and 3), referred to as multi-scale signals. In addition, to enable the interpretability of

the deep learning model, we introduce neurobiological constraints in our proposed network.

Constraints including integration of modeling across different scales, the nature of the neuron

model, regulation and control through interplay between excitatory and inhibitory neurons,

and both local within- and global between-area connectivity have been reported to make neu-

ral network models more biologically plausible [93]. How are these neurobiological constraints

implemented in the proposed approach are described in the following sections.

The multi-scale dynamics modeling for firing rate activity and LFP are based on well-estab-

lished neurobiological models can be divided into three parts: (1) firing rate-firing rate within-

scale model, (2) LFP-LFP within-scale model, and (3) firing rate-LFP cross-scale model. The

rate model is employed as the firing rate-firing rate inference model with Ntol coupled neurons
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[36–38]:

dxFR;i

dt
¼

xFR;i þ sigm
PNtol

j¼1
Chidden FR;ij

dxFR;j
dt ðtÞ þ CFR;ijxFR;jðtÞ

� �� �

�tm
;

where xFR,i represents the membrane voltage of neuron i, τm denotes the membrane time con-

stant, CFR,ij and Chidden FR,ij represents two types of causal interactions between presynaptic

neuron j and postsynaptic neuron i. For the LFP-LFP within-scale model, we implement the

Jasen-Rit model to describe the local cortical circuit by second-order ODEs [39]:

ẍLFP;i0 ¼ Aa sigm
0
ðxLFP;i1ðtÞ � xLFP;i2ðtÞÞ � 2a _xLFP;i0 � a2xLFP;i0ðtÞ;

ẍLFP;i1 ¼ Aa½piðtÞ þ C2 sigm1
ðC1xLFP;i0ðtÞÞ þ pmu� � 2a _xLFP;i1 � a2xLFP;i1ðtÞ;

ẍLFP;i2 ¼ BbC4sigm2
ðC3xLFP;i0ðtÞÞ � 2b _xLFP;i2 � b2xLFP;i2ðtÞ;

piðtÞ ¼
XNtol

j

CLFP;ij sigm0
ðxLFP;j1ðtÞ � xLFP;j2ðtÞÞ;

where sigm() is a sigmoid function, A and B represent the maximum amplitude of the excit-

atory and inhibitory postsynaptic potentials (PSPs), a and b denote the reciprocal of the time

constants of excitatory and inhibitory PSPs, pmu(t) represents the excitatory input noise of the

neuron i, and p(t) represents the excitatory input of the neuron i from other neurons.

For the cross-scale model that identifies and quantifies cross-scale communications, we

consider the causal interactions between the hidden states (membrane voltage of single neuron

for spike; membrane potential of pyramidal, inhibitory, and excitatory neurons) as the effec-

tive connectivity:

hLFP ¼ ChFR þ ε;

where C represents the cross-scale causal interactions, and ε denotes the error, which includes

inputs from other units which are not explicitly considered. Note here that the cross-scale

interactions are defined to be unidirectional and linear due to fact that the LFP are defined as

the summed and synchronous electrical activity of the individual neurons. After implementing

the cross-scale causal interactions as the excitatory input of the neurons, the second ordinary

differential equation in the Jasen-Rit model becomes as follows,

ẍLFP;i1 ¼ Aa½piðtÞ þ C2 sigm1
ðC1xLFP;i0ðtÞÞ þ pmu þ CFR�LFP;ijxFR;j� � 2a _xLFP;i1 � a2xLFP;i1ðtÞ;

Taken together, combining the above equations, our multiscale dynamics model for spike

and field potential can be written as follows, where FFR−FR and FLFP−LFP represent the within-

scale dynamics equations while FFR−LFP denotes the cross-scale dynamics equations:

dx
dt

¼

dxFR
dt

dxLFP
dt

2

6
6
4

3

7
7
5 ¼

FFR�FR 0

0 FLFP�LFP

" #
xFR
xLFP

" #

þ
0 0

FFR�LFP 0

" # dxFR

dt
dxLFP

dt

2

6
6
4

3

7
7
5 þ

bFR

0

" #

:

Multiscale neural dynamics neural ordinary differential equation (msDyNODE). Pop-

ular models such as recurrent neural networks and residual networks learn a complicated
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transformation by applying a sequence of transformations to the hidden states [27]:

htþ1 ¼ ht þ f ðht; ytÞ. Such iterative updates can be regarded as the discretization of a continu-

ous transformation. In the case of infinitesimal update steps, the continuous dynamics of the

hidden states can be parameterized with an ordinary differential equation (ODE):

dhðtÞ
dt

¼ f hðtÞ; y; tð Þ:

A new family of deep neural networks, termed the neural ODE (NODE), was thus intro-

duced to parameterize the f using a neural network [27]. The output of the NODE was then

computed using any differential equation solver (e.g., Euler, Runge-Kutta methods). In this

work, we utilize Runge-Kutta method with a fixed time step of 1 ms. The resulting msDy-

NODE model consists of 7 layers with 1,480 and 18,392 trainable parameters for Monkey A

and B, respectively. NODE exhibits several benefits, including memory efficiency, adaptive

computation, and the capability of incorporating data arriving at arbitrary times. Recent work

proposed a NODE-based approach with a Bayesian update network to model the sporadically
observed (i.e., irregular sampling) multi-dimensional time series dataset [59]. Therefore,

NODE serves as powerful tool for multi-scale data analysis.

Synthetic Lorenz attractor. The Lorenz attractor is a simple but standard model of a non-

linear, chaotic dynamical system in the field [28, 94]. It consists of nonlinear equations for

three dynamic variables. The state evolutions are derived as follows,

_x1 ¼ sðx2 � x1Þ

_x2 ¼ x1ðr � x3Þ � x2

_x3 ¼ x1x2 � bx3

The standard parameters are σ = 10, ρ = 28, and β = 8/3. The Euler integration is used with

Δt = 0.001 (i.e. 1 ms). We first simulate two sets of Lorenz attractor systems with different

parameter sets (σ1 = 10, ρ1 = 28, β1 = 8/3, σ2 = 8, ρ2 = 20, and β2 = 10/3) but without cross-scale

interactions:

_x1 ¼ s1ðx2 � x1Þ;

_x2 ¼ x1ðr1 � x3Þ � x2;

_x3 ¼ x1x2 � b1x3;

_x4 ¼ s2ðx5 � x4Þ;

_x5 ¼ x4ðr2 � x6Þ � x5;

_x6 ¼ x4x5 � b2x6;

with one system for a population of neurons with firing rates given by the Lorenz variables

and another system for LFPs given by the Lorenz variables (Fig 2). We start the Lorenz system

with a random initial state vector and run it for 6 seconds. We hypothesize that the neural

activity consists of multiple marginally stable modes [95, 96]. The last five seconds were

selected to ensure marginal stability in the simulation. Three different firing rates and LFPs

were then generated with different sampling rates (1,000 Hz for spikes and 100 Hz for LFPs).
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Models are trained with ten batches of 1-second data with randomly selected starting points

for 1,000 iterations.

To evaluate the fitting performance of the msDyNODE with the Lorenz systems with cross-

scale interactions, we then simulate two sets of Lorenz attractor systems with different parame-

ter sets (σ1 = 8, ρ1 = 28, β1 = 8/3, σ2 = 10, ρ2 = 20, and β2 = 10/3) and cross-scale interactions:

_x1 ¼ s1ðx2 � x1Þ þ 0:1x4 þ 0:2x5 þ 0:3x6;

_x2 ¼ x1ðr1 � x3Þ þ 0:5x4 � 0:1x5 þ 0:1x6;

_x3 ¼ x1x2 � b1x3 � 0:2x4 þ 0:1x5;

_x4 ¼ s2ðx5 � x4Þ þ 0:5x1 � 0:1x2;

_x5 ¼ x4ðr2 � x6Þ � x5 � 0:2x1 þ 0:1x2 � 0:3x3;

_x6 ¼ x4x5 � b2x6 � 0:1x1 � 0:2x2 þ 0:4x3;

All the other simulation settings remain the same as above.

Phase synchrony assessment. We apply the Hilbert transform, HT[�], on a pair of signals,

s1(t) and s2(t), in order to obtain the analytical signals, z1(t) and z2(t).

ziðtÞ ¼ siðtÞ þ jHT½siðtÞ� ¼ AiðtÞe
jϕiðtÞ

HT siðtkÞ½ � ¼ si tkð Þ∗
1

2p
½

Z 0

�p

j � ejwkdw �

Z p

0

j � ejwkdw�

where k = 1 to T, Ai(t) represents the instantaneous amplitude, and Fi(t) represents the instan-

taneous phase. The instantaneous phase synchronous (IPS [97]), which measured the phase

similarity at each timepoint, can be calculated by the following,

IPS tð Þ ¼ 1 � sin
jϕ1ðtÞ � ϕ2ðtÞj

2

� �

where the phase is in the unit of degree. IPS spans the range of 0–1, where a larger value indi-

cates a stronger synchrony. We then define a quarter of the whole range of phase difference

(180˚), 45˚, as the threshold. When the phase difference is less than 45˚, IPS was greater than

0.62, thus revealing a better performance. We finally calculated the PSI by the ratio of the time

with the IPS greater than 0.62,

PSI ¼
tIPS > 0:62

T

Supporting information

S1 Fig. Benchmark with NetPyNE. Scatter plots of MAE in the time domain, MAE in the fre-

quency domain and PSI in the phase domain. Empty circles indicate overall average MAEs

and PSI values for msDyNODE (black: firing rate, blue: LFP) and NetPyNE (red). Dim points

represent average MAEs and PSI over trials for each recording channel. *p < 0.05, **p < 0.01,

***p < 0.001 using two-sided Wilcoxon’s rank-sum test.

(TIF)
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S2 Fig. Benchmark with M-SGM and SBI-SGM. Periodograms of MAEs in frequence

responses spanning from 0 to 40 Hz.

(TIF)

S3 Fig. Granger causality-based graph properties over eight different target directions for

Monkey A and B. Number of edges, average clustering, and number of total triangles derived

from Granger causality-based excitatory (blue) and inhibitory (red) subnetworks are presented

in polar coordinated for Monkey A (top) and B (bottom), respectively.

(TIF)

S4 Fig. DTF-based graph properties over eight different target directions for Monkey A

and B. Number of edges, average clustering, and number of total triangles derived from

Granger causality-based network are presented in polar coordinated for Monkey A (top) and

B (bottom), respectively.

(TIF)
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81. Dhawale AK, Smith MA, Ölveczky BP. The Role of Variability in Motor Learning. Annual Review of Neu-

roscience. 2017; 40(1):479–98. https://doi.org/10.1146/annurev-neuro-072116-031548 PMID:

28489490

82. Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-spectral Methods.

Econometrica. 1969; 37(3):424–38.

83. Kaminski MJ, Blinowska KJ. A new method of the description of the information flow in the brain struc-

tures. Biol Cybern. 1991 Jul 1; 65(3):203–10. https://doi.org/10.1007/BF00198091 PMID: 1912013

84. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. Bayesian Population Decoding of Motor Corti-

cal Activity Using a Kalman Filter. Neural Computation. 2006 Jan 1; 18(1):80–118. https://doi.org/10.

1162/089976606774841585 PMID: 16354382

85. Dangi S, Gowda S, Moorman HG, Orsborn AL, So K, Shanechi M, et al. Continuous closed-loop

decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisi-

tion in brain-machine interfaces. Neural Comput. 2014 Sep; 26(9):1811–39. https://doi.org/10.1162/

NECO_a_00632 PMID: 24922501

86. Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM. Closed-Loop

Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control. Neuron. 2014 Jun 18;

82(6):1380–93. https://doi.org/10.1016/j.neuron.2014.04.048 PMID: 24945777

87. Shanechi MM. Brain–machine interfaces from motor to mood. Nature Neuroscience. 2019 Oct; 22

(10):1554–64. https://doi.org/10.1038/s41593-019-0488-y PMID: 31551595

PLOS ONE Multiscale effective connectivity using neural differential equations

PLOS ONE | https://doi.org/10.1371/journal.pone.0314268 December 4, 2024 21 / 22

https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2017.00046/full
http://www.ncbi.nlm.nih.gov/pubmed/28775687
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1093/cercor/bhs358
http://www.ncbi.nlm.nih.gov/pubmed/23203991
https://doi.org/10.1371/journal.pcbi.1006430
https://doi.org/10.1371/journal.pcbi.1006430
http://www.ncbi.nlm.nih.gov/pubmed/30188889
https://doi.org/10.1016/S0006-3495%2872%2986068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1037/a0027127
http://www.ncbi.nlm.nih.gov/pubmed/22309957
https://doi.org/10.1006/jmps.1999.1280
http://www.ncbi.nlm.nih.gov/pubmed/10733861
https://doi.org/10.1016/j.cobeha.2018.01.004
https://doi.org/10.1016/j.cobeha.2018.01.004
http://www.ncbi.nlm.nih.gov/pubmed/30035207
https://doi.org/10.1016/j.neuron.2021.01.023
http://www.ncbi.nlm.nih.gov/pubmed/33596406
https://doi.org/10.1038/s41586-021-04329-x
https://doi.org/10.1038/s41586-021-04329-x
http://www.ncbi.nlm.nih.gov/pubmed/35082444
https://doi.org/10.1038/nn.2501
http://www.ncbi.nlm.nih.gov/pubmed/20173745
https://doi.org/10.1146/annurev-neuro-072116-031548
http://www.ncbi.nlm.nih.gov/pubmed/28489490
https://doi.org/10.1007/BF00198091
http://www.ncbi.nlm.nih.gov/pubmed/1912013
https://doi.org/10.1162/089976606774841585
https://doi.org/10.1162/089976606774841585
http://www.ncbi.nlm.nih.gov/pubmed/16354382
https://doi.org/10.1162/NECO%5Fa%5F00632
https://doi.org/10.1162/NECO%5Fa%5F00632
http://www.ncbi.nlm.nih.gov/pubmed/24922501
https://doi.org/10.1016/j.neuron.2014.04.048
http://www.ncbi.nlm.nih.gov/pubmed/24945777
https://doi.org/10.1038/s41593-019-0488-y
http://www.ncbi.nlm.nih.gov/pubmed/31551595
https://doi.org/10.1371/journal.pone.0314268


88. Shenoy KV, Carmena JM. Combining Decoder Design and Neural Adaptation in Brain-Machine Inter-

faces. Neuron. 2014 Nov 19; 84(4):665–80. https://doi.org/10.1016/j.neuron.2014.08.038 PMID:

25459407

89. Orsborn AL, Pesaran B. Parsing learning in networks using brain-machine interfaces. Curr Opin Neuro-

biol. 2017 Oct; 46:76–83. https://doi.org/10.1016/j.conb.2017.08.002 PMID: 28843838

90. Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, et al. Chronic, wireless record-

ings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods. 2014 Jun; 11(6):670–

6. https://doi.org/10.1038/nmeth.2936 PMID: 24776634

91. Ganguly K, Dimitrov DF, Wallis JD, Carmena JM. Reversible large-scale modification of cortical net-

works during neuroprosthetic control. Nat Neurosci. 2011 May; 14(5):662–7. https://doi.org/10.1038/nn.

2797 PMID: 21499255

92. Inoue Y, Mao H, Suway SB, Orellana J, Schwartz AB. Decoding arm speed during reaching. Nat Com-

mun. 2018 Dec 7; 9(1):5243. https://doi.org/10.1038/s41467-018-07647-3 PMID: 30531921

93. Pulvermüller F, Tomasello R, Henningsen-Schomers MR, Wennekers T. Biological constraints on neu-

ral network models of cognitive function. Nat Rev Neurosci. 2021 Aug; 22(8):488–502. https://doi.org/

10.1038/s41583-021-00473-5 PMID: 34183826

94. Linderman S, Johnson M, Miller A, Adams R, Blei D, Paninski L. Bayesian learning and inference in

recurrent switching linear dynamical systems. In PMLR; 2017. p. 914–22.

95. Gray R, Robinson P. Stability constraints on large-scale structural brain networks. Frontiers in Compu-

tational Neuroscience [Internet]. 2013 [cited 2023 Aug 1]; 7. Available from: https://www.frontiersin.org/

articles/10.3389/fncom.2013.00031 PMID: 23630490

96. Xu T, Barak O. Dynamical Timescale Explains Marginal Stability in Excitability Dynamics. J Neurosci.

2017 Apr 26; 37(17):4508–24. https://doi.org/10.1523/JNEUROSCI.2340-16.2017 PMID: 28348138

97. Pedersen M, Omidvarnia A, Walz JM, Zalesky A, Jackson GD. Spontaneous brain network activity:

Analysis of its temporal complexity. Network Neuroscience. 2017 Jun 1; 1(2):100–15. https://doi.org/10.

1162/NETN_a_00006 PMID: 29911666

PLOS ONE Multiscale effective connectivity using neural differential equations

PLOS ONE | https://doi.org/10.1371/journal.pone.0314268 December 4, 2024 22 / 22

https://doi.org/10.1016/j.neuron.2014.08.038
http://www.ncbi.nlm.nih.gov/pubmed/25459407
https://doi.org/10.1016/j.conb.2017.08.002
http://www.ncbi.nlm.nih.gov/pubmed/28843838
https://doi.org/10.1038/nmeth.2936
http://www.ncbi.nlm.nih.gov/pubmed/24776634
https://doi.org/10.1038/nn.2797
https://doi.org/10.1038/nn.2797
http://www.ncbi.nlm.nih.gov/pubmed/21499255
https://doi.org/10.1038/s41467-018-07647-3
http://www.ncbi.nlm.nih.gov/pubmed/30531921
https://doi.org/10.1038/s41583-021-00473-5
https://doi.org/10.1038/s41583-021-00473-5
http://www.ncbi.nlm.nih.gov/pubmed/34183826
https://www.frontiersin.org/articles/10.3389/fncom.2013.00031
https://www.frontiersin.org/articles/10.3389/fncom.2013.00031
http://www.ncbi.nlm.nih.gov/pubmed/23630490
https://doi.org/10.1523/JNEUROSCI.2340-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28348138
https://doi.org/10.1162/NETN%5Fa%5F00006
https://doi.org/10.1162/NETN%5Fa%5F00006
http://www.ncbi.nlm.nih.gov/pubmed/29911666
https://doi.org/10.1371/journal.pone.0314268

