
Programming Language Knowledge Transfer that Teachers
Observe in their Classrooms

Jennifer Houchins
jhouchi@wested.org

WestEd
San Francisco, CA, USA

Rosalind Owen
rowen@wested.org

WestEd
San Francisco, CA, USA

Bryan Matlen
bmatlen@wested.org

WestEd
WestEd, CA, USA

Yvonne Kao
ykao@wested.org

WestEd
San Francisco, CA, USA

ABSTRACT

There has been signi�cant progress in increasing the access to com-
puting education for many K-12 students, including states adopting
computer science (CS) standards and/or requiring CS courses. This
includes the creation of block-based programming languages to
make programming more accessible to younger students. Despite
this progress, a new challenge has emerged: Students often strug-
gle to transfer conceptual knowledge when transitioning to a new
programming language (e.g., transitioning to a text-based program-
ming after learning a block-based programming language). This
poster presents the results of teacher interviews regarding the ex-
amples of knowledge transfer they observe in their classrooms.
These interviews are part of an overarching project that aims to
address the challenge of knowledge transfer between programming
languages by developing a framework to support such transfer
and deliver curricular supports that can be used to aid students’
productive knowledge transfer between programming languages.

ACM Reference Format:

Jennifer Houchins, Rosalind Owen, Bryan Matlen, and Yvonne Kao. 2024.
Programming Language Knowledge Transfer that Teachers Observe in
their Classrooms. In Proceedings of the 55th ACM Technical Symposium on

Computer Science Education V. 2 (SIGCSE 2024), March 20–23, 2024, Portland,

OR, USA.ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3626253.
3635570

1 INTRODUCTION

Computing education literature contains studies examining how
students transfer knowledge from block-based to text-based pro-
gramming languages. One such study found little quantitative dif-
ference between the assessment scores between students who had
prior Scratch block-based programming experience and those that
did not [1]. However, the authors did note that students with prior
Scratch experience employed Scratch-speci�c patterns in their text-
based programs. This result suggests that some transfer did occur.
Likewise, other studies have shown evidence of positive knowledge

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03.
https://doi.org/10.1145/3626253.3635570

transfer from Scratch to text-based programming languages [3, 5].
The literature also contains studies which identify instances of pos-
itive transfer of knowledge between text-based languages [3, 5, 7]
as well as documenting a lack of transfer [10].

Though these examples show considerable e�orts, there has
been little work regarding how teachers understand the problem
of transfer and how they support students’ transition from one
programming language to another. Those studies that have exam-
ined ways of supporting students in transferring their programming
knowledge have largely focused on the development of instructional
materials [4] or programming environments [6, 9]. We believe a
�rst step to understanding how and when students successfully
transfer their programming knowledge is to understand how and
when teachers observe transfer occurring in their classrooms, what
explicit connections they make between programming languages,
and what resources they are using to do so.

2 RESEARCH DESIGN

An overarching aim for this work is to help students from diverse
backgrounds build on prior conceptual knowledge as they progress
through a CS course sequence that involves multiple programming
languages. The project is conducting a longitudinal study of stu-
dents’ progression through such a course sequence. To identify the
ways in which students transfer knowledge from one programming
language to another, we �rst need to understand how and when
teachers observe transfer of programming knowledge, what ex-
plicit connections they make during their CS instruction, and what
resources they are using to support such transfer. Therefore, we
conducted interviews with middle and high school teachers (grades
6-12) who have experience teaching both block-based and text-
based programming languages. The following research questions
framed our study:

(1) What is the teacher’s experience and coding background?
[Background]

(2) What examples of transfer have CS teachers witnessed in
their classrooms as their students learn a new programming
language? [Perceptions of Transfer during Learning]

(3) How do CS teachers currently support students in transfer-
ring knowledge from one language to the next? [Supporting
Transfer]

Eight teachers who self-identi�ed as having experience teaching
both Scratch and one other text-based language were recruited for



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Houchins, et al.

interviews. The interviews lasted for 1 hour and were conducted
virtually via Zoom. The interview recordings were transcribed, and
two members of the research team carried out a thematic analysis
[2] of the transcripts. After the �rst pass of identifying themes, the
two researchers reached agreement on re�ned themes that were
grouped into subcategories such as Spontaneous Transfer, Productive
Transfer Resources, or Curricular Supports of Transfer. This poster
will include all subcategories, their descriptions, and examples from
the transcribed interviews.

3 PRELIMINARY FINDINGS

Analysis of teacher interviews revealed that when teachers do
make explicit connections between two programming languages,
it is most often at the beginning of a new course. This depends
on whether or not they know their students’ prior programming
knowledge. This result was only exhibited for three of the eight
teachers who taught multiple CS courses and encountered the same
students in more than one course along the curriculum pathway.
These teachers indicated that they assumed students had no prior
programming experience or that their students expressed having
no prior programming experience when they were asked in class.
However, the other �ve teachers noted that, most of the time, their
instructional approach is to assume students have no prior pro-
gramming knowledge. One teacher even suggested this was by
design as an instructional technique learned from another content
area, "I assume kids usually don’t have the prior knowledge because

it was a technique I learned from math." Identifying students’ prior
programming exposure appears to be easier when teachers are at
smaller schools and teaching multiple CS courses in the curriculum
pathway.

Three of the teachers we interviewed also revealed that they
primarily focus on di�erences in syntax when they are making ex-
plicit connections between multiple programming languages. They
indicated that these connections were generally in the conceptual
context of loops and other control structures, variables, and data
structures. One teacher also suggested that they had to make their
own classroom resources to show these connections, "I literally
had a PowerPoint and I broke it down to like, Hey, here’s one major

di�erence between the two."
Finally, four of the teachers interviewed noted that their students

sometimes only received instruction in one programming language.
These teachers explained that this is a result of students simply ful-
�lling a credit requirement for their particular curriculum pathway
and/or to graduate. However, they perceived this as an issue that
could impact knowledge transfer between programming languages
because a student might take Scratch during their middle grade
years (6-8) and not take another CS course until later in their high
school course of study (grades 11-12).

4 CONCLUSION & FUTUREWORK

The study presented in this poster revealed important avenues
for moving toward supporting students’ programming knowledge
transfer via teacher interviews. First, an overall lack of explicit cur-
ricular connections between multiple programming languages due
to teachers’ assumed or perceived potential of students having little
or no prior programming experience appears to be at issue. This

is an issue that most core academic disciplines do not experience
as teachers have an understanding of students’ prior knowledge
from their course progressions. This strongly suggests a need for
a standardized, pedagogically useful learning trajectory for every
student on the CS curriculum progression. Further, development of
such a learning trajectory could move the needle toward CS being
a core discipline in every state with requirements at every grade
level.

Additionally, when teachers do make explicit curricular connec-
tions between programming languages they tend to largely focus
on syntactic di�erences rather than deeper conceptual knowledge.
We believe that this is a missed opportunity for teachers to draw
on and take advantage of the prior programming knowledge that
their students bring to the classroom. For example, instructional
guidance that employs tools like analogical theory [8] could prove
to help conceptual knowledge transfer well. The next steps in this
project will focus on avenues such as these to drive our work toward
a CS-speci�c theory of knowledge transfer between programming
languages. We will then use that theory to implement instructional
sca�olds to aid teachers in making more explicit connections and
garner the transfer of deeper conceptual knowledge.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation through
the EHR Core Research in STEM Learning and Learning Environ-
ments program (Award #2201209). Any opinions, �ndings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily re�ect the views of
the National Science Foundation.

REFERENCES

[1] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
scratch to “real” programming. ACMTransactions on Computing Education (TOCE)
14, 4 (2015), 1–15.

[2] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[3] Marcos J Gomez, Marco Moresi, and Luciana Benotti. 2019. Text-based program-
ming in elementary school: a comparative study of programming abilities in
children with and without block-based experience. In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science Education.
402–408.

[4] Shuchi Grover. 2021. Teaching and assessing for transfer from block-to-text
programming in middle school computer science. Transfer of learning: Progressive
perspectives for mathematics education and related �elds (2021), 251–276.

[5] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning
in a blended computer science course formiddle school students. Computer science
education 25, 2 (2015), 199–237.

[6] Michael Kölling, Neil CC Brown, and Amjad Altadmri. 2015. Frame-based editing:
Easing the transition from blocks to text-based programming. In Proceedings of
the Workshop in Primary and Secondary Computing Education. 29–38.

[7] Monika Mladenović, Žana Žanko, Andrina Granić, and Andrina Granić. [n. d.].
Mediated transfer: From text to blocks and back. 29 ([n. d.]), 100279. https:
//doi.org/10.1016/j.ijcci.2021.100279 MAG ID: 3134228633.

[8] Dario D Salvucci and John R Anderson. 2001. Integrating analogical mapping
and general problem solving: the path-mapping theory. Cognitive Science 25, 1
(2001), 67–110.

[9] Nischal Shrestha, Titus Barik, and Chris Parnin. 2018. It’s like python but:
Towards supporting transfer of programming language knowledge. In 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
177–185.

[10] David Weintrop and Uri Wilensky. [n. d.]. Transitioning from introductory block-
based and text-based environments to professional programming languages in
high school computer science classrooms. 142 ([n. d.]), 103646. https://doi.org/
10.1016/j.compedu.2019.103646 MAG ID: 2964965801.

Received 13 October 2023; Accepted 13 November 2023



Programming Language Knowledge Transfer that Teachers 
Observe in their Classrooms

Jennifer Houchins, Rosalind Owen, 
Bryan Matlen, and Yvonne Kao

Are you interested in participating in 
research? Join our mailing list → 

● When teachers do make explicit connections 
between two programming languages, it is most 
often at the beginning of a new course
○ This is dependent on knowing students’ prior 

programming knowledge
○ Otherwise, teachers assume students’ have no 

prior knowledge
● Explicit connections between languages tends to 

focus on syntax
● Students may only learn one programming 

language as a result of fulfilling a credit requirement

Findings

We aim to identify the ways in which students transfer 
knowledge from one programming language to 
another. Our study is framed by the following 
questions:
● What is the teacher’s experience and coding 

background? [Teacher’s Background]
● What examples of transfer have CS teachers 

witnessed in their classrooms as their students learn 
a new programming language? [Perceptions of 
Transfer during Learning]

● How do CS teachers currently support students in 
transferring knowledge from one language to the 
next? [Supporting Transfer]

Research Questions

● Purposeful recruitment of teachers who have taught 
both Scratch and at least one text-based 
programming language (n = 8)

● Conducted 1-hour semi-structured interviews 
virtually via Zoom

● Interviews were recorded to assist with note-taking
● Thematic analysis was carried out on the transcripts 

of the interviews.
● Refined themes emerging from the analysis were 

grouped into subcategories: Spontaneous 
Transfer, Productive Transfer Resources, or 
Curricular Supports of Transfer

Methodology

● Another round of teacher interviews is currently 
being conducted

● We have developed and started conducting student 
cognitive interviews which involve solving tasks in 
Scratch and Java and then comparing the code 
presented side-by-side

● We hope to schedule classroom observations in the 
next phase of the project

● Ultimately, we intend to develop supports or 
scaffolds that can be incorporated into the 
curriculum that will support greater transfer of 
knowledge from one programming language to 
another

Next Steps

Subcategory Code Description

Spontaneous Transfer spontaneous
Teacher expresses seeing students transfer 
knowledge of one language to another of their 
own accord

Productive Transfer 
Resources

productive 
resources

Teacher mentions materials that purposely help 
transfer coding knowledge between languages

Curricular Support of 
Transfer

activities Teacher mentions specific activities that support 
transfer

curriculum 
structure

Teacher mentions aspects of the curriculum that 
support transfer

teacher 
connections

Teacher makes explicit connections between 
multiple languages in their curriculum

Teacher Supports

explicit Teacher includes explicit comparisons between 
multiple languages in their teaching

pacing Teacher mention where and when they draw 
explicit connections between multiple languages

lessons Teacher mentions specific lessons where 
language comparisons are productive

materials Teacher provides examples of materials or 
resources they use to support transfer

…almost any of the structures like for 
loops, and while loops, and conditionals, 

they're again, syntactically different, but 
they're similar enough, where when we say, if 

blah, then they make that connection very 
quickly, right? They're like, "Oh, yeah. Okay, 

that's just an if statement from Python."

But I think explicitly pointing out like, okay, 
you see how this is, and then you see how 

this is over here. You see the relationship and 
having that explicit conversation, I think 

just solidifies their understanding

I like Code.org where it did 
have that structure has it where 
it can help guide in future ones.

…we're going to revisit 
some of the projects we 

did in Scratch, in p5.js, and 
have them recreate a few of 

those things

We talk abouts searching and sorting 
algorithms. Again, we do it all in 

Python, but then when we do it in 
Java, then it's not something that's 

brand new. They see that the 
algorithm is still the same, it's just 

the implementation that differs.

 I can bring it up to them and say like, "Oh, 
remember how you did it last year. We 
kind of did this with Tracy the Turtle where 

you move forward. This is how you're doing 
it in JavaScript, moving the car or whatever."

But it is at the beginning of 
each of those topics, maybe, is 

where I initially mention it

For loops in Python look significantly different 
from a standard for loop in Java. But once you point 

out that, you remind them that, "Well, range is just a 
generator and it's generating values from zero up to 
whatever, and we're taking those values and putting 

them in for i. Now, let's look at the Java version where 
we say, i starts at zero, and making that almost 

drawing arrows between the two. See how they're 
related?"

CodeHS is the thing that I use 
with my kids nowadays

This work is supported by the National Science Foundation through the EHR Core Research in STEM Learning and Learning Environments program (Award #2201209).


