
Linguistic Pedagogical Approaches to Transfer in Computer
Science

Rosalind Owen
rowen@wested.org

WestEd
San Francisco, CA, USA

ABSTRACT

More students are encountering computer science at multiple grade

levels and so are learning more than one programming language.

There is an ever-growing body of research describing how students

transfer knowledge from one language to another. Current research

shows that transfer helps students learn a second programming

language in the interim and improves attitudes and retention of

students in computer science [2, 12]. While novice programmers

generally struggle with the same concepts [1, 12], the exact di�-

culties and bene�ts of the transition to a second programming lan-

guage di�er depending on the programming languages the student

is learning. In order to best serve students of di�erent backgrounds

and maintain their interest in the subject, the details of transfer for

di�erent programming language combinations must be understood.

This poster surveys and analyzes the current research on transfer

and provides a summary of the variety of challenges and advantages

students face in learning a second programming language. Addi-

tionally, interdisciplinary pedagogical approaches are discussed,

integrating perspectives from applied linguistics as novel solutions

to the speci�c issues faced in programming language transfer.

ACM Reference Format:

Rosalind Owen. 2024. Linguistic Pedagogical Approaches to Transfer in

Computer Science. In Proceedings of the 55th ACM Technical Symposium on

Computer Science Education V. 2 (SIGCSE 2024), March 20–23, 2024, Portland,

OR, USA.ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3626253.

3635566

1 BACKGROUND AND OVERVIEW

As more students take computer science courses at di�erent points

in their education, they are likely to encounter more than one

programming language. Recent research has investigated analogi-

cal transfer, or how students use shared relationships to transfer

knowledge from one context to another, in this case, from one

programming language to another [9]. When students make con-

nections between surface similarities that re�ect real similarities,

this is called positive transfer. Negative transfer occurs when these

surface similarities lead to incorrect assumptions. In order to better

support students in their transition from one language to another,

researchers are describing how students manage a new program-

ming language based on their previous programming language,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03.
https://doi.org/10.1145/3626253.3635566

along with various interventions meant to support positive transfer.

The speci�c challenges students face while learning a new program-

ming language vary depending on their prior experience [7], as

do their strengths when transferring knowledge from their �rst

programming language [11, 12].

Applied linguistics as a �eld has much research on the subject

of transfer, speci�cally from one natural language to another. Both

computer science education and natural language learning share

the issue of how the syntax and semantics of one language in�uence

the acquisition and use of another language. As is the case with

programming languages, natural languages often have semantic

distinctions or syntactic structures not present in another language.

Researchers in applied linguistics have developed pedagogical solu-

tions to help students overcome obstacles in language acquisition

and leverage previous knowledge to understand the intricacies of

each language’s syntax and semantics. Interventions for avoiding

negative semantic transfer have been studied at the vocabulary [8]

and sentence [4] levels, which can be applied to learning keywords

and syntax in computer science classrooms. Additionally, contextu-

alizing languages and raising awareness of their characteristics can

promote critical thinking about how to use each language and how

their distinctions may be useful [5]. This approach can be applied

to programming languages and be used to empower students in

their own learning.

This poster reviews studies of transfer in computer science ed-

ucation and presents frequently encountered issues. Approaches

from natural language learning are presented as novel solutions to

common problems with second programming language learning in

the computer science classroom.

2 TRANSFER BY PROGRAMMING LANGUAGE

Each programming language pairing is compared in a table that

summarizes the instances of positive and negative transfer. The

peculiarities of each pairing are explored, as well as generalizations

based on shared characteristics between programming languages.

An example follows below.

Students with experience in Scratch who are learning Python

struggle with understanding which characteristics of loops apply

to their prior language and which apply to the new language [10].

These students use conditional statements with the opposite condi-

tion than needed for while loops, an instance of negative transfer

from Scratch repeat loops. Additionally, they sometimes handle the

end of a while loop with an if statement to break the loop, rather

than relying on the conditional statement, which is likely a negative

transfer from Scratch forever loops.

Students also struggle to grasp concepts related to Python-speci�c

traits [10]. There is often confusion about type matching, with stu-

dents using operators on variables of di�erent types, and type



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Rosalind Owen

casting, with students recasting data types with still the wrong

type. Considering Scratch is a weakly typed language and Python

is strongly typed, students may need more information to grasp

this new concept. Students also did not understand how to initialize

an empty list, instead initializing a list with one item in it and then

later clearing it. This misconception likely stems from the fact that

lists are not explicitly initialized in Scratch.

Transitions from Alice, Snap!, and Scratch to Java, as well as

Python to Java, are also included in the poster.

3 APPROACHES FROM NATURAL LANGUAGE

LEARNING

This section reviews pedagogical approaches to semantic transfer

in natural languages, including perspectives from translanguaging

[5] and cognitive linguistics [4]. The main contribution of this

poster is the application of these approaches to the transfer issues

observed in di�erent programming language pairings and how

these approaches can help computer science instructors.

Pedagogical translanguaging suggests that “intentional instruc-

tional strategies that integrate two or more languages” should be

used in a multilingual classroom [3]. Pedagogical translanguaging

can be incorporated into the classroom by raising metalinguistic

awareness, or awareness of a language system (e.g., syntactic struc-

tures or sound patterns) [5]. In natural languages, transfer is often

seen at the morphological level. Negative transfer occurs in the

form of "false friends," or words that mean di�erent things but look

similar. For instance, students learning Spanish used the Spanish

"carpeta" (English: "folder") as if it meant "carpet" in English (Span-

ish: "alfombra") [6]. However, students with more metalinguistic

awareness were able to use their knowledge of the morphology

of Spanish to make complex changes to the su�xes and roots of

known words to guess new Spanish words in their writing (e.g.,

English "stressed" to Spanish "estresado") [6].

In the context of a computer science classroom, students’ prior

knowledge of any programming language would be bolstered by

instruction that raises metalinguistic awareness. Their prior coding

experience would be an asset that they could combine with metalin-

guistic awareness to approach novel coding situations. For example,

students learning Python with experience in Scratch often use an

if-statement to break from a conditional loop [10]. This confusion

may be akin to the issue of "false friends." Students see syntax in

Python related to an in�nite loop and connect it with a forever

loop in Scratch, not fully aware of the semantic importance of the

conditional statement. With pedagogical translanguaging, the dis-

tinctions between �nite and in�nite loops, as well as conditional

and unconditional loops, would be explained, so that students have

the vocabulary with which to think about di�erent kinds of loops.

With more explicit conceptual knowledge about the forms that

loops can take, students could approach new keywords and syntax

in a more informed and analytical manner.

In the poster, two more methods, transcodi�cation and input

manipulation, are applied to other examples of transfer in computer

science. In transcodi�cation activities, students are shown equiva-

lent constructions in two languages, and their literal and �gurative

meanings are discussed to explore subtle semantic di�erences [4].

For instance, students could compare pairs of equivalent loops in

two programming languages, using �ow-charts or diagrams as ref-

erences to discuss semantic di�erences. Input manipulation also

addresses confusion around the semantics of a particular structure,

giving students positive evidence in context for the correct inter-

pretation [4]. While a new control structure is being introduced,

students could be shown code with key words highlighted, i.e. syn-

tax highlighting, to illustrate the crucial di�erences between the

languages and provide positive examples of the correct, contextu-

alized use of the structure. Example applications of both of these

methods are included in the poster.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 2201209. Any opinions, �ndings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily re�ect the views of

the National Science Foundation.

REFERENCES

[1] Amjad Altadmri and Neil C.C. Brown. 2015. 37 million compilations. Proceedings
of the 46th ACM Technical Symposium on Computer Science Education (2015).
https://doi.org/10.1145/2676723.2677258

[2] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
scratch to “real” programming. ACM Transactions on Computing Education 14, 4
(2015), 1–15. https://doi.org/10.1145/2677087

[3] Jasone Cenoz and Durk Gorter. 2020. Teaching English through pedagogical
translanguaging. World Englishes 39, 2 (2020), 300–311.

[4] Paolo Della Putta. 2016. Do we also need to unlearn constructions? the case
of constructional negative transfer from Spanish to Italian and its pedagogical
implications. Applied Construction Grammar (2016), 237–268. https://doi.org/10.
1515/9783110458268-010

[5] Carles Fuster. 2022. Lexical transfer as a resource in pedagogical translanguaging.
International Journal of Multilingualism (2022), 1–21. https://doi.org/10.1080/
14790718.2022.2048836

[6] Carles Fuster. 2022. Lexical transfer in pedagogical translanguaging: Exploring
intentionality in multilingual learners of Spanish. Ph. D. Dissertation. Department
of Education, Stockholm University.

[7] Ryan Garlick and Ebru Celikel Cankaya. 2010. Using Alice in CS1. Proceedings of
the �fteenth annual conference on Innovation and technology in computer science
education (2010). https://doi.org/10.1145/1822090.1822138

[8] Nan Jiang. 2004. Semantic Transfer and its implications for vocabulary teaching
in a second language. The Modern Language Journal 88, 3 (2004), 416–432.
https://doi.org/10.1111/j.0026-7902.2004.00238.x

[9] Yvonne Kao, Bryan Matlen, and David Weintrop. 2022. From one language to
the next: Applications of analogical transfer for programming education. ACM
Transactions on Computing Education 22, 4 (2022), 1–21. https://doi.org/10.1145/
3487051

[10] Majeed Kazemitabaar, Viktar Chyhir, David Weintrop, and Tovi Grossman. 2023.
Sca�olding Progress: How Structured Editors Shape Novice Errors When Transi-
tioning from Blocks to Text. In Proceedings of the 54th ACM Technical Sym-
posium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 556–562.
https://doi.org/10.1145/3545945.3569723

[11] David Weintrop, Connor Bain, and Uri Wilensky. 2017. Blocking Progress?
Transitioning from Block-based to Text-based Programming. In Proceedings of
the American Educational Research Association. 1–8.

[12] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-
based and text-based environments to professional programming languages in
high school computer science classrooms. Computers amp;amp; Education 142
(2019), 103646. https://doi.org/10.1016/j.compedu.2019.103646



Linguistic Pedagogical Approaches to Transfer in Computer Science
What can CS educators learn from the second (and third) language acquisition?
Rosalind Owen, rowen@wested.org

Translanguaging
Translanguaging is used in teaching by incorporating <intentional instructional strategies that integrate 

two or more languages= [2]. Teachers work on raising metalinguistic awareness, or awareness of a 

language system (e.g., syntactic structures, morphology, or sound patterns), to give students the tools 

to guess new words and constructions.

Natural Languages 
When students develop metalinguistic awareness, they are able to make complex changes to words so 

that they fit the rules of the target language [5]. Fuster (2022) presents the following examples of 

spontaneous negative transfer and guided positive transfer (p. 14): 

Programming Languages
A common instance of negative transfer: students with experience in Scratch use an if statement to 

break from a conditional while loop in Python, incorrectly using Scratch rules with Python syntax.

 

Solution: increase students9 metalinguistic awareness of <infinite loops,= explicitly discuss the 

vocabulary and concepts needed to analyze the semantics of this control structure.  

Background
As more students take computer science courses at different points in their education, they are likely 

to encounter more than one programming language. Recent research has investigated analogical 

transfer, or how students use shared relationships to transfer knowledge from one context to 

another, in this case, from one programming language to another [8]. 

● Positive transfer: when students make connections between surface similarities that reflect real 

similarities. 

● Negative transfer: when surface similarities lead students to incorrect assumptions. 

Much research has been done on how students learn a new programming language based on their 

previous programming language, along with various interventions meant to support positive 

transfer. The different strengths and weaknesses students bring to a new language based on their 

prior knowledge is outlined in table to the right. 

Learning programming languages and natural languages both entail grappling with syntax and 

semantics. The following sections apply approaches from applied linguistics that are used to learn 

second and third natural languages to the issue of transfer in programming languages. 

Selected References
[1] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From scratch to <real= programming. ACM Transactions on Computing Education 14, 4 
(2015), 1–15. https://doi.org/10.1145/2677087
[2] Jasone Cenoz and Durk Gorter. 2020. Teaching English through pedagogical translanguaging. World Englishes 39, 2 (2020), 300–311.
[3] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper. Mediated transfer: Alice 3 to java. In Proceedings of the 43rd ACM technical 
symposium on Computer Science Education (Raleigh, North Carolina) (SIGCSE 2012). 
[4] Paolo Della Putta. 2016. Do we also need to unlearn constructions? the case of constructional negative transfer from Spanish to Italian and its pedagogical 
implications. Applied Construction Grammar (2016), 237–268. https://doi.org/10.1515/9783110458268-010
[5] Carles Fuster. 2022. Lexical transfer in pedagogical translanguaging: Exploring intentionality in multilingual learners of Spanish. Ph. D. Dissertation. Department 
of Education, Stockholm University.
[6] Ryan Garlick and Ebru Celikel Cankaya. 2010. Using Alice in CS1. Proceedings of the fifteenth annual conference on Innovation and technology in computer 
science education (2010). https://doi.org/10.1145/1822090.1822138
[7] Shuchi Grover, Roy Pea, and Stephen Cooper. Designing for deeper learning in a blended computer science course for middle school students. Computer science 
education 25, 2 (2015), 199-237. 
[8] Yvonne Kao, Bryan Matlen, and David Weintrop. 2022. From one language to the next: Applications of analogical transfer for programming education. ACM 
Transactions on Computing Education 22, 4 (2022), 1–21. https://doi.org/10.1145/3487051
[9] Majeed Kazemitabaar, Viktar Chyhir, David Weintrop, and Tovi Grossman. 2023. Scaffolding Progress: How Structured Editors Shape Novice Errors When 
Transitioning from Blocks to Text. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). 
Association for Computing Machinery, New York, NY, USA, 556–562. https://doi.org/10.1145/3545945.3569723
[10] Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Programming Languages: Exploratory Study of Relative Novices. In Proceedings of the 2020 ACM 
Conference on Innovation and Technology in Computer Science Education (ITiCSE 920), June 15–19, 2020, Trondheim, Norway. ACM, New York, NY, USA, 7 pages. 
https://doi.org/10.1145/3341525.3387406 
[11] David Weintrop, Connor Bain, and Uri Wilensky. 2017. Blocking Progress? Transitioning from Block-based to Text-based Programming. In Proceedings of the 
American Educational Research Association. 1–8.
[12]  David Weintrop and Uri Wilensky. Using commutative assessments to compare conceptual understanding in blocks-based and text-based programs. In 
Proceedings of the eleventh annual international conference on international computing education research (2015), 101-110. 
[13] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-based and text-based environments to professional programming languages in 
high school computer science classrooms. Computers amp;amp; Education 142 (2019), 103646. https://doi.org/10.1016/j.compedu.2019.103646 

Scratch Python (negative transfer) Python (correct)

[9, p. 560]

Forever loop (Scratch) Infinite loop (Python) Conditional loop (Python)

● Infinite loop: will continue 
unless stop block is reached. 

● If the condition is always 
true, then like a forever 
loop, it will continue unless 
break is reached.

● Conditionally infinite loop: 
will continue as long as the 
condition following while is 
true. If the condition can be 
false, then the loop will 
break automatically.

Negative Transfer Positive Transfer

"carpet" in English        ≠    "carpet-a" in Spanish

(Spanish: "alfombra")         (English: "folder")

<stress-ed= in English = <e-stres-ado= in Spanish

Transcodification
In transcodification activities, students are shown equivalent constructions in two languages, and 

their literal and figurative meanings are discussed to explore subtle semantic differences [4]. 

Natural Languages
Della Putta (2016) describes the following example: when learning the verb <ir= in Spanish 

(conjugated in first person present tense as <voy= below), teachers use miming to show the physical 

displacement of one construction versus the temporal displacement of the other.

Voy a estudiar en la biblioteca.

8I go/am going to study in the library.9 (p. 259) 

Mañana voy a estudiar química.

8Tomorrow I am going to study chemistry.9 (p. 259) 

Programming Languages
Teachers can use flowcharts to illustrate the difference in execution between while loops and repeat 

until loops.

    

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. 2201209. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Input Manipulation
Input manipulation gives students positive evidence in context for the correct semantic interpretation [4]. 

Natural Languages
Della Putta (2016) provides the following example used to teach students the meaning of the <ri-= prefix in 

Italian:

Le strane abitudini del signor Rossi

Franco Rossi è un ingegnere che ha delle strane abitudini: fa sempre tutto due volte. La mattina si alza, 

torna a letto e poi si rialza ancora. Poi prepara il caffè per tutta la famiglia ma, subito dopo, lo 

riprepara, un9altra volta! Poi va al lavoro, entra in ufficio, esce e rientra ancora. La sera, finalmente, 

torna a casa, saluta i figli, li risaluta e poi bacia e ribacia Anna, sua moglie. (p. 262)

Programming Languages
While a new control structure is being introduced, students could be shown code with key words and 

punctuation highlighted (i.e. syntax highlighting) to illustrate the crucial aspects of the syntax and provide 

positive examples of the correct, contextualized use of the structure. Below the syntax highlighting shows 

while loops in Java and their outputs, demonstrating the directionality of the conditional statements. 

Python Scratch

Students’ Strengths and Weaknesses in a Second Programming Language
Languages Strengths Weaknesses
Python → Java ● Semantic transfer: matching syntax, similar syntax, functions, data structures [10] ● Conceptual misunderstandings: types; objects (especially with different syntax) [10]

Blocks-based → Java ● Semantic transfer: initially acquired various concepts faster than text-based students [13]

● Programming practices: less prone to common errors than text-based students [12]

● Programming practices: no difference compared to text-based students [13]

Scratch → Java ● Semantic transfer: for loops (initial confusion overcome more quickly); counters [1, 7] ● Conceptual misunderstanding: for loops (favor while/forever loops) [1, 7]

● Syntax errors, missing brackets [1]

Alice → Java ● Semantic transfer: control structures (conditionals and iteration), expression evaluation [3] ● Conceptual misunderstanding: lower exam scores than pseudocode students [6]

Snap! → Java ● Conceptual misunderstanding: for loops, while loops, variables/expression evaluation, 

conditional statements [11] 

Scratch → Python ● Syntax errors (string quotes, operators, variable assignment) [9]

● Conceptual misunderstanding: type casting, type matching, conditional loops (using opposite 

condition in a while loop, or if statement to break a while loop) [9]


