Check for
Updates

Linguistic Pedagogical Approaches to Transfer in Computer
Science

Rosalind Owen
rowen@wested.org
WestEd
San Francisco, CA, USA

ABSTRACT

More students are encountering computer science at multiple grade
levels and so are learning more than one programming language.
There is an ever-growing body of research describing how students
transfer knowledge from one language to another. Current research
shows that transfer helps students learn a second programming
language in the interim and improves attitudes and retention of
students in computer science [2, 12]. While novice programmers
generally struggle with the same concepts [1, 12], the exact diffi-
culties and benefits of the transition to a second programming lan-
guage differ depending on the programming languages the student
is learning. In order to best serve students of different backgrounds
and maintain their interest in the subject, the details of transfer for
different programming language combinations must be understood.
This poster surveys and analyzes the current research on transfer
and provides a summary of the variety of challenges and advantages
students face in learning a second programming language. Addi-
tionally, interdisciplinary pedagogical approaches are discussed,
integrating perspectives from applied linguistics as novel solutions
to the specific issues faced in programming language transfer.

ACM Reference Format:

Rosalind Owen. 2024. Linguistic Pedagogical Approaches to Transfer in
Computer Science. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 2 (SIGCSE 2024), March 20-23, 2024, Portland,
OR, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3626253.
3635566

1 BACKGROUND AND OVERVIEW

As more students take computer science courses at different points
in their education, they are likely to encounter more than one
programming language. Recent research has investigated analogi-
cal transfer, or how students use shared relationships to transfer
knowledge from one context to another, in this case, from one
programming language to another [9]. When students make con-
nections between surface similarities that reflect real similarities,
this is called positive transfer. Negative transfer occurs when these
surface similarities lead to incorrect assumptions. In order to better
support students in their transition from one language to another,
researchers are describing how students manage a new program-
ming language based on their previous programming language,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0424-6/24/03.

https://doi.org/10.1145/3626253.3635566

1776

along with various interventions meant to support positive transfer.
The specific challenges students face while learning a new program-
ming language vary depending on their prior experience [7], as
do their strengths when transferring knowledge from their first
programming language [11, 12].

Applied linguistics as a field has much research on the subject
of transfer, specifically from one natural language to another. Both
computer science education and natural language learning share
the issue of how the syntax and semantics of one language influence
the acquisition and use of another language. As is the case with
programming languages, natural languages often have semantic
distinctions or syntactic structures not present in another language.
Researchers in applied linguistics have developed pedagogical solu-
tions to help students overcome obstacles in language acquisition
and leverage previous knowledge to understand the intricacies of
each language’s syntax and semantics. Interventions for avoiding
negative semantic transfer have been studied at the vocabulary [8]
and sentence [4] levels, which can be applied to learning keywords
and syntax in computer science classrooms. Additionally, contextu-
alizing languages and raising awareness of their characteristics can
promote critical thinking about how to use each language and how
their distinctions may be useful [5]. This approach can be applied
to programming languages and be used to empower students in
their own learning.

This poster reviews studies of transfer in computer science ed-
ucation and presents frequently encountered issues. Approaches
from natural language learning are presented as novel solutions to
common problems with second programming language learning in
the computer science classroom.

2 TRANSFER BY PROGRAMMING LANGUAGE

Each programming language pairing is compared in a table that
summarizes the instances of positive and negative transfer. The
peculiarities of each pairing are explored, as well as generalizations
based on shared characteristics between programming languages.
An example follows below.

Students with experience in Scratch who are learning Python
struggle with understanding which characteristics of loops apply
to their prior language and which apply to the new language [10].
These students use conditional statements with the opposite condi-
tion than needed for while loops, an instance of negative transfer
from Scratch repeat loops. Additionally, they sometimes handle the
end of a while loop with an if statement to break the loop, rather
than relying on the conditional statement, which is likely a negative
transfer from Scratch forever loops.

Students also struggle to grasp concepts related to Python-specific
traits [10]. There is often confusion about type matching, with stu-
dents using operators on variables of different types, and type

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

casting, with students recasting data types with still the wrong
type. Considering Scratch is a weakly typed language and Python
is strongly typed, students may need more information to grasp
this new concept. Students also did not understand how to initialize
an empty list, instead initializing a list with one item in it and then
later clearing it. This misconception likely stems from the fact that
lists are not explicitly initialized in Scratch.

Transitions from Alice, Snap!, and Scratch to Java, as well as
Python to Java, are also included in the poster.

3 APPROACHES FROM NATURAL LANGUAGE
LEARNING

This section reviews pedagogical approaches to semantic transfer
in natural languages, including perspectives from translanguaging
[5] and cognitive linguistics [4]. The main contribution of this
poster is the application of these approaches to the transfer issues
observed in different programming language pairings and how
these approaches can help computer science instructors.

Pedagogical translanguaging suggests that “intentional instruc-
tional strategies that integrate two or more languages” should be
used in a multilingual classroom [3]. Pedagogical translanguaging
can be incorporated into the classroom by raising metalinguistic
awareness, or awareness of a language system (e.g., syntactic struc-
tures or sound patterns) [5]. In natural languages, transfer is often
seen at the morphological level. Negative transfer occurs in the
form of "false friends," or words that mean different things but look
similar. For instance, students learning Spanish used the Spanish
"carpeta” (English: "folder") as if it meant "carpet” in English (Span-
ish: "alfombra") [6]. However, students with more metalinguistic
awareness were able to use their knowledge of the morphology
of Spanish to make complex changes to the suffixes and roots of
known words to guess new Spanish words in their writing (e.g.,
English "stressed” to Spanish "estresado”) [6].

In the context of a computer science classroom, students’ prior
knowledge of any programming language would be bolstered by
instruction that raises metalinguistic awareness. Their prior coding
experience would be an asset that they could combine with metalin-
guistic awareness to approach novel coding situations. For example,
students learning Python with experience in Scratch often use an
if-statement to break from a conditional loop [10]. This confusion
may be akin to the issue of "false friends." Students see syntax in
Python related to an infinite loop and connect it with a forever
loop in Scratch, not fully aware of the semantic importance of the
conditional statement. With pedagogical translanguaging, the dis-
tinctions between finite and infinite loops, as well as conditional
and unconditional loops, would be explained, so that students have
the vocabulary with which to think about different kinds of loops.
With more explicit conceptual knowledge about the forms that
loops can take, students could approach new keywords and syntax
in a more informed and analytical manner.

In the poster, two more methods, transcodification and input
manipulation, are applied to other examples of transfer in computer
science. In transcodification activities, students are shown equiva-
lent constructions in two languages, and their literal and figurative
meanings are discussed to explore subtle semantic differences [4].
For instance, students could compare pairs of equivalent loops in

1777

Rosalind Owen

two programming languages, using flow-charts or diagrams as ref-
erences to discuss semantic differences. Input manipulation also
addresses confusion around the semantics of a particular structure,
giving students positive evidence in context for the correct inter-
pretation [4]. While a new control structure is being introduced,
students could be shown code with key words highlighted, i.e. syn-
tax highlighting, to illustrate the crucial differences between the
languages and provide positive examples of the correct, contextu-
alized use of the structure. Example applications of both of these
methods are included in the poster.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2201209. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
(1]

Amjad Altadmri and Neil C.C. Brown. 2015. 37 million compilations. Proceedings
of the 46th ACM Technical Symposium on Computer Science Education (2015).
https://doi.org/10.1145/2676723.2677258

Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From
scratch to “real” programming. ACM Transactions on Computing Education 14, 4
(2015), 1-15. https://doi.org/10.1145/2677087

Jasone Cenoz and Durk Gorter. 2020. Teaching English through pedagogical
translanguaging. World Englishes 39, 2 (2020), 300-311.

Paolo Della Putta. 2016. Do we also need to unlearn constructions? the case
of constructional negative transfer from Spanish to Italian and its pedagogical
implications. Applied Construction Grammar (2016), 237-268. https://doi.org/10.
1515/9783110458268-010

Carles Fuster. 2022. Lexical transfer as a resource in pedagogical translanguaging.
International Journal of Multilingualism (2022), 1-21. https://doi.org/10.1080/
14790718.2022.2048836

Carles Fuster. 2022. Lexical transfer in pedagogical translanguaging: Exploring
intentionality in multilingual learners of Spanish. Ph.D. Dissertation. Department
of Education, Stockholm University.

Ryan Garlick and Ebru Celikel Cankaya. 2010. Using Alice in CS1. Proceedings of
the fifteenth annual conference on Innovation and technology in computer science
education (2010). https://doi.org/10.1145/1822090.1822138

Nan Jiang. 2004. Semantic Transfer and its implications for vocabulary teaching
in a second language. The Modern Language Journal 88, 3 (2004), 416-432.
https://doi.org/10.1111/§.0026-7902.2004.00238.x

Yvonne Kao, Bryan Matlen, and David Weintrop. 2022. From one language to
the next: Applications of analogical transfer for programming education. ACM
Transactions on Computing Education 22, 4 (2022), 1-21. https://doi.org/10.1145/
3487051

Majeed Kazemitabaar, Viktar Chyhir, David Weintrop, and Tovi Grossman. 2023.
Scaffolding Progress: How Structured Editors Shape Novice Errors When Transi-
tioning from Blocks to Text. In Proceedings of the 54th ACM Technical Sym-
posium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 556-562.
https://doi.org/10.1145/3545945.3569723

David Weintrop, Connor Bain, and Uri Wilensky. 2017. Blocking Progress?
Transitioning from Block-based to Text-based Programming. In Proceedings of
the American Educational Research Association. 1-8.

David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-
based and text-based environments to professional programming languages in
high school computer science classrooms. Computers amp;amp; Education 142
(2019), 103646. https://doi.org/10.1016/j.compedu.2019.103646

[2]

[3]
[4]

[

[10]

(11]

[12]

Linguistic Pedagogical Approaches to Transfer in Computer Science
What can CS educators learn from the second (and third) language acquisition?

Rosalind Owen, rowen@wested.org

UWested

WestkEd.org

Background Students Strengths and Weaknesses in a Second Programming Language

| | o | | | Languages Strengths Weaknesses
As more students take computer science courses at different points in their education, they are likely
to encounter more than one programming language. Recent research has investigated analogical Python — Java e Semantic transfer: matching syntax, similar syntax, functions, data structures [10] ® Conceptual misunderstandings: types; objects (especially with different syntax) [10]
transfer, or how students use shared relationships to transfer knowledge from one context to Blocks-based — Java e Semantic transfer: initially acquired various concepts faster than text-based students [13] ® Programming practices: no difference compared to text-based students [13]
another, in this case, from one programming language to another [8]. ® Programming practices: less prone to common errors than text-based students [12]
o . o Scratch — Java e Semantic transfer: for loops (initial confusion overcome more quickly); counters [1, 7] e Conceptual misunderstanding: for loops (favor while/forever loops) [1, 7]
® Positive transfer: when students make connections between surface similarities that reflect real .
S e Syntax errors, missing brackets [1]
similarities.
Alice — Java e Semantic transfer: control structures (conditionals and iteration), expression evaluation [3] e Conceptual misunderstanding: lower exam scores than pseudocode students [6]

® Negative transfer: when surface similarities lead students to incorrect assumptions.

Much research has been done on how students learn a new programming language based on their
previous programming language, along with various interventions meant to support positive
transfer. The different strengths and weaknesses students bring to a new language based on their
prior knowledge is outlined in table to the right.

Learning programming languages and natural languages both entail grappling with syntax and
semantics. The following sections apply approaches from applied linguistics that are used to learn
second and third natural languages to the issue of transfer in programming languages.

Transcodification

In transcodification activities, students are shown equivalent constructions in two languages, and
their literal and figurative meanings are discussed to explore subtle semantic differences [4].

Natural Languages

Della Putta (2016) describes the following example: when learning the verb “ir” in Spanish
(conjugated in first person present tense as “voy” below), teachers use miming to show the physical
displacement of one construction versus the temporal displacement of the other.

Voy a estudiar en la biblioteca.
‘I go/am going to study in the library.’ (p. 259)

Manana voy a estudiar quimica.
‘Tomorrow | am going to study chemistry.” (p. 259)

Programming Languages
Teachers can use flowcharts to illustrate the difference in execution between while loops and repeat
until loops.

Python Scratch

health = 5

while health > 1:
health = health - 2
print(health)

true

health = health - 2
print (health)

END WHILE

END REPEAT

Snap! — Java

Scratch — Python

Translanguaging

Translanguaging is used in teaching by incorporating “intentional instructional strategies that integrate
two or more languages” [2]. Teachers work on raising metalinguistic awareness, or awareness of a
language system (e.g., syntactic structures, morphology, or sound patterns), to give students the tools
to guess new words and constructions.

Natural Languages

When students develop metalinguistic awareness, they are able to make complex changes to words so
that they fit the rules of the target language [5]. Fuster (2022) presents the following examples of
spontaneous negative transfer and guided positive transfer (p. 14):

Negative Transfer Positive Transfer

"carpet" in English # '"carpet-a" in Spanish “stress-ed” in English = “e-stres-ado” in Spanish

(Spanish: "alfombra") (English: "folder")

Programming Languages
A common instance of negative transfer: students with experience in Scratch use an if statement to
break from a conditional while loop in Python, incorrectly using Scratch rules with Python syntax.

Scratch Python (negative transfer) Python (correct)

while not (ask == "stop"):
do something with ask

while not (ask == "stop"):

_. # do something with ask
L 4 X

o Ty m # loop with break automatically
do something with ask :lf ask == "stop : # when ask == "StOp"
% | break |
[9, p. 560]

Solution: increase students’ metalinguistic awareness of “infinite loops,” explicitly discuss the
vocabulary and concepts needed to analyze the semantics of this control structure.

Forever loop (Scratch) Infinite loop (Python) Conditional loop (Python)

® Conditionally infinite loop:
will continue as long as the
condition following while is
true. If the condition can be
false, then the loop will
break automatically.

® Infinite loop: will continue e |f the condition is always
unless stop block is reached. true, then like a forever
loop, it will continue unless
break is reached.

while True:
do something

e Conceptual misunderstanding: for loops, while loops, variables/expression evaluation,
conditional statements [11]

® Syntax errors (string quotes, operators, variable assignment) [9]
e Conceptual misunderstanding: type casting, type matching, conditional loops (using opposite
condition in a while loop, or if statement to break a while loop) [9]

Input Manipulation

Input manipulation gives students positive evidence in context for the correct semantic interpretation [4].

Natural Languages

Della Putta (2016) provides the following example used to teach students the meaning of the “ri-” prefix in
Italian:

Le strane abitudini del signor Rossi

Franco Rossi e un ingegnere che ha delle strane abitudini: fa sempre tutto due volte. La mattina si alza,
torna a letto e poi si rialza ancora. Poi prepara il caffe per tutta la famiglia ma, subito dopo, lo
riprepara, un’altra volta! Poi va al lavoro, entra in ufficio, esce e rientra ancora. La sera, finalmente,
torna a casa, saluta i figli, li risaluta e poi bacia e ribacia Anna, sua moglie. (p. 262)

Programming Languages

While a new control structure is being introduced, students could be shown code with key words and
punctuation highlighted (i.e. syntax highlighting) to illustrate the crucial aspects of the syntax and provide
positive examples of the correct, contextualized use of the structure. Below the syntax highlighting shows
while loops in Java and their outputs, demonstrating the directionality of the conditional statements.

int health = 5;

while (health > ©0){
health = health - 2;
System.out.println(health);

int myPoints = @;

while (myPoints < 10){
System.out.println("Low score");
myPoints = myPoints + 2;

¥ };
2

3

1 6
8
10

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 2201209. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Selected References

[1] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From scratch to “rea
(2015), 1-15. https://doi.org/10.1145/2677087

[2] Jasone Cenoz and Durk Gorter. 2020. Teaching English through pedagogical translanguaging. World Englishes 39, 2 (2020), 300-311.

[3] Wanda Dann, Dennis Cosgrove, Don Slater, Dave Culyba, and Steve Cooper. Mediated transfer: Alice 3 to java. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (Raleigh, North Carolina) (SIGCSE 2012).

[4] Paolo Della Putta. 2016. Do we also need to unlearn constructions? the case of constructional negative transfer from Spanish to Italian and its pedagogical
implications. Applied Construction Grammar (2016), 237-268. https://doi.org/10.1515/9783110458268-010

[5] Carles Fuster. 2022. Lexical transfer in pedagogical translanguaging: Exploring intentionality in multilingual learners of Spanish. Ph. D. Dissertation. Department
of Education, Stockholm University.

[6] Ryan Garlick and Ebru Celikel Cankaya. 2010. Using Alice in CS1. Proceedings of the fifteenth annual conference on Innovation and technology in computer
science education (2010). https://doi.org/10.1145/1822090.1822138

[7] Shuchi Grover, Roy Pea, and Stephen Cooper. Designing for deeper learning in a blended computer science course for middle school students. Computer science
education 25, 2 (2015), 199-237.

[8] Yvonne Kao, Bryan Matlen, and David Weintrop. 2022. From one language to the next: Applications of analogical transfer for programming education. ACM
Transactions on Computing Education 22, 4 (2022), 1-21. https://doi.org/10.1145/3487051

[9] Majeed Kazemitabaar, Viktar Chyhir, David Weintrop, and Tovi Grossman. 2023. Scaffolding Progress: How Structured Editors Shape Novice Errors When
Transitioning from Blocks to Text. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023).
Association for Computing Machinery, New York, NY, USA, 556-562. https://doi.org/10.1145/3545945.3569723

[10] Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Programming Languages: Exploratory Study of Relative Novices. In Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE '20), June 15-19, 2020, Trondheim, Norway. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3341525.3387406

[11] David Weintrop, Connor Bain, and Uri Wilensky. 2017. Blocking Progress? Transitioning from Block-based to Text-based Programming. In Proceedings of the
American Educational Research Association. 1-8.

[12] David Weintrop and Uri Wilensky. Using commutative assessments to compare conceptual understanding in blocks-based and text-based programs. In
Proceedings of the eleventh annual international conference on international computing education research (2015), 101-110.

[13] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-based and text-based environments to professional programming languages in
high school computer science classrooms. Computers amp;amp; Education 142 (2019), 103646. https://doi.org/10.1016/j.compedu.2019.103646

|H

programming. ACM Transactions on Computing Education 14, 4

