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1 Introduction and summary of results

Superstring theories in a ten-dimensional (10d) spacetime are known to admit, in a classical
regime, effective theories which are the 10d supergravities. The classical regime refers to a
double expansion in the string coupling constant gs, and in the string length [; captured by
the parameter o/ = [2. The former requires g; < 1 to provide a perturbative expansion in
string loops; the latter requires Is/r < 1 where r corresponds to the typical length probed,
or equivalently 1/r corresponds to the typical energy below the cut-off scale of the effective
theory. The condition I;/r < 1 allows both to truncate the string spectrum to its massless
states and to restrict the effective theory to two-derivative terms, as the first level in a
corresponding expansion. The smaller g5 and [;/r are, the better the approximation using
10d supergravities is: corrections become negligible or at least controlled. In that case, a
solution to 10d supergravity is a classical string background.

A crucial point, however, is that 10d supergravities are theories in their own right. Hence,
although a supergravity theory would have a Planck mass, and p-brane charges, their relation
to ls is a string theory input. Similarly, the relation of g5 to the vev of the dilaton field in a
given solution comes from string theory; at the supergravity level, a constant dilaton can



actually be absorbed in a redefinition of the fluxes and p-brane charges, and disappears from
the equations. Therefore, given a supergravity solution, asking whether it is a classical string
background requires to make the ;- and gs-dependence explicit by relating it to an effective
field theory derived from string theory. This is achieved on the one hand by relating the
10d Planck mass to o/ and gs, but also by imposing the “source quantization”, i.e. explicitly
deriving the brane and orientifold charges as well as their amount from a string theory
background, and similarly realizing flux quantization in units of o’ (those two requirements
can sometimes be combined into the so-called tadpole condition). In other words, the question
of “classicality” of a supergravity solution, usually phrased as having a small g; and a large
volume (referring to the typical size r of compact extra dimensions, as compared to ls), also
requires flux and source quantization. In our setup, we need to add another requirement,
which is an additional quantization condition dubbed the lattice condition, which ensures
compactness of the curved extra dimensions. These five requirements were listed and studied
for classical de Sitter solutions in [1].

Determining the precise value of g or Is/r for a typical radius r can only be done on a
case-by-case basis for a given supergravity solution. Instead, one often looks for a scaling
parameter v > 1, such that the solution can be scaled to another solution via » — ~r and
gs — v~ %gs, ¢ > 0. If this is possible for an arbitrarily large 7, then g5 and I;/r can be as
small as desired, leading to parametric control (on classicality); the precise values of g5 and
ls/r in a given solution then do not matter. Note that the other requirements for classicality,
e.g. flux quantization, should remain compatible with such a scaling, for instance making an
integer grow and not diminish. Such a situation has been realized in the seminal example of
the so-called DGKT solution [2] (see also [3-5]), for which the 10d spacetime is a 4d anti-de
Sitter spacetime, times a 6d torus orbifold. Thanks to flux quantization, one can show that
the typical squared radius for the torus orbifold goes as K3 v; ~ lg ns and s ~ n_%, with a
(possibly large) parameter n (see e.g. [6] for a precise evaluation).

Since gs and r may also get mapped to scalar fields in a further 4d effective description,
the existence of such a scaling is sometimes also investigated through a corresponding scalar
potential. For de Sitter solutions, which are the subject of this paper, this has been the
case in [7-11]. In those works and others [1, 12], it was concluded that classical de Sitter
solutions with parametric control likely do not exist (although loopholes were also indicated
in these arguments). If this is true, the best one could hope for is a classical de Sitter solution
with “local” or “numerical” control. The latter would mean that quantities such as g5 and
ls/r, which control the corrections to the solution, are numerically small, without having
necessarily a scaling parameter to further adjust them. In absence of any parameters this
amounts to finding dimension zero loci (i.e., isolated points) in the parameter space. One
could also have a “local” scaling parameter, meaning that the parameter is only allowed to
vary in a finite range (and cannot be sent to infinity) [1]. The solution could then be viewed
as located on an isolated patch in parameter space, not connected to the asymptotics. In
those cases, the de Sitter solution would happen to be classical, meaning corrections are
controlled but not parametrically. Note that in either case one has to carefully evaluate the
quantities entering the classicality constraints, which requires technicalities associated to the
five requirements listed above (flux quantization, etc.).



This line of thought for de Sitter solutions is in agreement with the latest versions of
the swampland de Sitter conjecture [13-15], which claim that a de Sitter solution cannot
be obtained in a 4d string effective theory (as a critical point in a positive scalar potential)
at the asymptotics of field space. Interpreting the latter as the limit of small g5 and Is/r,
one deduces indeed the absence of parametrically controlled de Sitter solutions in a classical
regime. Nevertheless, a classical de Sitter solution in the bulk of field space, numerically or
locally controlled, are a priori still allowed by these conjectures.

What is actually the situation when looking at concrete solutions? So far, most candidates
for classical string background solutions with a 4d de Sitter spacetime have been obtained
from type II supergravity compactifications on 6d group manifolds. A motivation for using
those manifolds is that they are easy to handle (since they are essentially torus fibrations),
while providing negative 6d curvature, Rg < 0, a common requirement for such solutions in a
smeared limit. A recent classification of such solutions, together with an extensive search
for supergravity solutions, as well as a study of their properties (including stability), has
been conducted in [16-18]. We refer to those, as well as to [12], for a review and a list of
known solutions. As explained previously, having de Sitter supergravity solutions is only a
first step towards a classical string background. To test the latter, one needs to fulfill five
requirements. The geometry of group manifolds complicates the concrete implementation
of such tests. The authors of [7-9] studied concrete examples in type ITA supergravity with
Og orientifold planes (class sgggq of [16]) and concluded that no parametric control with an
appropriate scaling exists there. In [1] (see also [19]), a detailed evaluation of the relevant
quantities for the five requirements was performed for certain type IIB supergravity solutions
with Os planes (class si); we follow to some extent that reference here. The conclusion
was also negative: while flux, source and lattice quantization conditions could be satisfied
together with g5 < 1, it turned out that 2 of the 6 radii were substringy, namely r3,rg < .
In a conservative view, this does not allow classicality and control over corrections, even
though we will revisit such a conclusion in this paper. To summarize, no clear classical de
Sitter string background has been identified up to now, not even one with local or numerical
control rather than parametric control over corrections.

In this paper, we revisit this problem in several ways. In section 2, we start by working-
out in great details the formulation of the problem. We search for supergravity de Sitter
solution in type IIB supergravity with Oz planes in the class 3;5. These obey a simple ansatz,
for which some solutions are already known, in particular solution 14 [19], denoted 3;514,
obtained on the 6d group manifold with algebra g3 5 @ g3 5. This solution is first found and
expressed in terms of a set of variables var1l (flux components, etc.), as in (3.1). In order
to identify the lattice conditions and ensure compactness, but also to quantize harmonic
components of fluxes, we need to re-express it in terms of a second set of variables var2,
going through a change of basis in the 6d manifold. Finally, we introduce a third set of
variables var3, that is subject to the classicality constraints: those are the 6 radii r1 . g, gs,
flux integers, number of sources, etc. While the supergravity solutions are most easily found
in terms of varl, the classicality constraints are easily expressed in terms of var3, which
complicates the problem. The definitions and relations between these variables are given in
section 2: an overview is given in section 2.1 while a summary can be found in section 2.4.



Technicalities on the change of basis and the quantization conditions leading to the classicality
constraints are detailed in section 2.2 and 2.3, and appendix A.

This detailed formulation then allowed us to launch advanced numerical searches for
classical solutions. Three methods are presented in section 3. The first one in section 3.1 is
similar (though more systematic in its implementation) to the one used in [1], and allows to
provide values of var3 for solution 14, in particular the radii r; ¢ and g5 (3.2). We note a
missed factor of 27 in that reference, that we correct here, providing new values. An (a priori)
more efficient method is proposed in section 3.2: there, we attempt direct searches of solutions
in terms of var3, allowing to impose in the search the classicality constraints. However, it
seems that we face there numerical difficulties, for reasons we explain and illustrate. A last
method is proposed in section 3.3, leading to a new de Sitter solution 8;529, given in (3.5)
and (3.6). Qualitatively, it is similar to 3;514. While having the lattice, source and flux
quantization conditions satisfied, the two solutions have

Solution 14: gs ~ 0.64 r1,245 > ls, r3 ~ 0.0515, rg ~ 0.091,, (1.1)
Solution 29: gs ~ 0.53, 1,245 > s, rg ~ 0.071,, r¢ ~ 0.08 I, . (1.2)

While gs < 1 and 7124

1<y

actually non-trivial to conclude from this that the solution is non-classical, and we discuss

5 > I is satisfied, having r3¢ < [ is worrisome for classicality. It is

this point and related corrections in the Outlook; in particular, we note that r3, rg normalize
non-closed one-forms, and in that sense, do not correspond to volumes of one-cycles. Still, our
conservative criteria for classicality are not all satisfied. In addition, we cannot find better
solutions in that respect, and it is unclear to us whether there is a theoretical obstruction
or simply a numerical limitation of finding the solutions.

Interestingly for the question of classicality, we present in section 4 a scaling with
parameter 7, that maps one solution to another: the effect on the supergravity variables
amounts to a homogeneous scaling with 1/4% in the 10d equations, ensuring that the equations
remain solved. This 7-scaling, expressed on the variables var3 (4.2), has several appealing
features: one is that it goes partially towards the direction of a classical regime. In fact,
there is a family of scalings with some freedom in how the individual quantities are scaled.
In a simple setup that fixes some of the exponents, we get

1 . .
Tas —>YT45, Ti2 — Y2Ti2, s, 73,76 invariant. (1.3)

Four of the radii then grow parametrically while the other two as well as g5 are invariant.
This results in parametric control over the volume of the compactification manifold. We
also note that the scaling is such that the classicality constraints are preserved, up to a
discretization of v due to its action on a flux integer (which grows with + in this case).
Therefore, if we had a solution with admissible values for g, rs, 6, we could claim for the
first time a classical de Sitter solution with parametric control over classicality, analogously
to the DGKT solution mentioned above.

We present this scaling at the level of the 10d theory in section 4.1. In section 4.2 and
appendix B, we attempt to identify it in a corresponding 4d theory, using the work of [18].
The 4d scalar potential, as well as the 4d Ricci scalar R4 in 4d Einstein frame, are expected
to scale as 1/4° (at least in simple versions of the y-scaling). We face difficulties to realize



the v scaling at the 4d level via a combined action on the 10d background quantities entering
the 4d scalar potential and the 4d scalar fields. One reason is the lack of an explicit map
of 10d quantities such as the radii to the 4d fields, especially when including off-diagonal
6d metric fluctuations. Despite this situation in 4d, we still discuss the question of scale
separation in section 4.3 and conclude that it cannot be achieved using the scaling in our de
Sitter solutions. Indeed, we identify a Kaluza-Klein tower that scales in the same way as Ry,
which means that the mass gap is not parametrically large. A more detailed analysis of this
question including other contributions to the spectrum is beyond the scope of this work. In
10d on the other hand, a classical de Sitter solution with parametric control would be possible
if we found solutions with appropriate values for gs,r3, . Perhaps even the solutions we
have now do not receive stringy contributions, due to the fact that the substringy objects
are not cycles as mentioned above and corrections need to be evaluated.

The scaling freedom seems to contradict the swampland claims that asymptotic de Sitter
solutions do not exist. The lack of clear numerical control on 73, 7¢ and on the corrections, as
well as the difficulties in getting a 4d realization of the scaling, means that we do not have
a conclusive counter-example to these claims. Nevertheless, in section 4.3, we revisit the
arguments against such solutions put forward in [8, 10, 11]. We identify the precise loopholes
in those arguments and find that our scaling and setup actually utilizes these loopholes. A
major reason is that our compactification space is a solvmanifold with curvature and a specific
fibration structure. More precisely, the geometry is described by pairs of structure constants.
Compactness only quantizes their product, not their values individually. This allows to balance
the magnitude of one versus the other, in conjunction with adjusting the radii; we refer to
section 4.3 for a more precise discussion. This property of solvable algebras and solvmanifolds
is a building block in the v scaling, and helps in getting these asymptotic solutions.

At this stage, one may wonder whether a classical de Sitter solution of the type described
above could be used for cosmology. Focusing on the universe today and the question of
dark energy, we believe that such solutions are interesting candidates that would deserve
more investigation. Solutions 14 and 29 are perturbatively unstable, with iy ~ —4 due to
a single tachyonic field direction;' dark energy would thus not be realized via the common
scenario of a cosmological constant due to a positive potential minimum. But it turns out
that a quintessence scenario, with a field rolling down from a de Sitter maximum, even with
ny ~ —O(1), can actually be in agreement with observations, as pointed out e.g. in [22].
Indeed, the key point is that the Hubble friction could hold a field on top of such a maximum,
until a recent time where the Hubble parameter got lowered to match the value of that
potential maximum, allowing the field to start rolling. We also note that models considering
a varying equation of state parameter w = wg + wy(1 — a) get the observational constraints
wo ~ —0.77,w, ~ —0.83 [23]. The fact that wy > —1 and w, < 0 signals the possibility of
starting at a de Sitter point where w = —1 in a recent past, and gain some kinetic energy
until today. While requiring a more detailed analysis, such possibilities with the solutions
above are appealing. We also note that the scaling freedom naturally allows for solutions

!Such a perturbative instability makes these de Sitter solutions agree with the refined de Sitter swampland
conjecture [20, 21]. The latter is an older version of the conjecture, when compared to the latest claim,
mentioned above, of no asymptotic de Sitter solution, on which we focus in this work.



with a small cosmological constant. More ideas for future investigations are presented in
an outlook in section 5.

2 Classical de Sitter solutions: setup and variables

In this section, we present the formalism needed to search for classical de Sitter solutions.
The search itself is described in section 3. Beyond the general compactification setup, we
present the variables in terms of which equations should be expressed to find solutions. Three
different sets of variables will be introduced, going from variables of a supergravity solution
(e.g. a flux component) to those with which classicality of the solution can be tested (e.g. a
flux integer, the string coupling and radii). An overview is first provided in subsection 2.1
while a summary is given in subsection 2.4. Technicalities are detailed in subsections 2.2
and 2.3, together with appendix A.

2.1 Supergravity solution variables and quantized versions: a first glimpse

We look for de Sitter solutions of 10d type IIB supergravity that can obey the requirements
for being a classical string background. Starting with supergravity, we consider solutions
with a 10d spacetime being the direct product of a 4d de Sitter spacetime and a 6d compact
manifold M, where the latter is a group manifold. In the 6d (internal) dimensions, we work
with 1-forms e* = e%,dy™, a = 1,...,6 called coframes. As M is a group manifold, the
underlying Lie algebra structure constants f%,. are related to the spin connection on M.
The 1-forms obey the Maurer-Cartan equation

1
de® = —3 e e® Ael. (2.1)

The f%,. encode most of the 6d geometry, together with the 6d metric g., = d4p, Which is
trivial in this basis. Such de Sitter solutions on group manifolds have been classified in [16],
and we focus here on the class s;%. These solutions include sources that are orientifold
Os-planes and Djs-branes. We arrange them into three sets (labeled by I = 1,2, 3) of parallel
sources as follows:

Internal Dimension a
Source Set [ 112103141516
I=1 (D5 and 05) X X (2'2>
I1=2 (D5 and 05) X X
I =3 (D5 only) X | %

We denote the contributions of each source set I, i.e., their charges and amount, by T},.
The orientifold projections put restrictions on the allowed structure constants and flux
components. The latter are denoted Hgp. for the NSNS H-flux 3-form in the e® basis, and
Fi 4, Fype for the components of the £} and F3 RR fluxes; we will not consider Fy fluxes. The
field content (structure constants, flux components, source contributions) allowed by the
orientifold projections in the class sd5 is listed in [16, (2.14)] and we will consider part of it in
the following by restricting the class to a specific ansatz. We refer to [16] for more detail on



the general compactification and solution ansatz. In particular, the dilaton ¢ is constant and
captured by gs = e?. There is also no warp factor and the Os/D5 sources are smeared. A
consequence of this ansatz is that all variables appearing in 10d equations, namely

6abv fab07 Habca gqual...aqa gsT{Oa (2-3>

are constant, which helps solving the 10d supergravity equations. In addition to [16], the
following is also based on [1, 17, 19].

One difficulty with group manifolds, especially solvmanifolds, is to understand their
global aspects, in particular compactness. A compact group manifold M is constructed
by taking the quotient of a Lie group G by a discrete subgroup I' ¢ G, M = G/I". The
action of I' leads to global identifications of coordinates of the manifold associated to G,
rendering M compact. The existence of such a lattice is not always known or guaranteed for
solvable groups. Moreover, when such a lattice exists, its explicit action is often not easy to
implement. The situation we can control is when the 1-forms e® that solve Maurer-Cartan
equation (2.1) can be expressed explicitly in terms of coordinates. In this case, the global
identifications of the coordinates (the lattice action) leave the e invariant up to quantization
conditions of the structure constants, as we will illustrate in examples in (2.46) and (2.51).
Such a controlled situation is typically realized when we are in a basis {e*'} where only a
few structure constants are non-zero, which allows us to solve (2.1). However, supergravity
solutions are found more conveniently in a basis {e®} with many non-zero structure constants.
We refer to the bases {e*} and {e®'} as the sugra basis and geometry basis, respectively. The
degrees of freedom get shuffled around in the two bases: in the sugra basis, we have a trivial
metric g = 1, and typically many non-zero f%,.. The simple form of the metric helps to solve
the supergravity equations. We can then change to the geometry basis via an isomorphism
described by a matrix M, ¢’ = Me, such that only few of the f%}_ are non-zero at the cost of
having a more complicated metric g = M~71M~!. This metric now contains the degrees of
freedom previously encoded in the structure constants. In the geometry basis, we can work
out the quantization conditions of the structure constants, and understand more generally the
global aspects of the 6d geometry. Both bases are therefore necessary, and we will construct
M to the variables (2.3) in both bases. We refer to the variables in the sugra basis as varl.

So far we have only discussed the supergravity solution. In order to test its “classicality”,
we need to quantize fluxes and source terms. Importantly, the quantization of fluxes only
needs to be imposed on their harmonic representative. Irrespective of the basis, any p-form
can be Hodge-decomposed into a harmonic part, an exact part, and a co-closed part. For
example for F3,

F3 = F3 harmo T dA + *GdB s (24)

where F3phamo, A4, B are globally defined forms. Together with the rest of the variables in
the geometry basis such as the structure constants, metric, and source contributions, this
data forms the set var2. This set of variables will be the one on which all quantization
conditions can be imposed and classicality can be tested.

To give an example of how this works, let us consider a part of the 3-form flux given
by F,, w, where F,, is constant and w is a harmonic form for a cycle ¢ with radius r. The



flux quantization condition then requires

1

1 Is\?

Note that the radius dependence enters since in our conventions, the 1-forms e® contain the
radii but the metric does not. Consequently, the flux components contain inverse radii (they
can be viewed as multiplied by vielbeins). On top of integers encoding the flux quantization
conditions, we get further integers from source term quantization (which also involves some
volumes and radii), and from the structure constants quantization conditions. All these
integers, the radii, g5, and a few more quantities enter in the last set of variables necessary to
describe a solution, which we call var3. In the following, we will detail relations between
the various variable sets and how they enter the classicality constraints.

2.2 Supergravity solution ansatz in the two bases and harmonic flux
components

In this subsection, we define different sets of variables, in particular varl and var2, and give
explicit relations between them. Those are needed in the solution search and the classicality
study. This part is somewhat technical and readers can refer to the summary in subsection 2.4.

We want to search for de Sitter solutions in terms of the constant variables (2.3). We
further restrict the ansatz by setting some of these variables to zero, and keep only the
following ones:

vart: flus, flas, 235, a5, a6, P15, [R5, fo1a (2.6)
s

Fiss, Fi36, Fia6, Fo3s, Fase, Faue
Hi25, H346

1 2 3
T10> T107 TlO )

where in particular F5 = 0 and we dropped the subscript 3 for the components of F3. This
set of variables, varl, contains quantities in the sugra basis. A further restriction to our
ansatz is the requirement that four of the structure constants are non-zero

Frag 014 fPa5 P25 #0. (2.7)

As we will see, this is the ansatz of de Sitter solutions 14 and 15 [1, 19] and of solutions 22-27
of [24]; a complete solution database can be found in [16] or [18].

Some properties of these solutions can be anticipated already by solving some of 10d
equations (listed in [16, appendix B.2]) in terms of the fields (2.6). To start with, the only
non-trivial Jacobi identity that the structure constants need to satisfy fixes f?4 in terms
of other structure constants

fPas = _7f215 flas. (2.8)
[225
Turning to fluxes, the H-flux Bianchi identity dH = 0 leads to the relation
3
Hygs = —@HMG- (2.9)
[ta6



Introducing the parameter b = ?3}2255, one can show that?

1
H = b(f325 6125 _ f146 6346) —dlb 613 + %624 ’ (210)
[?s5
where we used the Maurer-Cartan equation (2.1). This means that H has to be an exact

3-form. Turning to F3 and using our assumption F5 = 0, its equation of motion becomes
dxg F3 =0. (2.11)
This means that the components of Fj satisfy
fP35F135 — fla69" Fiae — [laFaas = 0. (2.12)

As a consequence (using (2.7)), F3 has only 5 independent components. As for H, which
is exact, we would like to perform a Hodge decomposition (2.4) for F3. We can use the fact
that F3 is even under an Oz projection. This restricts A and B,

F3 = ZF?)M Wi (2.13)

(2

+d (612 el? + €34 et + C56 656> + xgd (alz el? + as4 e34 + asg 656) , (2.14)

where we sum over harmonic forms wj, to be specified. It is straightforward to verify that (2.11),
together with (2.7), implies the absence of an exact part in F3, namely cj2 = ¢34 = c56 = 0. We
will be more explicit about the other components of F3 in the following. But we can indicate
already that the five independent components of F3 correspond to the five independent
parameters F3,,, F3.,,a12,a34, as6.

The solution ansatz (2.6)—(2.7) for the variables var1 allows for an analytic change of
basis to the geometry basis {e?'}, where we have better control over the 6d geometry. The
change of basis ¢/ = Me is expressed in terms of three real parameters that we denote (for
reasons that will become clear) by g'2, g3, ¢°%,

/ / / /
#2306 a2 2 12,1 8 3 344 6 6 56,5 (2.15)

As mentioned previously, this leads to a change of the metric from the identity 4, in the
sugra basis to ggp in the geometry basis. One has ¢7' = M1 M7, ie.

1 912

gl2 1+ (912)2

1 1 + (934)2 934

9 = g3 1

(2.16)

1 956

956 1+ (956)2

2We use the notation e!?® = e! Ae? A€, etc.



This explains the notation of the three real parameters: they are off-diagonal components of
the inverse metric. In terms of those, one also gets the metric

14 (912)2 _gl2
_912 1
1 g34

1 + <g56)2 _g56
_956 1

(2.17)

This change of basis and metric was found and discussed for solution 14 in [19, appendix C].
More concretely, we fix the three parameters as follows in terms of the initial structure
constants,
v PP sa flaefas — [asffae s flas
TP YT fla6f?35 T e

Doing so allows to set four structure constants in the geometry basis to zero, as can be

(2.18)

verified with the Maurer-Cartan equation (2.1). The remaining four structure constants are
not modified by this change of basis, so we do not need label them with a prime: those

are the non-zero ones in (2.7),

FPa5, 225, flae, fO1a (2.19)

This change of basis then achieves what was explained above: it reduces the structure
constants to a few that are non-zero, from which we can get an explicit and global description
of the 6d geometry. As indicated in (2.8), f?46 can be fixed in terms of other structure
constants. Therefore, three independent structure constants are set to zero by the change of
basis. The information they carry goes into the three parameters g'2, ¢34, ¢°¢, which appear
in the geometry basis as metric components. The inverse relation, from (2.18) and (2.8), reads

5 =9"Fs, flas =g Flas, P16 =—9"f a6, a5 = 9% P55 — 920" flas.  (2.20)

Let us look at the transformation of the various quantities under this change of basis.
An important feature is that this change of basis preserves the volumes of the three source

sets (see related discussions in [16, appendix A] and [19, appendix C]), namely el?' = ¢l2)
34 = e34, e = e, As a consequence, the source contributions
T, T, Tiy (2.21)

are the same in both bases and we do not need to worry about the orientifold projections.

Turning to fluxes, we first note that Fj is unchanged: indeed, it has a single component along

the @ = 5 direction, and e® = 65/, so its component is not modified

Fi=Fise® =F5¢. (2.22)

5

Moreover e° is a harmonic form in either basis.
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The first flux that changes is the H-flux. Its expression as an exact form is the same

in both bases,
13 flas 24 13/ flas 24/
H=d[bfe +%€ =d|b|e +%6 5 (223)

because the 2-forms that appear above get modified by a closed form. The H-flux receives a
new contribution in the geometry basis, for which we get the relations

Hiys = Higs = bf395, Hiyg = Hase = —bflas, Hhys = bfla6g° . (2.24)

Finally, the change in the F3 components is more involved. The components in the

geometry basis (including new ones) are given as follows

Fizs = Fiss — g°°Fiss — 9" Fass + "9 Fase,
Flys = Fuas — g% Fiss + 9°'9"° Fizs — 9°° Fuas + 9'%9* Fass — 9'°9 9™ Fase
— 9" Fass + "9 Fass,
Flsg = Fiss — 9" Fase,
Fiy6 = Fuas — 9> Fiss + 929> Fags — g Faue, (2.25)
Fjas = Fags — "0 Fage,
Fyys = Fags — g% Fags + %1 9" Fags — 9°° Faue,
Fo6 = Fase,

/ 34
Fou6 = Fose — g7 Fage -

To summarize, in order to get a better control on the 6d geometry, we perform a change
from the sugra basis to the geometry basis, given by (2.15) and (2.18) on the one-forms.
The resulting changes are schematically

et — eV
5ab — GJab
Hape — Hclbbc
Fape = Fipe (2.26)

while Fj5 = F] 5 is unchanged, the TIIO are unchanged, and out of the structure constants,
four remain non-zero and are unchanged. The new metric is not diagonal anymore, and
some flux components are changed.

We now come back to the expressions of fluxes in terms of harmonic forms, in order
to obtain the set of variables var2. Recall that the H-flux is exact, so it does not need
quantization, while Fj is already expressed as a harmonic form. Thus, we focus on Fj
decomposed as in (2.14). We identified in [1] four harmonic 3-forms with constant components
in the co-frame basis, w;—1,... 4. We recall that w3 = 156’ +dos, wy = o234/ +doy, where o3 and
04 are proportional to 36’ These two harmonic forms are odd under the Os projections, so
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they do not contribute to F3. We thus focus on wy 2, and rewrite them in both bases as follows

wi = e 4+ doy = !0 4 d5, (2.27)
wy = €23 4 dog = €® + "% 4 d5,

1 1. 2
_ «
with 03 _af146(612+@ 56 34) af 161735 34 56

e
f325 fO14
Gy = af235( _el2 4 f235 34 56) . 04f235f146956634
fO14 f325
B g12
o =

(f235)% 4+ (fla6)?(1 4 (9'2)2)

In the sugra basis, this leads to

wi = e0 ¢ afly (f235el35 _ f146(6246 +gl2€146)) (2.28)
a
= aflyefase!® + ﬁ<(f235)2 + (f146)2)6146 — afflyg)2e0

Wy = 6235 + a(f146)2(1 + (912)2)6135 +Oéf146f235(€246 +9126146)

It is easy to verify that they are harmonic in the sugra basis, since dw; = d *g w; = 0.
We furthermore find that

*6d<a12612+a34€34+a56656> =—arafla6e™’+(ar2f a5 —aza fPa5)et (2.29)
—a12 24630+ (ar2 fPastaza fP15+ase fO14) 20 —ara f235e2%0.
Expanding F3 as
F3= Y Fyuw;i + *6d (a12 e'? + agq € + asg 656) : (2.30)

i=1,2
which is the same in either basis, we can now relate its components to those in the sugra basis

Figs = Fypaftas 235 + Fywa(flas)* (1 + (¢')?) — araflas (2.31)

Figs = araf'45 — azaf 25
o
Fie = F3wlg?((f235)2 + (f146)2> + Fyuyorf a6 359"

112
Fyss = F3,, +a12f 469

2 3 6
Fo36 = a12f 45 + azaf?15 + ase6f 14

Foss = —Fs,a(f1a6)* + Fawpaflas f235 — a1afs5 -

A cross-check for these expressions is that (2.12) is satisfied. It is also useful to invert
the above, to get

Fs, = (1 +ag'?(flue)*(1 + (912)2)> Fue — aftaef359"% (Fass + g2 Fiss) (2.32)

(0%
F3u, = el ((f235)2 + <f146)2> (Fass + 92 Fizs) — af'46/%359" Fuas -
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We finally introduce the set of variables var2

var2: f146)f2357f3257f6147gl27934’g56 (233)
Fis

F3,, F3u,, 012, a34, 56
b

1 2 3
jloajEOajEO

These are the quantities in the geometry basis, expressed in terms of harmonic components
for the fluxes. This is the variable set on which we will be able to apply all quantization
conditions, in the next subsection. We also gave explicit relations between varl and var?2.

2.3 Quantization conditions, 6d algebras and classicality

We are now ready to give the quantization conditions for the variables (2.33) in the set var2,
namely the flux quantization of their harmonic components, the source quantization in terms
of their number, and the lattice conditions on the structure constants. The latter depend on
the 6d algebra underlying the group manifold and we will detail the possible algebras given
our solution ansatz. Finally, given these quantization conditions, we will list the constraints to
get a classical string background. This will involve a third set of variables which we call var3.
Again, readers may skip this technical information and read the summary in subsection 2.4.

The advantage of the geometry basis is that the group manifold geometry can be
understood more easily. One can find explicit expressions for the one-forms e’ in terms of
coordinates, and read off the fibration structure and the global coordinate identifications
related to the lattice. We will do this following mostly [1, 19]. A first application is to get an
expression for the structure constants in the geometry basis in the form

a Na
o = el (2.34)

TpTe

where the numbers N, are quantized according to lattice conditions and r, > 0 are “radii”
appearing in the expressions of e%’. We recall that in our case, the non-zero structure constants
in the geometry basis are equal to those in the sugra basis, so we drop the prime on them.
Another benefit of the geometry basis is that it is easy to obtain the norm of harmonic forms,
using their explicit expression as discussed in [1],

/m /146 (2m)? rirare /wz /235 (2m)% rorgrs . (2.35)

This norm is useful to impose string theory flux quantization, which requires for a harmonic
U(1) flux on a cycle X

W/F N, €Z, (2.36)

where [; is the string length. Finally, the string origin of the source contributions fixes

their charge and number as
Ty
p+1

(2mls)TP

— 2p—5NI _NI
@2, - v, E2

(2.37)
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with integers Nép and N {)p being the number of O, and D, in the set I. The transverse
volume wol;, = [vol;, could in principle be computed in the geometry basis. However,
as explained in more detail in appendix A, this can be subtle since in the 10d spacetime,
spaces wrapped are not always along cycles, even though the volume forms are always
globally defined. We take vol; , = (27)07P 7y, Ly Tag_y 1o corresponding to schematically
counting radii as 27rr, = [e.

Finally, as discussed in [19, section 4.2], there exists an overall scaling symmetry of
all 10d equations,

1
A2

1

TIIO) FQ)HafabcﬁA

Tl — F,, H, f%, X>0. (2.38)
Thus, we can rescale any given supergravity solution prior to imposing the quantization
conditions. This freedom can certainly help, so we introduce the parameter A\ as an extra

variable in the previous relations. It will play a further crucial role in section 4.

The above, applied to our solution ansatz, leads us to consider the following expressions
or quantization conditions for the relevant variables in var2 in (2.33), to ensure a string
origin and a compact group manifold

1 1 gsNisls 1 1 gsN,, I3 1 1 gsN, I3
—gsF15= X — —g.F3, =——x 225 —gsFy,, =——x 22258
N e 1o ol rs P 2mly "~ rirare )\ o3 2mly ~ rorars
1 1 6gs N2 1 5 1 6gs Nl
— 9Ty = X S AT X 2
)\2 9s+10 (271'[3)2 r3rarsre ’ )\2 9s+10 (271'[5)2 r1rorsTe ’
1 1 6gs Ny3ld
. T3 — % S
)\2 9s 10 (27Tls)2 r17r9Tr3Ty ’

1 1 r9 N 27l 1 1 r3 N3 27l

*f235: % 24V2 37 *f325: % 34V3 s

A 27l r3rs A 27l rors

14 1 r1N127ls 1 1 r6Ng27ls

/\f o4 27‘('[5 T4T6 ’ /\f 14 27‘(’lS 174 ( )

where we introduced the source numbers Ng; = Nés —N {75. In the following, we drop the 27l
factors, as they can be absorbed in a redefinition of A. This amounts to giving the supergravity
quantities in units of 27ls. In addition, each r,/ls will be replaced by r,, by which we mean
that radii are in given in units of [;. This leads to the following simplified relations

ANi5 AN, AN,

gsF15 = 9 ) 9sF3w, = gs - ) 9sF3w, = g2 Tun )
"5 r1rare TT3Ts

6gs A* No1 6gs A2 Nyo 6 gs A2 Ny3
goThy = 222 sl g2 29s A W2 s 2952 T8 (2.40)
r3raTsTe 172”576 r1Tr2T3Ty
2 TQANQQ?T 3 7“3)\N327T 1 7“1)\N127r 6 TG)\NGQTF
[ = ——7—, flos = —r, ffea=———, ffu=—"-—.

r3rs 275 T4T6 s

Let us emphasize that the 27 in the structure constants has been forgotten in [1], which will
lead to slightly different results in the following. We also used different sign conventions
for the structure constants.
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The relations (2.40) lead us to introduce a last set of variables

var3: Nla N27 N3a Nﬁa N157 Nwla NLUQ? Nsl; NsQa ng,

Ta=1,...,65 Js; )\7

9127 9347 9567 ai2, a3s4, Aas56, b. (241)

Note that gs; had not been included in varl and var2. Numerical supergravity solutions are
found in terms var1l, where F, and Tllo are actually given by gsF, and gsTlfO. In var3, we
really extract a value for gs, hence the need to list it explicitly.

These new variables come with constraints: we know already that the flux and source
numbers Njs5, Ny, , Nu,, Ngr are integers. In addition, the Ng; are bounded from above by
N(I)5 < 2% = 16 when the 4 transverse dimensions are circles (each with 2 fixed points), e.g. in
a torus and for most manifolds to be considered here. Finally, the structure constant numbers
N, are bound to the lattice conditions. We summarize the constraints as

Ni5,Nu,, Nuy, No1, Nyo, Nog € Z, Ngg < Np_, N, : lattice conditions. (2.42)

To specify the lattice conditions explicitly, we need a detailed knowledge of the 6d geometry.
In the geometry basis, the four non-zero structure constants consist of two independent pairs

FPas. 2o, s, foua. (2.43)

It means that the underlying algebra is a direct sum of two 3-dimensional (solvable) algebras,
and the same structure holds for the group manifold. Depending on signs, there are two
possible 3-dimensional algebras (see e.g. [17])

034 [P35 >0, 935 [s5f%25 <0, (2.44)

and the same holds for flg4 f14. Referring to solutions studied in [1, 19], solution 14 is on
a9 5 @ g9 5 while solution 15 is on g5 ; @ g5 4. Solutions 22-27 of [24] were found on g3 ; © g3 5,
with g5 111 corresponding to the pair f235, f325. Note that a fourth combination is a priori
possible, since the two pairs are not equivalent in the compactification, given the placement
of sources. However, as we will explain below, we will not consider this option. The choice of
algebras determines the lattice conditions, and the group manifold, ensuring its compactness
as mentioned in subsection 2.1.

All 1-forms in the geometry basis obey the Maurer-Cartan equation (2.1). Prior to
the X\ rescaling and the use of stringy units, we gave the expression of structure constants
in (2.34). This gives the equations

/ Norg / / N3rs / /
de? = ——== ¢35 ded’ = -2 &% de® =0, (2.45)
r3Ts rars
1/ N17’1 64/ 6/ NGTG 14/ 4/
de’ = — e, de> = ———e de® =0,
T4T6 r1rg

where we recall that we use different conventions with respect to [1]. Thanks to the simplicity
of these equations in the geometry basis, we can solve them explicitly in terms of coordinates.
Depending on the algebra, we get different solutions, with different global completions.
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We first consider the pair with directions 1,4,6, defining the algebra g -. One then
has flesf%14 < 0, implying N;Ng < 0. Considering for instance f514 < 0, i.e. Ng < 0, one
solution to the Maurer-Cartan is given by?

1
Nglz .
66/27'6 <COS( ’N1N6’y4)dyﬁ—‘]\,?‘ sin( ’N1N6’y4)dyl)
1
Ni|2 |
61/:T1 ON; sin( ]N1N6]y4)dy6—|—cos( ]N1N6|y4)dy1>

e =rydyt. (2.46)

The range of coordinates is y" € [0, 27|, with periodic identification. The normalization is
such that e'6’ = rire dy' A dy®, which after integration agrees with the normalization we
chose for the quantization conditions. Further arguments from appendix A justify choosing
that solution. We now define the corresponding (squashed) rotation matrix

1
Al cos(/TNiNGTy")  — |§s | sin( M NGly")
Y

1
N2 ([N Nely!)  cos(v/[NiNGly")

As argued in [1, 26], the following extra identification is required to have globally defined

Ng
6 6
Yy Yy
( 1) :A(-%)( 1) , (2.48)
y y4+2ﬂ. y y4

together with possible extra shifts of the coordinates by multiples of 27. This is also the

(2.47)

1-forms

condition on the fibration in order for the manifold to be compact. This identification is
admissible if A(—2) is an integer matrix, leading to the three possibilities to consider

/ x / 1 / 1
|N1N6‘ e N*| |N1N6| EN+§, |N1N6| €N+Z and Ng = —N7. (249)

These are the possible lattice conditions, which give rise to different global geometries. The
first option corresponds to having topologically a torus 7 with, a priori, a non-Ricci flat
metric. The two other are globally more involved geometries, still with a torus cover. We
refer to [1] for more details and references. The last two lattice options ease the search for
classical solutions, but complicate the computation of volumes and of the number of fixed
points, i.e., the number of orientifolds. So we will stick with the first (torus) lattice condition
\/m € N*. The number of orientifold in each set is then that of a transverse torus,
which is 16 in this case. In practice, we will take

1

Ng = ——.
6 N

(2.50)

3Similar one-forms are used in [25, (8)-(10)], which, however, absorbs the radii 1,74, 76 in the coordinates
(the latter are said to be real and possibly rescaled). Later in [25, section 2.2], the authors restrict their
analysis to unit radii prior to conducting the lattice analysis. In our one-form parametrization, r1,r4, r¢ appear
explicitly and the coordinates are given by the angular part only, which is the appropriate generalization. It
leads to the same matrix A and same quantization results (2.49).
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We turn to the second pair with directions 2,3,5, that we take to define the algebra g;}l,
with f235f325 > 0, i.e. NgN3 > 0. The individual signs of N; do not need to be specified.
One solution to the Maurer-Cartan equation is

1
N B
e? = T (cosh(\/N2N3y5) dy? + (Nz) ’ sinh(v/ N2N3y5) dy3>
3
1
N\ &
e =1y ((N3> ’ sinh(y/N2N3y°) dy?® + cosh(v/NaN3y®) dy3>

2
e =rysdyf. (2.51)

23/

The normalization gives €23’ = ryr3 dy? Ady?, again in agreement with previous normalizations.

We should now consider the (weighted) “hyperbolic rotation” matrix

1

Ay — | W) () sinh(VNaNy?)
(2)7 sinh(VNzN®)  cosh(vNGNGy?)

and require as before, for globally defined 1-forms, to have the identification (together with

possible shifts)
2 2
Y i Y
( 3 ) = A(—2n) < 3> , (2.52)
y y5+2ﬂ. y y5

where the matrix has to take integer values. This leads to the following lattice conditions [26]

N.
cosh(v/NaN32m) =ny, n2 —ngng =1, F?) = %, ni23 € N (2.53)
2 N2
h h
o Ny— , arecos (n1) @7 Ny = , arecos (n1) @7 2 —mams =1, miss €N
21 n3 2m ng o

Note that one simple choice that solves the above is n3 = 1, which guarantees that ny = nf —1
is integer. We can then express quantities in terms of ny > 1 only,

arccosh(ny) arccosh(ni) 1
Ny=t——F———5\/nf—1, N3== N* 1. (254
2 o ni ) 3 o n% — 1 , N1 € , N1 > ( )

Another solution for n; > 1isno = n1—1,n3 = n1+1, from which we can again express No, N3.
Despite these simplifications, we will never manage to find a realization of these complicated
“hyperbolic” lattice conditions in the supergravity solutions considered; we already failed in
doing so in [1] for solution 15. One reason could be that for given real numbers Na, N3, it
is unlikely to find an integer n; that would satisfy the simple relations (2.54). For example,
when solving cosh(27v/N2N3) = ny numerically on a computer, the argument of cosh becomes
a rational number due to finite precision. However, the cosh of a rational (non-zero) number
is transcendental by the Lindemann-Weierstrass theorem and hence cannot equal an integer
ni. We will give more details on the numerical difficulty of this problem in section 3. As
a consequence, we will further restrict our ansatz to

235 fP25 <0, frea fO14 <0, (2.55)
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which results in a 6d manifold corresponding to g3 5 @ g3 5. This signals already the difficulty
to test classicality of any other supergravity solution.

Having determined the lattice conditions, which are essentially N1 Ng = —1, NoN3 = —1,
and Né5 = 16, the constraints for the quantization conditions in (2.42) are completely fixed.
They ensure compactness of the 6d manifold, and are necessary requirements for a string
origin of the solution. We are then left to specify criteria for the supergravity solution to
be a classical string background, which we take to mean that

gs << 17 r(l >> 1a (256)

where the radii are given in string length units. For simplicity, we will impose “<” and “>”
instead of “<” and “>>”. As will be discussed in the Outlook, the classicality conditions (2.56)
might be too conservative choices for the radii, but we stick to this definition of a classical
solution for now. Before looking for such solutions, let us summarize all the material
presented so far.

2.4 Summary: variables, relations and constraints

We have introduced the setup for supergravity solutions in section 2.1, and we have motivated
the use of three different sets of variables and two different bases to check classicality of a
solution. The technical details have been developed in subsections 2.2 and 2.3, which we

summarize here. An overview is given in figure 1.

We start with an ansatz for a de Sitter solution in type IIB supergravity within the
class 5;5. In our ansatz, we keep only the fields in (2.6), that form a set of 20 variables
denoted varl. Known supergravity solutions are given in those variables. Our ansatz also
assumes four non-zero structure constants, cf. (2.7). This allows to show that three variables
in varl are not independent of the others, as indicated in (2.8), (2.9), (2.12). A first change
of variables is then performed towards 17 other variables, denoted as the set var2 in (2.33).
Eight variables remain unchanged through this transformation. The change of variable serves
two purposes: first, it goes from the sugra basis with variables var1l to the geometry basis,
where we get a better control over the 6d geometry, needed to ensure compactness through
lattice conditions. Second, it identifies harmonic representatives for the flux components
(mostly F3), which we need for the flux quantization conditions. We summarize this as follows:

vart: Ty, Ty, Tio, flas, f735, P25, [O1a, Fus, (2.57)
fas, 245, [Pa6, 215, Fiss, Fise, Fiae, Foss, Fase, Foaae, Hi2s, Haag
(2.59)i T(Q.BS)
Ty, Th, Ty, flae, 35, f325, fC14, Fis,

12 34 56
var2: g, g7, g7, F3uy, F3uw,, @12, 34, Gs56, b
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sugra basis
varl

geometry basis
var2

geometry basis
var3

v

X

X

X

Identity metric
Description of 6d geometry
Quantization conditions

Classicality check

X

v

X

Identity metric

V' Description of 6d geometry

Quantization conditions

Classicality check

X Identity metric
v Description of 6d geometry
v' Quantization conditions

v Classicality check

Figure 1. Summary of the choice of bases, sets of variables, and their advantages (v) and disadvan-
tages (X).

where the change of variables is given by

flas=0" a6, FPas=0" 55— 9" flae, [Pa6=—9"F 46, FP15=9"f25,

Fiss = Py afas 235 + Fawsa( fla6) (14 (9"2)?) — a1 46

Fiz6 = a12f 469°° — aza 305
(6%

Flae = F3u, 72 ((]0235)2 + (f146)2) + Fyuyaflasf?ssg"?

Fogs = Fyuy +a1aflusg™

Foss=aro (f235934 - f146912956) +asa 259" +as6 014

Foys = —Fpya(fla6)* + Fawpaf a6 f235 — a12f235, with a =

Higs = f295b, Hass=—f46b.

and the inverse transformation is

g2 = P15 s _ fraef?as — flasf?a6 56

[R5

F3,, = (1 +ag(flae)*(1 + (912)2)) Fuys — aflas 359" (Foss + 9" Fiss)

flae 235 ’

912

(2.58)

_ flas
flas’

[0
Py, = 2 ((f235)2 + (f146)2) (Fass + g Fizs) — af a6 f*359" Flag

flasg'?

_ Fugs — F3u,

fla6 56 Fise _
f325

2 1
f735 34 [ a6 12956>_a

asz4 = a12 Eg

_ Faze
6156—f6-14 a2
b Hias
==,
f325

(

76 9
fO14

9
fo1a

34 LBQS 912 =
fO14

(f?35)2 + (f1a6)*(1+(9")%)

(2.59)

where the dots indicate that the resulting expressions can be evaluated further using the
transformations given in the equations above; we refrain from doing this explicitly since the

resulting equations are long and not very illuminating.
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The set of variables var2 is the correct one for imposing quantization conditions (flux
quantization, source quantization, lattice quantization), which are necessary to ensure a
stringy origin of the supergravity solution as well as compactness of the 6d manifold. Imposing
these constraints leads to a new set of variables var3 as in (2.41), subject to additional
constraints. We also need to enforce the classicality conditions, which ensure that the
supergravity solution is a classical string background. We summarize the above as follows

. 1 2 3 1 2 3 6
var2: Ty, Tio, Tio, [ a6, [735, [ 25, [ 14, Fis, F3uy, F3uws,

12 34 56
g, 9, g, a2, as4, 56, b

T(?AO)
\
Nsb Ns27 ng, Nl; N27 Ng, Nﬁa N157 qu nga

var3: Tg=1,..65 s A,

9127 9347 9567 ai2, as4, ase, b. (260)

The (simplified) relation between variables was given in (2.40). The set var3 contains more
variables than var2, but the former are also subject to additional constraints,

Constraints : 0<gs <1, rg >rmm=1, A>0 (2.61)
N157NUJ1,NL02 S Z
Ng1,Ng2,Ng3 € Z, Ngj=123 < N(I)5 = 16
1 1
Ne=——, N3= ——
6 Nl ) 3 NQ
where we fixed Nés = 16, and we restricted ourselves to toroidal geometries as discussed
around (2.50) and (2.55). We also recall that f235f325 < 0 and flgsf%14 < 0. Other
possibilities with more complicated lattice conditions have been discussed above. Finally,
we fixed rmin = 1 but in practice, we will have to lower it, meaning that some radii will
be below the string length. These extra constraints make it difficult to find an explicit set
var3 that satisfies all requirements.
We now have all the formalism necessary to search for supergravity solutions that satisfy
the constraints (2.61), ensuring them to be classical string backgrounds.

3 Searches for classical solutions

In this section, we present three methods or strategies followed to find classical de Sitter
solutions, the difficulties encountered for each of them, and our results. As we will show,
finding these solutions is a hard numerical optimization problem.

3.1 The two-step procedure

This first method is the most natural one, and has been used before. Here, we will adapt
it and make it more systematic. The first step in this procedure is to solve all supergravity
equations (equations of motion, Bianchi and Jacobi identities), listed in [16, appendix B].
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This should be done with the constraint of having a de Sitter solution, namely Rf > 0.4
Prior to this search for a supergravity de Sitter solution, one should also specify the solution
ansatz considered here. All this has been performed and automatized in previous works;
the outcome is indeed supergravity de Sitter solutions, expressed in variables varil (2.6).
More precisely, solution 14 on g3 5 @ g3 5 and solution 15 on g5} @ g5 5 were found this way
in [19] , and solutions 22-27 on g5 @ g9 5 in [24]. The algorithm that implements the above
strategy was improved and published as MSSS.nb in [16], together with a solution database;
there, solutions are referred to as si;14, 15, 22 — 27. We refer to [16] for more details. For
example, solution 14 in Solutions.nb is

Solution 14 (var1): Rj; = 0.022658,

gsTiy =10, gsTE = —0.088507, ¢sTi, = —0.776520,

gsF15 = 0.273982, goFi35 = 0.561224, g F136 = —0.719988, gsF146 = —0.052797
gsFo3s = —0.677331, goFa3s = 0.313286, gsFhis = —0.178054, (3.1)
Higs = —0.004579, Hzys = 0.228882,

flas = 0.843571, flue = 0.671542, f235 = —0.289299, f245 = —0.061420,

246 = —0.810472, f315 = 0.016213, f355 = 0.013433, 04 = 0.413104.

As a second step, referred to as the classicality check, one takes a concrete solution
expressed in terms of varl, and performs the double change of variables varl — var2 —
var3. More precisely, one performs the change to var2, and then looks for a set of variables
var3 that satisfy the constraints (2.61). This step was attempted explicitly for solutions 14
and 15 in [1]. For solution 15, it was not successful, due the difficult lattice conditions, as
discussed above. The same is true here, so we do not consider solutions with such an algebra
and lattice (in particular, we also do not further pursue solutions 22-27). For solution 14,
finding the set var3 that satisfies the constraints was achieved in [1], at the cost of lowering
Tmin to 0.1. However, as mentioned previously, factors of 2w had been forgotten in [1]. We
hence repeat the analysis here to provide a correct classicality check. The 27 factors push
us in the wrong direction, meaning that one has to get to an even lower r,;,. This work is

“The constraint 77, < 0 for any set I of sources containing no O, (but only D,) needs to be imposed as
well.
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carried in MSSS classicality check - sol 14.nb, and the result is
Solution 14 (var3):
gs = 0.642193, r1 = 4.692304, ro = 9.147285, r3 = 0.055553, ry = 6.838302,
r5 = 57.775935, 16 = 0.092300, A = 0.573238,
Ng1 =16, Ngp =—16, N3 =—-10, Ny5 =43, N,, =—-1, N,, = —1, (3.2)
N; = —0.025080, Ny = —0.028183, N3 = —1/Na, Ng = —1/Ny,

g2 =1.206882, ¢** = —3.306864, ¢°% = 1.256171, b = —0.340830,

a2 = —0.820253, azs = 2.087707, ase = 0.554482.

One can check that all constraints (2.61) are satisfied, except for those on r3 and rg, which are
substringy. This prevents us for now from concluding that (3.2) is a classical de Sitter solution.

The numerical strategy to carry out the second step is as follows. We first find a
solution in terms of var3 that satisfies the constraints (2.61) (up to relaxing the bound ryiy)
over the reals rather than the integers. For instance, we would simply impose |N,, | > 1.
Once we find such a solution, we search for a neighboring solution after having rounded
some of the N’s to the closest integer. Doing this several times successively leads us to a
final solution. We refer to MSSS classicality check - sol 14.nb for more details. This
strategy is borrowed from [1].

The drawback of this method is precisely that it is carried out in two steps: we first
search a supergravity solution, and then hope, without any control, that it will be classical
by satisfying the appropriate constraints. Combining these two steps into one is the idea
of the next method.

3.2 Direct search

In this method, we combine the two steps described above. This means that we reformulate
the supergravity equations in terms of var3 using (2.58) and (2.40), and search for solutions in
terms of var3, requiring them to satisfy directly the classicality constraints (2.61). This would
avoid the randomness of the solution found without any check of constraints. Unfortunately,
this problem turns out to be too difficult numerically. One reason is that equations formulated
in terms of var3 are much more complicated than those in terms of varl. Indeed, while
the latter are linear or quadratic in the variables, the former have quotients that make the
optimizer not find existing solutions. We illustrate this numerical difficulty in the file MSSS
problem illustration.nb. There, we perform a direct search for solution in terms of var3,
and we tailor the constraints to allow for variables in a range for which we know that a
solution exists (we use solution 14 (3.2)). The search fails even over the reals, i.e., without
imposing integer quantization. This illustrates that the constrained numerical optimization
problem solvers we tried are not robust enough to find a solution.

The optimization problem for finding var3 involves solving a set of non-polynomial
equations and inequalities in variables that are either real numbers or integers. The numerical
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framework that addresses problems of this kind is called Mized-Integer Nonlinear Programming
(MINLP). MINLP problems are ubiquitous in scientific and engineering optimization problems,
and they are notoriously difficult to address. There exists a plethora of commercial and open-
source tools to address these problems. We tried numerous packages but neither led to better
results than the two-step search procedure. We tried the following two direct search strategies:

e In a first pass, solve the problem over the reals. Then round the integer variables to the
closest integer (or systematically try all combinations of integers in the vicinity of the
real numbers that the optimizer found for the integer variables), fix them to this value,
and run the optimizer again in the hope that this shift in some of the variables did
not lift the previously close-by minimum. For the vicinity search we need to define a
box within which we want to try out all possible combinations, which grows for integer
variables n; with range r; as [[; r;.

e Apply open and closed source solvers to the problem. We can mostly treat these solvers
as a black box. Depending on whether the solver is open or closed source, there is more
or less information available on what the solver actually does, but it is not the focus of
this paper to review the different MINLP solution strategies that these solvers employ.

For the latter option, we mostly tried different algorithms and solution techniques implemented
in Mathematica. We also tried the Mathematica SHOT library [27].

For the first option, we tried multiple solvers that can potentially find different minima.
Finding solutions over the reals is a much simpler task and a plethora of tools exist. The
simplest one is just using gradient descent. The advantage is that minimizing loss functions
this way is common in machine learning (ML), and there are very fast, free libraries available
to perform these tasks.

One of the difficulties we encountered was that our problem is a minimization problem
with non-linear constraints. There are multiple strategies to deal with these constraints:
one can simply ignore them in a first pass, find a minimum of the loss function, and check
whether the constraints are satisfied after the fact. Since each minimization procedure via
gradient descent is very fast, this can be run for many initial guesses until a minimum that
satisfies the constraints is found.

Another possibility is to build the constraints into the loss function. For example, a
constraint f(v) > 1 could be incorporated in the loss as

L= ML+ Amax(0,1— f(v)), (3.3)

where A1 and Ay are hyperparameters that weigh the two pieces of the loss. The term we
added is called a Hinge loss and is a popular choice in ML classification tasks. Note that if
f(v) > 1, the loss is zero, and otherwise it grows linearly with f(v). We tried both approaches,
but found that the solver often cannot find a minimum in which all constraints are satisfied.
Moreover, for the few instances where a solution was found, we saw that rounding to the
nearest integer lifts the minimum and the solution goes away.

Since it proved difficult to find a feasible starting point, i.e., an initial guess for which the
constraints are solved, we also tried to tackle the problem in the opposite order: we solve the
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constraints without minimizing the function and then run the minimization procedure from
a known good starting point. One could iterate this procedure for multiple good starting
points and hope that the minimization procedure finds a nearby minimum for which the
constraints are still satisfied. Another possibility is to run the minimizer with the constraints
built into the loss as explained above. This approach produced the best results. We mostly
used tensorflow for our code. We also tried the TensorFlow Constrained Optimization
(TFCO) library [28], as well as multiple solvers that are provided in the scipy.optimize
library, such as basinhopping, BFGS, COBYLA, dual_annealing, shgo, SLSQP, and a simple
genetic algorithm. In the past, problems like this have been tackled successfully with
reinforcement learning [29-32], but this is very time-consuming to setup and train and we
have not attempted it here.

It is interesting to ask why these methods fail. First, since we find many different minima
depending on a random starting point, we know that the loss landscape is very rugged
with many local extrema. The fact that the rounding approach or the box search lifts the
minima is consistent with the observation that the constraints are very hard to satisfy: the
constraints cut away a huge portion of the loss landscape. If these de Sitter constructions
are in the swampland, they will cut away all regions that contain global minima. If global
minima satisfying the constraints do exist, their basin of attraction is very small, such that
the solver cannot find them most of the time. It is interesting that the authors of [33], who
were studying flux landscapes in type IIB supergravity did not run into the problem of
lifting minima when rounding. It might be insightful to study the difference in our setups to
understand which part of the geometry (solvmanifold vs Calabi-Yau) or which constraints
introduce the behavior we observe but they do not.

3.3 Constrained supergravity search

Since the equations in terms of var3 are much more complicated than those in terms of vari,
we also translated the constraints from var3 to var1 and performed the constraint optimization
in terms of varl. However, since there are more variables in var3 (which are related by
constraints) than in varl, we need to find appropriate combinations to eliminate them.

In the following, we consider for simplicity the minimal value |N,, | = |N,,| = 1. From
the constraints (2.61) and the relation between var2 and var3 (2.40), we obtain the following
relevant combinations of variables in var2 and conditions among them:

Tk 6 x 16 T} 6% 16
s 1(1) < - . 938 101 < > (3.4)
gs| Fis|\/[fleafO14]  27m7rin V1235 P25 fleafOra]  (27)° riin
12,3
98|F3w2| < 1 98|F3w1| 1 gs|T10 | > 6r2.
gs|Fis| Trznin’ ’f164f614’ rrznin’ 9s|F301] 95| F30s | i

By expressing these seven constraints in terms of varl, we perform a direct search for
supergravity solutions including the constraints in terms of varl. This is done in the file
MSSS solution 29.nb. As a result, we find a new solution, 3;529, which is obtained from
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using the bound 7y, = 0.01 in the above constraints. We give it here in terms of varl
Solution 29 (vart): R = 0.020309,
95Tl =10, g T = —0.079765, g, T = —1.064125,
gsF15 = —0.231074, gFi35 = —0.659250, gsF136 = —0.662773, gsF146 = 0.084135,
gsFo3s = —0.635765, gsFoszs = —0.320255, gsFhag = —0.120817, (3.5)
Hios = —0.002972, Hsue = —0.181872,
flis = 0.829116, flag = —0.837373, f235 = —0.256521, f245 = —0.066547 ,

a6 = —0.807542, f315 = —0.013195, f355 = 0.013682, fO14 = —0.553790.

The rpin value that had to be used is fairly small, so we anticipate that we did not gain
much on the classicality when proceeding with this method. The classicality check of this
solution 29 was performed in the file MSSS classicality check - sol 29.nb and leads
to the following values for var3

Solution 29 (var3):

gs = 0.532758 , 11 = 4.704542 , 1y = 112.925701, r3 = 0.067605, r4 = 14.968801,

rs = 172.058417, r¢ = 0.077310, A\ = 1.622330,

Ny =16, Ny = —67, N3 = —68, Ny5=—46, N,, =1, N, = —18, (3.6)
Ni = 0.020207, Ny = —0.002592, N3 = —1/Ny, Ng = —1/Ny,

g'? = —0.964376 , ¢>* = 3.376434, ¢°% = —0.990140, b = —0.217194,

a1p = —0.772617, aszqs = 1.621319, ase = 0.632508 .

The values are indeed similar to those of solution 14, so this method is not more successful
in getting classical de Sitter solutions.

Since we found a new de Sitter supergravity solution, it is interesting to study its stability
(see e.g. [24]). Doing so is straightforward with the code MSSV of [18], and we find one tachyon
in the spectrum of solution 29, with ny = —4.36757. Such results are very standard [18].

4 Scaling and parametric control

In this section, we present a scaling freedom in our 10d solution ansatz. We discuss attempts
and difficulties in getting it in a corresponding 4d theory. We finally comment on its
implications regarding a parametric control on classicality and scale separation. We also
compare this to related results in the literature.

4.1 Scaling in 10d

The scaling and its effect is best seen when looking at the relation between var2 and var3
as given in (2.40). We repeat these relations here and add a tilde to the quantities scaled
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with A, as explained around (2.38).

- F N- ~ F: N, ~ F: N,
gsF15 _ gs)\15 _ gs V15 ’ gsF3w1 _ gst'3w, _ Gs INuwy ’ SF3LU2 _ GsL'3w, _ Gs 1Vwsy ’
s A 17476 A roTr3Trs
=1 gsTll() _ 6 gs Ns1 = 95T120 o 6 gs Ns2 =3 gsTl?)O _ 69s N3
gSTlo - 9 - ) ST10 - 9 - } gST]_O - 2 - )
A r3rarsre A r1rorsTe A r17TroT3ry
f~235_f235_27”“2N2 f325_f325_27TT3N3 (4.1)
XN rgrs N Ty '
2 64 T V1 rl 14 TT6 Ve
1 ft 2w ry N " f6 27 rg N
flea= = ; = = :
A 7476 A 174

Recall that these rescaled quantities are also a 10d solution. Next, we consider the following
scaling by a (possibly discrete) parameter v > 1

-1
T45 = YT45, ri2 = Y2 e, Neg =" 27 Nygs, Ny, 9" Ny, , (4.2)
Ny =~ " N1, Ng— "' Ng, Ny — 7" Ny, N3 — 7™ N3,

with 12 > 0, 1 + 22 > 1, and g, 73,76, N1, N15 invariant. This scaling leads to a scaling
of the quantities in (4.1),

- 1 . - -
Ty — 3 Ty, F., [%e— =F., %, (4.3)

which is the same as a A scaling, i.e. it actually corresponds to
A=A (4.4)

Another way to see this is that the v scaling (4.2) together with (4.4) leaves (2.40) invariant.

Since the 7 scaling (4.2) amounts to a A scaling, the y-rescaled quantities still provide a
solution. While some quantities scale explicitly as in (4.1), the variables a;;, b, g% entering
var2 or var3 are invariant under scaling. The flux components not given in (4.1), namely
the H-flux and the non-harmonic piece of Fj3, all contain one exterior derivative together
with invariant quantities, so their components in the geometry basis are proportional to one
of the four structure constants in (4.1), and hence these flux components scale implicitly
with 1/+. Making use of the relations between the different variable sets, we can check
that the same holds in the sugra basis. The 7-scaling in (4.2) has the effect to rescale all
quantities in the 10d equations uniformly by 1/42, which makes it obvious that the rescaled
quantities still provide a solution.

We can furthermore see that the constraints (2.61) for a classical string theory background
are preserved by the 7 scaling (4.2). First note that under the 7 scaling, radii and flux
numbers increase, while the lattice conditions NiNg = NoN3 = —1 are invariant. This is
compatible with the constraints, up to the discretization of v necessary to preserve the integer
condition of the flux numbers. A second subtlety is the following: for 1 + z9 > 1, | Ng2| and
| Ng3| increase with the scaling, so we need Ny < —1 (Ng3 < —1 is automatic due to the
source quantization and the requirement 75, < 0), i.e., we need a larger contribution from
Ds-branes to fit within the positive upper bound on this source number. Note that Ny < —1
(or TZ < 0) is satisfied for solution 14 or 29. For x; + x2 = 1, the source numbers are
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unchanged and we do not need to worry about them. With this possible sign restriction and
up to its discretization, any - scaling is compatible with constraints for a classical solution.

One simple example for a v scaling is
145 = Y7145, New = YNy, N1 =7 N1, Ng — v N, (4.5)

where the constraint that N,, € Z requires discrete values for y. Another, more balanced,
example, which will be useful in the following, is given by

1 1
Ta5 > YT45, T2 — Y2712, Nyyy =72 Nuy sy s (4.6)

Ni =773 Ny, Ng — 7% Ne, Ny =777 No, N3 — 7% Nj.
Before commenting on the physical effect of this scaling, let us discuss its realization in 4d.

4.2 Scaling in 4d

In this subsection, we take first steps towards realizing the v scaling (4.2) via a combined
action on scalar fields in a 4d effective theory and the 10d background quantities that enter
the 4d scalar potential. A full-fledged analysis would require working out the map between
the 10d variables var3 and the 4d scalar fields, which we leave for future investigation. Our
findings are presented in the file MSSV scaling attempts.nb.

We consider a 4d theory obtained from a consistent truncation of 10d type II supergravity
discussed in [18]. The equations of motion in 4d are equivalent to our 10d equations. Using
the code MSSV.nb, it is straightforward to get this theory, in particular its scalar potential for
any of our 10d solutions. For the sake of being explicit, we use solution 29 in the following,
even though only the solution ansatz and not the explicit numerical values matter in the
derivation. The theory has 22 scalar fields (see [18, (2.4)]), including 6 diagonal metric
fluctuations g;;, 3 off-diagonal ones gi2, g34, gs6, the dilaton, and flux axions. For simplicity
in most of our analysis, the 12 flux axions will be set to 0, which is their background value.
Also, we never really consider the dilaton since g; is left invariant under the ~ scaling.

We first consider the solution ansatz in terms of var1, which fixes the 4d scalar potential.
We then express the scalar potential in terms of var2 by replacing the background quantities.
In this (off-shell) potential, a first test is then to scale the var2 quantities as in (4.3), which
%, as expected.

We now want to reproduce the “microscopic” version of the above, namely the ~ scaling

leads to a scaling of the entire scalar potential with

presented in (4.2), by a combined action on 4d fields and background quantities. More
precisely, the radii should be traded for 4d scalar fields, while the flux, source and structure
constant numbers should correspond to the background quantities entering the scalar potential.
Looking at the way structure constants appear in the quantity « or in the harmonic forms w,
a scaling with 1 = z2 seems easier to accommodate. Picking z; = % also allows to scale the
source volumes in the same way, while the source numbers do not scale. So we decide to try to
implement the “balanced” scaling (4.6). Regarding radii and 4d scalar fields, a natural guess
is to consider the diagonal metric fields g;; to go as radii square. Since the scaling of radii
is now taken care of by that of 4d fields, we propose that the background flux components
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and structure constants inherit their scaling properties from N, and Nj, respectively. In
short, we consider the combined scaling of 4d fields and background quantities

g11 — Y 911, 922 — 7Y 922, g44 — ’72 944, g55 — ’72 955,
1 1
F3w1 _>'7§F3w17 F3w2 —)’}/EFng, (47)
1 -1 6 1.6 2 —1 .9 3 1.3
frae =72 f 46, P14 =92 14, f35 =72 f%35, 25 = 72 f 5.

12 34
g

Ignoring the other var2 solution parameters b, a12, as4, , asg, g ,g°% for now, as well as

the other scalar fields (in particular the off-diagonal metric components that we set to 0),

we obtain that the potential scales uniformly as 7% As we will explain, this is the expected
scaling, so this uniform scaling confirms the above guesses. The difference between the %2
7% scaling of the 4d scalar potential, is due to the change
between string frame used in 10d and the Einstein frame used in 4d. Going from the former

scaling of the 10d action and the

to the latter, R;f becomes R4 and the difference is a factor e2?/vol, which also appears as an
overall factor in the scalar potential. The scaling of the radii (or the g;;) means that the 6d
volume vol scales with 72, which explains the scaling of the scalar potential and R4 with %5

Let us now consider the other flux components. For instance, the H-flux is given in
both the sugra basis and geometry basis by

H=b <f325e125 o f1466346> —b (f325€125/ . f146€34/ A (66/ . 95665’)) ' (4.8)

The quantity that enters the 10d as well as 4d equations is the square of each component.
The 10d + scaling and the 4d version considered in (4.7) give different results: first, the
structure constants entering the flux components scale differently. Second, the inverse metric
entering the squares scale in 4d. More precisely, considering for instance the first H-flux
component, one gets the following contribution in the scalar potential

|Hios* = b*(f395)%g" g*2 g™ . (4.9)

The 4d scaling (4.7) makes this scale as 1/v3. With the overall volume factor, this leads to
a 1/+% scaling for this potential term. Therefore, to restore the right scaling, one reads off
that b — '7% b. With similar arguments, we eventually find that we need

1 _ _
b—>’y§b,a12—>'ya12,a34—>'y 1a34,a56—>’y 1a56. (4.10)

Combining this with (4.7), and ignoring the other solution parameters g'2, g3*, ¢°¢ as well as
the rest of 4d fields, we obtain the correct overall scaling of the scalar potential.

We end with a discussion of the contribution of the 10d solution parameters g'2, ¢34, ¢°6.
Since those are related to the off-diagonal metric in the geometry basis, we also incorporate
the 4d off-diagonal metric component fields. However, we fail to find an appropriate scaling
of g'2, g4, ¢°® that would provide the desired scaling of the scalar potential. We tried both
in the sugra basis (up to a change of variables towards var2, as explained above), where
the 4d off-diagonal metric components are extremized at 0, and in the geometry basis (see
appendix B), where their extremal value is related to the 10d solution parameters g'2, g3*, g°.

Off-shell, the volume along the 56-direction is given in terms of the 4d fields by \/gs5966 — 9%,
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and such combinations appear frequently in the potential. It is then natural to require the
scaling of the field gsg — v gs6, to ensure a homogeneous scaling, and similarly for the other
4d off-diagonal metric fields. This, however, does not allow to get the desired scaling of the
potential. Our (incorrect) guess was based on intuition gained from a diagonal metric. We
would hence need the explicit map between the 10d variables var3 (in particular the radii)
and the 4d fields. Let us finally add that we made further attempts, not documented, such
as evaluating the rescaled potentials on-shell, to see if we could at least find some scalings
that work at an extremum, but such attempts were unsuccessful as well.

4.3 Physical effect: parametric control on classicality and scale separation?

The ~y scaling presented in (4.2) maps a supergravity solution to another supergravity solution,
and it is compatible with constraints for a classical string background (up to a discretization
of the parameter v, and a possible sign condition mentioned above). It is then natural to
wonder whether the v scaling can play the role of a parametric scaling that improves the
classicality and/or the scale separation of a solution parametrically as v — oo.

The prime observation is that a generic « scaling increases the size of four of the radii,
while leaving the other two radii 73 and rg (as well as the coupling gs) invariant. This
improves classicality, since in particular the 6d volume grows parametrically with +. Hence,
as long as the values of the unscaled quantities are appropriate for a classical solution, we
would have parametric control on classicality. In the solutions considered above, we obtained

Solution 14: gs ~ 0.64, r3 =~ 0.05, re =~ 0.09, (4.11)
Solution 29: gs ~ 0.53, r3 ~ 0.07, r¢ ~ 0.08. (4.12)

Those values could be considered valid for a classical solution regarding gs, but problematic
for r3 and rg, which are substringy. It is actually non-trivial to assess whether solutions
with such radii are really “non-classical”. They would spoil classicality if they can carry
stringy degrees of freedom. Since these radii are actually characteristic length scales in the
non-closed one-forms e and €%, they do not correspond to actual cycles in the 6d manifold.
It is thus unclear to us whether they would carry stringy winding modes. In addition, various
corrections would need to be evaluated. This question deserves deeper investigation, and
we come back to it in the Outlook.

The fact we do not get a parametric control on some radii and on gs; may also be perceived
by some as a symptom of a general obstruction to get (classical) de Sitter solutions from
string theory. In our compactification ansatz, we can illustrate the obstruction to scaling
as follows. Using the relations (2.40) and then the constraints (2.61), we get

95T _ 6N 1
95| Fi5|V/[freafC1a] 27| Nis|\/[N1Ng| 376
95T _ 6Ns1 gs
VI35 305 leafCra]  (2m)2\/[N2N3N1Ng| 7376
o pyrg < 010 9s|F1s| ’f1164f614| 7 > (27 Tmin)? 95T L (4.13)
2 95T 6 %16 \/[f235f325 fL6afO14]
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which shows that given a supergravity solution, there is an upper bound on r3rg and a lower
bound on g,;. Hence, they cannot be scaled parametrically in the classical regime, which agrees
with the fact that they are invariant under the « scaling. It would be interesting to promote
this to a no-go theorem or at least extend this statement to other compactification settings,
but we do not see a direct generalization of the above. Note that for our solutions, we obtain

Solution 14: rarg < 0.220485 gs > 125.245532 x 12, | (4.14)
Solution 29: rarg < 0.240422 gs > 101.934270 x 12, | (4.15)

which explains the small r3rg and ryi, that we obtained.

On the other hand, it has been argued in [12, section 5] (see also [8]) that hierarchies in
the internal space, e.g. among the radii, are necessary to get a classical de Sitter solution.
The above parametric scaling of some radii but not of others provides a realization of such
a hierarchy. If r3,7¢ had been bigger, we could have claimed having a classical solution.
Whether substringy values are mandatory is unclear to us at this stage.

Having parametric control over classicality in a de Sitter solution (provided rs, 76, gs
get appropriate values) seems in contradiction with the analysis of [8]. This work focuses
on type ITA compactifications with Og-planes (with possible generalizations). At first, a
combination of the volume and dilaton fields is assumed as the “classical” direction along
which one has parametric control. It is then shown that in this context (with a 4d scalar
potential) the existence of such a direction is incompatible with a de Sitter solution. This
does not apply to the situation above, where we only have specific radii that get scaled.
In a would-be scalar potential, one would need to consider the dependence of each term
on the relevant radii to get the correct scaling; the dependence on the volume alone is not
enough, even if the volume also gets parametrically large. Reference [8] then describes a
more general analysis in which the “classical” direction corresponds to any field becoming
large. This situation is closer to our scaling as we will explain. Let us then briefly recall
the corresponding argument adapted to our setup.

A scalar potential from a classical compactification typically receives the following
contributions (we drop numerical factors and indicate only the origins and signs of the
contribution)

Vi~ =Y T+ [HPP+ ) g2 Fyl” — R, (4.16)
I q

where we recall that a de Sitter solution requires Rg < 0 and 3, T}, > 0 (see e.g. [34]). The
potential can then typically be written in terms of a field » > 0 as

AO Az (7“)

21’ +Z r2
%

where the (dominant) constant orientifold contribution Ap, and the other contributions

V=-

. , (4.17)

A;(r) satisfy Ao,, Ai(r) > 0. The signs and the dependence on r, could be argued for more
generally, as e.g. in [8]. We content ourselves here with verifying them in our setup. The
signs can already be read off from (4.16), together with the fact we have T}, > 0, deg <0.
Using the potential (4.17) and the equation 9,V = 0, we get an extremum at

2V =0, A, (4.18)
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from which one concludes that a de Sitter solution requires 0,A4; > 0 for at least some i at
the extremum. Under the hypothesis (which holds in our case) that A;(r) ~ 2t > 0, in
the limit » — oo, we conclude that 9,4; = —y; % has the sign of —y;. Typically, one has
y; > 05 if this is true for all y;, then one cannot have a de Sitter solution at large r. Let us
examine how our setting circumvents this argument of [8].

We consider the simple scaling relations (4.5), and introduce a single radius r with which
71,74, 75 scale simultaneously. For simplicity, we also only consider the harmonic components
of the fluxes. This results in

2 2 1 2 2 N2, 2 2 1 1 1 2,3 1
gsF15 ~ 5 gsF3w1 ~ 4 0 gsF3w2 ~ 5 gsTl(] ~ 5 gsTlo ~ T (419)
r r r r r
1 1 rNy Ng
Pas~t—, Pu~F—,  fla~r—, [fu~—3. (4.20)

The contributions from (4.19) satisfy all assumptions made above, with y; = 0, 2, thus not
helping to get a de Sitter extremum. The curvature contribution in the geometry basis
can be read off from the formula

—2Re = (f%35 + [225)% + (f1ea + fO10)%. (4.21)

We obtain the correct signs, and the question comes down to considering the r dependence.
From (f235 + f325)%, we also get y; = 0, but

1 6 2 1 N6 2 1 2
(frea+ f014)" ~ = 7+7~Nl ~ g X (rNy)?, (4.22)

which gives y; = —2 at large r. This term allows to circumvent the argument of [§].

This possibility is actually mentioned as a loophole in [8], in the case where A; ~ er~¥
with y < 0 and € — 0. This is precisely realized in our setup with y = —2, ¢ = N? ~ 2
for 72 ~ 2. It is suggested in [8] that e could be due to a warp factor, but that structure
constants tend to have N; ~ O(1). While the latter is true for nilmanifolds with integer N; (a
condition easily obtained with the same method as in section 2.3), we see that solvmanifolds
offer different possibilities for the structure constants due to the different lattice quantization
conditions. This difference for the structure constants, or equivalently of the solvmanifold
fibration and compactness conditions, allows for the 7 scaling.

It might seem puzzling there seemingly is a continuous scaling degree of freedom in the
geometry which acts as a breathing mode and could be an unfixed modulus.® Let us first
recall that all 10d equations have been solved to find these solutions, so it is unlikely that
some geometric modulus capturing this freedom has been missed. Focusing on the structure
constants, it is easy to see that this scaling freedom is nothing but the tuning of the ratio
between radii, r1/rg or ro/r3. Indeed, the 7 scaling changes the N; by the same amount as
those ratios. More precisely, the change of these ratios can be implemented by scaling one
of the radii while having the second one fixed. This is the freedom explicitly used in [25]
to get |N1| = |Ng|, a situation we can also reach here with the 7 scaling. In our case, we

5We thank Daniel Junghans for a related discussion. More discussions on the 6d geometry can be found
around (2.49); we also refer to [1, 25, 26, 35-37] for other works where this geometry appeared.
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would obtain |N7| = |Ng| = 1.5 We also recall that the metric has determinant one in either
basis, which is why the radii enter in the structure constants and the scalings of r1, or r1/rg,
compensates that of N7 and Ng. Once we solve the 10d equations, the values of the N; and
r; are actually fixed and no such scaling freedom is left. One can then perform the  scaling,
but this maps it to a different solution (for instance with different R4, flux number, etc.).

In addition, note that the scaling freedom acting on actual solutions is not continuous
but discrete to ensure proper flux quantization. Even in the simplest scaling example (4.5),
we see all these essential features together: scaling of the N; in the structure constants,
together with that of the radii and a scaling of the flux number which imposes discretization
of the parameter. The scaling may be viewed as analogous to what happens in the DGKT
solution [2]: the parameter there is a (discrete) flux integer, a formulation we could also
use here. Also there, R4 or the scalar potential scale uniformly in the parameter, as it does
here, and the radii also get rescaled.

Let us also briefly compare our result to the obstruction on asymptotic de Sitter solutions
presented in [10] (the remarks to come also apply to [11]), which considers compactifications
on Ricci-flat manifolds. In contrast, the curvature term (4.22) plays a crucial role in allowing
a de Sitter solution with parametric scaling in our case. While dualities could potentially
map the obstruction of [10] to settings with curvature, this does not include our setup.
Solvmanifolds of the kind considered here, with a pair flg4, f®14, would map under the naive
T-duality rules of [38], to a space without structure constants but with non-trivial H-flux
(H164) together with non-geometric Q-flux, Q1%* (T-duality along direction 1) [35, 39]. Since
the compactifications of [10] do not capture non-geometric fluxes, it seems that our setting
circumvents the obstruction described there.” Finally, the compactifications considered
here make it difficult to formulate the corresponding 4d theory as a standard N' = 1 4d
supergravity (see [18, section 6]). Therefore, arguments using the A/ = 1 superpotential
and Kéhler potential may not apply.

The analogy with the DGKT solution brings us to one last aspect of the v scaling: the
question of scale separation. In our 6d geometry, the only free circles are along directions 4,5
(the others are fibered). Those lead to Kaluza-Klein (KK) masses given in the 10d string
frame by integer multiples of 1/745. This leads to a scaling m%(K, s ~ 1/4% To investigate
scale separation, this should be compared to RY in the 10d string frame, which scales in the
same way, Ry ~ 1/7%. In the 4d Einstein frame, R, goes as Ry ~ 1/° (for 1 + 29 = 1).
However, the 4d Einstein frame KK masses m%{K are modified by the same factor, which
arises from the inverse 4d metric. Thus, at first sight there is no scale separation, i.e., in

Let us emphasize once again that compactness, for solvmanifolds, does not enforce |N;| = |Ns| € Z; it
only quantizes the product |N1Ng|.

"The « scaling allows the structure constants f'e4, f®14 (or more precisely N1, Ng) to take non-integer
values, and this would result in a non-quantized Higs. This can be explained by the necessary presence of the
non-geometric Q1%*, which makes the identification of a standard differentiable manifold challenging; as a
result, it is not clear that the H-flux is on a cycle with an associated quantization condition. Interestingly,
this can be contrasted with the nilmanifold case mentioned above, where the (non-paired) structure constant
has to be given by an integer, and the T-dual (geometric) setting would have a quantized H-flux.
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terms of the vy scaling we have

2
MKK 1

4.23
K (4.23)

saturating the bound proposed in [40]. This is consistent with the belief that for a de Sitter
solution, at best a local or numerical scale separation can occur, not a parametric one, due
to the plethora of constraints and bounds that have to be obeyed [1]. As an illustration,
it is then worth to compute the numerical values obtained for these quantities, and we do
so in the 10d string frame for solutions 14 and 29. Recall that the value of the 4d Ricci
scalar is given in units of 27ls. The lowest KK mass of the tower is given by 1/r5 (since r4
is about 10 times smaller in both solutions, giving a higher mass), and the radii are given
in units of l5. Converting them to units of 2nl; and applying the appropriate A\ rescaling
to the Ricci scalar, we get

. =9 RZ? -2 2 (27T)2 -2
Solution 14: R4 = v =0.068953 (27Tl3) y MKK.§= s = 0.011827 (27Tls) y (424)
’ /,'15
. 59 Rf —2 2 (271-)2 -2
5

which does not exhibit any obvious numerical separation, even when taking into account
a factor of 4 to reach a cosmological constant. Note that the tower with r4 would, on the
other hand, have an interesting numerical mass gap. There remains one possible loophole
to this apparent absence of scale separation: there could be other contributions to the KK
spectrum, arising from the rest of the geometry, as well as from the fluxes and sources. We
have not computed these contributions here. Note that the same also applies to DGKT
(see e.g. [41, appendix D]). However, since all supergravity quantities scale with 1/9? (in
particular the structure constants which characterize the rest of the geometry) in our case,
it could be that all m%{K g scale in the same way and thus do not lead to parametric scale
separation. Numerical gaps would still have to be computed.

5 Outlook

In this paper, we focused on a 10d type IIB supergravity ansatz for a de Sitter solution. We
developed and discussed numerical methods to find such solutions subject to constraints that
ensure that such solutions are classical string backgrounds. Furthermore, we identified an
interesting scaling freedom in our ansatz, which maps one solution to another while preserving
the classicality constraints. Moreover, this scaling can make 4 radii parametrically large.
If the other 2 radii, r3,r¢, and the string coupling constant, gs, which are left invariant
by the scaling, turned out to have appropriate values, we could obtain a classical solution
with parametric control. However, such a solution is unlikely to be scale separated, at least
parametrically. The numerical search for solutions has given two solutions 8;5 14 and 3;529,
given in (3.1)—(3.2), and (3.5)—(3.6), respectively. In both solutions we get g5 < 1, but r3 and
rg are of substringy lengths. It is unclear to us whether the latter is a general feature in this
ansatz (or even beyond it), or whether getting better solutions is possible but numerically
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challenging; at least we see hints of such numerical difficulties. We refer to the Introduction
for a more detailed summary of our results.

Finding isolated dimension zero objects in a high-dimensional parameter space is often
numerically quite challenging. This means that numerical searches are much more difficult
if asymptotic de Sitter solutions or family of solutions related by a (discrete) parameter
do not exist. Besides this problem, the glassy nature of the string landscape with a huge
number of extrema poses challenges to numerical minimization algorithms. Finding the
correct ones among exponentially many will only be possible if the basin of attraction of
the former is large enough. As we have seen in section 3.2, reformulating the problem in a
different basis means that solutions that could be found previously are not found in the new
basis, hinting at an ill-conditioned numerical problem. In this context one could investigate
several questions: first, one could try to identify subsets of conditions that can be easily
satisfied together, but adding another breaks this property. In a systematic study, one would
find the power set of all constraints and run minimization attempts on all of them. This
is expected to be feasible since the minimization procedure only takes a few seconds or
minutes in the worst case and the problem can be parallelized. This would give insight
into which constraints seemingly contradict each other and could lead to the formulation
of no-go theorems. On the flip side, it might inform a change of basis or an order in which
the constraints should be imposed to make the problem better behaved numerically. The
minimization requires solving a mixed integer non-linear programming problem, which is
notoriously difficult. In the past, reinforcement learning has been applied successfully to
problems of this kind [29-32]. Moreover, coming back to the order in which constraints should
be imposed, it was observed in [29] that the reinforcement learning algorithm could identify
a beneficial order of constraints in the context of type ITA supergravity on orientifolds of
toroidal orbifolds with Og-planes and Dg-brane stacks.

Having 73,76 < 1 in string units violates our conservative classicality conditions (2.56)
or constraints (2.61). Whether this actually renders the solution non-classical is a difficult
question. First, the substringy “radii” appear as length scales in one-forms which are not
closed: in other words, they do not a priori correspond to volumes of one-cycles. As a
consequence, it is not obvious that string winding modes can arise from them. We hope to
determine the cohomology and associated volumes in future work. Second, it is also unclear
whether the o’ corrections would be dominant due to these substringy lengths. Computing
these corrections would actually be an important way to assess whether the solution is
classical. The o’ corrections may only involve combinations of radii, which may turn out
to give small corrections despite the substringy r3, 6. We expect this to be amplified using
the scaling freedom of the solutions: since the o/ corrections would involve various powers
of supergravity quantities (such as the structure constants in Riemann and Ricci tensors,
flux components, etc.), which scale with 1/, our solutions are likely to be protected from
these corrections by rescaling them with v > 1. This would establish parametric control.
We hope to come back to this important question in future work.

As a side remark, we noted already in our solution an internal hierarchy in the 6d
manifold, as advocated in [12] for a classical de Sitter solution, and reinforced by the scaling.
This is similar to the dark dimension scenario [42], which advocates for the existence of one
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large extra dimension. In our solutions 14 (3.2) and 29 (3.6), we note that among the scaled
radii, some are larger than others, and we have not even tried to make such a difference more
manifest. It would be interesting to see if our solution ansatz could provide a realization
of this dark dimension scenario.

Beyond the question of classicality, another question that could invalidate our de Sitter
solutions is the use of smeared sources. This is a common problem in supergravity solutions
with intersecting sets of parallel O,/D,, sources. One should include the backreaction of
these objects, which would introduce warp factors and a varying dilaton. In the case of the
DGKT solution discussed previously, where an analogous scaling offers parametric control over
classicality and scale separation, recent progress to describe this backreaction has been made
by using an expansion in terms of the scaling parameter [43, 44] (see [6] for a recent account
and more references). It would be natural to analogously include the source backreaction in
our de Sitter solutions by using our scaling freedom. A generic study of such a possibility has
been conducted in [45, section 4], and could be relevant to such a task. A related question
is that of the size of the hole around each backreacted orientifold: if too large, this would
induce important stringy corrections that would spoil the supergravity and classical regime
approximations, analogously to the singular bulk problem [46-48]. We hope to come back
to this question in the future.

An option for the scaling freedom (4.2), which we have not explored in depth in this work,
is to allow for a parametrically large number of parallel Ds-branes in sets I = 2,3: this is
possible for scaling exponents obeying x1 + xo # 1. The realization of solution 29 in terms of
var3 presented here (3.6) already has 83 and 68 D5 branes. If these Dj are localized in stacks,
having a large numbers of them could violate bounds that have been proposed (in different
contexts) on the rank of gauge groups (see e.g. [49, 50]). One could, however, argue that a large
number of D5 branes would cause a large backreaction, calling the supergravity approximation
into question (in case it is even valid in the smeared approximation). Nevertheless, since the
volumes wrapped by the D5 branes also grow parametrically with -, the situation requires a
more careful study. Those matters are also related to open string degrees of freedom, and
brane calibrations (see e.g. [51, appendix B]), that have not been taken into account in this
work. We hope to return to these questions in the future.

Throughout this paper, we have focused on one specific ansatz for a de Sitter solution and
studied the conditions to get a classical string background. We have seen that the analysis
can be involved, in part due to the intricacies of the 6d geometry and the need to change bases
there. The difficulties to satisfy the lattice conditions that ensure compactness also led us to
restrict our focus to only one group manifold. It is natural to ask whether such an analysis
could be conducted for other examples. For all known 10d de Sitter solutions on (compact)
group manifolds, the corresponding algebras are given in table 4 of [17]. Removing those that
include an algebra 95411 or gg,,, whose lattice conditions are too complicated to handle, we are
left, beyond the example considered here, with decomposable algebras involving s0(3) = su(2).
The latter is reminiscent of the first de Sitter solutions found [52]. To study the classicality
of these solutions with seemingly manageable algebras (in particular solutions 8;_520, 21), we
would first need an analytic change of basis to reach the basis with only the 3 structure
constants we commonly know for that 3d algebra. In all these examples, we have so far
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only worked out the change of basis numerically. We would also need to check whether the
change of basis preserves the source volumes (see e.g. [16, appendix A]). Moreover, we would
need the harmonic forms. With these quantities, the analysis we performed here could then
be repeated. While this is a priori doable, it requires substantial amounts of work. It is
also unclear whether these setups would also feature a similar scaling freedom. We hope
to come back to these questions in the future.
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A Source contributions

In this appendix, we give details on the source contribution T}, in (2.37) for each set I of
parallel sources. The definition builds on conventions of [51, appendix A] (see [6, appendix A]
for a recent related discussion). This contribution can be expressed in terms of a source
current (59L !, which is a (9 — p)-form. The latter is typically introduced at the level of the
source action to promote the world-volume action to a 10d action, i.e., to embed the source
in the 10d spacetime. For a single O,/D,, one has

ﬂ - dé"p‘*‘lm = / voly A volj A 53'_17 (A.1)
10

1
—cpTpgs p+1

where we consider a constant dilaton with e? = g, for simplicity. We have cp = 1fora D, and
cp = —2P75 for an O, and T), 2k, = (27l5)7~P. Moreover, t*[g10] denotes the pull-back of the
10d target-space metric to the world-volume. In the 6d (embedding) manifold, the source is
wrapping a space of volume form vol||, while the transverse directions have a volume form vol .
such that volg = VO]H Avol . The current form 53;27 is sometimes understood as localizing
the source in its transverse directions. For a single source, the contribution Ty is defined as

X 5 s
p+1  —c, T2k,

voly A VOlH A 53:10 = volyg

or equivalently

Tho
p+1

vol| = —c, (2mls)"P 63;]0. (A.2)

We now introduce the smeared version, which for a single source is

f V0110 T10

T =
10‘5 fVOllo

(A.3)
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We then get

TlO‘s

X volig = —c, (27l 7_p/ voly Avoly A da, = —c, (27l 7_p/
P /10 10 p (2mls) o Vol I A\ Go—p p (27ls) .

) dgp-i-l /L*[gm] )
(A.4)

Restricting to space-filling sources, we consider for simplicity that the embedding into the
4d spacetime is trivial, so we can drop the 4d parts

TlO’s
p+1

X /Vol6 =—c (27Tls)7_p/vol|| /\59L_p =—c (27Tls)7_p/ der=3,/1*[gs] . (A.5)
6 6 p—3

In the simple case where the world-volume embedding is trivial, sources wrap cycles, and
vol), vol | are corresponding harmonic forms, equation (A.5) simplifies. One obtains for the

measure d&P~?\/1*[gs] = vol||. The 6d integral can be split in two parts with [dg, = 1.

Tiols
p+1
the sources in one set I, which by definition share the same vol |, it is straightforward to

One concludes in this case that = —c¢, (27ls)""P/ [ vol . From there, by summing over

reproduce the smeared contribution T%, in (2.37):
Tio
p+1

(27l)TP

fVOlLI

— (27Np, ~ N} (A.6)

However, in many flux compactifications, the sources do not wrap cycles in the 6d
manifold M. One typically gets that vol, is exact in M and vol is not closed. This
makes their integrals over subspaces not necessarily well-defined. The integral f9—p vol |
may seem to vanish since vol| is exact, but it actually cannot be integrated over such a
subspace. Nevertheless, since all forms are constructed from the vielbeins e, they are globally
well-defined objects in the 6d manifold M. This situation illustrates the role of 69l_p and
the embedding in the 6d space, or equivalently of the pull-back to the world-volume. In
this (common) situation, we face the question of how to perform the same computation as
before and get the smeared source contribution.

Let us briefly discuss a standard example. Consider a 6d manifold that includes a T3
with H-flux. This solution also includes an Os-plane localized on the 6d manifold. Performing
a T-duality along one circle of the 72, say along direction y>, one obtains a new 6d manifold
where the T2 has become a nilmanifold A3, that carries no H-flux. Under T-duality, the
O3 has become an O4 that wraps the T-dualized direction. This well-known example was
first considered in [53], and a detailed account can be found in [35, section 3.1] with related
references. The nilmanifold is a simple group manifold, whose direction 3 is a circle, fibered
over a T? base along 1 and 2. Schematically, we can introduce the corresponding one-forms

el = rdy', € = rody?, € = r3(dy® — Nyldy?), (A7)

where the fibration is encoded in the one-form —rsN y'dy?. The situation described here
is the same as above: in the 6d manifold, the O4 wraps a direction whose volume form is
along e3, which is not closed, i.e., not a representative of a homology class. However, one
may also argue that the world-volume of the Oy is a circle, along y>, whose embedding in the
6d manifold is non-trivial. As a consequence, the world-volume action [, d¢'\/1*[g¢] appears
to be independent of the fibration. This is consistent with the fact that whatever &3 is, it has

— 37 —



to be proportional to dy' A dy? or e'2, so vol) A 8% erases the information of the fibration,

i.e., —r3N y'dy? A 83 = 0. Therefore, we get [, d&t\/t*[gs] = [q1 m3dy® = 27rs.
Let us apply the same ideas to the examples of interest here. Consider for instance the
following one-forms, discussed in section 2.3

1
Ng|5 .
e = Tg (cos(\/ |N1N6\y4)dy6 — 'Nf sin(y/ |N1N6|y4)dy1>
2
sin(4/ \NlNG\y4)dy6 + cos(y/ |N1N6|y4)dy1>

\Nﬁ

e = rydy?, (A.8)

1
o
E <cosh<¢my5>dy2 + (22) s
3

N—— ~~—

1
Na\ 5
63/ =73 ((]Vg> ’ sinh( N2N3y5)dy2 + COSh( N2N3y5)dy3

2
e = rsdyf. (A.9)

16" — riredy! A dyb and e = rorsdy? A dy3. A first Os is wrapped along

These give e
directions 12: in the 6d space, it has vol) = e'?’. As above, we can interpret this as the
Os wrapping two circles along y', 32, but those circles become part of the fibers in the 6d
manifold, whose base is along 45. In that case, the volume form of the world-volume theory

3456/ x 636/

would be given by rirody’ A dy?. From the 6d perspective, we have ;- o e . In

the 6d integral, we can then obtain el6' A e, allowing to drop all fibration factors (cos, cosh

etc.). This erases the fibration information, as in the above example. From both perspectives
(world-volume and 6d), we then obtain

/GVOlH A (54L = /2d§2\/b*[gﬁ] = r1r2/2dy1 Ady? = (27) %y, (A.10)

where 6} also provides the correct normalization.
We have thus argued that for a single source, even when wrapping a non-cycle in the
6d manifold, one has

/6 volj A6, = /p | de 7 ivlgel = 2m [T, (A11)

a|

Together with the normalization

6
/V016 = (2n)° H Ta, (A.12)
6 a=1
we can rewrite (A.5) in the presence of a single source as

T10|5 . TaH 1
p+1_ P2l H e L

(A.13)

Summing over all sources in the set I, which share the same parallel and transverse directions,
one deduces the expression for T}, given in (2.37) or (A.6), with the convention “ [ vol | "=

_ 9—p
vol , = (2m) Tay, - Tag 1 ,-
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B On the change of basis in MSSV.nb and solution searches

We carry out the 10d search for solutions by building on MSSS.nb [16]. The code generates
all 10d equations in the sugra basis, using that the metric components are ., as well as
the solution ansatz corresponding to varl. We can then express all equations in terms of
var2 and var3 using the relations worked out in this paper.

Note that the code MSSV.nb [18] can compute the 4d scalar potential in either basis:
first, it accepts a generic metric with components g,, (which now enters as 4d fields).
Moreover, since the placement of sources (their world-volumes) are the same in either basis,
the orientifold projections are unchanged. The only changes involve the precise solution
ansatz, as summarized in (2.26): beyond the metric, the non-zero flux components are slightly
different in both bases. One also needs to be careful to specify the correct extremal values
for the 4d fields. We illustrate this computation in the file MSSV attempts scaling.nb: we
express the off-shell scalar potential directly in the geometry basis, and verify that a 10d
solution in that basis (obtained via relations such as (2.25)) is indeed an extremum of the
4d potential. We then use the potential obtained directly in the geometry basis to study
the 4d scaling there, as described in section 4.2.

One could also search for solutions directly in the geometry basis by extremizing the 4d
potential. The corresponding equations in MSSV.nb were shown to be equivalent to the 10d
equations of motion [18]. It is unclear to us whether the search for supergravity solutions,
possibly with constraints, would be simpler or more successful in the geometry basis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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