
Resource-Efficient Adaptive-Network Inference Framework

with Knowledge Distillation-based Unified Learning

Rebati Gaire†, Sepehr Tabrizchi†, and Arman Roohi†

†School of Computing, University of Nebraska–Lincoln, Lincoln, NE, USA

{rgaire2, stabrizchi2, aroohi}@unl.edu

Abstract—Batteryless edge devices represent a promising av-
enue for sustainable computing, but are challenged by intermit-
tent behavior and energy constraints. To address these issues,
we propose a novel comprehensive approach integrating adaptive
task module selection for intermittent computing paradigms. Our
methodology incorporates the design of diverse task modules
with varying sizes, precision levels, computational requirements,
and energy consumption profiles, utilizing various compression
techniques. These modules utilize a shared feature extractor that
minimizes data movement and facilitates efficient checkpoint
recovery, enhancing overall system robustness. In computing
mode, the employed power-aware scheduler selects task modules
based on performance requirements and available energy in
the system. Subsequently, computation is performed to ensure
optimal resource utilization while meeting application demands.
We ensure optimal performance of these modules with pro-
posed knowledge distillation-based unified learning. Quantitative
evaluations on benchmark datasets—CIFAR-10, CIFAR-100, and
Tiny-ImageNet—reveal that, with our proposed learning frame-
work, designed models not only achieve improved performance
metrics, including accuracy increases of 1.47%, 2.44%, and
3.70% for each dataset respectively but also enhance energy effi-
ciency. These results validate our comprehensive and synergistic
approach, demonstrating significant gains in both performance
and resource optimization.

Index Terms—Multi-task learning, model fine-tuning, intermit-
tent computing, IoT

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has led

to an unprecedented growth in the number of connected de-

vices, projected to reach 75 billion by 2025 [1]. These devices,

equipped with diverse sensors, generate a massive volume of

data at the edge of the network. The traditional approach of

transmitting all this data to the cloud for processing is becom-

ing increasingly unsustainable due to bandwidth limitations,

latency concerns, and privacy issues. This has fueled the emer-

gence of edge computing, a paradigm that pushes computation

closer to the data sources, enabling real-time processing and

decision-making [2]. The advent of deep learning has revolu-

tionized the field of artificial intelligence, enabling machines to

learn and make intelligent decisions from data. Deep neural

networks (DNNs) have achieved remarkable success across

various domains, including computer vision, natural language

processing, and speech recognition. The integration of deep

learning with edge computing, known as edge intelligence,

holds immense potential for enabling smart and autonomous

IoT applications. By deploying DNNs on edge devices, we can

harness the power of local data to enable real-time insights,

personalized experiences, and seamless interactions between

the physical and digital worlds [3]. However, the deployment

of DNNs on resource-constrained IoT devices presents sig-

nificant challenges. DNNs are computationally intensive and

require substantial memory and energy resources, which are

often scarce on edge devices, while IoT devices are typically

battery-powered. The high energy consumption of DNN in-

ference can quickly drain the battery, limiting the operational

lifetime of the devices. To address these challenges, various

techniques have been proposed, such as model compression,

hardware acceleration, and energy-efficient architectures. On

the other hand, batteryless IoT devices, powered by energy

harvesting from ambient sources such as solar, thermal, or

RF, have emerged as a promising solution for sustainable

edge computing. These devices scavenge energy from their

environment, eliminating the need for battery replacement

and maintenance. However, the intermittent and unpredictable

nature of ambient energy sources poses unique challenges for

computation. Batteryless devices are subject to frequent power

failures, which can disrupt the execution of DNNs and lead

to data loss. This intermittent computing paradigm requires

novel approaches to ensure progress and maintain state across

power cycles [4]. Several techniques have been proposed to

enable reliable computation on intermittently-powered devices.

Checkpoint-based approaches periodically save the system

state to non-volatile memory (NVM), allowing resumption of

execution after a power failure. However, these techniques

often incur significant overhead and may not be suitable for

the tight energy budgets of batteryless devices. Task-based

approaches break down the computation into smaller, atomic

tasks that can be executed within a single power cycle [5]–[7].

However, these techniques require careful task decomposition

and scheduling, which can be challenging for complex DNN

workloads.

This paper introduces an adaptive-network inference frame-

work crafted to tackle the challenges of deploying neural net-

works in energy-constrained environments, notably batteryless

IoT devices at the edge. Central to our approach is understand-

ing that the energy consumption of neural networks scales

with their size and computational intensity, as demonstrated

in Figure 1. Our framework innovatively integrates adaptive

task module selection with intermittent computing techniques.

It features a range of task modules, each tailored to specific

computational and energy profiles, enhanced by cutting-edge

model compression techniques. A shared feature extractor

across modules minimizes data transfers and supports efficient

state recovery. Additionally, we integrate unified learning with

508

2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/24/$31.00 ©2024 IEEE
DOI 10.1109/ISVLSI61997.2024.00097

20
24

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

siu
m

 o
n

VL
SI

 (I
SV

LS
I)

|
97

9-
8-

35
03

-5
41

1-
9/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IS

VL
SI

61
99

7.
20

24
.0

00
97

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 14,2025 at 18:50:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Number of parameters vs. energy consumption for

various task models with different number of parameters.

knowledge distillation to improve performance across multi-

network systems, adjusting dynamically to the energy variabil-

ity of batteryless devices. This method significantly enhances

both the reliability and efficiency of resource-limited IoTs. The

main contributions of this paper are: (1) An adaptive network

inference framework with diverse task modules optimized for

varied energy and performance requirements; (2) Exploration

of training strategies for effective learning in a multi-task

setting with a shared feature extractor; and (3) Comprehensive

experimental evaluation demonstrating improved performance

and resource efficiency on benchmark datasets.

II. BACKGROUND

The rapid expansion of the IoT has led to an exponential

increase in edge devices, generating massive streams of sen-

sory data. Harnessing the insights from these data through

ML techniques holds immense potential for applications across

various domains. However, deploying computationally de-

manding DNNs on resource-constrained edge devices presents

substantial challenges in terms of memory, energy, and latency.

Network compression techniques [8]–[10] have emerged as a

vital tool to address these constraints, enabling the creation of

compact and efficient DNNs compatible with the limitations of

edge hardware. Network compression encompasses a diverse

range of strategies. Pruning methods aim to remove redundant

connections (weights) or entire neurons from the DNN archi-

tecture, reducing model size. Quantization techniques decrease

numerical precision (e.g., from 32-bit floating-point to 8-bit

integers), leading to memory savings and faster computations.

Knowledge distillation involves training a smaller “student”

network to mimic the behavior of a larger, more accurate

“teacher” network. Low-rank factorization methods approx-

imate weight matrices using lower-rank decompositions, re-

ducing computational complexity and storage requirements.

Energy-harvesting systems represent a critical advancement

in the development of sustainable, autonomous computing

devices, particularly within the Internet of Things (IoT).

These systems derive power from environmental sources like

solar radiation, thermal gradients, and ambient RF energy.

The principle behind energy harvesting is to capture these

omnipresent energies and convert them into electrical energy

to power electronic devices. This approach enables devices

to operate independently of conventional power grids, facil-

itating deployments in remote or inaccessible areas without

regular maintenance. Energy-harvesting systems function in-

termittently, activating only when there is sufficient environ-

mental energy and entering a state of power failure when

the energy is insufficient. Therefore, the operation of energy-

harvesting systems typically alternates between active periods

and power-saving states. Devices are engineered to collect

energy slowly, store it in elements like capacitors, and then

consume this stored energy rapidly during active phases.

This cycle presents unique challenges, especially the quick

depletion of energy compared to its collection rate, which can

lead to the loss of volatile memory states—such as registers

and stack memory—during power outages, although NVM re-

mains unaffected. The emergence of energy-harvesting neural

network accelerators represents a significant innovation in the

field of edge computing, particularly for devices that operate

within the constraints of intermittent power sources. This

advancement capitalizes on the local processing capabilities

of CNNs, enabling edge devices to perform complex inference

tasks autonomously. The move towards on-device computation

is driven by the need to reduce latency, bandwidth usage, and

reliance on constant cloud connectivity.

III. PROPOSED APPROACH

We introduce an adaptive-network inference framework

with multiple task models, each with distinct computational

complexity, energy profiles, and performance metrics, tailored

to diverse energy availability and performance requirements.

The structure of an intermittent-aware inference engine with

the proposed adaptive-network inference framework is shown

in Figure 2. A power-aware scheduler facilitates the selection

of an appropriate network configuration for different scenar-

ios by evaluating the available energy resources against the

necessary performance metrics. Next, we outline the process

of designing variable networks for specific tasks, detailing the

strategic steps in crafting configurations optimized for diverse

energy constraints and performance objectives. Subsequently,

we discuss the methods used to train these networks effec-

tively, ensuring optimal performance within defined energy

parameters.

A. Network Design

To enhance reliability under intermittent energy condi-

tions, we have designed neural networks featuring variable

sizes, parameters, computational demands, and energy pro-

files specifically tailored to meet the requirements of distinct

tasks. These networks leverage a power-aware scheduler that

E
n

v
ir
o

n
m

e
n

t

�
�
��

�������	
�

�
�	�	��

���

	��� ��������

��������

��������

�

��
	���
��

��	
��	��
���

� ���

�
��

�
��

��� �

�
��
��������������	�

�
��
����
��

!���"���

�
�

�

�

�
�

�
�

�

�
�
��

�

�

�

�

�

 	
��

�������	
����
�������������
�
������
�������
������

Fig. 2: Structure of an intermittent-aware inference engine.

509

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 14,2025 at 18:50:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: The proposed unified learning framework. Each task

module receives shared features z from a central feature

extractor and processes them to generate specific features

f1, f2, f3, and f4 along with predictions ŷ1, ŷ2, ŷ3, and ŷ4.

These outputs are utilized to compute the knowledge distilla-

tion loss Lkd and the categorical cross-entropy loss Lce, which

collectively optimize the training of the entire framework.

dynamically selects the optimal modules for inference based

on the prevailing energy availability and performance needs.

We incorporate established deep neural network architectures,

known for their robustness in edge inference applications,

and utilize the initial convolutional blocks as a standard-

ized feature extractor across all configurations. This feature

extractor serves as the primary processing stage, efficiently

extracting salient features from the input data that are rich

in information and reduced in dimensionality relative to the

original inputs. By utilizing a fixed feature extractor, we

avoid redundant weight reloading when switching among

different task modules, significantly reducing the energy con-

sumed in data transfer. Moreover, such optimization facilitates

energy-efficient feature checkpointing and enables smaller,

task-specific modules to make precise predictions. The task

modules are then subject to extensive model compression,

achieving diverse operational characteristics through methods

such as layer reduction, narrowing of layer widths, and the

application of quantization and knowledge distillation, thus

enhancing the networks’ efficiency. Detailed specifications of

each configuration—including parameters, memory demands,

computations, and inference durations—are comprehensively

documented in Section IV-B, supporting the deployment of

these neural networks in energy-constrained environments.

B. Network Training

In this section, we outline various training strategies de-

signed to optimize performance within an adaptive-network

inference framework tailored for different energy scenarios. To

ensure clarity and consistency throughout our discussion, we

introduce several key terms and notations. The input sample

is denoted by x, the true label by y, and the predicted label

by ŷ. The parameters of any given module M are represented

as ΘM . For a task t, the function used for extracting fea-

tures from the input is referred to as gt(), while the task-

specific post-processing function that converts these features

into predictions is denoted by ft(). We denote the categorical

cross-entropy loss function for task t by Lcet(yt, ŷt), which is

critical for training the network to minimize prediction errors.

This function is expressed as:

Lcet(yt, ŷt) = −

Nt
∑

i=1

Ct
∑

c=1

yt,i,c log(ŷt,i,c) (1)

where Nt and Ct are the number of samples and classes,

respectively, for task t. The variable yt,i,c denotes whether

the sample i for the task t actually belongs to class c and

ŷt,i,c denotes the predicted probability that the sample i for

task t belongs to class c.

1) Baseline: Initially, we establish a baseline through in-

dependent training of each task model. Each task, indicated

by k, is equipped with its dedicated feature extractor gk
and a task-specific module fk. These components are trained

separately, fostering the development of specialized feature

representations and prediction mechanisms tailored for each

task. The functional relationship for the output of each task, ŷk,

given an input sample x, is defined by the following equation:

ŷk = fk(gk(x; ΘFEk
); ΘTMk

) (2)

Here, the parameters ΘFEk
and ΘTMk

correspond to

the feature extractor and the task module for the task k,

respectively. The corresponding loss function for each task

k is calculated as Lce(yk, ŷk) from Equation 1. While this

approach allows for high specialization through independent

training, it results in each task having unique feature extractor

parameters (ΘFE), differing from one another. This spe-

cialization necessitates extensive data movement and energy

consumption due to the frequent reloading of ΘFE parameters

each time a different task module is activated for inference.

Consequently, this approach, although effective in isolation,

poses significant challenges in terms of energy efficiency when

deployed within a multi-network inference configurations.

2) Finetuning L2S: Subsequently, we explore approaches

to maintain the ΘFE stationery irrespective of the chosen task

module. In this approach of fine-tuning from large to small

(L2S), the training begins with the largest task module TML,

utilizing a comprehensive feature extractor g. The output

prediction for the largest task, ŷL for an input sample x, is

computed as follows:

ŷL = fL(g(x; ΘFE); ΘTML
) (3)

Here, the parameters ΘFE and ΘTML
correspond to the

common feature extractor and the task module for the largest

task L, respectively. The loss function, LL, used for opti-

mizing the parameters during training of TML, is defined as

LceL(yL, ŷL) in Equation 1. After training TML, the feature

extractor’s parameters, ΘFE , are frozen. These pre-trained

parameters are then employed to train each of the smaller

510

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 14,2025 at 18:50:33 UTC from IEEE Xplore. Restrictions apply.

task modules. For each smaller task module k, the output

prediction ŷk for an sample x is calculated using the frozen

feature extractor:

ŷk = fk(g(x; ΘFEfrozen
); ΘTMk

) (4)

In this equation, ΘTMk
are the parameters for the smaller

task modules, and ΘFEfrozen
indicates that the feature extrac-

tor parameters remain unchanged. The loss function for the

smaller tasks, Lk, is similar to that of the largest task and

is given by Lcek(yk, ŷk) from Equation 1. This fine-tuning

approach allows each task to benefit from a robust, generalized

feature base, thus potentially increasing the overall efficiency

and effectiveness of the multi-task learning framework.

3) Finetuning S2L: In contrast to the L2S strategy, the small

to large (S2L) fine-tuning approach starts with the training of

the smallest task module, TMS , and focuses on utilizing a

shared, fixed feature extractor across increasingly larger task

modules. This method aims to explore how well small-scale

learning can generalize to larger, more complex tasks. The

initial phase involves training the TMS , which is designed to

manage the least complex scenarios. The output prediction for

the smallest task, ŷS , from an input sample x, is derived as

follows:
ŷS = fS(g(x; ΘFE); ΘTMS

) (5)

Here, the parameters ΘFE and ΘTMS
correspond to the

common feature extractor and the task module for the smallest

task S, respectively. The corresponding loss function, LS ,

used to optimize the parameters during the training of TMS ,

is defined by LceS (yS , ŷS) in Equation 1. Once TMS is

adequately trained, the feature extractor’s parameters, ΘFE ,

are frozen. These pre-trained parameters are then used to

independently train the larger task modules. This approach

tests the ability of basic features, developed under limited

complexity, to scale and adapt to more demanding scenarios.

For each larger task module k, the prediction output ŷk is

calculated with the now frozen feature extractor:

ŷk = fk(g(x; ΘFEfrozen
); ΘTMk

) (6)

Here, ΘTMk
are the parameters for the larger task modules,

and ΘFEfrozen
indicates that the feature extractor parameters

remain unchanged. The loss function for the larger tasks mir-

rors that of the smallest task and is expressed as Lcek(yk, ŷk)
in Equation 1. While this strategy provides certain benefits

similar to L2S by exploiting a generalized feature base, it

also faces limitations as the fundamental features derived from

the smallest task may not capture the complexity required

for optimal performance in larger tasks. Nevertheless, the

capability of larger modules to accommodate and refine these

initial features can sometimes result in improved performance

over L2S, although it typically falls short of the baseline

performance achieved with independently trained modules.

4) Unified Learning: In the unified learning approach,

we diverge from traditional methodologies, where each task

module is trained independently. Instead, all task modules are

trained simultaneously using a shared feature extractor, de-

noted as g, which is trained concurrently across all tasks. This

approach not only standardizes the weights across the feature

extractor but also creates a synergistic learning environment

where the learning outcomes from one task benefit others. The

shared feature representation z extracted from an input x using

the common feature extractor with parameters ΘFE is given

by: z = g(x; ΘFE). For each task k, the task-specific output

ŷk is then generated by the corresponding task module:

ŷk = fk(z; ΘTMk
) (7)

The overall loss function L, which optimizes the multi-task

learning model, aggregates the losses from each task, weighted

by their respective importance:

L =

K
∑

k=1

αkLcek (ŷk, yk) (8)

Here, αk denotes the weight or importance assigned to

the loss of each task k. These weights help balance the

training focus among the tasks, depending on their signif-

icance and the complexity of the learning objectives. This

multi-task framework leverages shared learning to minimize

redundancy and maximize the efficiency of the model training

process, demonstrating a significant advantage over isolated

task-specific training models.

5) Unified Learning with Knowledge Distillation: Building

on the unified learning framework, this enhanced version

incorporates knowledge distillation to leverage the differential

learning capabilities across networks of varying sizes. By

using the more robust features and logits learned by larger

networks, as depicted in Figure 3, this method optimizes the

performance of smaller networks through guided learning from

their larger peers. The approach maintains static weights for

the common feature extractor and fosters an environment of

mutual learning among the tasks, thereby elevating the overall

performance beyond previous models.

For each task k, the task-specific output ŷk continues to

be generated by the respective task module as described

in Equation 7. The comprehensive loss function L is now

extended to integrate both the conventional task-specific losses

and knowledge distillation losses:

L =

K
∑

k=1

⎛

¿αkLcek (ŷk, yk) +

K
∑

j>k

βj,kLkdj→k

À

⎠ (9)

Here, βj,k denotes the weight for each knowledge distillation

loss. The knowledge distillation loss Lkdj→k
, which facilitates

the transfer of knowledge from a larger task j to a smaller

task k, is defined by:

Lkdj→k
= ‖φj(x)− φk(x)‖2 + ‖ŷj − ŷk‖2 (10)

Here, φj(x) and φk(x) refer to the features from the teacher

model and student model, respectively. This strategy not only

enhances the efficiency of learning within smaller networks

but also significantly boosts the overall system performance

by harnessing the strengths of larger networks. By promoting

the development of generalized features that are effectively

applicable across various tasks, this learning model enhances

both the efficiency and robustness of the learning outcomes.

511

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 14,2025 at 18:50:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Training convergence comparision of various task

modules in Independent Learning (Baseline) and Proposed

Learning Framework.

IV. ANALYSIS AND EVALUATION

A. Dataset

Our methodology underwent rigorous evaluation using

three prominent datasets in image recognition tasks: CIFAR-

10 [11], CIFAR-100 [11], and Tiny-ImageNet [12]. CIFAR-10,

renowned in computer vision research, includes 60,000 color

images, each measuring 3×32×32 pixels and categorized into

ten distinct classes. CIFAR-100 broadens the spectrum by

providing 60,000 color images of the same dimensions as

CIFAR-10 but across 100 fine-grained classes, intensifying

complexity and variability. In contrast, Tiny-ImageNet offers a

downscaled version of the ImageNet dataset, comprising 200

object classes with 500 training samples per class. Resized to

3×64×64 pixels, images in Tiny-ImageNet strike a balance

between dataset intricacy and computational feasibility for

computer vision experiments.

B. Baselines Architectures

Central to our innovative adaptive-network inference frame-

work is implementing versatile network architectures under-

pinned by a shared feature extractor and an array of special-

ized task modules. This architecture draws upon the proven

strengths of seminal deep neural network models, specifically

VGG16 [13] and MobileNetV1 [14], acclaimed for their robust

edge inference capabilities in image classification domains.

Table I encapsulates the architectural essence and performance

nuances of different designed task-specific modules. The task

modules (TM) range from TM1, which mirrors the original

full-scale models, embodying the peak of computational ca-

pability for accuracy-critical applications, to TM4, the most

streamlined variant, which trims down to the bare essentials

with few or no convolutional layers, optimizing for swift infer-

ence and minimal energy consumption in resource-constrained

environments. Intermediate modules TM2 and TM3 mediate

between these extremes, providing balanced options that cater

to varying requirements for computational complexity and

efficiency, all the while leveraging a shared feature extraction

base (FE) to maintain consistency across the spectrum of

network configurations.

C. Implementation Details

In our implementation, we employed the PyTorch frame-

work for network creation, training, and testing, capitalizing

on its versatility and efficiency. Optimization was achieved

through stochastic gradient descent (SGD), a widely-utilized

algorithm in deep learning. We initiated training with a learn-

ing rate of 0.01 for the task model, progressively reducing it

by 90% after 80 epochs to enhance convergence. Training was

conducted with a batch size of 128 over 200 epochs to ensure

effective learning. Hyperparameters for the loss function were

finetuned through grid search to optimize model performance.

For our proposed joint training approach, we pre-trained the

each network for twenty epochs using cross-entropy loss ex-

clusively. This preliminary step facilitated the establishment of

plausible intermediate features and logits before incorporating

knowledge distillation losses. In determining the most effective

instance of each task model, we preserved the best-performing

checkpoint based on validation set performance. Subsequently,

this checkpoint underwent rigorous evaluation on the test set to

provide a comprehensive assessment of model generalization

and performance.

D. Quantitative Evaluation

Figure 1 illustrates a comparison of various task models

used in the image classification experiment, highlighting their

size, measured by the number of parameters and corresponding

energy consumption. To measure energy consumption, we

employed the STM32F107VC microcontroller, providing ac-

curate and reliable readings for our analysis. The graph clearly

demonstrates a direct proportionality between model size and

energy consumption. Table II presents a comprehensive per-

formance comparison of various approaches for the adaptive-

network inference framework described in Section III-B. From

the table, we can clearly see that the employment of unified

learning with a shared feature extractor and the inclusion of

knowledge distillation led to a significant performance gain,

often surpassing fine-tuning methods and the baseline.

Finetuning L2S resulted in decreased performance, par-

ticularly noticeable in streamlined modules with an average

drop up to 34.58% compared to baseline performance on

TinyImageNet classification with VGG16-based modules. This

is attributed to the incompatibility of feature representations

learned by more extensive task modules when applied to

more diminutive counterparts. Conversely, Finetuning S2L

showed improved results compared to the Finetuning L2S,

with average accuracies dropping only 8.20% on the same

task, suggesting that features learned by smaller networks

are effectively expanded and refined by the larger ones due

to their greater capacity. Unified training has demonstrated

a clear beneficial impact on model performance across all

datasets, with VGG16 showing average percentage improve-

ments of 0.69% for CIFAR-10, 0.39% for CIFAR-100, and

0.87% for Tiny-ImageNet against the baseline, across all task

modules. Similarly, MobileNetV1 exhibited gains of 0.73%
for CIFAR-10, 1.46% for CIFAR-100, and 1.19% for Tiny-

ImageNet, underlining the effectiveness of a holistic training

512

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 14,2025 at 18:50:33 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Detailed specification and performance evaluation of designed network modules.

DNN Model Modules
Convolutional Layers Fully-Connected Layers Total Inference

Time (ms)
Module

Size (MB)# Layers # MAC # Params # Layers # MAC # Params # MAC # Params

VGG16

FE 2 158,072,832 38,720 0 0 0 158,072,832 38,720 8.136 0.156
TM1 11 1,094,713,344 14,675,968 3 3,155,968 3,158,026 1,097,869,312 17,833,994 1.150 71.712
TM2 2 94,371,840 369,024 2 66,176 66,250 94,438,016 435,274 0.319 1.202
TM3 1 75,497,472 73,856 2 66,816 66954 75,564,288 140,810 0.227 0.611
TM4 0 0 0 2 17,024 17,098 17,024 17,098 0.139 0.093

MobileNetV1

FE 1 884,736 928 0 0 0 884,736 928 7.842 0.005
TM1 26 1,572,864,000 3,206,048 1 10,240 10,250 1,572,874,240 3,216,298 2.241 13.361
TM2 10 126,877,696 713,248 1 10,240 10,250 126,887,936 723,498 1.296 3.302
TM3 8 134,217,728 29,728 1 1,280 1,290 134,219,008 31,018 0.797 0.184
TM4 4 92,274,688 11,680 1 1,280 1,290 92,275,968 12,970 0.107 0.539

TABLE II: Performance comparison of various designed network modules on different learning strategies. The best results are

highlighted in bold, and the second-best results are shown in red color.

CIFAR-10 CIFAR-100 Tiny-ImageNet
Network Experiment

TM1 TM2 TM3 TM4 TM1 TM2 TM3 TM4 TM1 TM2 TM3 TM4

Baseline 89.38 85.09 81.92 75.74 63.57 55.1 53.36 45.31 54.20 48.47 38.37 31.95
Finetuning L2S 89.38 81.32 75.34 53.51 63.57 51.00 47.98 30.18 54.20 26.6 21.54 16.18
Finetuning S2L 90.19 84.37 80.59 75.74 65.84 51.62 49.49 45.31 55.19 37.69 33.61 31.95
Unified Learning 90.59 85.07 82.76 76.04 65.44 53.82 53.15 45.94 56.07 47.66 38.04 32.77

VGG16

Unified Learning + KD (Ours) 90.73 86.22 83.64 76.44 66.77 54.76 54.53 46.76 57.25 49.82 39.02 33.45

Baseline 88.39 85.44 81.67 72.85 64.47 60.64 54.59 42.75 51.62 42.08 38.09 28.39
Finetuning L2S 88.39 84.82 78.58 67.22 64.47 57.5 51.05 39.14 51.62 42.36 37.58 28.43
Finetuning S2L 88.32 85.02 78.61 72.85 63.8 58.2 51.85 42.75 51.33 42.5 37.89 28.39
Unified Learning 89.26 86.67 80.57 73.58 64.33 60.26 55.09 45.57 51.57 44.25 37.34 28.86

MobileNetV1

Unified Learning + KD (Ours) 90.30 87.65 82.48 75.23 64.77 61.29 54.59 46.32 51.88 46.23 38.60 29.49

approach. The incorporation of knowledge distillation further

amplified these improvements, resulting in more significant

performance enhancements. With knowledge distillation em-

bodied, VGG16’s improvements surged to 1.47% for CIFAR-

10, 2.44% for CIFAR-100, and 3.70% for Tiny-ImageNet. For

MobileNetV1, the jumps were even more pronounced, with

a 1.90% boost for CIFAR-10, 2.48% for CIFAR-100, and a

remarkable 3.89% for Tiny-ImageNet. Furthermore, as evident

in Figure 4, the convergence during training of the proposed

approach with knowledge distillation demonstrates superior

convergence during training, characterized by a better decline

in validation loss and a higher rise in validation accuracy com-

pared to the baseline. These experimental results underscore

the synergistic advantage of our approach of unified training

coupled with knowledge distillation, leading to more robust

and generalizable models with greater training efficiency.

V. CONCLUSION

In this paper, we presented a comprehensive methodology

for enhancing the efficiency and reliability of edge intelligence

in batteryless IoT devices. Our approach, centered on adaptive

task module selection and intermittent computing techniques,

demonstrates significant advancements in managing the in-

herent constraints of power-scarce environments. Quantita-

tive evaluations of the proposed learning framework using

benchmark datasets like CIFAR-10, CIFAR-100, and Tiny-

ImageNet revealed that our models not only achieve improved

performance metrics but also enhance energy efficiency, with

up to an average of 1.47%, 2.44%, and 3.70% of increase

in accuracy for CIFAR-10, CIFAR-100, and Tiny-ImageNet

classification, respectively, over the baseline. These results

underscore our strategy’s effectiveness in optimizing resource

utilization while closely aligning with application-specific

requirements.

ACKNOWLEDGEMENT

This work is supported in part by the National Science

Foundation under Grant No. 2303114 and 2247156.

REFERENCES

[1] S. Al-Sarawi et al., “Internet of things market analysis forecasts, 2020–
2030,” in 2020 Fourth World Conference on smart trends in systems,

security and sustainability (WorldS4). IEEE, 2020, pp. 449–453.
[2] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet

of things journal, vol. 3, no. 5, pp. 637–646, 2016.
[3] Z. Zhou et al., “Edge intelligence: Paving the last mile of artificial

intelligence with edge computing,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1738–1762, 2019.

[4] S. Umesh et al., “A survey of techniques for intermittent computing,”
Journal of Systems Architecture, vol. 112, p. 101859, 2021.

[5] A. Roohi and R. F. DeMara, “Nv-clustering: Normally-off computing
using non-volatile datapaths,” IEEE Transactions on Computers, vol. 67,
no. 7, pp. 949–959, 2018.

[6] N. Taheri et al., “Intermittent-aware design exploration of systolic array
using various non-volatile memory: A comparative study,” Microma-

chines, vol. 15, no. 3, p. 343, 2024.
[7] S. Tabrizchi et al., “Diac: Design exploration of intermittent-aware

computing realizing batteryless systems,” 2024 Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2024.
[8] Y. Cheng et al., “A survey of model compression and acceleration for

deep neural networks,” arXiv preprint arXiv:1710.09282, 2017.
[9] S. Han et al., “Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.
[10] R. Gaire et al., “Encode: Enhancing compressed deep learning mod-

els through feature—distillation and informative sample selection,” in
2023 International Conference on Machine Learning and Applications

(ICMLA). IEEE, 2023, pp. 633–638.
[11] A. Krizhevsky et al., “Learning multiple layers of features from tiny

images,” 2009.
[12] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”

in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[13] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861,
2017.

513

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on May 14,2025 at 18:50:33 UTC from IEEE Xplore. Restrictions apply.

