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Abstract

Multiple species within the order Hemiptera cause severe
agricultural losses on a global scale. Aphids and whiteflies are
of particular importance due to their role as vectors for
hundreds of plant viruses, many of which enter the insect via
the gut. To facilitate the identification of novel targets for
disruption of plant virus transmission, we compared the
relative abundance and composition of the gut plasma
membrane proteomes of adult Bemisia tabaci (Hemiptera:
Aleyrodidae) and Myzus persicae (Hemiptera: Aphididae),
representing the first study comparing the gut plasma
membrane proteomes of two different insect species. Brush
border membrane vesicles were prepared from dissected guts,
and proteins extracted, identified and quantified from triplicate
samples via timsTOF mass spectrometry. A total of 1699 B.
tabaci and 1175 M. persicae proteins were identified. Following
bioinformatics analysis and manual curation, 151 B. tabaci and
115 M. persicae proteins were predicted to localize to the
plasma membrane of the gut microvilli. These proteins were
further categorized based on molecular function and biological

process according to Gene Ontology terms. The most
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abundant gut plasma membrane proteins were identified. The
ten plasma membrane proteins that differed in abundance
between the two insect species were associated with the
terms “protein binding” and “viral processes.” In addition to
providing insight into the gut physiology of hemipteran insects,
these gut plasma membrane proteomes provide context for
appropriate identification of plant virus receptors based on a
combination of bioinformatic prediction and protein localiza-

tion on the surface of the insect gut.

KEYWORDS

gut receptors, Hemiptera, insect gut, plant virus, proteome,

whitefly

Key points

e The most abundant Bemisia tabaci and Myzus persicae gut
plasma membrane and gut surface proteins were
identified.

e This work informs appropriate localization to the gut
surface of candidate receptor proteins for plant viruses
vectored by these insects.

e In silico prediction of likely plant virus receptors based
on machine learning-enhanced bioinformatic tools are

discussed.

1 | INTRODUCTION

Hemipteran insects that feed on phloem are responsible for the transmission of many plant pathogens. Indeed, the
majority of plant viruses are transmitted by hemipteran insects with more than half transmitted by whiteflies or
aphids (Fereres & Raccah, 2015; Hogenhout et al., 2008). Primary vectors among these are the sweet potato
whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) (Ghosh & Ghanim, 2021), and the green peach aphid, Myzus
persicae (Ng & Perry, 2004). B. tabaci transmits more than 400 plant viruses (Ghosh & Ghanim, 2021) with
begomoviruses (Geminiviridae) being the largest group of viruses transmitted specifically by whiteflies.
Begomoviruses cause 20%-100% reduction in vegetable crop yield (Polston & Anderson, 1997) with annual
losses of more than US $300 million (Navas-Castillo et al., 2011; Varma & Malathi, 2003). M. persicae vectors more
than 100 persistent plant viruses (Blackman & Eastop, 2000) of which luteoviruses (Luteoviridae) and poleroviruses
(Solemoviridae), are of particular economic importance (Ng & Perry, 2004).

Many of these plant viruses are transmitted by their aphid and whitefly vectors in a circulative, non-propagative
manner. In contrast to non-circulative viruses, which are retained in the stylets or foregut of their insect vectors,
circulative viruses need to bind and cross the gut epithelium to be successfully acquired and transmitted by the
vector (Ng & Perry, 2004). Following ingestion from the phloem of an infected plant, virions enter the gut lumen,
bind to receptors on the surface of the insect gut epithelium, transcytose across the epithelium and enter the

hemocoel. Some of the plant viruses circulating within the hemocoel bind to receptors on the salivary gland and
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cross the salivary gland epithelium for release with the saliva during subsequent feeding (Czosnek et al., 2017; Gray
& Gildow, 2003). The initial interaction of these circulative, non-propagative plant viruses with the insect vector is
mediated by virus binding to specific proteins on the surface of the gut epithelium that mediate entry into the
vector. As this initial virus-receptor association is a primary target for intervention to block virus transmission, the
identity of plant virus receptors in the gut of the insect vector is of particular importance (Bonning, 2025).

The insect midgut epithelium includes at least four different cell types (Caccia et al., 2019), of which the
columnar cells or enterocytes, are the most abundant. These cells have microvilli on their luminal surface that create
a “brush border” with the large surface area facilitating nutrient absorption (Holtof et al., 2019). The proteins,
glycans and lipids on the surface of the microvilli mediate virus binding and entry into the gut epithelial cells.
Membrane proteins such as those on the microvillar membrane are divided into eight classes: single-pass membrane
proteins, which have a single transmembrane helix (four classes), multipass transmembrane proteins, GPI-anchored,
lipid-anchored proteins, and peripheral membrane proteins (Butt et al., 2017). Brush border membrane vesicles
(BBMV), which are enriched in microvillar surface proteins, are useful for analysis of the insect gut surface
proteome and for identification of virus receptors (Wolfersberger, 1993)

Relatively few studies have characterized the gut surface proteome in insects, with analyses of the Trichoplusia ni
BBMYV proteome (Javed et al., 2019) and Aedes aegypti lipid raft proteome (Bayyareddy et al., 2012) being notable
exceptions. A more sensitive, quantitative proteomics method was used to compare the gut surface proteomes of
adult and nymph Diaphorina citri (Tavares et al., 2022). Recently, enhanced bioinformatic tools were developed using
machine learning for in silico prediction of viral receptor proteins. Using a generalized boosted model, Valero-Rello
et al. (2024) explored plasma membrane protein features that predict whether a protein functions as a virus receptor
with reference to 175 known mammalian receptor proteins (Valero-Rello et al., 2024). Using optimized parameters,
this model correctly predicted > 90% of known receptors. The top four features for prediction of virus receptor
function were the number of protein interactors, and the gene ontology (GO) terms “protein binding” (GO:0005515),
“cell adhesion” (GO:0007155), and “cell surface” (GO:0009986). Among terms frequently used for classification based
on high coverage that were not among the most decisive features in the analysis, were glycosylation, and
immunoglobulin domain (Valero-Rello et al., 2024). Taken together, the reduced amount of material required for
proteomic studies resulting from increasingly sensitive spectrometers (Meier et al., 2015, 2018), combined with
improvements in protein identification technology and enhanced bioinformatic tools provide an unprecedented
opportunity to identify the gut epithelial proteins of very small hemipteran species such as whiteflies and aphids.

The goal for this study was to identify the most abundant proteins in the plasma membrane of the midgut of B.
tabaci and M. persicae, to (1) provide foundational information on hemipteran gut physiology, and (2) inform
appropriate localization of candidate plant virus receptor proteins in these insect vectors for proteins predicted to
localize to the gut surface. While several candidate receptor proteins have been identified in B. tabaci (cubulin,
aminopeptidase N for the begomovirus, Tomato yellow leaf curl virus; TYLCV) (Fan et al., 2024; Zhao et al., 2020) and
in M. persicae (ephrin for the luteovirus, Turnip yellows virus) (Mulot et al., 2018), localization of these proteins to the
gut surface has not been confirmed. To this end, we performed proteomic analyses of BBMV proteins derived from
the midguts of B. tabaci and M. persicae. In addition, to identification of the most abundant gut surface proteins in
each species, we report on the unique and differentially abundant gut plasma membrane proteins from B. tabaci and
M. persicae and discuss bioinformatic predictions of likely plant virus receptors or binding partners.

2 | METHODS
2.1 | Insect rearing

B. tabaci (Hemiptera: Aleyrodidae) Biotype B were reared on cabbage (Brassica oleracea var. capitata) in a growth
chamber at 26°C with a 14:10 (light:dark) cycle. Whiteflies were passaged weekly to new cabbage plants for
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production of newly emerged adults. M. persicae colonies were maintained on pepper plants (Capsicum annuum cv.
California wonder) in an incubator at 26 + 2°C, with a 14:10 photoperiod (light:dark) and 50 + 5% relative humidity.
Aphids were transferred to new plants every 2 weeks to ensure availability of newly emerged adults.

2.2 | Preparation of BBMV from B. tabaci and M. persicae adults

Brush border membrane vesicles (BBMV) were prepared according to (Tavares et al., 2022). Guts were dissected under a
dissection microscope. BBMVs were prepared from dissected guts via MgCl, precipitation and differential centrifugation
with some maodifications (Wolfersberger, 1993). Approximately 2000 B. tabaci or 1500 M. persicae frozen guts were
thawed on ice and transferred into a 3 mL Dounce homogenizer (Wheaton) with 1 mL of cold buffer A (300 mM
mannitol, 17 mM Tris HCI pH 7.5, 5mM ethylene glycol tetraacetic acid-EGTA) supplemented with a 1x protease
inhibitor mixture (Pierce™ Protease Inhibitor Tablets, EDTA-free, and propidium iodide [PI]) and 1 mM PMSF
(phenylmethylsulphonyl fluoride; Thermo Scientific). Guts were homogenized on ice by 35 strokes. After centrifugation,
BBMVs in the pellet were re-extracted with a half volume of buffer A, incubated with MgCl, and were subjected to a
second round of centrifugation (2500g for 15 min at 4°C). The resultant supernatant containing BBMV was centrifuged
a third time (300,000g for 90 min at 4°C, Optima™ TLX Ultracentrifuge). This pellet, now enriched with BBMV, was
resuspended in 30 uL of ice-cold buffer A with Pl and PMSF (as above), then stored at ~80°C. Protein concentration of
the prepared BBMV samples was assessed by Nanodrop at 280 nm. As proteins were still present in the supernatant, an
additional round of centrifugation was performed (300,000g for 90 min at 4°C). The BBMV pellet was resuspended in
15 pL of ice-cold buffer A. BBMV fractions were combined. Three BBMV preparations were made from B. tabaci adult
guts (2000 guts per replicate: 6000 guts in total) and three from M. persicae adult guts (1500 guts per replicate: 4500
guts in total). Each BBMV replicate was prepared separately, with a subsample used for protein concentration and
protein enrichment determination. BBMV and crude gut homogenate protein concentrations were determined by
Bradford assay with bovine serum albumin (BSA) as a standard (Bradford, 1976). The BBMV protein profile was assessed
relative to that of the gut homogenate as follows: samples (2 ug) were solubilized in protein loading buffer (2% sodium
dodecyl sulfate [SDS], 10% glycerol, 0.01% bromophenol blue in 60 mmol Tris-HCI buffer), separated by electrophoresis
(4%-12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE] gel), and resulting protein bands

stained for visualization (Pierce™ Silver Stain for Mass Spectrometry; Thermo Scientific).

2.3 | Sample preparation

SPEED Digestion was performed as described previously (Doellinger et al., 2020; Tavares et al., 2022). BBMVs were
solubilized in four volumes of trifluoroacetic acid (TFA; v/v), incubated (2 min at 25°C), neutralized by addition of
10 volumes of 2 M Tris-Base buffer (v/v). To each sample was then added 1.1 volumes of 10X-reduction/alkylation
buffer (100 mM Tris[2-carboxyethyl] phosphine [TCEP] 29 mg/mL]/400 mM 2-chloroacetamide [CAA, 37 mg/mL] in
H,O). This mixture was then incubated (5 min, 95°C). The resulting protein concentration (Nanodrop) was adjusted by
the addition of dilution buffer (10:1 v/v mixture of 2 M TrisBase and TFA) to a final concentration of 0.25 pug/uL. A
1:50 (w/w; trypsin: sample) ratio was used for trypsin digestion, followed by incubation (37°C, 600 rpm, 20h in a
Thermo Mixer). TFA was added to the resulting trypsin digested peptides to a final concentration of 2%.

2.4 | Desalting of peptides using ZipTip

A micro ZipTip (C18-Ziptip; Millipore) mini-reverse phase (2 ug capacity) was used to desalt peptides resulting from
BBMV digestion. A solution of 10 uL of 100% acetonitrile (ACN), 10 pL of 50% ACN/50% of 0.1% trifluoroacetic
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acid (TFA) solution was used to equilibrate the ZipTip, followed by three washes with 10 ul of 0.1% TFA. Each
suspended peptide sample was pipetted through the ZipTip 10 times. The ZipTip was then washed with TFA 10
times (10 pL of 0.1% each time), and the sample eluted with a solution of 80% ACN/0.1% TFA. The eluted sample
was then lyophilized (cold SpeedVac).

2.5 | Mass spectrometry

Samples were separated on a Bruker Fifteen ReproSil (150 mm x 75 um; 1.9 um C18) at a flow rate at 400 nL/min
with Solvent A (water with 0.1% formic acid [v/v]) and Solvent B (water with 80/20/0.1% ACN/water/formic acid
[v/v/v]) on a hybrid trapped ion mobility-quadrupole time-of-flight mass spectrometer (timsTOF fleX; Bruker
Daltonics) with a modified nano-electrospray ion source interfaced with an automated Easy nLC 1000 Ultra
(Thermo Scientific). Peptides were separated using a linear gradient with Solvent B from 5% to 17% for 60 min, to
25% for 30 min, to 35% for 10 min, to 85% for 10 min, followed by a hold at 85% for 10 more minutes. Data
dependent mode with Parallel Accumulation Serial Fragmentation (PASEF) was used to produce the spectrum
library to improve ion utilization efficiency and speed of data acquisition. The dual TIMS was operated by the
system at a 100% duty cycle, recording the MS/MS mode scans from 100 to 1700 m/z. lon mobility was scanned
from 0.6 to 1.6 Vs/cm?, at a TIMS ion charge control setting of 5e6. The TIMS dimension was calibrated linearly
using four selected ions from the Agilent ESI LC/MS tuning mix (m/z, 1/Ko: (322.0481, 0.7363 Vs cm™2), (622.0289,
0.9915 Vs cm™2), (922.0097, 1.1996 Vs cm™2), (1221,9906, 1.3934 Vs cm™2)] in positive mode.

2.6 | Protein identification

MS/MS tandem spectra extracted by DataAnalysis 5.2 (Bruker) were subjected to a thorough database search (Mascot;
Matrix Science; version 2.7.0) against the customized NCBI Refseq databases (O'Leary et al., 2016) for B. tabaci (22,737
entries), and M. persicae (23,911 entries) with biological modification and amino acid substitution considerations, with a
decoy option. Peptide tolerance was set as 10 ppm, tandem MS tolerance + 0.5 Da, peptide charge of 2+ to 6+,
enzyme = trypsin, fixed modification of carbamidomethyl (C), and variable modifications of acetylation and gIn->pyro-glu
(N-terminus), deamidation (N and Q), and oxidation (M). FDR was calculated by Mascot and filtered by Scaffold v4.11.1.

Criteria for protein identification MS/MS based peptide and protein identifications were validated by Scaffold
(v4.11.1; Proteome Software Inc.). The threshold for peptide identification acceptance was a > 95.0% probability
output from the Scaffold Local FDR algorithm. The threshold for protein identification acceptance was > 99.9%
probability (Protein Prophet algorithm; Nesvizhskii et al., 2003), containing at least two identified peptides, and two
or more total spectral counts. The principle of parsimony was used to group proteins that contained similar peptides
and could not be differentiated solely on MS/MS analysis. Proteins sharing significant peptide similarity were

grouped into clusters.

2.7 | Data analysis

A schematic workflow of the data analyses employed for this study is provided in Figure 1. Proteins that localize on
the gut surface were predicted with BUSCA (Savojardo et al., 2018), and DeepLoc2 (Almagro Armenteros et al., 2017).
Cellular component Gene Ontology terms were predicted by eggNOG5 (Cantalapiedra et al., 2021; Huerta-Cepas
et al., 2019). Proteins predicted to be plasma membrane proteins by at least one of these programs were examined
for: (1) signal peptides using Phobius (Kall et al., 2007), (2) GPI anchor signals using NetGPIv1.1 (Gislason et al., 2021)
and PredGPI (Pierleoni et al., 2008), (3) transmembrane domain using Phobius (Kall et al., 2007), and (4) palmitoylation
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| Scaffold 4 (csv file) | Criteria:

1. Protein threshold: 99.9%
2. Peptide threshold: 95%
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| Eliminate Decoys and Duplicate Accession Numbers |

N

| Subcellular Localization Analysis | | Gene Ontology (GO) Analysis
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Select proteins predicted to localize to PM or
with GO term related to PM

v
Transmembrane Domain, Signal peptide and PTM
Predictions
1
| IMP, GPI-anchor, Protein lipidation | Relative Abundance:
Manual curation: Uniprot and Spectral
Drosophila ortholog Normalization
| BBMV Plasma Membrane Proteins |—' (dNSAF)

FIGURE 1 Workflow for characterization of protein composition and relative abundance on the midgut
epithelium of Bemisia tabaci and Myzus persicae. BBMV, brush border membrane vesicles.

site using GPS-Palm (Ning et al., 2021). All predicted plasma membrane proteins were then manually checked against
the Universal Protein Resource—UniProt database (Bairoch et al., 2005; Wu et al., 2006) and Flybase (Thurmond et al.,
2019) to confirm their cellular and gut localization. Proteins predicted to localize to the membrane of organelles were
eliminated. Functional annotation of the B. tabaci and M. persicae gut proteins was performed using DAVID (Huang
et al., 2009; Sherman et al., 2022) or eggNOG5 (Cantalapiedra et al., 2021; Huerta-Cepas et al., 2019). For selected
gut surface proteins, the number of interacting partners was assessed for orthologous proteins in Drosophila
melanogaster using the STRING database (Szklarczyk et al., 2023).

Total spectral counts were normalized to the distributed normalized spectral abundance factor (AINSAF) (Zhang et al.,
2010). Proteins from B. tabaci and M. persicae adults were then ranked from higher to lower relative abundance on the gut
plasma membrane, and on the gut surface. To determine whether the relative abundance of a protein differed between the
two species, we grouped the proteins into those detected in both species, those detected in B. tabaci only, and those
detected in M. persicae only. For proteins found in both insects, we calculated the natural log of each dNSAF following a
student t-test (p-value 0.05) comparison of the In(dNSAF) from the three technical replicates of B. tabaci adults against that
of M. persicae adults. Spectral count values of zero were replaced with 0.29 to avoid errors during natural log
transformation (Zybailov et al., 2006). The R v4.2.3 rstatix package was used for analyses; other data analyses and
manipulations used RStudio (v. 2021.09.1) tidyverse (Wickham et al., 2019) and seqinr (Charif & Lobry, 2007), or Linux.

To predict likely virus receptors or binding partners from the gut surface proteins identified, we used the GO
terms “plasma membrane” (PM; GO:0005886), along with the “protein binding” (GO:0005515), “cell adhesion”
(GO:0007155), and “cell surface” (GO.0009986) terms, which were among the most important features determining
receptor function according to Valero-Rello et al. (2024). A schematic highlighting the relationship between the GO
terms used for this analysis along with their separation into cellular component, biological process or molecular

function child terms, is provided in Figure 2 (Binns et al., 2009).

ASUDIIT SUOWIIO) dANEAL)) d[qeatdde iy £q PauIoA0S a1e S3[dILIE V() 98N JO SN 10J AIBIQET AUIUQ AJIA UO (SUONIPUOI-PUB-SULIA)/W0d" K[ 1M AIBIqI[dul[uo//:sdNy) SUONIpuoy) pue suua], a1 93 *[$707/S0/t 1] uo Areiqu aurquQ A[IA\ “epLOL JO ANSIAAIUN AQ €€ 17T Y28/Z00 0 1/10p/wod* K3[1m’ AIeIquaur[uoy/:sdny woly papeo[umod ‘€ ‘470z ‘LTE90TS |



JIMENEZ ET AL

T BIOCHEMISTRY
AND PHYSIOLOGY

GO0:0005575 GO0:0003674
CELLULAR COMPONENT (CC) MOLECULAR FUNCTION (MF)
y.l X LY
G0:0009986 GO:0005886 | A 523, g G0:0005488
cell surface plasma membrane Part of binding
A
P ! A - N
G0:0009897 G0:0016324 ! Sy 60:0042277
external side of apical plasma GO:0005515 peptide binding
plasma membrar‘ls 'membrane protein binding GO-0031072
MNPl PP Y SU heat shock
G0:0098591 G0:0050839 N \ \\ protein binding
external side of apical cell adhesion binding ll 104 || \
plasma membrane ] 1 GO0:0140081
G0:0044325 ! | glycosylated region
G0:0008150 transmembrane “ protein binding
BIOLOGICAL PROCESS (BP) transporter binding 1
G0:0140272
G00007155 GOOO16032 exogenous protein blnd|ng
cell adhesion viral process %
A AN A AN
G0:0098609 E G0:0019058 | | G0:0046718 ] G0:0001618
cell-cell adhesion viral life cycle Symbiont entry into host cell virus receptor activity

FIGURE 2 Schematic of Gene Ontology (GO) terms associated with viral receptors. All GO terms used for data
analysis are depicted with the three primary terms predictive of receptor function in mammals highlighted (cell surface,
cell adhesion, protein binding). Biological process (BP) terms are boxed in blue, molecular function (MF) terms in black
and cellular component (CC) terms in green. GO term numbers are indicated. Boxed numbers indicate the number of
additional child (direct descendant) terms in QuickGo ancestor charts that are not shown (Binns et al., 2009).

3 | RESULTS
3.1 | Proteins identified in B. tabaci and M. persicae BBMV

BBMYV prepared from dissected guts of adult B. tabaci and M. persicae showed protein profiles typical of BBMV with
multiple protein bands in SDS-PAGE gels (Figure S1). While the presence of enriched proteins in the BBMV samples
relative to the crude gut homogenate samples is indicative of successful BBMV preparation, the amount of protein
loaded in each lane does not appear to be equal based on these gels. Proteomic analysis of BBMV from B. tabaci and
M. persicae adults resulted in the identification of a total of 1699 and 1175 proteins, respectively based on unique
accession numbers (Tables S1 and S2). Subcellular localization analysis using Deeploc2 predicted B. tabaci and
M. persicae BBMV proteins to localize to nine different subcellular compartments, with the major portion predicted
to localize to the cytoplasm (48.16% for B. tabaci and 41.02% for M. persicae BBMV). A portion of 9.37% of B. tabaci
and 8.43% of M. persicae BBMV proteins was predicted to localize to the plasma membrane (Figure 3). In contrast,
22.72% of B. tabaci and 21.28% of M. persicae proteins were associated with the “plasma membrane” Gene
Ontology term (GO:0005886) based on eggNOGS5 predictions (Figure 3).

3.2 | Proteins predicted to localize to the plasma membrane of the B. tabaci and
M. persicae gut epithelium cells

We used three different bioinformatic tools (BUSCA, DeeplLoc2, and eggNOGS5) to predict which proteins localize to

the plasma membrane of the midgut epithelium cells. In total, 386 and 250 proteins were predicted to localize to the
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FIGURE 3 Localization of BBMV proteins derived from the midgut epithelial cells of Bemisia tabaci and Myzus
persicae. (a) DeepLoc2 predictions for subcellular localization of BBMV proteins. Arrows indicate the cell membrane
category. (b) Gene ontology (GO) cellular component analysis of BBMV proteins by use of eggNOG5. BBMV, brush
border membrane vesicles.

plasma membrane of B. tabaci and M. persicae, respectively (Table S3 and S4). Following careful manual curation and
removal of duplicate, identical proteins within species with different accession numbers, a total of 151 and 115
unique plasma membrane proteins were localized to the gut epithelium of B. tabaci and M. persicae, respectively
(Table S5). Among these, 50 were present in both B. tabaci and M. persicae adult BBMVs based on common orthologs
(D. melanogaster), and 101 and 65 were only detected in adults of B. tabaci or M. persicae, respectively (Figure 4).

The relative abundance of plasma membrane proteins in each species are provided in Table S5. Subunits of
V-type proton ATPase (of which there are 13), were the most abundant predicted plasma membrane proteins
detected for both species. The next most abundant protein in B. tabaci was aminopeptidase N (APN) followed by a
maltase, and in M. persicae was protein 1(2)37Cc followed by alkaline phosphatase. Alkaline phosphatase was the
25th most abundant plasma membrane protein in B. tabaci. The top 20 most abundant gut surface proteins for
B. tabaci and M. persicae are provided in Table 1.

Following the analysis of Valero-Rello et al. (2024) to identify terms related to virus receptors and binding
partners, we used protein binding (GO:0005515), cell adhesion (GO:0007155), and cell surface (GO:0009986), plus
the related parent term “biological process” (BP) and child term “molecular function” (MF) associated with virus

receptor activity for analysis of the gut plasma membrane proteomes.
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65
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FIGURE 4 Bemisia tabaci and Myzus persicae proteins predicted to localize to the gut plasma membrane (after
manual curation of data).

TABLE 1
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16
17
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19
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3.21

Silverleaf whitefly, B. tabaci
aminopeptidase N-like isoform X1
maltase A3-like

probable maltase isoform X1
basigin isoform X1

maltase 2-like

prohibitin-2 isoform X2
alpha-glucosidase-like

prohibitin-2 isoform X1

maltase 1-like

alpha-glucosidase-like

alkaline phosphatase-like

maltase Al-like

uncharacterized protein LOC109037465
protein 5NUC-like

glutamyl aminopeptidase-like isoform X2
flotillin-2

bis(5'-adenosyl)-triphosphatase enpp4-like

plasma membrane calcium-transporting ATPase 2
isoform X1

flotillin-1

venom dipeptidyl peptidase 4 isoform X1

| Protein binding (GO:0005515)

The 20 most abundant proteins on the gut surface of Bemisia tabaci and Myzus persicae.

Green peach aphid, M. persicae

protein 1(2)37Cc/prohibitin 1
membrane-bound alkaline phosphatase-like
aminopeptidase N-like

maltase 2-like

alkaline phosphatase-like

maltase Al-like

maltase A3-like

multiple inositol polyphosphate phosphatase 1-like
isoform X1

uncharacterized family 31 glucosidase KIAA1161-like
flotillin-1

V-type proton ATPase 116 kDa subunit a isoform X2
flotillin-2

trehalase-like isoform X1

glutamyl aminopeptidase-like

leucine-rich repeat-containing protein 55

integrin beta-PS

fasciclin-1 isoform X1

monocarboxylate transporter 1 isoform X1

integrin alpha-PS1

G protein alpha g subunit isoform X2

A total of 65 and 51 proteins with the protein binding GO MF term (Figure 2) were predicted to localize to the gut

plasma membrane of B. tabaci and M. persicae adults, respectively. A total of 26 B. tabaci and 25 M. persicae

proteins from the top 50 most abundant proteins in each species were associated with protein binding (Table S5).
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Molecular Function Terms Biological Process Term
Protein Binding Viral Process Cell adhesion
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FIGURE 5 Bemisia tabaci and Myzus persicae gut epithelial membrane proteins associated with the molecular
function term protein binding, and the biological process terms viral process and cell adhesion.

Thirty-five B. tabaci and 21 M. persicae proteins were unique with an additional 30 proteins common to both
species (Figure 5).

The top five plasma membrane proteins based on average abundance (dNSAF) that were common to both
species in this group were: three V-ATPases, Rasl, and EHD4 (Table S5). The V-ATPases are ATP-dependent
proton pumps comprised of 13 subunits that are present in a variety of eukaryotic cellular membranes that mediate
acidification of eukaryotic intracellular organelles. Acidification is necessary for intracellular processes such as
protein sorting, zymogen activation and receptor-mediated endocytosis (Collins & Forgac, 2020). Receptor-
mediated endocytosis is one of the most important processes by which viruses can enter or leave a eukaryotic cell
(Gao et al., 2005). Ras 1 proteins are small GTPases that play key roles as molecular switches triggering distinct
signal transduction pathways, such as the mitogen-activated protein kinase (MAPK) pathway and the
phosphoinositide-3 kinase pathway (Johnson et al., 2000). The MAPK kinase pathway facilitates host defense
against viral attack (Mohanta et al., 2020). EHD4 is an Eps15-homology domain containing protein involved in the
regulation of endocytotic vesicles (Jones et al., 2020; Okada et al., 2021).

The most abundant proteins related to the protein binding MF term that were unique to B. tabaci were moesin/
ezrin/radixin homolog 1 (RDX), ras-like GTP-binding protein Rho1 (ROHA), basigin, prohibitin-2, and Na(+)/H(+)
exchange regulatory cofactor NHE-RF2 (SLC9A3R2) (Table S5). ROHA belongs to the small GTPase part of the Ras
family and plays an important role in entry of bacteria such as Shigella and Salmonella spp. into mammalian host cells
(Jones et al., 1993; Watarai et al., 1997). Basigin is an immunoglobulin domain containing protein involved in
Toxoplasma gondii (an apicomplexan parasite) infection (Nasuhidehnavi et al., 2022). The protein SLC9A3R2
mediates many cellular processes by binding to and regulating membrane expression and protein-protein
interactions of membrane receptors and transport proteins (Stelzer et al., 2016) and is predicted to act in negative
regulation of phosphatidylinositol 3-kinase/protein kinase B signal transduction (Drysdale & FlyBase Consortium,
2008; Thurmond et al., 2019). In M. persicae the top five most abundant proteins associated with protein binding
were protein 1(2)37Cc, elongation factor 1-alpha (EEF1A1), stomatin-like protein 2 (STOML2), V-type proton
ATPase 116 kDa subunit a, and ras-related protein Rac1 (Table S5).

3.2.2 | Virus receptor activity (GO:0001618) and parent BP terms

In B. tabaci, two gut surface proteins, venom dipeptidyl peptidase 4 (DPP4) and xenotropic and polytropic retrovirus
receptor 1 homolog (XPR1), were associated with the viral receptor activity MF term (GO:0001618; Figure 2; Table 2).
DPP4 is the S9B subfamily of serine peptidases, found widely across organisms (Wu et al., 2023). XPR1 is an inorganic
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jon transporter that mediates phosphate ion export across the plasma membrane and has an important role in
preserving calcium signaling (Bateman et al., 2023). XPR1 enables virus receptor activity acting upstream of- or in
response to- virus (Sayers et al., 2021). Of these two proteins, only XPR1 was also detected in M. persicae (Table 2).

We further analyzed BBMV plasma membrane proteins associated with both species. Six proteins associated
with the BP viral process term (GO:0016032; Figure 2) were common to both species (Figure 5, Table 3, and S5).
DPP4 was again detected only in B. tabaci, and CDC42 and PI4KA proteins were detected only in M. persicae
(Table 2). CDC42 belongs to the Rho family of small GTPases and the pool of CDC42 proteins that localizes to the
plasma membrane play key roles in polarity and in regulation of the actin cytoskeleton (Farhan & Hsu, 2016). PI4KA
catalyzes the first step in the biosynthesis of phosphatidylinositol 4,5-bisphosphate (Sayers et al., 2021) and is

important for replication of multiple viruses (Delang et al., 2012).

3.2.3 | Cell adhesion (GO:0007155)

Cell adhesion is a key mechanism that drives the development of multicellular organisms. Cells use adhesion to move,
communicate and differentiate, which finally leads to the formation of epithelia and highly organized organs (Mateo
et al,, 2015). Many cell-adhesion proteins that belong to the immunoglobulin-like superfamily (IgSF CAMs) have been
identified as viral receptors in humans (Bhella, 2015; Mateo et al., 2015). There were 20 B. tabaci and 15 M. persicae
plasma membrane proteins associated with the cell adhesion term (GO:0007155) (Figure 5). The top five most abundant
B. tabaci plasma membrane proteins in this group were: ATP6V1B2, guanine nucleotide-binding protein subunit gamma-
1-like, RDX, ROHA and basigin. The most abundant M. persicae proteins related to cell adhesion were ATP6V1B2,
guanine nucleotide-binding protein subunit gamma-1-like, CDC42, RAC2, flotillin-1, and integrin beta-PS (Table S5).

3.2.4 | Plasma membrane and cell surface associated GO terms

In B. tabaci 15, 32, and 116 BBMV proteins were associated with the cell surface (GO:0009986), apical plasma
membrane (GO:0016324) and plasma membrane (GO:0005886) GO terms, respectively (Figure 2 and Table S5). In
the M. persicae BBMV proteome, 16, 15, and 90 proteins related to cell surface, apical plasma membrane and
plasma membrane terms were identified, respectively (Table S5). The top three proteins associated with the cell
surface term in B. tabaci were: RDX, basigin and prohibitin-2 (Table S5). In M. persicae, they were protein 1(2)37Cc,
membrane-bound alkaline phosphatase, and ras-related protein Ral-a protein.

3.3 | Insilico characterization of uncharacterized proteins predicted to localize to the
plasma membrane

Nine B. tabaci and seven M. persicae uncharacterized BBMV proteins were predicted to localize to the plasma
membrane (Table S6). The eggNOGS5 prediction tool was used to characterize these proteins based on domain
information, GO and KEGG pathway terms. The top three most abundant uncharacterized proteins in B. tabaci have
major facilitator superfamily (MFS_1) domains (Table S6). The major facilitator superfamily (MFS) of membrane
proteins represents the largest family of secondary transporters. MFS proteins target a wide spectrum of
substrates, including ions, carbohydrates, lipids, amino acids and peptides, nucleosides, and other small molecules in
both directions across the membrane (Letunic et al., 2021). In M. persicae, some of the uncharacterized predicted
plasma membrane proteins have ERAP1_C, peptidase_M1, AMP-binding, and MFS_1 domains (Table Sé).
Peptidase_M1 is present in metallopeptidase families. This group of metallopeptidases belong to the MEROPS
peptidase family M1 (clan MA(E)), the type example being aminopeptidase N (Letunic et al., 2021). ERAP1_C domain
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is also present in APN and is composed of 16 alpha helices organized as 8 HEAT-like repeats (Letunic et al., 2021).
The AMP-binding domain, also identified in one of the uncharacterized proteins, is Ser/Thr/Gly-rich and is further
characterized by a conserved Pro-Lys-Gly triplet (Letunic et al., 2021).

3.4 | Relative abundance and differences between the adult B. tabaci and M. persicae
gut plasma membrane proteomes

Gut plasma membrane proteins associated with the BBMV derived from adults of both insects were ranked from
high to low relative abundance based on their average dNSAF (Table S5). The order of abundance differed between
adults of B. tabaci and M. persicae.

Statistical analyses were performed for interspecies comparison of BBMV proteins that were predicted to localize
to the plasma membrane and were orthologous. In total, 50 detected BBMV proteins (< 50%) have common
orthologs among these two insects (Table S7). The abundance of 10 proteins differed significantly between B. tabaci
and M. persicae. Out of these, seven were more abundant in M. persicae and three were more abundant in B. tabaci
(Table 3). The three proteins (VAPA, XPR1, and ATP6V1H) that were more abundant in M. persicae were associated
with the viral process GO term (Table 2). Fasciclin-2, a cell adhesion protein, was more abundant in B. tabaci, and the

other three proteins that were more abundant in B. tabaci were associated with the cell surface GO term (Table 3).

3.5 | Analysis of features predictive of receptor function

Features predictive of receptor function were examined for eight proteins selected on the basis of (1) known receptor
function for pathogens or bacteria-derived pesticidal proteins in insects, and/or (2) abundance in B. tabaci and M.
persicae (Table 4). Of these, only the B. tabaci fasciclin-2-like protein met all four criteria: GO terms protein binding,
cell adhesion, cell surface, and multiple interacting partners. The cell surface GO term did not apply to M. persicae
fasciclin-1 isoform X1. Similarly DE-cadherin and prohibitin homologs from both species met three of the four criteria,
all except the cell surface GO term. Aminopeptidase N, while interacting with multiple proteins, did not meet any of
the GO terms employed for prediction of virus receptor function in mammals. However, all eight proteins met at least
one GO term criterion when peptide binding (GO:0042277, Figure 2) and plasma membrane (GO:0005886) were
considered, apart from M. persicae facilitated trehalose transporter Tret1-2 homolog isoform X3 (Table 4).

4 | DISCUSSION

We characterized the gut plasma membrane proteomes of B. tabaci and M. persicae adults to identify the most
abundant gut surface proteins, which represent potential binding partners of circulative viruses vectored by these
two insects. A total of 151 and 115 unique gut plasma membrane proteins were detected in B. tabaci and M.
persicae BBMV proteome, respectively. We identified 50 unique plasma membrane proteins common to the two
species based on common orthologs (D. melanogaster), of which 10 differ in abundance between the two species

and identified the most abundant gut surface proteins in the two hemipteran species.

41 | B. tabaci and M. persicae and other insect BBMV proteomes

The proteome of BBMV allows us to determine the composition and abundance of proteins on the gut surface.

However, remnant proteins of the cytosol and cellular organelles represent a significant proportion of the total. In
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similar studies, only aproximately 7% of BBMV proteins were predicted to localize to the gut surface of D. citri and T.
ni (Javed et al., 2019; Tavares et al., 2022). The percentage of gut surface proteins identified in these two studies was
based on unique accession numbers (not unique proteins). In the current study, subcellular localization tools were
used in conjunction with GO, posttranslational, and signal peptide transmembrane helix/domain prediction tools. The
combination of tools used increased both the number of proteins identified and the percentage of proteins predicted
to localize to the plasma membrane of gut epithelial cells. After careful manual curation and removal of duplicate
proteins (i.e., identical proteins with different accession numbers), 8.95% and 9.8% proteins localized to the gut cell
membrane of B. tabaci and M. persicae, respectively. The manual curation step is essential: more than half of the
proteins initially predicted to be on the plasma membrane of B. tabaci and M. persicae (Tables S1-S5) were not
predicted to localize to the gut epithelium following manual curation. Use of GO analysis in conjunction with cellular
localization prediction increased the number of predicted plasma membrane proteins to 21%-23%. In Aedes aegypti,
bioinformatic analysis alone predicted that 26% out of 246 proteins identified from BBMV lipid rafts localized to the
plasma membrane (Bayyareddy et al., 2012). This high percentage of plasma membrane proteins reflects the use of
the lipid raft-enriched fraction rather than total BBMV for their study. While proteomic analyses of other insect-
derived BBMV have been described (Ma et al.,, 2012; Pauchet et al., 2009; Popova-Butler & Dean, 2009; Yuan

et al., 2011), these studies did not focus on proteins present on the luminal surface.

4.2 | Comparison between the gut plasma membrane proteomes of B. tabaci and M.
persicae adults

This is the first study to directly compare the gut plasma membrane proteomes of two different insect species. V-type
proton ATPase was the most abundant gut plasma membrane protein in both cases with most of the protein subunits
being intracellular. In comparison to D. citri, where alkaline phosphatase and aminopeptidase N were the most
abundant proteins on the gut surface (Tavares et al., 2022), aminopeptidase N proteins were ranked 1 and 15 for
B. tabaci and 3 and 14 for M. persicae (Table 1). Alkaline phosphatase proteins were the second and fifth most
abundant gut surface proteins in M. persicae, and the eleventh most abundant gut surface proteins in B. tabaci within
the top 20 (Table 1). Prohibitin 1 was the most abundant gut surface protein in M. persicae, and prohibitin 2 isoforms
ranked 6 and 8 in relative abundance in B. tabaci. Prohibitin is a multifunctional protein with a small extracullar domain
when located in the plasma membrane (Villegas-Coronado et al., 2022). Taken together, these proteins along with
alpha-amylase enzymes (maltase, alpha glucosidase) clearly play key roles on the hemipteran gut surface. All three
proteins (aminopeptidase N, alkaline phosphatase, alpha-amylase enzymes) are known to be exploited for binding
(Jurat-Fuentes et al., 2021) or entry into the host by plant or insect pathogens in these or in other insects.

A subset of proteins that were only detected in the adults of B. tabaci (101) or M. persicae (65) were mostly of
low abundance. These low abundance proteins may have been lost in these cases during protein solubilization
(detergent based or detergent free (SPEED) methods and separation (reverse phase or HILIC column-based), rather

than being absent from the respective species, highlighting a potential limitation of the protocols employed.

4.3 | Virus receptors and binding partners

Candidate plant virus receptors, namely the cubilin and amnionless receptor complex in B. tabaci (Zhao et al., 2020),
and ephrin in M. persicae (Mulot et al., 2018) are associated with protein binding in hemipterans. Cubilin, amnionless
and ephrin proteins were not detected in the BBMV gut proteome of B. tabaci and M. persicae however. The lack of
detection suggests that either these proteins have low abundance, only transiently localize to the gut surface (e.g.,
based on posttranslational modification) or were underrepresented due to the protein extraction method employed

in the current study. An alternative scenario is that these proteins do not function as viral cell surface receptors. In
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contrast, aminopeptidase N was among the most abundant gut surface proteins in both B. tabaci and M. persicae.
This protein is a candidate receptor for the begomovirus, TYLCV in B. tabaci (Fan et al., 2024) and has been
definitively demonstrated to function as a receptor for the luteovirus, Pea enation mosaic virus in the pea aphid,
Acyrthosiphon pisum (Linz et al., 2015; Liu et al., 2010).

Recent studies have implicated several additional gut epithelial plasma membrane proteins as binding partners for
circulative viruses in B. tabaci or M. persicae. First, vesicle-associated membrane protein-associated protein B (VAPB)
was identified as a binding partner of TYLCV in B. tabaci (Zhao et al., 2019). This protein was present in the B. tabaci
gut surface proteome, is associated with the protein binding GO term and possesses an immunoglobulin (Ig)-like_fold.
Second, the complement component 1 Q subcomponent binding protein (C1QBP) is a glycoprotein that binds to the
coat protein of the polerovirus Pepper whitefly-borne vein yellows virus, in B. tabaci (Ghosh et al., 2021). CLIQBP was
also identified in M. persicae as a binding partner of another polerovirus, Potato leafroll virus (DeBlasio et al., 2021).
C1QBP was identified in this study in both hemipteran insect gut surface proteomes and is associated with the
protein binding and cell surface terms. Third, V-type proton ATPase subunit D and guanine nucleotide-binding protein
subunit gamma-1 were among proteins identified from a yeast two-hybrid screen for proteins that interact with the
readthrough protein of Barley yellow dwarf virus-GPV (Wang et al., 2015). The protein binding and transporter activity
GO MF terms were prioritized in their data analyses (Wang et al., 2015). V-type proton ATPase subunit D was among
the top 20 most abundant proteins in our M. persicae gut plasma membrane proteome, and guanine nucleotide-
binding protein subunit gamma-1 was among the 20 most abundant proteins for both species (Table S5).

None of the four proteins implicated in binding to circulative viruses described above have been shown to
function as gut surface receptors, however. Indeed, the use of homogenized tissues (rather than BBMV), and the
yeast two-hybrid system to study protein-protein interactions increases the chance of false positive interactions,
particularly for proteins that do not co-localize under in vivo conditions. This is particularly true for proteins that
function through protein binding (e.g. chaperones). The specific roles of the putative virus binding proteins in the
biology of these plant viruses in their insect vectors remain to be definitively elucidated.

The GO terms protein binding, cell adhesion, and cell surface along with the number of interacting partners were
optimal for prediction of cell surface receptor function in mammals (Valero-Rello et al., 2024). Our analysis of selected
proteins with respect to these criteria along with the related GO terms (plasma membrane, peptide binding) suggests
that the same model may apply to insect gut surface proteins: The two confirmed plant virus receptors in Hemiptera are
aminopeptidase N in the pea aphid, A. pisum (Linz et al., 2015) and sugar transporter 6 (a Tret1-2 homolog; Table 4) in
the small brown planthopper, Laodelphax striatellus (Qin et al., 2018). Glutamyl-aminopeptidase-like was characterized by
three predictive features of mammalian cell receptors plus multiple interacting partners and the Tret1-2 homolog was
associated with one predictive feature in B. tabaci. Cadherin and alkaline phosphatase (in addition to aminopeptidase N),
are known receptors that mediate binding and pore formation by bacteria-derived pesticidal proteins (Jurat-Fuentes
et al,, 2021). Most mammalian cell receptor predictive features apply to cadherin, and the others (cell surface) to alkaline
phosphatase. The predicted fasciclin-2-like protein of B. tabaci met all four criteria suggesting that this protein may
warrant further attention as a candidate plant virus receptor. However, the number of interacting partners was the most
important predictive feature for receptor function in the prior study (Valero-Rello et al., 2024). Given the paucity of gut
receptor proteins definitively identified for any insect pathogen or insect vectored pathogen (Bonning, 2025), whether
pathogens exploit the most abundant gut surface proteins-, and whether plant viruses exploit multiple receptor proteins

in the same or in different insect vectors- are questions that both remain to be addressed.

5 | CONCLUSIONS

We present the first comprehensive profile of the midgut plasma membrane proteome for adult B. tabaci and M.
persicae, two of the most important hemipteran vectors of plant viruses. Alkaline phosphatase, aminopeptidase N

and maltase were abundant gut surface proteins in both species, all three of which are targeted by pathogens in
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other insects. While the composition of proteins on the gut plasma membrane was similar between the two species,
10 proteins differed in abundance. Bioinformatics analysis to identify gut surface proteins likely to function as virus
receptors based on a mammalian virus receptor model, highlighted B. tabaci fasciclin and cadherin as proteins with

high potential for receptor functionality.
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