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A B S T R A C T

The power consumption data from residential households collected by smart meters exhibit a diverse pattern
temporally and among themselves. It is challenging to distinguish between regular consumer behavior and
injected falsified measurements into the data stream with the intent of energy theft or compromising the
security of the associated measurement infrastructure. This work identifies the challenges of detecting falsified
measurements in smart meter data aggregated at geographically hierarchical levels and proposes a novel graph
attention network (GAT)-based unsupervised learning framework to detect false data injection attacks (FDIA)
from the moving statistics of the power consumption data in real-time, namely MOVSTAT-GAT. The proposed
technique is capable of detecting falsified measurements at both 9-digit and 5-digit ZIP code labels in an
unsupervised manner, solely from smart meter power consumption data with no additional meters. Moreover,
the proposed technique offers a visualization technique to assist the operator in identifying the localization
characteristics of the attack and proposes an automated localization strategy for localized FDIAs. Experiments
suggest the effectiveness of the proposed framework, especially for localized FDIA or external anomalies, such
as power outages and denial-of-service (DoS). Additionally, a detailed discussion regarding the implementation
of MOVSTAT-GAT in the industrial environment has been provided.
1. Introduction

Smart meters, installed at customer sites within the electrical dis-
tribution network, play a pivotal role by recording and transmitting
data related to each consumer’s electricity consumption [1–3]. This
data, whether used independently or in conjunction with other dis-
tribution system information, enables the automation and intelligent
management of various tasks essential to the operation, security, and
reliability of the distribution system at the utility level. Key applications
include forecasting load demands, adjusting loads to prevent outages,
automated billing, pricing, demand response programs, and the man-
agement of daily and critical peak shifts—all dependent on the quality
and integrity of smart meter data [4]. Additionally, when combined
with sub-station level measurements, smart meter data supports a range
of grid security-related applications [5,6] and is crucial for analyzing
electricity consumer behavior [7]. This analysis is vital for long-term
grid planning [8,9] and to address issues like energy poverty, high-
lighting the need for accurate data. However, the integrity of these data
can be compromised by the injection of false measurements, either to
reduce electricity bills (i.e., energy theft ) or to disrupt utility services by
adversaries.
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To address the vulnerabilities in smart meter data and enhance the
reliability required for critical applications, developing robust detection
mechanisms for false data injection attacks (FDIA) is crucial. FDIA [10,
11] involves the injection of false measurements that distort the actual
data, potentially compromising various operational and planning ac-
tivities. Here, we present a general mathematical framework for FDIA,
focusing on smart meter power consumption data, similar to the attack
models discussed in [12,13]. By analyzing the signatures of these FDIAs
in power consumption time series, our framework aims to distinctly
differentiate between these malicious manipulations and anomalous,
yet honest consumer behaviors. This distinction is vital for utilities
striving to maintain system integrity and reliability, underscoring the
significant challenges posed by sophisticated data attacks.

The detection mechanisms for FDIA and energy theft in smart meter
data depend significantly on the resources, strategies, and planning
of utility systems. These mechanisms can operate at the user level,
utilizing direct meter readings, or at the system level, using aggregated
readings from multiple meters within a utility [14]. At the user level,
detection is challenging mainly due to the lack of temporal correlation
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Fig. 1. An up-to-date review of smart meter FDIA and theft detection techniques focusing on machine learning methods.
and meter-to-meter correlation resulting from high stochasticity related
to the consumer behavior pattern. Moreover, the abundance of fluctu-
ations and peaks [15], especially in the more granular data, creates
additional challenges for abrupt change detection-based techniques to
detect FDIAs from a single smart meter time series. Conversely, system-
or utility-level detection is more feasible due to the presence of spatio-
temporal correlations among aggregated data, which can sometimes
be enhanced with the aid of additional measurement devices at the
system level. This level of detection is particularly effective in iden-
tifying organized attacks [4] and is more manageable from a systems
management perspective. However, a notable limitation at this level
is that household-level changes often have an insignificant reflection
on the aggregated smart meter time series, potentially obscuring subtle
anomalies. This paper presents an analysis of both the realities and
challenges associated with FDIA detection at the user and system
levels, considering the trade-offs and benefits of various strategies from
spatio-temporal correlation perspectives.

1.1. Related work

The literature on energy theft and FDIA detection in electrical
distributed systems is extensive [16–18] and can be broadly cate-
gorized into two main approaches: (1) techniques that rely on grid
information such as distribution system states, topology, and system
parameters [19,20], and (2) techniques that primarily utilize power
consumption data from users, sometimes in combination with grid
information [21]. Although the first category typically offers higher
accuracy, the second category is gaining increasing attention from
researchers for several reasons. Firstly, techniques in the first category
often require comprehensive information about system parameters and
states, which may not always be available. Secondly, these methods
are system-specific and generally require significant modifications to
be adapted to new systems. Thirdly, the widespread deployment of
smart meters in households and factories provides granular power
consumption data, facilitating data-driven analysis for theft detection.
Consequently, this section will focus exclusively on the data-driven
detection of energy theft and FDIA using smart meter data.

Further, the methods utilizing data-driven techniques for FDIA or
energy theft detection can be categorized into two groups: statistical
analysis-based detection that requires no training and training-based
detection using machine learning. Among statistical analysis-based de-
tection, Bhattacharjee and Das [4] proposed a two-step statistical tech-
nique to detect data falsification. In the first step, falsification is identi-

fied by the ratio of harmonic to arithmetic mean for a certain duration,

2 
which is confirmed in the second step by comparing the ratio with a
safe margin. However, this technique requires a longer FDIA duration
to detect anomalies effectively. Zheng et al. [22] utilized a combination
of an information theory-based technique and a clustering-based tech-
nique to detect energy theft from granular power consumption data.
However, their technique requires observer meters to determine the
non-technical loss. Ahir and Chakraborty [23] analyze the shapes of
the power consumption time series corresponding to different contexts
(e.g. weekends or weekdays, seasons, etc.) to develop a theft detection
technique combining dynamic time warping and k-nearest neighbor
which can provide anomaly scores for each detected case. Higgins
et al. [11] suggest clustering of the smart meter power consumption
data using statistical features and subsequently using an incentive-
weighted anomaly detection technique to detect FDIA from the power
consumption data.

The second category of methods, i.e., training-based detection using
machine learning, dominates the recent literature. For instance, Zheng
et al. [24] proposed a wide and deep convolutional neural network for
energy theft detection. This technique requires the labels of the theft
data to formulate the detection as a supervised learning problem, and
longer theft durations are required to be detected. The authors in Ünal
et al. [13] achieved promising accuracy in detecting FDIA in smart
meter data by combining several machine learning, deep learning, and
parallel computing techniques. However, this technique also requires
the observer meter to obtain non-technical loss. Gao et al. [25] proposes
a physically inspired data-driven model to detect energy theft. They
developed a modified linear model to capture the relationship between
the amount of electricity used and the voltage magnitudes recorded by
the smart meters and utilized the regression residual to detect theft.
Takiddin et al. [12] proposes an LSTM-based auto-encoder to capture
the temporal as well as meter-to-meter dynamics among the smart
meter data with an hourly temporal resolution to design an unsu-
pervised learning-based framework for the detection of energy theft.
Du et al. [14] proposed converting the 1-D power consumption time
series to 2-D image data for obtaining visually distinguishable features
to detect FDIA using a computer vision-based approach. Tursunboev
et al. [26] proposed to integrate an evolutionary multi-objective opti-
mization to maximize precision and recall in a hybrid deep learning
method to detect energy theft under a supervised learning framework.
Zhang and Dan [27] presented an explainable feature extraction frame-
work along with a convolutional neural network and attention-based
technique for energy theft detection.

The spatio-temporal analysis, particularly the application of graph
neural networks (GNNs) on smart meter data is very limited. Given
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the ability of GNNs to capture the complex interaction among the
system components through data, they have recently been applied to
enhance the robustness and accuracy of anomaly and event detection
in various sectors, e.g. power grid [28–30], internet-of-things [31],
biomedical engineering [32], and social and financial networks [33,
34]. For smart meter data, a couple of very recent works utilized
spatio-temporal graph neural networks for energy theft detection under
supervised learning frameworks using labeled theft data. For instance,
Zhuang et al. [35] and Liao et al. [36] proposed GNN-based theft
detection techniques using supervised learning frameworks. A chart
on the recent smart meter FDIA and energy theft literature has been
provided in Fig. 1 for the convenience of readers to follow the above
discussions. In this work, we present a spatio-temporal analysis of
smart meter power consumption data at different geographic hierar-
chical levels and propose a graph attention network (GAT)–based FDIA
detection technique in a multi-variate time-series setting. Unlike [36],
the proposed technique considers a geographic entity (household or 9-
digit ZIP code depending on the geographic hierarchy) as the graph
vertices, therefore, facilitating direct location identification along with
detection of the attack in real-time. Moreover, unlike the recent works
in [26,35,36] the proposed framework is completely unsupervised and
therefore does not require labeled theft or corrupted data to train
the model. Additionally, this work recognizes the effectiveness of the
proposed work in [4] to utilize moving statistics (AM/HM ratio) to
detect energy theft. Nevertheless, in our experiments, with more types
of FDIA definitions and with smaller duration attacks, a generalized
training-based unsupervised approach is required to detect FDIAs with
precision i.e., distinguishing them from irregular yet honest customer
behaviors. Therefore, for the first time, the moving statistics-based
feature extraction technique (MOVSTAT) has been incorporated into
the GAT-based analysis to extract important information from the
multivariate smart meter data for FDIA detection.

1.2. Challenges, limitations, and gaps in the literature

The deployment of smart meters has enabled the application of
data-driven, particularly machine learning-based methods, to effec-
tively detect FDIAs and energy thefts in the electric system. These
methods operate without the need for knowledge of system states,
topologies, and parameters. Despite these advancements, several re-
search challenges persist regarding the precise detection and location
identification of FDIAs with low false alarm rates. Firstly, a number
of data-driven techniques assume the presence of observer meters
alongside household smart meters to calculate non-technical losses, a
scenario that is often impractical for utility companies [22]. Secondly,
FDIA detection is frequently approached as a supervised learning prob-
lem requiring labeled data for the corrupted states [24,26], yet in
realistic settings, labeled theft data is rarely available. Such supervised
classification of theft and honest data sets limits the ability to detect
new types of theft or FDIA not present in the training datasets. Thirdly,
methods that treat FDIA detection as moving statistics-based abrupt
change detection often suffer from high false positives, particularly
when data are granular and the theft duration is short [4]. Fourthly,
while many supervised learning techniques can classify users as honest
or corrupt in an offline setting, the literature lacks approaches for
real-time identification of attack locations post-detection. Thus, this
limits utility companies to comprehend the holistic depiction of the
attackers’ strategy. Finally, reported detection accuracies in the studies
vary widely due to different attack models and a range of attack
parameters. Moreover, the same attack parameters may have varying
impacts depending on the statistics of the power consumption data and
the utility system’s characteristics, such as the number of households
or meters. Therefore, it is crucial to analyze the sensitivity of model
parameters to different accuracy metrics and establish relationships
between model parameters and attack parameters to adapt detection

models to utility systems of various sizes and geographic hierarchies.

3 
1.3. Main contributions

This work addresses the listed shortcomings by proposing the
MOVSTAT-GAT technique, an innovative approach for data-driven de-
tection of energy theft and FDIA from high-resolution smart meter data.
This technique eliminates the need for an observer meter, operates
under an unsupervised learning paradigm that does not require labeled
corrupted data, and is capable of detecting an FDIA almost instanta-
neously at its onset, making it suitable for identifying short-duration
attacks. MOVSTAT-GAT can detect FDIAs using both individual and
aggregated smart meter data across different geographic levels: using
multivariate time series corresponding to individual meter power con-
sumption at 9-digit ZIP code levels, and using multivariate time series
corresponding to individual 9-digit aggregated power consumption at
5-digit ZIP code levels. Here, GNN, specifically the graph attention
network (GAT) is utilized to capture the spatial correlation among
smart meters or different 9-digit ZIP code aggregated time series within
a 5-digit ZIP code. The key contributions of our work are outlined as
follows:

• The spatio-temporal aspects of the smart meter data at different
aggregation levels (user level, 9-digit, and 5-digit ZIP code levels)
are analyzed to understand FDIA detection challenges at different
hierarchical levels with the existing techniques.

• We propose MOVSTAT-GAT, an FDIA detection technique for
multivariate time series, combining moving statistics-based fea-
ture extraction and graph attention networks. To the best of our
knowledge, it is the first unsupervised real-time FDIA and en-
ergy theft detection method using a spatio-temporal graph neural
network of any kind. Our technique offers excellent detection
accuracy, especially for small-magnitude FDIAs, and facilitates
the localization of clustered attacks. Moreover, MOVSTAT-GAT
does not require the assumption of any additional meters apart
from the household smart meters.

• The proposed framework supplements a visualization tool for
utility providers, alongside an automated scheme to aid human
operators in assessing FDIA characteristics such as localization,
spread, duration, and intensity of the attacks.

• A detailed discussion on implementing the proposed technique by
electric utility companies covers model parameter tuning for dif-
ferent locations and geographic levels, considering utility strate-
gies and resources. It also addresses scalability, robustness to
new attack types, and the relationship between model and attack
parameters in the context of FDIA detection.

2. Data and attack models

2.1. Mathematical representation of power consumption data

The power consumption signal 𝑝(𝑛, 𝑡) represents the consumption of
electric power at the time 𝑡 by the 𝑛th household captured by the 𝑛th
smart meter, where 𝑡 ∈  and 𝑛 ∈ 𝑖.  is the set representing the total
uration of data collection and𝑖 is the set of all smart meters mounted
n the households located at the 𝑖th 9− digit ZIP codes. The cardinality
f the set, |𝑖| = 𝑁𝑖, represents the total number of smart meters,
.e., households located at the 𝑖th 9− digit ZIP code. The aggregated
ignal at the 9− digit ZIP code level is defined as:

𝑁 (𝑚, 𝑡) =
𝑁𝑚
∑

𝑛=1
𝑝(𝑛, 𝑡), (1)

here, 𝑝𝑁 (𝑚, 𝑡) is the aggregated power consumption signal the 𝑚th 9−
igit ZIP code, and 𝑚 ∈ 𝑗 . Here, the set 𝑗 is the set of all 9− digit
IP codes within the 𝑗th 5− digit ZIP code. The aggregated signal at
he 5− digit ZIP code level is defined as:

𝑀 (𝑙, 𝑡) =
𝑀𝑙
∑

𝑝𝑁 (𝑚, 𝑡), (2)

𝑚=1
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Fig. 2. Household power consumption time series measured by smart meters, (a)–(d): four randomly selected households exhibiting varying patterns: (a) mostly daily
periodicity, (b) both daily and weekly periodicity, (c) highly irregular temporal behavior, and (d) daily and weekly periodicity in the later part of the month. Aggregated power
consumption time series (e)–(f): at two random (e) 9-digit ZIP codes and (f) 5-digit ZIP codes. Household and ZIP code numbers are arbitrary and have no connection with the
actual addresses.
where, 𝑀𝑗 = |𝑗 |. Fig. 2 illustrates the power consumption data
recorded in April 2019 from four different households using four smart
meters within a single 9− digit ZIP code. The power consumption
atterns over the month in the four households are very different,
lthough each household is likely to have temporal patterns to some
xtent. For instance, the daily and weekly periodicity is observed in
ost of the households (easily observable in Fig. 2(b), but also present
n Fig. 2(a) and most of the latter portion of 2(d). However, this daily
and weekly periodicity varies extensively among the houses due to
various factors, e.g., the number of members in the household, the
electrical appliances used by a particular household, the work schedule,
and the lifestyle of the household members. Moreover, for some of the
households, the irregular portions of the data consumption are frequent
and may contain peaks or high fluctuations, as in Fig. 2(c). Therefore,
the meter-to-meter correlation is very irregular and difficult to capture.
This issue poses a challenge in utilizing meter-to-meter correlation in
4 
the spatio-temporal analysis of smart meter data in detecting FDIA.
However, learning the node embeddings (i.e., vector representation of
each node/user) and dynamic graphs from the time series eases these
challenges to some extent and enables utilizing the minimal correlation
with only a few (smart meters) nodes.

The aggregated time series at two different 9-digit ZIP code levels
have been illustrated in Fig. 2(e) indicating a more regular behavior
than a single smart meter data in terms of periodicity and smoothness
in the time domain. Moreover, better similarity in terms of shape
and fluctuation pattern can be observed among the aggregated time
series at different 9-digit ZIP code levels than among the time series
corresponding to individual meters. Aggregated time series at the 5-
digit ZIP code level shows an even better periodicity, smoothness, and
inter-time series correlation among themselves (Fig. 2(f)). However,
changes in the smart meter readings which are small in magnitude
or pertaining to a small number of meters in a localized geographical
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area are not well reflected in aggregated time series. Through our
experiments, we show that localized attacks are better detected by
MOVSTAT-GAT than by single-variate (LSTM-based) analysis.

2.2. False data injection attack (FDIA) models

This section presents the mathematical approach for modeling five
types of FDIAs and their physical significance in smart meter infras-
tructures and utilities. A generic definition of FDIA on smart meter
time series at the household level is introduced, with the various
types considered as special cases. Similar attacks have been previously
discussed in the smart meters FDIA literature [12,13]. Let us consider
a set of households, 𝐴𝑖

⊂ 𝑖 in the 𝑖th 9-digit ZIP code, which is
under FDIA within the time interval

[

𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑
]

⊂  . 𝛾 =
|𝐴𝑖 |

|𝑖|
signifies

he fraction of compromised smart meters within the 9-digit ZIP code.
he time series associated with the attacked meters within the attack
nterval can be expressed as:

(𝑛𝐴, 𝑡) ≡ 𝑐(𝑡), 𝑓𝑜𝑟 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑 , 𝑎𝑛𝑑 𝑛𝐴 ∈ 𝐴𝑖
. (3)

𝑐(𝑡) is the generic corrupted signal that can be defined to model
different types of FDIA and thefts in smart meter data, as discussed
here.

2.2.1. Type I FDIA
The first type of FDIA considers reducing the power consumption

of the meter by subtracting a constant value, 𝛿, from the power con-
sumption value of all the compromised meters: 𝑐(𝑡) = 𝑝(𝑛𝐴, 𝑡)−𝛿, where
𝛿 ∈ R can be termed as the magnitude of the FDIA. For 𝛿 > 0, this
type of FDIA signifies energy theft, since a reduced amount of power
consumption lowers the electricity bills. However, adversaries can also
launch FDIA with 𝛿 < 0, purposely seeking to harm the reputation of
utilities.

2.2.2. Type II FDIA
The second type of FDIA is a modified and more realistic version

of the first one. The Type I FDIA can be easily detectable for large
𝛿 > 0 for the resulting negative value of 𝑝(𝑛𝐴, 𝑡). Type II FDIA replaces
the negative values 𝑝(𝑛𝐴, 𝑡) with zeros to avoid easy detection by the
utilities. Mathematically, Type II FDIA can be described as: 𝑐(𝑡) =
max{𝑝(𝑛𝐴, 𝑡) − 𝛿, 0}. Type II FDIA can also be seen as a form of energy
theft.

2.2.3. Type III FDIA
Type III FDIA involves scaling the value of the power consumption

by a scalar factor 𝛽 ∈ R: 𝑐(𝑡) = 𝛽𝑝(𝑛𝐴, 𝑡), 𝛽 ≥ 0., Similar to Type I, it
can represent energy theft for 𝛽 < 1 by lowering energy consumption,
or it can purposely damage the reputation of the utilities by increasing
energy consumption (𝛽 > 1).

2.2.4. Type IV FDIA
Type IV FDIA is mathematically represented as 𝑐(𝑡) = 0. Although

it can be seen as a special case of Type III FDIA with 𝛽 = 0, it can
be associated with various physical conditions of the smart metering
infrastructure. It can indicate a naive strategy for energy theft, causing
smart meter readings to zero, a denial-of-service (DoS) attack from
cyber-attacks or physical disconnection or damage to the meters, or
a power outage affecting multiple households. Detecting this type of
FDIA is crucial for utility providers.

2.2.5. Type V FDIA
Type V FDIA represents a modified and more sophisticated version

of energy theft which limits the power consumption smart meter read-
ing of a household to a certain power consumption value, 𝜆: 𝑐(𝑡) =
min{𝑝(𝑛𝐴, 𝑡), 𝜆}.

The detection performance of the smart meters FDIAs at both hierar-
chical levels depends on the type of the FDIAs as well as the parameters
associated with the FDIA models, e.g. 𝛾, 𝛿, 𝛽, 𝜆. This dependence of
detection performance on attack type and parameters is analyzed in
Section 4.
5 
2.3. Random and clustered attacks

FDIAs can be launched in the system either randomly or in a
clustered way, depending on adversaries’ location, resources, intention,
and strategy. Clustered attacks at the 9-digit and 5-digit ZIP code
levels involve adjacent smart meters or meters in adjacent ZIP codes,
respectively. Detecting and localizing these clustered attacks is crucial
for utilities as they indicate localized adversaries, or power outages or
DoS in specific geographic areas.

3. FDIA detection technique using MOVSTAT-GAT

This section details FDIA detection techniques (shown in Fig. 3) at
both the 5-digit and 9-digit ZIP code levels. We propose GNN-based
FDIA detection using moving statistics-based features from multivariate
power consumption time series (MOVSTAT-GAT) for both hierarchical
levels. At the 9-digit ZIP code level, detection considers all individual
meter power consumption time series, 𝑝(𝑛, 𝑡), while at the 5-digit ZIP
code level, it considers aggregated power consumption time series,
𝑝𝑁 (𝑙, 𝑡), from the 9-digit levels. The following subsections present the
detailed steps of the MOVSTAT-GAT technique using a generic multi-
variate time series 𝑥(𝑛, 𝑡), where 𝑥(𝑛, 𝑡) ≡ 𝑝(𝑞, 𝑡) for user-level data in
9-digit ZIP codes, or 𝑥(𝑛, 𝑡) ≡ 𝑝𝑁 (𝑞, 𝑡) for aggregated data at 5-digit ZIP
codes. Specializations for each hierarchical level are noted as needed.

3.1. Prepossessing using periodicity removal

Smart meter data shows weekly and daily periodicity, varying with
household consumption patterns. This periodicity is more prominent
in aggregated data (e.g., at the 9-digit ZIP code level) because of
the averaging effect. To emphasize the fluctuation due to FDIA by
separating them from the periodic fluctuations, these periodicities from
the time series: 𝑥′(𝑛, 𝑡) = 𝑥(𝑛, 𝑡) − 𝑥𝑤(𝑛, 𝑡) − 𝑥𝑑 (𝑛, 𝑡), where, 𝑥𝑤(𝑛, 𝑡) and
𝑥𝑑 (𝑛, 𝑡) represent weekly and daily fluctuations, respectively, which are
estimated from historical data. It is worth mentioning that since the
temporal duration of the dataset used in this work is only one month,
the seasonal (yearly) periodicity could not be removed which could
increase detection accuracy for longer-duration data sets.

3.2. Extracting moving statistics-based Features (MOVSTAT)

Instead of applying GAT to the raw periodicity-removed power
consumption data, we propose a moving statistics-based transformation
(MOVSTAT) to reduce the stochasticity and uncertainty, improving the
distinction between genuine and corrupted data. The transformed time
series corresponding to the 𝑛th component (i.e., 𝑛th smart meter data
or aggregated time series corresponding to the 𝑛th 9-digit ZIP code),
is described by the following equation: 𝑦(𝑛, 𝑡) = T 𝑆𝑇𝐴𝑇

𝑡𝑑
(𝑥′(𝑛, 𝑡)), where

T 𝑆𝑇𝐴𝑇
𝑡𝑑

(.) is the generic moving statistics operator that calculates the
temporal statistics of a time series within the interval [𝑡𝑑 , 𝑡]. For exam-
ple, T 𝐴𝑀

𝑡𝑑
(𝑥′(𝑛, 𝑡)) calculates the temporal arithmetic mean of the time

series 𝑥′(𝑛, 𝑡) within the interval [𝑡𝑑 , 𝑡], while T 𝑆𝐷
𝑡𝑑

(𝑥′(𝑛, 𝑡)) calculates the
temporal standard deviation of time-series 𝑥′(𝑛, 𝑡) within that interval.
The effects of choosing the proper moving statistics have been discussed
in Sections 4.7.1 and 5.3.3. The presented results in this article are
generated using F𝑆𝐷

13 unless mentioned otherwise.

3.3. GAT-based prediction of 𝑦(𝑛, 𝑡)

In this work, we primarily adopted the graph attention-based time-
series prediction techniques from [37]. However, for the detection
stage, we replaced these techniques with a proposed modified method
described in Section 3.4. To predict the transformed time series, i.e,
time-varying moving statistics-based features, 𝑦(𝑛, 𝑡) at any time 𝑡, the
past 𝑤 samples are used:

𝑦̂(𝑛, 𝑡) = F [𝑦(𝑛, 𝑡 − 1), 𝑦(𝑛, 𝑡 − 2),… , 𝑦(𝑛, 𝑡 −𝑤 + 1)] = F [𝐘],



M.A. Hasnat et al.

M

v
d
t
M

t
v
t
i
(
a

l
T

𝛼

w
c
t
o
a
o

𝐳

T
e

e
t
t
l

𝑓

w
o
i

Electric Power Systems Research 238 (2025) 111149 
Fig. 3. Schematic diagram of the proposed MOVSTAT-GAT technique for FDIA detection.
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where, 𝐘 is a 𝑁 × 𝑤 matrix containing the values of 𝑦(𝑛, 𝑡 − 1), 𝑦(𝑛, 𝑡 −
2),… , 𝑦(𝑛, 𝑡−𝑤+1) and F is the prediction operator. For implementing
the prediction method using GNN, the associated graph,  is learned
from the data (i.e., 𝑦(𝑛, 𝑡)∀𝑛, 𝑡) themselves. The graph,  is defined
by the binary adjacency matrix, 𝐀 with elements: 𝐴𝑖,𝑗 = 1, if 𝐯𝑖.𝐯𝑗 ∈

𝐾
𝑖 (𝐯𝑖.𝐯𝑗 ), and 0, otherwise, where, 𝐯𝑘 is 𝑑− dimensional embedding

ector of node 𝑘. The embedding vector of all the nodes, 𝑛 ∈  is
efined as: 𝐯𝑘 = E (𝐘),∀𝑘 ∈  , The embedding operator E is a function
hat learns the embedding of each node from the data, i.e. 𝐘, and

𝐾
𝑖 (𝐯𝑖.𝐯𝑗 ) is the set of top 𝐾 values of 𝐯𝑖.𝐯𝑗 for the 𝑖th node.
The data matrix, 𝐘 is then passed through a linear system charac-

erized by 𝐖𝐋𝐢𝐧 and subsequently concatenated with the embedding
ectors: 𝐆 =

[

𝐕 𝐖𝐋𝐢𝐧𝐘𝐓]𝐓, where, 𝐆 is a 2𝑑×𝑁 matrix, which is called
he gate of a GAT [37],𝐖𝐋𝐢𝐧 is a 𝑑×𝑤 matrix with learnable entries, 𝐕
s a 𝑑×𝑁 containing the embedding vectors 𝐯𝑘 in its columns. The query
𝐪) and the key (𝜿) of the attention network are calculated, respectively,
s: 𝐪 = 𝐚𝐓𝐪𝐆, 𝜿 = 𝐚𝐓𝜿𝐆,where, 𝐚𝐪 and 𝐚𝜿 are both 2𝑑 × 1 vector with

earnable entries, and
[

𝐚𝐓𝐪 𝐚𝐓𝜿
]𝐓

is called the attention weight matrix.
he graph attention scores are calculated as:

𝑖𝑗 = SOFTMAX𝑖
(

LeakyReLu
(

(

𝐐 +𝐊𝐓)⨂𝐀
))

here, 𝐐 and 𝐊 are two 𝑁 ×𝑁 matrices having 𝐪 and 𝜿 in each of the
olumns, respectively, and ⨂ denote element-wise matrix multiplica-
ion of two matrices. 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑢 is the non-linear activation function
perator [38] and 𝑆𝑂𝐹𝑇𝑀𝐴𝑋𝑖 signifies applying the Softmax operator
long the 𝑖th row of the matrix. The attention scores are then used to
btain the aggregated representation of 𝑘− th node as:

𝑘 = ReLU
⎛

⎜

⎜

⎝

∑

𝑗∈𝑘∪𝟏(𝑘)
𝛼𝑘𝑗𝐰𝐥𝐘

⎞

⎟

⎟

⎠

he matrix, 𝐙 contains the 𝐳𝑘 in the columns. The forecast values at
ach node 𝑘 at time 𝑡 is obtained as: 𝑦̂(𝑛, 𝑡) = P

[

𝐳𝑘 ⋅ 𝐯𝑘
]

, where P

is an operator with learnable parameters, 𝐖𝑝 implemented by a fully
connected network with hidden layers.

3.4. Declaration of FDIA

Once 𝑦̂(𝑛, 𝑡) is predicted for any instant, 𝑡, the normalized absolute
rror of prediction can be calculated as: 𝑒(𝑛, 𝑡) = |𝑦̂(𝑛, 𝑡) − 𝑦(𝑛, 𝑡)|. From
he prediction error, an FDIA is declared to be detected at time, 𝑡, if
he likelihood of the normalized absolute error falls below a certain
ikelihood threshold, 𝜃𝑙, described by:

1,2,…𝑁 (𝑒(1, 𝑡), 𝑒(2, 𝑡),… 𝑒(𝑁, 𝑡)) < 𝜃𝑙 (4)

here 𝑓1,2,…𝑁 (𝜁1, 𝜁2,… 𝜁𝑁 ) is the joint probability distribution function
f 𝑒(𝑛, 𝑡) which should be estimated from the historical data. However,
n this work, the marginal distributions 𝑓 (𝜁 ) for each 𝑛 are suggested to
𝑛

6 
e considered as independent normal distributions with means 𝜇𝑒𝑛 and
tandard deviation 𝜎𝑒𝑛 , which are estimated from the validation data.
herefore, Eq. (4) can be approximated as:
𝑁

𝑛=1

|

|

|

|

|

𝑒(𝑛, 𝑡) − 𝜇𝑒𝑛
𝜎𝑒𝑛

|

|

|

|

|

> 𝜃, (5)

𝜃 is the threshold of detection. 𝑒(𝑛, 𝑡) =
|

|

|

|

𝑒(𝑛,𝑡)−𝜇𝑒𝑛
𝜎𝑒𝑛

|

|

|

|

is named as the
estimated normalized absolute error. The dependency of detection
performance on 𝜃 has been discussed in 4.7.2.

3.5. Location identification of clustered attacks

Once MOVSTAT-GAT detects an FDIA, the technique supplements
identifying the locational characteristics of the injected FDIA by visu-
alizing estimated normalized absolute error, 𝑒(𝑛, 𝑡) as an image. The
clustered attack, which is usually important from the location iden-
tification perspective, can be distinguished from the image pixels’
intensities. A location within the attack cluster can be identified as:

𝑛𝑙𝑜𝑐 = 𝑎𝑟𝑔max
𝑛

𝑒(𝑛, 𝑡) = 𝑎𝑟𝑔max
𝑛

|

|

|

|

|

𝑒(𝑛, 𝑡) − 𝜇𝑒𝑛
𝜎𝑒𝑛

|

|

|

|

|

(6)

4. Simulation and analysis of results

4.1. Data description and experiment details

Data from 12,571 smart meters with a temporal resolution of 30
minutes for one month have been considered to analyze the effective-
ness of the proposed framework. These data are collected from 565
9-digit ZIP codes within six 5-digit ZIP codes under ComEd [39]. Of
the total 1,440 time instances of data, 70% were used for training, 10%
for validation, and 20% for testing. This insufficiency of temporal data
for training poses additional challenges in FDIA detection. A detailed
discussion of the effect of data availability is provided in Section 5.

For analyzing the detection performance of MOVSTAT-GAT, 1000
scenarios per 9-digit ZIP code (or 5-digit ZIP code) for each type of
attack are generated. The scenarios include attack (FDIA) scenarios or
non-attack scenarios with equal probabilities. The starting time of the
FDIAs is selected from all possible time instances from the test data set
with uniform probability.

4.2. Model training

Most model parameters are fixed for detection at both geographic
levels and ZIP codes. The dimension, 𝑑 of the embedding vector, 𝐯𝐤
s set to 48, and the linear process considers 6 past samples (𝑤). P is
mplemented with a fully connected neural network with two layers
f 256 hidden units each. The learning rate is 0.001, batch size is 64,
nd training runs for a maximum of 500 epochs. Sensitivity to graph
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Fig. 4. Detection performance at one 9-digit ZIP code using MOVSTAT-GAT for different types of attacks, and variation of performance over different attack parameters.
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sparsity (𝐾), moving statistics length (𝑡𝑑), and detection threshold (𝜃)
re discussed in the following subsections. The training time of the
odel depends on the size and sparsity of the graph and the geographic
ierarchy of detection. For example, training at a 9-digit ZIP code
ith around 25 households requires 11.05 min for 500 epochs with
= 10 whereas at a 5-digit ZIP code with around 60, a 9-digit

IP code requires 6.2 min on an NVIDIA RTX 4090 GPU. A more
etailed discussion of the parameter dependency of the training time
s discussed in Section 5.3.2.

.3. Performance evaluation matrix

For evaluating detection performance, we use recall (true positive
ate), precision (1-false positive rate), accuracy (mean of recall and
recision), and F1 score (harmonic mean of recall and precision). The
hoice of metric depends on the implementation scenario. Typically,
ecall is prioritized over precision in cases like power outages or meter
oS, even if it increases false positives. We present the ROC curve to
llustrate the trade-off between higher detection rates and lower false
ositives through adjustments to the detection threshold, 𝜃. Location
ccuracy for clustered attacks is defined as correctly locating any
omponent of the cluster, whether at the smart meter level for 9-digit
IP codes or 9-digit ZIP codes at the 5-digit level.

.4. Detection performance at 9-digit ZIP code level

Fig. 4 represents the performance of the detection of the five types
f FDIA in a single 9-digit ZIP code. Our extensive simulations show
hat for most of the 9-digit ZIP codes, the obtained performance of
etection is similar, therefore the presented results are representative
f detection performance at each 9-digit ZIP code. For each of the five
ypes of attacks, the accuracy metrics are evaluated against the fraction
𝛾) of total compromised smart meters, and other attack parameters
elated to that specific type of FDIA. From the detection perspective,
ype I and II are the simplest types of FDIAs that can be easily detected
or larger changes in values (i.e, large 𝛿, |𝛽| ≫ 1, and |𝛽| ≪ 1 and
ecomes challenging to detect for smaller changes in values (i.e., small
and |𝛽 − 1| ≫ 1, and |𝛽| ≪ 1. For Type IV attack, which introduces

ero (0) values in the smart meter readings, the challenge of accurate l

7 
etection lies in the fact that a reading of zero (0) power consumption
or a while, can be mistaken for typical behavior of consumers not using
lectricity because of their absence in the household. Therefore, Type
V FDIA is challenging to detect when a small fraction of meters are
ompromised. Type II attacks show less sensitivity to the magnitude of
alse data, 𝛿, however, very small and very large values of 𝛿 pose more
hallenges for detection. A small value of 𝛿 creates negligible changes
n the corresponding time series value similar to the Type I FDIA and
educes detection rate (recall) while a larger value of 𝛿, unlike Type
FDIA, introduces many zero (0) values in the meter reading which
resents the same challenges as Type IV attacks. For Type V FDIA which
imits the apparent power consumption in the meter, the detection
ccuracy lowers with the limit increase. For all five types of FDIAs,
he recall makes the accuracy of detection increase with the fraction of
ompromised meters, 𝛾 as expected while the false positive remains the
ame.

.5. Detection performance at 5-digit ZIP code level

The detection accuracy at the 5-digit ZIP code level for the same
DIAs is shown in Fig. 5. The performance variation with the fraction
f compromised smart meters, 𝛾, and the attack parameters, 𝛽, 𝛿, and
are similar to the results at the 9-digit levels. The results in Fig. 5

are for scattered random attacks at smart meters in various 9-digit ZIP
codes under the 5-digit ZIP code. For clustered attacks, in which all
the compromised meters are from one or more adjacent ZIP codes the
detection accuracy is significantly higher. For example, as illustrated
in Fig. 6 in clustered Type IV attack, the proposed MOVSTAT-GAT
technique achieves a detection accuracy of 96.5%, for 𝛾 = 0.0836 which
s below 60% for scattered attacks.

.6. Ability to localize FDIAs

Once an FDIA is detected using MOVSTAT-GAT, for further in-
estigation of the detected FDIA, the utility operators must identify
he location of the FDIA in the system. However, precise detection is
hallenging for scattered attacks on smart meters located in different
IP codes. Moreover, location identification in these cases is relatively

ess important from the monitoring perspective of utilities. On the
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Fig. 5. Detection Performance at one 5-digit ZIP code using MOVSTAT-GAT for different types of attacks, and variation of performance over different parameters.
n
w
B
e
s
t
d
t

v
p
5

Fig. 6. Clustered FDIA: Detection performance accuracy in clustered FDIA is signif-
cantly higher than the scattered FDIAs. Results show detection performance at the
-digit ZIP code level for Type IV attacks.

ther hand, clustered attacks are localized among several nearby 9-
igit ZIP codes, and location identification in those cases is important
rom the system monitoring perspective. For example, Type IV attacks
n several adjacent 9-digit ZIP codes can indicate a power outage in
geographic location which the utility should address. Fig. 7 illus-

trates monitoring of estimated normalized absolute error, 𝑒(𝑛, 𝑡) as an
image at (a) 9-digit ZIP code level and (b) 5-digit ZIP code levels.
The clustered FDIAs can be identified from the localized pattern of
higher intensity pixels during the attack location along smart meter #
5 in Fig. 7(a) and along ZIP code # 13-14 in Fig. 7(b) by observing
estimated normalized absolute error, 𝑒(𝑛, 𝑡) as images. Visual inspection
of this image just after the detection of the FDIA can provide important
information about the FDIA location. Here, the proposed technique
suggests automated identification of any member of the cluster using
Eq. (6). The automated location accuracy for different types of FDIA at
the 5-digit ZIP code level is shown in Fig. 7(c). The results show that
the proposed automated location identification technique is capable
 d

8 
of locating power outages (Type 4 FDIA) even at a single 9-digit ZIP
code with good accuracy. Expectedly, the accuracy of locating at the
household level is challenging. For example, the locating accuracy of
Type I FDIA at a single smart meter with 𝛿 = 1.1 is 69.4%.

4.7. Performance sensitivity to various factors

4.7.1. Selection of moving statistics
In this work, the effectiveness of several moving temporal statistics

for transforming the time series in the MOVSTAT technique has been
tested, including arithmetic mean (AM), harmonic mean (HM), the ratio
of harmonic and arithmetic mean

(

𝐻𝑀
𝐴𝑀

)

, and standard deviation (SD).
As discussed in Section 2, although anomalies are better reflected on
HM or 𝐻𝑀

𝐴𝑀 , in conjunction with our training-based model, they are
ot very effective features due to the large number of peaks associated
ith behavioral anomalies in the training time series data (Fig. 8(a)).
oth AM and SD as moving statistic features provide lower training
rror and better accuracy in FDIA detection. However, our experiments
how SD provides slightly better detection accuracy than AM and due
o the temporal smoothing effect, AM involves slightly greater detection
elay. Considering all these facts, the standard deviation within a
emporal window of 13 samples (computed by F𝑆𝐷

13 operator) is chosen
as the preferred time-varying moving statistics feature. Therefore, the
presented results are generated using F𝑆𝐷

13 unless mentioned otherwise.

4.7.2. Threshold for detection, 𝜃
The detection performance, characterized by the trade-off between

the recall and precision (i.e., true positive rate and false positive rate) is
governed by the choice of 𝜃. Fig. 8(b) illustrates the receiver–operator
characteristics (ROC) curves associated with the detection of different
types of attacks at a particular 9-digit ZIP code, where the 𝜃 has been
aried within the range 100 ≤ 𝜃 ≤ 1000 to demonstrate the recall–
recision trade-off. The choice of 𝜃 at each 9-digit ZIP code level or
-digit ZIP code level can be made by the operators in the utility

epending on their resources, policy, and associated infrastructures.
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Fig. 7. Localization: (a)–(b) Location identification using visualization tool: (a) compromised smart meter # 5 within a 9-digit ZIP code, (b) ZIP code # 13-14 where the
compromised smart meters are located within a 5-digit ZIP code. The vertical pair of red lines indicate the attack duration. (c) Automated location performance of clustered FDIA
after detection at a 5-digit level.
𝑒

Usually, in situations where human operators are engaged in moni-
toring the detection process, or where automated decisions are not
promptly executed in response to real-time FDIA detection, the choice
of 𝜃 is made in a way to emphasize the recall rather than the precision.
A more detailed discussion on the choice of threshold, 𝜃, in the power
utility context is presented in Section 5.3.1.

4.7.3. Sensitivity to MOVSTAT filter length
Fig. 8(c) and (d) illustrates the detection performance sensitivity to

the length of the moving statistics filter, 𝑡𝑑 . A larger 𝑡𝑑 facilitates the
detection of attacks at a small number of meters, i.e., small 𝛾, at the
cost of precision and hardware implementation cost. The strategies of
selecting 𝑡𝑑 in the industry setting at discussed in Section 5.3.3.

4.8. Comparison

To compare the performance of the proposed technique, two bench-
mark methods have been considered. The first one involves using
an auto-encoder-based prediction of multi-variate smart meter data
to detect FDIA in an unsupervised manner. Since the detection of
FDIAs with regular intensity and spreads is easier to detect from the
aggregated data, a univariate LSTM-based detection method has been
considered as the second benchmark technique. The reason for selecting
these two methods as benchmarks is that, auto-encoder is a state-of-the-
art baseline structure being extensively used in the recent literature for
anomaly detection, whereas LSTM has been considered the most widely
used technique to handle sequence and time-series data to date.

Our extensive experiments show that the performance of MOVSTAT-
GAT, auto-encoder, and LSTM-based techniques are comparable for
wide-spread attacks (larger 𝛾); however, the main advantage of the
proposed MOVSTAT-GAT lies in detecting FDIAs for very small values
of 𝛾, even at a single household or a single 9-digit ZIP code, depending
on the geographic hierarchy of detection. In particular, detecting FDIAs
in a very small number of households clustered in a geographical
locality from the 5-digit ZIP code level can be very crucial from the
utility point of view to identify coordinated energy theft, meter DoS,
or power outages in a certain geographic area. Fig. 9(a) illustrates
the effectiveness of the proposed MOVSTAT-GAT technique over the
9 
benchmarks at a 9-digit ZIP code level in case of Type I attack (𝛿 =
2, 𝛾 = 0.0417) in a single household. MOVSTAT-GAT achieves a superior
balance between the true positive rate and the false positive rate com-
pared to benchmark techniques. Fig. 9(b) shows the out-performance
of MOVSTAT-GAT over the benchmarks for detecting Type IV attack
at the households of one single 9-digit ZIP code out of 60 within a
certain 5-digit ZIP code (i.e., 𝛾 = 0.0260). The second example can
be a representation of a power outage in a certain locality, which is
very important for detection from a higher geographic level. Due to the
high variance of detection rate in this range of attack intensity creates
some non-monotony in the ROC curves for all the methods, although
the out-performance of the proposed MOVSTAT-GAT is evident from
the trend.

It must be noted that, in addition to detection, the proposed
MOVSTAT-GAT technique can locate the attack after detection with
good accuracy, as shown in Fig. 7(c). Moreover, the representation of
̂(𝑛, 𝑡) as an image provides a visualization tool to the utility operators
to identify the localization behavior of the FDIAs. In addition, subtle
changes in the intensity pattern of, 𝑒 make an expert operator aware
of even smaller magnitude attacks classified as false negatives by
automated detection based on the threshold.

5. Practical applicability

One of the key aspects of our proposed method is its adaptability
for real-world implementation. Here, we discuss the MOVSTAT-GAT
implementation strategies, focusing on detecting and locating various
FDIAs at different hierarchical levels. We emphasize adjusting model
parameters and thresholds to optimize performance while considering
the potential human intervention by utility operators.

5.1. Visualization tool for utility operators

The visualization tool, shown in Fig. 7, complements our automated
detecting and locating mechanism, aiding utility operators in service
monitoring through visualization [40]. Continuous sliding frames of
images, like those in Fig. 7(a) and (b), help operators identify changes

in pixel intensity related to specific smart meters or 9-digit ZIP codes,
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Fig. 8. Sensitivity Analysis: (a) Training with different moving statistics. (b) ROC curve represents the dependency of detection performance on the likelihood threshold for
different types of FDIAs, 𝛾 = 0.5 for all attacks. (c)–(d): Sensitivity to moving statistics filter length at 9-digit ZIP code levels, 𝑡𝑑 : (c) recall, (d) precision.
Fig. 9. Comparison of detection performance using ROC curves: (a) detection performance at 9-digit ZIP code for Type I attack at one single household (𝛾 = 0.041), (b) detection
performance of Type IV attack at 5-digit ZIP code for clustered attack (𝛾 = 0.017).
a
c
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f

indicating potential FDIAs at those locations. Integrating this tool with
the automated system offers several advantages. For small 𝛾, i.e., at-
tacks targeting a small number of smart meters, the system may have a
high false negative rate (low recall). While small-scale attacks might be
ignored due to minimal financial loss, they can be crucial in scenarios
like localized outages or in understanding attacker strategies. The visu-
alization tool helps operators identify these false negatives. Operators
can also reduce false positives by analyzing the pixel intensity, location,
and duration of detected FDIAs, refining the detection system’s accu-
racy. Additionally, operators with detailed geographical knowledge can
supplement the automated system, especially during multiple attacks or
complex interconnectivity, to precisely locate attacks and understand
the broader context, including attackers’ strategies and resources.

5.2. Scope of real-time detection

The MOVSTAT-GAT’s automatic detection mechanism excels in real-
time FDIA detection, with over 90% of attacks detected instantly or
within 1 − 2 samples of onset. This makes it ideal for real-time system
monitoring and decision-making in industrial environments. It enables
prompt responses to attacks, power outages, or meter DoS incidents

at specific ZIP codes. Timely detection and precise localization of t

10 
power outages, especially due to extreme weather or grid issues, are
crucial for immediate restoration. Our technique, complemented by the
visualization tool, effectively detects power outages in real-time using
only household power consumption data, without needing additional
grid topology or electrical attribute information.

5.3. Model parameter tuning for utility application

Here we discuss optimal model parameter tuning in realistic sce-
narios based on the sensitivity analysis in Section 4.7. Proper tuning,
aligned with domain knowledge and dataset specifics, can enhance
detection and locating performance. The influence of attack parameters
and utility company priorities is also considered.

5.3.1. Detection threshold flexibility
The detection threshold, 𝜃, is the only model parameter needing

djustment when transferring the detection mechanism between ZIP
odes. Adjusting 𝜃 optimizes performance based on utility company
objectives and resources. The precision–recall trade-off related to 𝜃 is
hown in Fig. 8(b) and discussed in Section 4.7.2. In practice, several
actors influence 𝜃 selection. Utility operators may choose a smaller 𝜃

o detect FDIAs, theft, DoS, or outages in small localities, tolerating
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some false alarms, or a larger 𝜃 to ignore certain attacks based on
trategy, resources, or prior knowledge. Operators can also use multiple
hresholds with the same model, make decisions on the basis of alarms
aised by the different thresholds, the visualization tool described in
.1, and domain knowledge.

.3.2. Handling graph sparsity
Graph sparsity, denoted by 𝐾, indicates connectivity among graph

vertices, reflecting spatial correlations among nodes like smart meters
or ZIP codes. In direct smart meter data detection at the 9-digit ZIP code
level, 𝐾 can impact performance, especially for low attack intensities
or few targeted smart meters (𝛿 and 𝛾 small, 𝜆 large, and 𝛽 close
to 1). When using aggregated meter readings at the 9-digit ZIP code
level for detection at the 5-digit level, selecting 𝐾 is more flexible
due to adjustments in the detection threshold, 𝜃. This flexibility is
due to reduced uncertainty in household-level data when aggregated,
leading to stronger correlations with neighboring nodes. Our experi-
ments showed setting 𝐾 around 10 (8–12) for 9-digit aggregated data
provides good performance across scenarios. For direct smart meter
data detection, 𝐾 values between 5 and 10 generally yield optimal
results, using household consumption correlations within 9-digit ZIP
codes. Setting 𝐾 = 10 universally, with appropriate 𝜃 adjustments,
yields satisfactory results, as shown in Figs. 4 and 5. Human inter-
vention can enhance performance based on utility company objectives
and resources. Minor fluctuations in 𝐾 do not significantly impact
MOVSTAT-GAT performance, as attention weights accommodate these
adjustments.

5.3.3. Flexibility in choice of moving statistics filter length and other pa-
rameters

The MOVSTAT filter length, 𝑡𝑑 , impacts the detection of low-
intensity or small-spread attacks, as shown in Fig. 8(c)–(d). Very
small 𝑡𝑑 values (e.g., 𝑡𝑑 = 3) result in low detection rates for low-
intensity attacks, while very large 𝑡𝑑 values can slightly affect precision
during large attacks and increase hardware implementation costs. Our
experiments suggest setting 𝑡𝑑 between 7 and 13 samples to balance
performance and practicality, ensuring effective detection across vari-
ous scenarios avoiding false positives related to anomalous consumer
behaviors. For other remaining model parameters, it is advisable
to maintain consistent values across all ZIP codes, as outlined in
Section 4.2. This includes keeping the sizes of the temporal window, 𝐰𝐥,
the embedding vector, 𝐯𝐤, and the number of layers and hidden units
in neural networks, 𝐖𝐩, fixed. This approach ensures uniformity and
simplifies implementation for utility operators across different areas.

5.4. Robustness to new attack types

As an unsupervised learning method, MOVSTAT-GAT learns from
the inherent probability distribution of honest data during the training
process. Any significant deviation triggers false data detection, making
the model more robust to new FDIAs than supervised learning frame-
works. Attackers must inject data that closely resembles honest data to
bypass detection, posing a trade-off with the attacks’ reward. Addition-
ally, being unsupervised, MOVSTAT-GAT naturally avoids challenges
related to data imbalance from theft or scarce injected data.

5.5. Scalability and extensibility of MOVSTAT-GAT

The proposed framework, implementable in real-time using smart
meter data, scales with the number of spatial variables or graph ver-
tices. We tested its effectiveness at two levels: 9-digit ZIP codes (20–30
vertices representing households) and 5-digit ZIP codes (30 to several
hundred vertices). GNNs, due to their inherent sparsity, are more
scalable than other neural networks. Thus, the technique is extendable
to higher geographic levels (e.g., county, state). For extensions to thou-
sands of vertices, besides adjusting the sparsity parameter, 𝐾, using
a static graph adjacency matrix can enhance scalability, especially
if vertex correlations are not significantly time-varying, which is a

common scenario observed at higher geographic levels.
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5.6. Limitations

While the proposed MOVSTAT-GAT technique excels in detection
performance, scalability across different system sizes and geographic
hierarchies, and robustness to various utility system scenarios, it still
has a few limitations. First, the technique is not capable of classifying
the specific types of FDIAs on smart meters, which could further
assist the utility operators in understanding the attackers’ motives and
strategies. Moreover, since the smart meters in our study provide only
power consumption readings, detection of events (e.g., various types of
faults, power quality, and inverter-related events) that are dependent
on the measurement of voltage or other electrical attributes, are not
detectable under this framework. Finally, since the current model is
trained using data for a single month, it cannot capture the seasonal
behavior of household power consumption. This can be addressed by
incorporating multi-year data that would enhance model performance.

6. Conclusions and future works

This work proposes MOVSTAT-GAT, a spatio-temporal graph at-
tention network-based unsupervised technique to analyze smart meter
data at different geographic hierarchical levels to detect and locate
energy theft, power outage, meter DoS, and meter-reading alterations
within a general FDIA framework. MOVSTAT-GAT achieves excellent
detection and locating performance for regular-intensity attacks. How-
ever, by leveraging the advantage of the moving-statistics filter and
the attention on the dynamic graph to emphasize the changes during
the attack onset, its outperformance compared to baseline state-of-
the-art techniques is more significant for small-intensity and localized
attacks. Specifically, the experiments highlight the effectiveness of
MOVSTAT-GAT for detecting very localized attacks, where the fraction
of compromised meters is as small as 1% of the total meters. This
enables the operators to address disruptions or adversaries at a certain
geographic location within the utility service area. The comprehensive
experiments evaluate the effectiveness of the proposed technique under
different conditions, considering performance sensitivity to various
parameters and factors relevant to real-world industry implementation.

There are a few directions in which the proposed framework can
be extended by overcoming its limitations. Future work can expand
MOVSTAT-GAT to classify different types of FDIAs (e.g., energy theft,
meter-reading altering, power outage, meter DoS, etc.), aiding utility
operators to distinguish between the issues and understand attackers’
strategies. Additionally, in case of the availability of voltage mea-
surement data from smart meters, future work can incorporate other
distribution system service interruptions such as faults, voltage sta-
bility, and power quality issues. Finally, training the model using
multi-year power consumption data would enable the model to capture
the seasonal patterns within the data to enhance model performance
and robustness.
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