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Abstract. We study the maximum multiplicity M(k, n) of a simple transposition

sk = (k k + 1) in a reduced word for the longest permutation w0 = n n − 1 · · · 2 1,

a problem closely related to much previous work on sorting networks and on the “k-set”

problem. After reinterpreting the problem in terms of monotone weakly separated paths,

we show that, for fixed k and sufficiently large n, the optimal density is realized by paths

which are periodic in a precise sense, so that

M(k, n) = ckn+ pk(n)

for a periodic function pk and constant ck. In fact we show that ck is always rational, and

compute several bounds and exact values for this quantity with repeatable patterns, which

we introduce.
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1. Introduction

Write sk = (k k+1) for the adjacent transpositions in the symmetric group Sn. A reduced

word for a permutation w ∈ Sn is an expression w = si1 · · · siℓ of minimal length, and in this

case ℓ = ℓ(w) is called the length of w; we write R(w) for the set of reduced words of w.

There is a unique permutationw0 = nn−1 · · · 21 of maximum length
(
n

2

)
, called the longest

permutation. Reduced words ofw0 have been extensively studied, as maximal chains in the weak

Bruhat order [EG87], in total positivity and cluster algebras, and in the context of random sorting

networks [AHRV07]. It is not hard to see that the minimum multiplicity of sk in a reduced word

for w0 is min(k, n − k) (see Section 5), while the average multiplicity can be computed using

the Edelman–Greene bijection [Ede92]. This paper describes our study of the quantity M(k, n),
the maximum multiplicity of sk among all reduced words of w0. This problem is considerably

more difficult, as evidenced by its close connection to the well-known “k-set problem”. The

maximum multiplicity problem for reduced words of general permutations has been studied by

Tenner [Ten21], who gave bounds expressed in terms of permutation patterns.

Throughout much of this paper1 we consider monotone weakly separated paths or general-

ized wiring diagrams instead of reduced words themselves. From this perspective certain period-

icity phenomena appear which are obscured when considering reduced words or their associated

pseudoline arrangements.

1.1. Relation to the k-set problem

Given a collection A of n distinct points in R
2, a k-set is a subset B ¦ A of size k which can

be separated from A − B by a straight line in R
2. The k-set problem, studied since work of

Lovász [Lov71] and Erdős–Lovász–Simmons–Straus [ELSS73] in the 1970s, asks for the max-

imum number of k-sets admitted by any collection A. This problem has since found application

in the analysis of some geometric algorithms.

A common approach to this problem proceeds by first applying projective duality to recast

the problem in terms of regions of height k in an arrangement of n lines, and then relaxing it

by considering arrangements of n pseudolines (curves in the plane such that each pair crosses

exactly once). Many of the strongest known results for the k-set problem work with this relax-

ation, and all available data [AFMLnS08] indicates that the answers in fact agree for lines and

for pseudolines. An arrangement of n pseudolines can equivalently be thought of as the wiring

diagram for a reduced word of w0, and in this context the problem becomes to maximize the

total number of sk’s and sn−k’s appearing. We show in Section 4 that there is a well-defined

slope ck defined by M(k, n) ∼ ckn and that this quantity is the same whether we consider the

total multiplicity of sk and sn−k or just that of sk, so that our original problem is very closely

linked to the (pseudoline version of) the k-set problem.

1.2. Relation to weak separation

Given a reduced word of a permutation w, we can associate a weakly separated collection to it,

and more specifically, a monotone weakly separated path. This process can be viewed as first

1An extended abstract of this work appears in the proceedings of FPSAC [GGJ+21].
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obtaining a plabic graph from the reduced word, and then taking certain face labels. Weakly sep-

arated collections are fundamental objects in the theory of the totally nonnegative Grassmannian

and related cluster algebras (see, e.g. [Pos18]). In particular, Oh–Postnikov–Speyer [OPS15]

constructed a bijection between reduced plabic graphs of any positroid M and certain maximal

weakly separated collections, establishing the purity property. Moreover, maximal weakly sep-

arated collections of
(
[n]
k

)
correspond to Plücker clusters of the Grassmannian Gr(k, n), which

behave nicely among other clusters. In fact, in this paper, we will very often think of a reduced

word via its corresponding monotone weakly separated path. We elaborate on this connection

in Section 2.

1.3. Outline and main results

In Section 2 we introduce monotone weakly separated paths and establish an equivalent version

of the main problem in these terms. Section 3 introduces arc diagrams and applies these to

give bounds and some exact values for M(k, n). Arc diagrams and their weights give a tool for

computing upper bounds on M(k, n), while repeatable patterns, also introduced in Section 3,

allow explicit constructions of reduced words for all n at once, and thus for determining lower

bounds on M(k, n). This technology allows us to show:

Theorem 1.1 (See Section 3). For k = 1, 2, 3, the quantity ck exists and we have c1 = 1, c2 =
3
2
,

and c3 =
11
6

. Furthermore, explicit reduced words realizing M(k, n) for k = 1, 2, 3 and n ∈ N

can be obtained from the repeatable patterns given in Section 3.

In Section 4 we introduce generalized wiring diagrams, which, for arbitrary fixed k, can be

used to reason about M(k, n) for all n simultaneously. We use these objects to show that for

all k the quantity

ck := lim
n→∞

M(k, n)

n

exists, is rational, and is equal to the corresponding limit which counts multiplicities of both sk
and sn−k. In fact, what we prove is much stronger:

Theorem 1.2 (See Section 4). For fixed k and sufficiently large n, ck is realized by diagrams

which are are periodic in a precise sense, so that computing ck reduces to a finite search for

repeatable patterns.

Finally, in Section 5 we discuss the problem (which is easy for the symmetric group) of

minimizing the multiplicity of sk in a reduced word for the longest element w0 in other finite

Coxeter groups.

2. Reduced words and weakly separated paths

In this section, we establish relations between reduced words and monotone weakly separated

paths. We say that two different sets I, J ¢ [n] of cardinality k are weakly separated

ifmax I−J < min J−I ormax J−I < min I−J , and that a collection of cardinality k subsets
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1
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5
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123 124 134 234 345 346 456

Figure 2.1: The wiring diagram of the reduced word i = s3s2s1s3s2s3s4s3s5s4s3s2s1s3s2.

of [n] is weakly separated if each pair of sets is weakly separated. Note that being weakly sepa-

rated is not a transitive relation. A sequence of subsets (A0, A1, . . . , AN) is a monotone weakly

separated path if the collection {A0, . . . , AN} is weakly separated and for each i = 1, . . . , N ,

both Ai − Ai−1 =: {xi} and Ai−1 − Ai =: {yi} are singleton sets with xi > yi.
Given a reduced word si1 · · · siℓ = i ∈ R(w), and a fixed simple generator sk = (k k + 1),

let a1 < · · · < aN be the positions of all sk’s in i. We obtain permutationsw(j) = si1si2 · · · siaj as

the products of prefixes of i, wherew(0) = id. For j = 1, . . . , N , letAj = {w(j)(1), w(j)(2), . . . ,
w(j)(k)} be the set of values of w(j) on inputs 1, . . . , k, and write Pk(i) = (A0, A1, . . . , AN).

Definition 2.1. Given a reduced word i = si1 · · · siℓ of w ∈ Sn, its corresponding wiring di-

agram consists of wires labeled by 1, 2, . . . , n starting at levels 1, 2, . . . respectively from top

to bottom, traveling from left to right such that at each timestamp t, the two wires at levels it
and it+1 cross.

We will be mainly using wiring diagrams as visualizations for reduced words.

Example 2.2. Consider the following reduced word of the longest permutation w0 ∈ S6:

i = s3s2s1s3s2s3s4s3s5s4s3s2s1s3s2

with its corresponding wiring diagram shown in Figure 2.1. Now fix k = 3 where sk ap-

pears 6 times in i. We have the intermediate permutations w(0) = 123456, w(1) = 124356,

w(2) = 413256, w(3) = 432156, w(4) = 435216, w(5) = 436521, w(6) = 645321. Taking their

first k values, we obtained A0 = {1, 2, 3}, A1 = {1, 2, 4}, A2 = {1, 3, 4}, A3 = {2, 3, 4},

A4 = {3, 4, 5}, A5 = {3, 4, 6}, A6 = {4, 5, 6} as shown in Figure 2.1.

Proposition 2.3. Let Pk(i) be constructed as above. Then Pk(i) is a monotone weakly separated

path. Conversely, for any monotone weakly separated path P that starts with {1, 2, . . . , k}, there

exists a reduced word i such that Pk(i) = P .

Proof. Let i ∈ R(w) and Pk(i) = (A0, . . . , AN). If some Aj and Aj′ with j < j′ are not

weakly separated, then there exists a ∈ Aj − Aj′ and a′ ∈ Aj′ − Aj such that a > a′. By

definition, w(j) < w(j′) in the right weak Bruhat order, but (a, a′) is a left inversion of w(j), not

of w(j′), contradiction. In other words, if we consider the wiring diagram associated to i, the

wires labeled a and a′ must intersect from A0 to Aj , and intersect again from Aj to Aj′ , meaning
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that i cannot be reduced. As a result, {A0, . . . , AN} is a weakly separated collection. At the

same time, Aj = Aj−1−{x}∪{y} if we write (x y)si1 · · · siaj−1
= si1 · · · siaj−1

siaj . And x < y

since i is reduced. Thus, Pk(i) = (A0, . . . , AN) is a monotone weakly separated path.

Now suppose that we are given a monotone weakly separated path P = (A0, . . . , AN)
with A0 = {1, . . . , k}. Start with w(0) = id. We are going to construct w(1), w(2), . . . with a

reduced word i along the way such that Pk(i) = P . Suppose that we have construc-

ted w(j) = si1 · · · sim and let x ∈ Aj − Aj+1, y ∈ Aj+1 − Aj with x < y. Suppose

that w(j)(a) = x and w(j)(b) = y with a ⩽ k < b. We can continue the construction

of i by w(j+1) = w(j)(sasa+1 · · · sk−1)(sb−1sb−2 · · · sk+1)sk. Here, sasa+1 · · · sk−1 moves x
from position a to position k while sb−1sb−2 · · · sk+1 moves y from position b to posi-

tion k + 1. In the end, the sk exchanges the values x and y. Therefore, we automatically

have {w(j+1)(1), . . . , w(j+1)(k)} = Aj − {x} ∪ {y} = Aj+1 as desired. The only thing left

to show is that the word i coming from such construction is reduced.

If i is not reduced, we can without loss of generality assume that in some step when we

are constructing w(j+1) from w(j), a simple generator sp exchanges a larger value at position p
with a smaller value at position p+ 1. Keep the notation as in the above paragraph. We cannot

have p = k since sk always exchanges Aj −Aj+1 at position k with Aj+1−Aj at position k+1.

So by symmetry, we assume p < k, and that such sp exchanges value x ∈ Aj+1−Aj at position p
with value z at position p + 1, with x > z. Since z < x, the values z and x must have been

switched before, when we are constructing w(j′+1) from w(j′), with j′ < j. By construction,

we are either moving z out of Aj′ to Aj′+1, or moving x into Aj′+1 from out of Aj′ . In both

cases, z /∈ Aj′+1 and x ∈ Aj′+1. As a result, x ∈ Aj′+1 − Aj+1, z ∈ Aj+1 − Aj′+1, but z < x.

As Aj+1 and Aj′+1 are weakly separated, we must have maxAj+1−Aj′+1 < minAj′+1−Aj+1.

But j′ < j, there cannot possibly be a monotone path from Aj′+1 to Aj+1. Contradiction. Thus,

this construction results in a reduced word i as desired.

Consequently, we say that Pk(i) is the monotone weakly separated path associated

to i ∈ R(w). Clearly, if Pk(i) consists of N + 1 subsets from A0 to AN , then there are

exactly N sk’s in i. Proposition 2.3 allows us to translate the problem of finding the maxi-

mal number of sk’s in R(w) to finding the longest monotone weakly separated path that starts

at {1, 2, . . . , k}.

3. Repeatable patterns and arc diagrams

This section introduces arc diagrams and repeatable patterns, and shows:

(i) M(1, n) = n− 1, for every integer n ⩾ 2,

(ii) (Theorem 3.7) M(2, n) =
⌈
3
2
n
⌉
− 3, for every integer n ⩾ 3, and

(iii) (Theorem 3.23) M(3, n) =
⌈
11
6
n
⌉
− 5, for every integer n ⩾ 4.
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3.1. Arc diagrams

Let k and n be positive integers such that 1 ⩽ k ⩽ n− 1. Suppose that P = (A0, A1, . . . , AN)
is a monotone weakly separated path from A0 = {1, 2, . . . , k} to AN = {n− k+1, . . . , n}. We

define the arc diagram D(P ) of P = (A0, A1, . . . , AN) to be the simple undirected graph on the

vertex set [n] = {1, 2, . . . , n} in which an edge (i, j) appears if and only if there exists a ∈ [N ]
such that {i, j} = (Aa−1 − Aa) ∪ (Aa − Aa−1).

We give a quick remark about the above definition of D(P ). Note that, for each pair {i, j},

if there exists a ∈ [N ] such that {i, j} = (Aa−1 − Aa) ∪ (Aa − Aa−1), then such an index a is

unique: the equation implies that in the corresponding wiring diagram, the ath sk-crossing from

the left is a crossing between wire i and wire j, and any two wires intersect exactly once in a

wiring diagram of a reduced word of w0. (See Figures 2.1 and 3.1 for an example.)

Example 3.1. When n = 6 and k = 3, an example of a monotone weakly separated path

isP = 123−124−134−234−345−346−456, realized in Example 2.2. Here, the shorthand ijk
represents the triple {i, j, k}. The arc diagram D(P ) of P is shown in Figure 3.1.

1 2 3 4 5 6

Figure 3.1: The arc diagram D(P ) of the monotone weakly separated path P in Example 3.1.

Given an arc diagram, we put each vertex i ∈ [n] of the diagram at the point (i, 0) ∈ R
2 and

draw each edge (i, j) as a semicircle on the upper-half plane. Imagine that each semicircular

curve in the arc diagram has weight 1. For each curve, assume that the weight is distributed uni-

formly across the horizontal length (not the curve length). For example, if an edge e joins (1, 0)
and (4, 0), then there is weight 2/3 above [2, 4] coming from e. If we have a finite collection

of curves, define the total weight as the sum of individual weights. Note that M(k, n) is the

maximum possible total weight in an arc diagram.

Proposition 3.2. For any positive integers k and n with 1 ⩽ k ⩽ n− 1, we have

M(k, n) ⩽

(

1 +
1

2
+

1

2
+

1

3
+

1

3
+

1

3
+

1

4
+

1

4
+

1

4
+

1

4
+ · · ·

︸ ︷︷ ︸

k terms

)

· n. (3.1)

Proof. Let P be a monotone weakly separated path from the set A0 = {1, 2, . . . , k} to the

set AN = {n − k + 1, . . . , n}. Perform the following auxiliary decoration using k different

colors col1, col2, . . . , colk. First, we color 1, 2, . . . , k in A0 so that i gets color coli. Each time

we go from Aj to Aj+1, if we have Aj+1 = Aj ∪{y}−{x}, then color y in Aj+1 the same color

as x in Aj . Also color the semicircle connecting (x, 0) and (y, 0) with the same color that we
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1 2 3 4 5 6 7 8 9 10 11

Figure 3.2: An example of the decoration performed in the proof of Proposition 3.2. The diagram

above is the decorated arc diagram of the monotone weakly separated path {1, 2, 3}, {1, 2, 4},
{1, 2, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {4, 5, 6}, {4, 5, 7}, {5, 6, 7}, {5, 7, 8}, {6, 7, 8}, {7, 8, 9},
{7, 8, 10}, {7, 8, 11}, {7, 10, 11}, {8, 10, 11}, {9, 10, 11}.

used to color x ∈ Aj and y ∈ Aj+1. For each number z ∈ Aj ∩ Aj+1, color z in Aj+1 the same

color as we color z in Aj . See Figure 3.2 for an example.

As a result of the decoration, the k numbers in AN are now colored with k different col-

ors. There is a permutation Ã ∈ Sk such that for each i ∈ [k], the number n − k + Ã(i) has

color coli. Now there are k continuous curves µ1, µ2, . . . , µk such that µi has endpoints (i, 0)
and (n− k + Ã(i), 0), and has color coli from one end to the other.

From the coloring argument above, there are at most k pieces of different semicircles in the

vertical strip above [i, i + 1] for each i ∈ [n − 1]. Furthermore, for each t ∈ Z⩾1, there exist

at most t pieces that come from semicircles whose diameters are exactly t. Each such piece

contributes the weight of 1/t. Therefore, the weight of the arc diagram above [i, i + 1] is at

most 1+1/2+1/2+1/3+1/3+1/3+ · · · , and hence the total weight is at most the right-hand

side of (3.1).

By estimating the summation in Proposition 3.2, we obtain the following corollary.

Corollary 3.3. For any positive integers k and n such that 1 ⩽ k ⩽ n − 1, we have the upper

bound M(k, n) ⩽
√
2k · n.

Remark 3.4. Together with Theorem 4.3 below, our arguments above give a short proof of the

upper bound O(
√
k)·n for the pseudoline k-sets problem. It might be instructive to compare this

bound with the known upper bounds in the literature of the straight line setting. For the classical

planar k-sets problem, Pach, Steiger, and Szemerédi [PSS92] have shown the upper bound

O

( √
k

log∗ k

)

· n, (3.2)

which is slightly stronger than O(
√
k) · n. Our pseudoline setting is more general. We do not

know if the upper bound (3.2) of Pach–Steiger–Szemerédi holds for M(k, n) or not. This might

be an interesting direction to further investigate.

The upper bound in Proposition 3.2 can be slightly improved as follows. First, note that

the number of unit segments [i, i + 1] is actually n − 1 (instead of n). Second, note that the

segments [i, i + 1] near the ends (vertices (1, 0) and (n, 0)) should have smaller upper bounds
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because there are fewer than k pieces of curve above those segments. This improvement leads

to sharp results when k is small. For k = 1, we find that M(1, n) ⩽ n − 1, for every n ⩾ 2.

For k = 2, we find M(2, n) ⩽
3n−5

2
, for every n ⩾ 3. Since M(2, n) is an integer, we

can write M(2, n) ⩽
⌈
3
2
n
⌉
− 3. We will see in the next subsection that these bounds in the

cases k = 1 and k = 2 are sharp.

3.2. k ⩽ 2 and repeatable patterns

In the previous subsection, we have seen that M(1, n) ⩽ n−1 for every n ⩾ 2. In fact, it is easy

to see that M(1, n) = n − 1. Indeed, the sequence ({1}, {2}, . . . , {n}) is a monotone weakly

separated path.

Things get more interesting when k = 2. In the previous subsection, we have also seen

that M(2, n) ⩽
⌈
3
2
n
⌉
− 3, for each n ⩾ 3. Now we claim that the inequality is in fact an

equality by giving explicit constructions using the idea of repeatable patterns.

In the definition below, if S is a finite set of integers and t is an integer, we write S + t to

denote {s+ t : s ∈ S}.

Definition 3.5. Let L and d be positive integers. A repeatable pattern R with parameters (L, d)
is a monotone weakly separated path R = (A0, A1, . . . , AL) which satisfies the following con-

ditions:

• AL = A0 + d, and

• for any positive integer m, the sequence
(

A0,A1, A2, . . . , AL,

A1 + d,A2 + d, . . . , AL + d,

A1 + 2d,A2 + 2d, . . . , AL + 2d,

...

A1 +md,A2 +md, . . . , AL +md
)

is a monotone weakly separated path.

Example 3.6. The pattern 12−13−23−34 is a repeatable pattern with parameters (L, d)=(3, 2).
Here, we use the shorthand ab to denote {a, b}. By concatenation, the pattern gives the infinite

sequence

12− 13− 23− 34− 35− 45− 56− 57− 67− 78− 79− 89− · · · .

Any finite prefix of the infinite sequence above is a monotone weakly separated path.

Theorem 3.7. For each positive integer n ⩾ 3, we have M(2, n) =
⌈
3
2
n
⌉
− 3.

Proof. The first
⌈
3
2
n
⌉
− 2 terms of the infinite sequence in the previous example is a monotone

weakly separated path from {1, 2} to {n − 1, n}. Combine this construction with the upper

bound for M(2, n) above to finish.
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1 2 3 4 5 6 7

Figure 3.3: The arc diagram D(P ) of the monotone weakly separated path P in Example 3.8.

For general k, the existence of a repeatable pattern yields a lower bound for M(k, n). In

Section 4, we will see that for every positive integer k, the limit ck := limn→∞
M(k,n)

n
exists.

The existence of a repeatable pattern R with parameters (L, d) immediately yields the lower

bound ck ⩾
L
d
. It turns out, as Theorem 4.16 below shows, that ck = maxR L/d, where the

maximization is over all repeatable patterns R = (A0, A1, . . . , AL) with |A0| = k, and the ra-

tioL/d depends on the repeatable patternR. In particular, the maximum (not just the supremum)

exists.

3.3. Arc diagrams when k = 3, part i: decomposition algorithm

We use the “decomposition algorithm” (Algorithm 3.9) below to break the interval [1, n] in the

arc diagram into smaller non-overlapping intervals in a way that we can prove upper bounds of

weights for these intervals separately.

We will show that M(3, n) =
⌈
11
6
n
⌉
− 5, for n ⩾ 4. The cases n = 4 and n = 5 can be

readily taken care of. By using M(k, n) = M(n− k, n), we find that M(3, 4) = M(1, 4) = 3
and M(3, 5) = M(2, 5) = 5. For the rest of this subsection, assume n ⩾ 6.

Suppose that an arc diagram coming from a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n} is given. Write wt to denote the weight function, so that if I ¦ [1, n] is an

interval, then wt(I) is the weight above I .

Example 3.8. Consider the following monotone weakly separated path

P = 123− 124− 234− 245− 246− 247− 267− 467− 567.

The arc diagram ofP is shown in Figure 3.3. The weights of the unit intervals of this arc diagram

are as follows: wt([1, 2]) = 1/2,wt([2, 3]) = 1,wt([3, 4]) = 2,wt([4, 5]) = 2,wt([5, 6]) = 3/2,

and wt([6, 7]) = 1.

We also define the weight limit function wtlim as follows. Declare wtlim([1, 2]) = 1,

wtlim([2, 3]) = 3/2, wtlim([n− 2, n− 1]) = 3/2, and wtlim([n− 1, n]) = 1. If 3 ⩽ i ⩽ n− 3,

we declare wtlim([i, i+1]) = 11/6. The weight limit function is also defined to satisfy the usual

additivity condition: wtlim(A ∪ B) = wtlim(A) + wtlim(B) if A ∩ B contains no nontrivial

interval.

Observe that for a unit interval [i, i + 1] ¦ [1, n] (with i ∈ Z) to exceed its weight limit,

the only possible way is to have wt([i, i + 1]) = 2. Moreover, the unit intervals [1, 2], [2, 3],
[n− 2, n− 1], and [n− 1, n] never exceed their weight limits. These observations follow from

the definition.
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The “decomposition algorithm” (Algorithm 3.9) is given below. The input of the algo-

rithm is an arc diagram D that comes from a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n}. The output of the algorithm is the collection F = F(D) of intervals with

non-overlapping interiors.

Algorithm 3.9 (decomposition algorithm).

Input: an arc diagram D that comes from a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n}.

Begin with an empty collection F = ∅.

If for every i ∈ [n− 1], the unit interval [i, i+ 1] satisfies wt([i, i+ 1]) ⩽ 11/6,

then output F(D) = ∅, and we finish the algorithm.

On the other hand, if some unit interval exceeds its weight limit,

then write

[1, n] = L0 ∪H1 ∪ L1 ∪H2 ∪ L2 ∪ · · · ∪ Lm,

where L0 = [1, ℓ0], H1 = [ℓ0, h1], L1 = [h1, ℓ1], . . ., Hm = [ℓm−1, hm], Lm = [hm, n],
where 1, ℓ0, h1, ℓ1, . . . , hm, n is a strictly increasing sequence of positive integers such that

every unit interval in any Li has weight under or equal to its weight limit, and every unit

interval in any Hi has weight exceeding its weight limit.

For i = 1, 2, . . . ,m:

consider the interval Hi. We know from Proposition 3.16 (proved below)

that µ(Hi) ∈ {1, 2, 3, 4}.

Case 1. µ(Hi) = 4. Write Hi = [a, a + 4]. Add the intervals [a − 1, a + 2]
and [a+ 2, a+ 5] into the collection F .

Case 2. µ(Hi) = 3. Write Hi = [a, a+ 3].

Case 2.1. There is no semicircle connecting (a− 1, 0) and (a, 0) in D. Add the

interval [a− 1, a+ 3] to F .

Case 2.2. There is a semicircle connecting (a − 1, 0) and (a, 0) in D. Add the

interval [a, a+ 4] to F .

Case 3. µ(Hi) = 2. Write Hi = [a, a+ 2].

Case 3.1. There is no semicircle connecting (a− 1, 0) and (a, 0) in D. Add the

interval [a− 1, a+ 2] to F .

Case 3.2. There is a semicircle connecting (a− 1, 0) and (a, 0), but there is no

semicircle connecting (a+ 2, 0) and (a+ 3, 0) in D. Add the interval [a, a+ 3]
to F .

Case 3.3. There is a semicircle connecting (a−1, 0) and (a, 0), and also there is a

semicircle connecting (a+2, 0) and (a+3, 0) inD. Add the intervals [a−2, a+1]
and [a+ 1, a+ 4] to F .
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Case 4. µ(Hi) = 1. Write Hi = [a, a+ 1].

Case 4.1. There is no semicircle connecting (a− 1, 0) and (a, 0) in D. Add the

interval [a− 1, a+ 1] to F .

Case 4.2. There is a semicircle connecting (a− 1, 0) and (a, 0), but there is no

semicircle connecting (a+ 1, 0) and (a+ 2, 0) in D. Add the interval [a, a+ 2]
to F .

Case 4.3. There is a semicircle connecting (a − 1, 0) and (a, 0), and

also there is a semicircle connecting (a + 1, 0) and (a + 2, 0) in D.

If wt([a− 2, a+1]) ⩽ wtlim([a− 2, a+1]), then add the interval [a− 2, a+1]
to F . If wt([a−2, a+1]) > wtlim([a−2, a+1]), then add the interval [a, a+3]
to F .

Output F(D) = F , and we finish the algorithm.

Theorem 3.10 (decomposition theorem). Let n ⩾ 6 be a positive integer. Let D be an arc

diagram of a monotone weakly separated path from {1, 2, 3} to {n− 2, n− 1, n}. Let F(D) be

the collection of intervals obtained from Algorithm 3.9. Then

(a) any two different intervals in F(D) are non-overlapping, and

(b) any interval I ∈ F(D) satisfies wt(I) ⩽ wtlim(I).

The proof of Theorem 3.10 will be given in Section 3.4.

Corollary 3.11. For any positive integer n ⩾ 6, we have

M(3, n) ⩽

⌈
11

6
n

⌉

− 5.

Proof. Take any arc diagram D of a monotone weakly separated path from {1, 2, 3}
to {n − 2, n − 1, n} with the maximum possible weight so that M(3, n) = wt([1, n]). From

Theorem 3.10, we have

M(3, n) = wt([1, n]) = wt([1, n]− ∪F) +
∑

I∈F

wt(I)

⩽ wtlim([1, n]− ∪F) +
∑

I∈F

wtlim(I)

= wtlim([1, n]) = 1 +
3

2
+ (n− 5) · 11

6
+

3

2
+ 1 =

11n− 25

6
.

Since M(3, n) ∈ Z, we have that M(3, n) ⩽
⌊
11n−25

6

⌋
=
⌈
11
6
n
⌉
− 5, as desired.

3.4. Arc diagrams when k = 3, part ii: arc diagram chasing

Below we define a useful object called the bicolored arc diagram BiD(P ). By looking at

edges in BiD(P ), we are able to rule out some configurations of edges in the original arc di-

agram D(P ), a process we call arc diagram chasing. Using arc diagram chasing, we prove

Proposition 3.16, Lemmas 3.17, 3.18, 3.19, 3.20, and Proposition 3.21 which are then used in

the proof of Theorem 3.10.
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1 2 3 4 5 6

Figure 3.4: The bicolored arc diagram BiD(P ) of the monotone weakly separated path P in

Example 3.13.

Definition 3.12. Let P be a monotone weakly separated path P = (A0, A1, . . . , AN) from

A0 = {1, 2, 3} to AN = {n−2, n−1, n}. The bicolored arc diagram BiD(P ) is the multigraph

on the vertex set [n] = {1, 2, . . . , n} together with the coloring c : E(BiD(P )) → {black, red}
on the edges defined as follows. The black edges are precisely the edges in the (original) arc

diagram D(P ). The red edges are added sequentially. For each i ∈ [N ], let Ci denote the

pair (Ai − Ai−1) ∪ (Ai−1 − Ai). We add the red edges in N − 1 steps. In the j th step, consider

the two pairs Cj and Cj+1. Suppose that Cj = {a, b} and Cj+1 = {c, d}, with a < b and c < d.

If b ̸= c, add a red edge joining b and c. If a ̸= d, add a red edge joining a and d.

Example 3.13. The bicolored arc diagram BiD(P ) of P = 123 − 124 − 145 − 146 − 456 is

shown in Figure 3.4.

Proposition 3.14. The multigraph BiD(P ) is simple. In other words, each pair of different

nodes i, j ∈ [n] are either (i) joined by one black edge, (ii) joined by one red edge, or (iii) not

adjacent.

Before proving the proposition, we show a lemma about black edges.

Lemma 3.15. Let P = (A0, A1, . . . , AN) and C1, C2, . . . , CN be defined as in Definition 3.12.

Suppose that j is a positive integer such that 1⩽j⩽N −1. Write Cj={a, b} and Cj+1={c, d},

where a < b and c < d. Then one of the following six outcomes happens:

(i) a < b = c < d,

(ii) c < d = a < b,

(iii) a < c < b < d,

(iv) c < a < d < b,

(v) a < c < d < b,

(vi) c < a < b < d.
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p q r

(p < q < r)

p q r s

(p < q < r < s)

p q r s

(p < q < r < s)

Figure 3.5: A pair of consecutive curves Cj and Cj+1 in the C-sequence are in one of the three

configurations. The configuration on the left corresponds to outcomes (i) and (ii) in Lemma 3.15.

The middle one corresponds to outcomes (iii) and (iv). The right one corresponds to out-

comes (v) and (vi).

To visualize Lemma 3.15, consider Figure 3.5. If Cj and Cj+1 are curves from the C-

sequence, then they must follow one of the three configurations shown in the figure. (For each

configuration, there are two choices for which curve is Cj and which curve is Cj+1, so there are

six outcomes in total as listed in Lemma 3.15.)

Equivalently, Lemma 3.15 states that the four configurations shown in Figure 3.6 cannot

represent two consecutive curves in the C-sequence.

Proof of Lemma 3.15. Suppose, for the sake of contradiction, that none of the six outcomes

happens. Then either a = c, or b = d, or b < c, or d < a. Recall that we obtain Aj from Aj−1

by removing a and adding b, and we obtain Aj+1 from Aj by removing c and adding d. If the

first case, a = c, happens, then we would need two copies of a in the set Aj−1, a contradiction.

Similarly, if the second case, b = d, happens, then we would need two copies of b in the set Aj+1,

a contradiction. If the third case, b < c, or the fourth case, d < a, happens, then there would be

an element x ∈ [n], different from a, b, c, d, such that Aj−1 = {x, a, c} and Aj+1 = {x, b, d}.

Note that Aj−1 and Aj+1 are not weakly separated, a contradiction.

Proof of Proposition 3.14. For any pair of different nodes i, j ∈ [n], we know that the pair is

connected by at most one black edge. It suffices to show that for each new red edge added with

endpoints i and j, the nodes i and j have not already had a black edge or a red edge connecting

them.

Recall that the red edges are added in N − 1 different steps. Consider the red edges added

in the tth step. Following Definition 3.12, we consider the pairs Ct = {a, b} and Ct+1 = {c, d},

with a < b and c < d. Let Çt and Çt+1 denote the crossings in the wiring diagram which

correspond to Ct and Ct+1, respectively. We claim that the red edges constructed in this step

correspond to crossings which happen between Çt and Çt+1 (on different levels: sk′ with k′ ̸= 3).

With this claim, the proposition is proved, because we are selecting different crossings in each

of the N − 1 steps.

To establish the claim, we use Lemma 3.15. The pairs Ct and Ct+1 exhibit one of the six

outcomes as listed in the lemma. Consider the outcome (iii) (and one argues similarly for the

other outcomes). Note that wires a and b cross at Çt, wires c and d cross at Çt+1, and no other

crossings can happen on the third level. This means that wires a and d must cross somewhere
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p q r

(p < q < r)

p q r

(p < q < r)

p q

(p < q)

p q r s

(p < q < r < s)

Figure 3.6: If Cj and Cj+1 are curves from the C-sequence, then they cannot follow any of these

four forbidden configurations.

between Çt and Çt+1 on the (k′)th level for some k′ ⩾ 4. Similarly, wires b and c must cross

somewhere between Çt and Çt+1 as well on either the first or the second level.

The decomposition algorithm (Algorithm 3.9) uses the result that in D(P ) the length of

each µ(Hi) is at most 4, which follows from the following proposition.

Proposition 3.16. In D(P ), there is no index i such that all nine (black) edges {i, i + 1},

{i+ 1, i+ 2}, {i+2, i+3}, {i+3, i+4}, {i+4, i+5}, {i, i+2}, {i+1, i+3}, {i+2, i+4},

and {i+ 3, i+ 5} appear. (See Figure 3.7 for an illustration.)

Before proceeding to the proof, we give a quick explanation here how this proposition implies

that each µ(Hi) in Algorithm 3.9 is at most 4. If µ(Hi) is at least 5, then there must be an index i
for which the five intervals [i, i + 1], [i + 1, i + 2], . . . , [i + 4, i + 5] exceed their weight limits.

It is not hard to see that this implies wt([i, i + 1]) = · · · = wt([i + 4, i + 5]) = 2, and thus

arcs {i + j − 1, i + j} exist in D(P ) for j ∈ [5], and arcs {i + j − 2, i + j} exist in D(P )
for j ∈ [6]. These many arcs would contain the configuration as shown in Figure 3.7.

Proof of Proposition 3.16. Suppose, for the sake of contradiction, that there is such an index i.
Since there are at most three pieces of curves above each unit interval, we know that there are

no more black edges above the segment [i + 1, i + 4]. Above [i, i + 1], we now have two black

curves. Thus, there can be at most one more black curve whose right endpoint is i+1. Call this

curve, if it exists, · . Similarly, there is at most one curve connecting i+ 4 and some j > i+ 5.

Call this curve, if it exists, µ.

Call the nine curves in the proposition ³, ´, µ, ¶, ε, ¸, ¹, », ¼, in the same order as displayed

in the proposition statement. These nine curves, together with · and µ, are all black curves above
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i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5

Figure 3.7: The nine curves in this configuration cannot simultaneously appear in the arc dia-

gram D(P ) of a monotone weakly separated path P .

the segment [i, i + 5]. Recall that we have the C-sequence C1, C2, . . . , CN which lists all the

black curves in BiD(P ). We will consider which two curves are consecutive in this sequence.

Consider the curve ´. From Lemma 3.15, we know that none of ¶, ε, ¸, ¹, ¼, and (µ) can

be consecutive to ´ in the C-sequence. (The parentheses about µ in the previous sentence serve

as a reminder that perhaps µ does not exist.) Moreover, ³ and ´ cannot be consecutive edges

in the C-sequence. Otherwise, there would be a red edge connecting i and i + 2 in BiD(P ),
contradicting Proposition 3.14 as the black curve ¸ is already connecting i and i+2. Similarly, µ
cannot be a neighbor of ´.

There are only two choices left for the neighbors of ´: (·) and ». If · does exist, then ´ cannot

be C1 (the starting curve in the C-sequence). We know ´ cannot be CN either. Thus, ´ must be

adjacent to both · and ». If · does not exist, ´ must be adjacent to ». In either case, we know ´
and » are neighbors in the C-sequence, and thus there must be a red curve connecting i + 1
and i+ 4 corresponding to a crossing between ´ and ».

However, the same reasoning implies that ¹ and ¶ must be adjacent in the C-sequence as

well. There must be another red curve connecting i + 1 and i + 4 corresponding to a crossing

between ¹ and ¶. This contradicts Proposition 3.14.

Lemma 3.17. Suppose that i is an integer with 4 ⩽ i ⩽ n − 4. Suppose that in D(P ), there

are indices i′ and i′′ with i′ ⩽ i − 3 and i′′ ⩾ i + 4 such that the edges {i − 1, i}, {i, i + 1},

{i + 1, i + 2}, {i − 1, i + 1}, {i, i + 2}, {i′, i}, and {i + 1, i′′} appear in the diagram. Let ³
denote the curve connecting i − 1 and i. Let ¶ denote the curve connecting i + 1 and i + 2.

Let (´) and µ be the curves whose right endpoints are i− 1. Let (ε) and ¸ be the curves whose

left endpoints are i+ 2.

Then either

• the neighbors of ³ in the C-sequence are (´) and µ, or

• the neighbors of ¶ in the C-sequence are (ε) and ¸.

Once again, the parentheses about ´ and ε in the lemma above mean “if it exists”. In the

case i = 4, there is only one curve whose right endpoint is i−1 = 3. We denote that curve by µ,

and ´ is non-existent. Similarly, ε is non-existent if and only if i = n− 4.

Proof of Lemma 3.17. Let À denote the curve connecting i − 1 and i + 1, and let · denote the

curve connecting i and i + 2. Suppose that the neighbors of ³ are not (´) and µ. Then by
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arc diagram chasing, · must be a neighbor of ³. Therefore, in BiD(P ), we have a red curve

connecting i− 1 and i + 2 corresponding to a crossing between the crossings of ³ and · . This

shows that À cannot be a neighbor of ¶. Thus, the neighbors of ¶ are (ε) and ¸.

The following lemma is a degenerate version of Lemma 3.17. The proof is essentially the

same as that of the previous lemma, so we omit it.

Lemma 3.18. We have the following properties of D(P ).

(a) Suppose that n ⩾ 7. Suppose that there is an index i ⩾ 7 such that the edges {1, 2},

{2, 3}, {3, 4}, {4, 5}, {2, 4}, {3, 5}, and {4, i} appear in D(P ). Let ³ denote the curve

connecting 4 and 5. Let the black curves whose left endpoints are 5 be (´) and µ. Then

the neighbors of ³ are (´) and µ.

(b) Suppose that n ⩾ 7. Suppose that there is an index i ⩽ n−6 such that the edges {n, n−1},

{n−1, n−2}, {n−2, n−3}, {n−3, n−4}, {n−1, n−3}, {n−2, n−4}, and {n−3, i}
appear in D(P ). Let ³ denote the curve connecting n− 3 and n− 4. Let the black curves

whose right endpoints are n− 4 be (´) and µ. Then the neighbors of ³ are (´) and µ.

(c) When n = 6, the edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, {3, 5} cannot simul-

taneously appear in D(P ).

Lemmas 3.17 and 3.18 deal with the situation where we encounter one unit interval of

weight 2. When there are two consecutive unit intervals of weight 2, arc diagram chasing gives

a result similar to Lemma 3.17 as follows.

Lemma 3.19. Suppose that i is an integer such that 4 ⩽ i ⩽ n−5. Suppose that in D(P ), there

are indices i′ and i′′ with i′ ⩽ i − 3 and i′′ ⩾ i + 5 such that the edges {i − 1, i}, {i, i + 1},

{i + 1, i + 2}, {i + 2, i + 3}, {i − 1, i + 1}, {i, i + 2}, {i + 1, i + 3}, {i′, i}, and {i + 2, i′′}
appear in the diagram. Let ³ denote the curve connecting i+2 and i+3. Let the curves whose

left endpoints are i + 3 be (´) and µ. Let ¶ denote the curve connecting i − 1 and i. Let the

curves whose right endpoints are i− 1 be (ε) and ¸.

Then both of the following are true:

• the neighbors of ³ are (´) and µ.

• the neighbors of ¶ are (ε) and ¸.

A degenerate version of Lemma 3.19 is Lemma 3.20 below.

Lemma 3.20. We have the following properties of D(P ).

(a) The edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, {3, 5}, and {4, 6} cannot simulta-

neously appear in D(P ).

(b) The edges {n − 5, n − 4}, {n − 4, n − 3}, {n − 3, n − 2}, {n − 2, n − 1}, {n − 1, n},

{n−5, n−3}, {n−4, n−2}, and {n−3, n−1} cannot simultaneously appear in D(P ).
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Given an arc diagram D(P ), we have seen in Algorithm 3.9 that we can decompose the

interval [1, n] into

[1, n] = L0 ∪H1 ∪ L1 ∪ · · · ∪ Lm,

where every unit interval in Li does not exceed its weight limit, and every unit interval in Hi

has weight 2. (In Algorithm 3.9, we defined this decomposition for arc diagrams with at least

one unit interval with weight 2. Here, we define it for any D(P ). For arc diagrams in

which every unit interval does not exceed its weight limit, we can simply let m = 0
and L0 = Lm = [1, n].) The following proposition gives some restrictions on the lengths of

the intervals L0, H1, L1, . . . , Hm, Lm.

Proposition 3.21. We have

(a) µ(L0) ⩾ 2,

(b) µ(Lm) ⩾ 2,

(c) for 1 ⩽ i ⩽ m− 1, the interval Li satisfies µ(Li) ⩾ 3, and

(d) for 1 ⩽ i ⩽ m, the interval Hi satisfies µ(Hi) ⩽ 4.

Proof. (a) and (b) are clear, because the unit intervals [1, 2], [2, 3], [n−2, n−1], [n−1, n] never

exceed their weight limits, by definition of wtlim.

(c). We will show that µ(Li) cannot be 1 or 2. First, suppose µ(Li) = 1. Then there is

some index j such that Li = [j + 2, j + 3]. Since wt([j + 1, j + 2]) = wt([j + 3, j + 4]) = 2,

the edges {j+1, j+2}, {j+3, j+4}, {j, j+2}, {j+1, j+3}, {j+2, j+4}, and {j+3, j+5}
must appear in D(P ). After drawing these six curves, we see that there are now three pieces of

curves above [j + 1, j + 2] and also there are now three pieces of curves above [j + 3, j + 4]. At

the moment, there are only two pieces of curves above [j + 2, j + 3], and thus there

must be another piece of curve above [j + 2, j + 3]. Since there can be no more curves

above [j + 1, j + 2] ∪ [j + 3, j + 4], the only option is to connect j+2 and j+3. However, this

would make wt([j + 2, j + 3]) = 2, a contradiction.

Second, suppose µ(Li) = 2. Then there is some index j such that Li = [j + 2, j + 4]. Note

that wt([j + 1, j + 2]) = wt([j + 4, j + 5]) = 2. By a similar argument as in the previous case,

we know that the following three pairs {j + 2, j + 3}, {j + 3, j + 4}, and {j + 2, j + 4} must

be connected by edges. However, this would make wt([j + 2, j + 3]) = wt([j + 3, j + 4]) = 2,

a contradiction.

(d) follows from Proposition 3.16.

Proof of Theorem 3.10(a). In Algorithm 3.9, we note that each interval we add toF(D) contains

either one or two unit intervals from
⋃m

i=0 Li. More precisely, Case 3.3 and Case 4.3 in the

algorithm are the only two cases that give intervals with two unit intervals from
⋃m

i=0 Li. Let F
andF ′ be two different intervals inF(D). From Proposition 3.21(c), we see that if eitherF orF ′

does not come from these two cases, then µ(F ∩F ′) = 0. The only potentially problematic case

is when both F and F ′ come from Case 3.3 or Case 4.3 and the overlap F ∩F ′ has length 1. We

will show that this is not possible.
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Suppose, for the sake of contradiction, that F and F ′ share an interior point. Then there must

be an index a such thatF∩F ′=[a+3, a+4]. This meanswt([a+1, a+2])=wt([a+5, a+6])=2,

and each of the three unit intervals [a + 2, a + 3], [a + 3, a + 4], and [a + 4, a + 5] has weight

at most 11/6. Since both F and F ′ come from Case 3.3 or Case 4.3, we see that the following

edges {a+ 1, a+ 2}, {a+ 2, a+ 3}, {a+ 4, a+ 5}, {a+ 5, a+ 6}, {a, a+ 2}, {a+ 1, a+ 3},

{a+ 4, a+ 6}, and {a+ 5, a+ 7} appear in D(P ).
After drawing these eight edges, we observe that there are already three pieces of curve

above [a+1, a+2] and another three pieces above [a+5, a+6]. At the moment, there are only

two pieces of curve above [a+2, a+3]. As no more curve can be added above [a+1, a+2], there

must be another curve µ whose left endpoint is a + 2. The right endpoint must be either a + 4
or a + 5. However, if the right endpoint were a + 4, then wt([a + 2, a + 3]) would be 2, a

contradiction. This forces µ to connect a + 2 and a + 5. Now, there are three pieces of curves

above [a+ 2, a+ 3], and also three pieces above [a+ 4, a+ 5].
Now consider [a+3, a+4]. At the moment, there is only one piece of curve above it, and so

we need two more pieces. On the other hand, no more curves can be added above [a+ 1, a+ 3]
or above [a+4, a+6]. This gives a contradiction. We have finished the proof of Theorem 3.10(a).

We have shown that the intervals in the collection F(D) do not overlap. Next, we show that

each interval has weight under or equal to its weight limit.

Proof of Theorem 3.10(b). Let I be an arbitrary interval in F(D).

Case 1. Suppose that I comes from some Hi = [a, a+ 4]. We have that the edges {a, a+ 1},

{a+1, a+2}, {a+2, a+3}, {a+3, a+4}, {a−1, a+1}, {a, a+2}, {a+1, a+3}, {a+2, a+4},

and {a+ 3, a+ 5} appear in D. Since there are three pieces of curve above [a, a+ 1], we know

that a ⩾ 3. With Proposition 3.16, we know that there is no edge connecting a− 1 and a in D.

This means that if a ⩾ 4, we have

wt([a− 1, a]) ⩽
1

2
+

1

2
+

1

3
=

4

3
,

whence wt([a − 1, a + 2]) ⩽
4
3
+ 2 + 2 = 16

3
< 11

2
= wtlim([a − 1, a + 2]). If a = 3, we

have wt([a − 1, a]) ⩽
1
2
+ 1

2
= 1, whence wt([a − 1, a + 2]) ⩽ 1 + 2 + 2 = 5 < 31

6
=

wtlim([a − 1, a + 2]). Thus, if I = [a − 1, a + 2], we have shown that wt(I) ⩽ wtlim(I). On

the other hand, if I = [a+ 2, a+ 5], the argument is analogous.

Case 2.1. We have some index a such that Hi = [a, a + 3] and I = [a − 1, a + 3]. There

is no edge connecting a − 1 and a. Since there are three pieces of curve above [a, a + 1], we

have a ⩾ 3. If a ⩾ 4, then

wt([a− 1, a+ 3]) ⩽

(
1

2
+

1

2
+

1

3

)

+ 2 + 2 + 2 =
22

3
= wtlim([a− 1, a+ 3]).

If a = 3, then wt([a− 1, a+ 3]) ⩽
(
1
2
+ 1

2

)
+ 2 + 2 + 2 = 7 = wtlim([a− 1, a+ 3]).
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Case 2.2. In this case, Hi = [a, a + 3] and I = [a, a + 4]. There is an edge connecting a− 1
and a. Therefore, by Proposition 3.16, there is no edge connecting a+ 3 and a+ 4. Hence, the

weight calculation is similar to Case 2.1.

Case 3.1 and Case 3.2. Also similar.

Case 3.3. In this case,Hi = [a, a+2]. Let us show thatwt(I) ⩽ wtlim(I) for I = [a−2, a+1].
By symmetry, the case when I = [a + 1, a + 4] is analogous. The following edges {a − 1, a},

{a, a+1}, {a+1, a+2}, {a+2, a+3}, {a− 1, a+1}, {a, a+2}, and {a+1, a+3} appear

in D(P ). Since there are three pieces of curve above [a, a + 1], we have a ⩾ 3. If a = 3, we

have no more curves above [a−1, a] = [2, 3], and so there must be a curve connecting a−2 = 1
and a− 1 = 2, contradicting Lemma 3.20(a). Therefore, a ⩾ 4. There must be one more curve

whose right endpoint is a. The left endpoint cannot be a − 2; otherwise wt([a − 1, a]) would

be 2. Thus, there is an index a′ ⩽ a− 3 such that there is a curve connecting a′ and a.

Similarly, we find that a ⩽ n− 5 and there is an index a′′ ⩾ a+ 5 such that there is a curve

connecting a+ 2 and a′′. Note that we now have the assumptions of Lemma 3.19 (with a, a′, a′′

here playing the roles of i, i′, i′′ in the lemma). Following the notations in the lemma, let ¶ denote

the curve connecting a− 1 and a. Let the curves whose right endpoints are a− 1 be (ε) and ¸.

By Lemma 3.19, we have that the neighbors of ¶ are (ε) and ¸.

Let » denote the curve connecting a′ and a. We have that the left endpoints of », (ε), and ¸
are all distinct. (Otherwise, by a little bit of arc diagram chasing, there would be a red curve

with the same endpoints as » in BiD(P ), contradicting Proposition 3.14.) We now check the

weight wt(I).
If a = 4, the curve ε is non-existent. The curve » connects 1 and 4. The curve ¸ connects 2

and 3. We have wt(I) = wt([2, 5]) = 31
6
= wtlim([2, 5]).

If a ⩾ 5, then ε exists. Suppose that the lengths of », ε, ¸ are u+1, v, w, respectively. Since

the left endpoints of the three curves are all distinct, we have that u, v, w are distinct positive

integers. It is straightforward to compute wt(I) = 2
u+1

+ 1
v
+ 1

w
+ 7

2
. Note that the weight limit

is wtlim(I) = 11
2

. It is a pleasant exercise to show that for distinct positive integers u, v, w, we

have the inequality
2

u+ 1
+

1

v
+

1

w
⩽ 2,

which we will leave to the reader. This shows that wt(I) ⩽ wtlim(I).

Case 4.1 and Case 4.2. Also similar to Case 2.1 above.

Case 4.3. In this case, Hi = [a, a+1]. We would like to show that either wt([a− 2, a+1]) ⩽
wtlim([a − 2, a + 1]) or wt([a, a + 3]) ⩽ wtlim([a, a + 3]). Since wt([a, a + 1]) = 2, we

have that 3 ⩽ a ⩽ n − 3. Start by considering edge cases. If n = 6, then a = 3 and the

edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, and {3, 5} appear in D(P ). This directly

contradicts Lemma 3.18(c). Assume now that n ⩾ 7. If a = 3, then we are in the situation of

Lemma 3.18(a). By using an argument similar to one in Case 3.3, we find that [3, 6] is under its

weight limit. The case a = n− 3 is analogous.
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Now assume 4 ⩽ a ⩽ n− 4. We see that there exist indices a′ ⩽ a− 3 and a′′ ⩾ a+4 such

that there are edges {a′, a} and {a + 1, a′′} in D(P ). We are in the situation of Lemma 3.17

(with a, a′, a′′ here playing the roles of i, i′, i′′ in the lemma). Following notations in the lemma,

let us denote the curve connecting a − 1 and a by ³, and denote the curve connecting a + 1
and a + 2 by ¶. Let the curves whose right endpoints are a − 1 be (´) and µ. Let the curves

whose left endpoints are a + 2 be (ε) and ¸. Lemma 3.17 says that either the neighbors of ³
are (´) and µ, or the neighbors of ¶ are (ε) and ¸.

If the neighbors of ³ are (´) and µ, then by an argument similar to one in Case 3.3, we find

that [a−2, a+1] has weight under or equal to its weight limit. On the other hand, if the neighbors

of ¶ are (ε) and ¸, then the weight of [a, a + 3] is under or equal to its weight limit. We have

finished the proof.

3.5. Repeatable patterns for k = 3

We now establish the lower bound on M(3, n) by giving explicit repeatable patterns.

Definition 3.22. Let P = (A0, A1, . . . , AN) and Q = (B0, B1, . . . , BM) be sequences of k-

element sets of integers. Suppose that there exists an integer t such that AN = B0 + t. Then we

define the concatenation of P and Q to be the sequence

P ∗Q := (A0, A1, . . . , AN−1, B0 + t, B1 + t, . . . , BM + t) .

Therefore, a repeatable pattern R is a monotone weakly separated path such that for any

positive integer m, the mth-concatenation power R ∗R ∗ · · · ∗R of R is well-defined and is also

a monotone weakly separated path.

Now we construct optimal monotone weakly separated paths as follows. We define:

P4 = 123− 124− 134− 234,

P5 = 123− 124− 125− 145− 245− 345,

P6 = 123− 124− 125− 145− 245− 345− 456,

P7 = 123− 124− 125− 145− 245− 345− 456− 457− 567,

P8 = 123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 678, and

P9 =

123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 579− 589− 789.

We also define

P = 123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 678− 789.

It is straightforward to check that P is a repeatable pattern with parameters (L, d) = (11, 6).
For each integer n ⩾ 10, define Pn := P ∗ Pn−6. It is also straightforward to check that

for every integer n ∈ Z⩾4, the sequence Pn is a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n} with

⌈
11
6
n
⌉
− 4 terms. Combining these constructions with Corollary 3.11,

we have proved the following theorem.
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Theorem 3.23. For each positive integer n ⩾ 4, we have

M(3, n) =

⌈
11

6
n

⌉
− 5.

We end this section with a remark about the general formula for M(k, n). Considering the

formulas for k = 1, 2, 3, one might conjecture that in general there exist real numbers ak and bk
for which the formula M(k, n) = +akn+ bk, holds for every n ⩾ k + 1. Unfortunately, from

our computational results, we can show, for example by Fourier–Motzkin Elimination, that there

cannot be such a formula when k = 4. The formula for M(4, n) has to be somewhat more

complicated.

4. Periodicity for M(k, n)

Fix a positive integer k throughout this section. Define the constant

ck := lim
n→∞

M(k, n)

n
.

Our main goal of this section is to show that for any k, ck exists, is rational and can be achieved

by repeatable patterns.

4.1. Existence of ck

In Section 3, ck was explicitly computed for k = 1, 2, 3. To be precise, c1 = 1, c2 = 3
2
,

and c3 =
11
6

. Theorem 4.1 shows that this limit exists for all k ∈ N.

Theorem 4.1. The limit ck exists for any k ∈ N.

The proof rests on the following lemma.

Lemma 4.2. For positive integers k < n ⩽ m, we have

(a) M(k, n) ⩽ M(k,m), and

(b) M(k, n) +M(k,m) ⩽ M(k, n+m).

Proof. We prove part (b); part (a) follows since M(k,m) is nonnegative. It follows from the

basic theory of Coxeter groups (see [BB05]) that the longest permutation w0,n in Sn is less than

the longest permutation w0,n+m in Sn+m in the weak Bruhat order, if we view Sn ¢ Sn+m as

those permutations fixing n+ 1, . . . , n+m pointwise. Thus we can write

w0,n+m = w0,n · u

with ℓ(w0,n+m) = ℓ(w0,n) + ℓ(u). The permutation u = u1 . . . un+m has u1 > · · · > um, so we

may write u = u′ · w0,m, again with Sm ¢ Sn+m embedded in the standard way, and again with

lengths adding. For any reduced words i, i′ of w0,n and w0,m and a reduced word j for u′, this
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implies that the concatenation iji′ is a reduced word for w0,n+m. In particular, by choosing i, i′

to each maximize the occurrences of sk, we have:

M(k, n) +M(k,m) ⩽ M(k, n+m),

for all k.

Proof of Theorem 4.1. By Lemma 4.2(b), M(k, n) is subadditive function of n, so by Fekete’s

Lemma, the desired limit

lim
n→∞

M(k, n)

n

exists.

4.2. Asymptotic equivalence with the pseudoline k-set problem

As discussed in Section 1.1, in the context of the “k-set problem” it is natural to consider a

related problem, namely the maximization of the total number of appearances of sk and sn−k in

a reduced word. Let M̄(k, n) be the maximal total number of appearances of sk and sn−k in

the reduced words from Sn. The following theorem shows that the same slopes ck arise in this

version.

Theorem 4.3. For any k ∈ N, the following limit exists and is given by

lim
n→+∞

M̄(k, n)

n
= lim

n→+∞

M(k, n)

n
= ck.

Proof. Consider any reduced word and its wiring diagram. We say that a wire has type (i, j,±)
if its highest position is i and its lowest position is j, and + (−) means that the highest position

is to the left (right) of the lowest position. Note that no two wires share the same type (otherwise

they should intersect at least twice, but our word is reduced). Let a be the number of wires which

were at some moment at one of the k highest levels, and let b be the number of wires which were

at some moment at one of the k lowest levels. At most 2k2 wires are counted by both a and b,
so a+ b ⩽ n+ 2k2. Note that the number of sk depends only on these a wires and the number

of sn−k depends only on these b wires. Hence, the number of appearances of sk and sn−k in this

reduced word is at most M(k, a) +M(k, b) ⩽ cka+ ckb ⩽ ck(n+ 2k2).

Therefore M(k, n) ⩽ M̄(k, n) ⩽ ck(n + 2k2). Thus the limit limn→+∞
M̄(k,n)

n
exists and

is equal to ck.

Remark 4.4. We can similarly define numbersM(S, n) and M̄(S, n) for any finite subset S ¢ N

and n ∈ N. Their asymptotics are still the same and well-defined, i.e.,

lim
n→+∞

M(S, n)

n
= lim

n→+∞

M̄(S, n)

n
∈ R.
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4.3. Generalized wiring diagrams

We now work towards showing the rationality of ck. We introduce the new tool of generalized

wiring diagrams; these are certain wiring diagrams with infinitely many wires which are some-

times allowed to “go to infinity”. Intuitively, these diagrams allow us to reason about wiring

diagrams for all n ∈ N simultaneously.

Definition 4.5. A generalized wiring diagram consists of countably many wires, labeled

by 1, 2, . . . starting at levels 1, 2, . . . respectively from top to bottom, traveling from left to right

such that at each timestamp t, either

• two wires at adjacent levels cross; or

• one wire goes to infinity ∞, intersecting all wires at lower levels.

A generalized wiring diagram is reduced if no pair of wires cross more than once.

To clarify, when two wires at level h and h + 1 cross as in the usual wiring diagrams, we

say that they cross at level h. And when a wire a at level h goes to infinity, we say that this

wire falls, and it creates intersections at levels h, h + 1, . . ., while the wires which were at

levels h+ 1, h+ 2, . . . before wire a falls go to levels h, h+ 1, . . . respectively, so that at every

timestamp, there is a wire at each level indexed by positive integers.

1

2

3

4

5

6

Figure 4.1: A reduced generalized wiring diagram.

Let W(k, n) be the set of reduced generalized wiring diagrams in which only wires labeled 1
to n ever occupy the first k levels.

Lemma 4.6. The maximum number of intersections on level k among diagrams in W(k, n)
equals M(k, n).

Proof. Let m(k, n) be the maximum number of intersections on level k among W(k, n). Then

we have m(k, n) ⩾ M(k, n) since a reduced word in Sn, which can be viewed as a wiring

diagram, is an instance of W(k, n).
Now for W ∈ W(k, n), at each timestamp t, let A(t) ¢

(
[n]
k

)
be the set of wires that oc-

cupy the first k levels. Let (A0, A1, . . . , AN) be the sequence of A(t)’s where Ai = A(ti) if

step ti creates a crossing at level k. With the same reasoning as in Proposition 2.3, we show

that (A0, A1, . . . , AN) is a monotone weakly separated path. Since W is reduced, to go from Ai
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to Ai+1, we take away some wire a and add in some wire b with a < b and this shows mono-

tonicity. Then for i < j, if there exists b ∈ Ai \ Aj , a ∈ Aj \ Ai with a < b, then wire a
must cross wire b (strictly) prior to step ti and also (strictly) between ti and tj , contradicting W
being reduced. This shows that (A0, A1, . . . , AN) is weakly separated. Here, N is the number of

crossings at level k in W . By Proposition 2.3, there exists a reduced word in Sn with N copies

of sk. Thus m(k, n) ⩽ M(k, n) as desired.

We now consider a particularly nice set of reduced generalized wiring diagrams.

Definition 4.7. A reduced generalized wiring diagram W is simple, if there is no

(S1) Pair of wires a < b which intersects on a level other than k, and at the moment of their

intersection wires {a+ 1, . . . , b− 1} have already fallen; or

(S2) Wire a, which intersects with k wires with larger labels (not counting when wire a is going

to infinity).

We remark that (S1) implies that in a simple diagram, wire a and wire a+1 can only intersect

at level k. Also note that (S1) needs to be considered when the wire a is falling to infinity. In

particular, this means that in a simple diagram, the first step can only be an intersection between

wires k and k + 1, or wire k falling to infinity.

We write W̃(k, n) for the set of simple reduced generalized wiring diagrams from W(k, n).

And write W̃(k) =
⋃

n>k W̃(k, n) for the set of simple reduced generalized wiring diagrams

for fixed k.

Proposition 4.8. A diagram W ∈ W(k, n) can be transformed into a simple reduced dia-

gram W ′ ∈ W̃(k, n) without changing the number of intersections on level k.

Proof. Let W ∈ W(k, n) and let t be the first timestamp where W violates some condition in

Definition 4.7. If condition (S1) is violated by wires a < b crossing normally (not during while a

is going to infinity), we simply remove this intersection to obtain W̃ . The new diagram W̃ is

still reduced, because in order for some wire c to intersect the new wire a (or b) twice without

intersecting the previous a and b twice, c must be between a and b. However, (S1) says that c
has already fallen, so there are no such possibilities.

If condition (S1) is violated by wires a < b intersecting as a goes to infinity, we make sure

that wire b is the “first” violation of condition (S1), i.e. the highest (with the smallest level). We

expand this step of a going to infinity by letting wire a intersect those wires below a and above b
at this timestamp first, and then going to infinity. Next, as above, we uncross the intersection

between wires a and b by letting wire b go to infinity instead while wire a in W̃ takes on the role

of wire b in W after this timestamp. The same argument in the last paragraph shows that W̃ is

reduced. At the same time, the number of intersections at level k stays unchanged.

If condition (S2) is violated with wire a, then we assume that at time t, wire a crosses with bk
at level h where a < bk; moreover, wire a has already intersected with b1, . . . , bk−1 that are larger

than a. Let W̃ be obtained from W by replacing the intersection at time t with wire a going to

infinity. By reducedness, at time t, wires b1, . . . , bk−1 must be at a higher (smaller) level than



combinatorial theory 4 (2) (2024), #16 25

wire a, so h ⩾ k. This says that the number of intersections at level k is the same in W̃ . If W̃
becomes not reduced, then there must be some wire c < a which is at level ⩾ h + 2 at time t
so that it intersects a the second time in W̃ at time t. However, since c < b1, . . . , bk and c is at

a lower (greater in value) level at time t, by condition (S2) and the minimality of t, wire c must

have fallen already. As a result, W̃ stays reduced.

We can continue the above process so that the end result W̃ is simple.

For a diagramW∈W(k, n) and a timestamp t, we can associate a permutation Ã
(t)
W =Ã(t)∈S∞

to it that records the positions of the non-fallen wires. To be precise, if a1 < a2 < · · · are the

labels of the non-fallen wires at time t, then aπ(t)(h) is at level h for h = 1, 2, . . .. Here, the infi-

nite symmetric group S∞ is the set of bijections on Z>0 with all but finitely many fixed points.

We also let f
(t)
W = f (t) be the number of fallen wires of W at timestamp t and let »

(t)
W = »(t)

be the number of intersections at level k that have happened. In particular, we always start

with f (0) = 0, »(0) = 0 and Ã(0) = id.

Lemma 4.9. A simple reduced generalized wiring diagram W can be uniquely encoded by the

sequence {(f (t)
W , »

(t)
W , Ã

(t)
W )}t defined above. In other words, given a sequence {(f (t), »(t), Ã(t))}t,

there is at most one W ∈ W̃(k) such that {(f (t)
W , »

(t)
W , Ã

(t)
W )}t = {(f (t), »(t), Ã(t))}t.

Proof. Fix {(f (t), »(t), Ã(t))}t and we will recover W ∈ W̃(k) step by step. Note that there is a

lot of redundancy in this encoding, as the information from f and Ã are almost sufficient.

At step t > 0, if f (t) = f (t−1) meaning no wires fall, we simply apply a crossing at level h
if Ã(t) = Ã(t−1)sh. The critical case is that f (t) = f (t−1) + 1 meaning that a wire falls at this

step. Note that from a permutation Ã(t−1), it is possible that deleting an entry (and flattening

the permutation) will result in the same permutation as deleting another entry. For example,

if Ã(t−1) = id, deleting any entry and flattening the values to 1, 2, . . . will result in Ã(t) = id. In

such cases, to uniquely reconstruct a simple diagram W , the conditions in Definition 4.7 become

important.

Suppose that at time t, letting the wire at level a go to infinity will result in the permuta-

tion Ã(t), i.e. deleting the entry at index a of Ã(t−1) and flattening the values to 1, 2, . . . give

us Ã(t), and letting the wire at level b > a go to infinity will result in the same permutation Ã(t).

Choose such minimal a and maximal b. We analyze the permutation u = Ã(t−1) ∈ S∞.

First, for every positive integer i such that i < a or i > b, u(i) must not lie in between u(a)
and u(b). Secondly, if u(a) > u(a + 1), then letting this wire at level a go to infinity results

in a double crossing with the wire at level a + 1 at this timestamp. Thus, u(a) < u(a + 1).
By comparing the two permutations obtained from u by deleting index a and b respectively,

we must have u(a + 1) < u(a + 2). This further implies u(a + 2) < u(a + 3) and so on.

Thus, u(a) < u(a + 1) < · · · < u(b). It is now clear that deleting any index between a and b
from u results in the same permutation Ã(t), and finally we claim that at most one choice is

possible. For a ⩽ c ⩽ b − 1, if wire c falls at time t, an intersection at level c between this

wire and the wire at level c + 1 is created. By the arguments above, all the wires with labels

between these two must have fallen (since they cannot exist before level a or after level b), and

by condition (S1) for simple diagrams, c = k. Thus, if b ⩽ k, only wire b is allowed to fall;
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if a ⩽ k < b, only wire b can fall if »(t) = »(t−1) and only wire k can fall if »(t) = »(t−1) + 1;

and the case a > k cannot result in any valid diagrams.

Example 4.10. We consider one optimal repeatable pattern of k = 2,

12− 13− 23− 34− 35− 45− 56− 57− 67− 78− 79− 89− · · · ,

discussed in Theorem 3.7 and shown in Figure 4.2, and use a (simple) reduced generalized wiring

diagram to describe it, shown in Figure 4.3.

1

2

3

4

5

6

Figure 4.2: An optimal repeatable pattern for k = 2.

In particular, the simple reduced generalized wiring diagram W̃ in Figure 4.3 can be obtained

from the wiring diagram W in Figure 4.2 via the simplification procedure in Proposition 4.8.

Observe that the permutations Ã
(t)

W̃
are id, 132, 312, 21, id, 132, 312, 21, . . ., which are periodic

with period 4.

1

2

3

4

5

6

7

Figure 4.3: An optimal repeatable pattern for k = 2 via simple reduced generalized wiring

diagrams corresponding to Figure 4.2.

4.4. Finiteness of configurations and proof of the main theorem

Let Tk be the set of all possible permutations Ã
(t)
W at all timestamps t across all W ∈ W̃(k). In

this section, we will show that Tk is finite and resolve the rationality of ck.

For a simple reduced generalized wiring diagram W ∈ W̃(k), let Nt(W ) be the set of non-

fallen wires at timestamp t and let Et(W ) ¢ Nt(w) be the set of non-fallen wires at timestamp t
that were on the first k levels at or before timestamp t.
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Lemma 4.11. For W ∈ W̃(k) and t, any wire a ∈ Nt(W ) \ Et(W ) does not intersect wires

with larger labels at time t or earlier.

Proof. Assume the opposite and let a ∈ Nt(W ) \ Et(W ) intersect some wire b > a at time t
or earlier. Note that the condition a ∈ Nt(W ) \ Et(W ) means that wire a has not yet fallen but

it has never been to the first k levels. Choose t to be minimal and then choose b to be minimal

among all such wires. The minimality of t means that wire a and wire b intersect at time t and

let h > k be the level of this intersection.

Each wire i strictly between a and b must intersect a or b at some time before t. If such a

wire i intersects a at time t′ < t, then the minimality of b is violated. So such a wire i must not

intersect a and must intersect b, at some timestamp t′ < t. If it does not intersect b by falling,

then i ∈ Nt′(W ) \ Et′(W ) since it has never been to level k or above, and the minimality of t
is violated. As a result, all such wires i have fallen at time t, and since h > k, condition (S1) is

violated.

Lemma 4.12. For W ∈ W̃(k) and t, |Et(W )| ⩽ k2 + 2k.

Proof. Assume the opposite that |Et(W )| ⩾ k2+2k+1. Let a1 < a2 < · · · be the set of wires

that have not fallen at timestamp t and let

z = max{i | ai ∈ Et(W )}.

Consider the set

A = {i | ai ∈ Et(W ), ai has intersected az}.
Since the wire az has been to the first k levels, there are at most k − 1 wires from a1, . . . , az1
that do not intersect az. This means |A| ⩾ (z − 1)− (k − 1) ⩾ k2 + k + 1.

Since |A| ⩾ k(k + 1) + 1, the Erdős–Szekeres Theorem says that we have either k wires

from A which intersect pairwise, or k+1 wires from A where no wires intersect. In the first case

where a setB ¢ A of wires intersect pairwise with |B| ⩾ k, the smallest wire fromB then needs

to intersect k wires with larger labels, including k − 1 wires from B and az, contradicting (S2).

In the second case where a set B ¢ A of wires have no intersections with |B| ⩾ k + 1, the

largest wire ai from B can never visit the first k levels, contradicting ai ∈ Et(W ).

Corollary 4.13. For any k, |Tk| ⩽ kk2+2k. In particular, |Tk| is finite.

Proof. Let W ∈ W̃(k) be simple and consider Ã = Ã
(t)
W ∈ Tk. As above, let a1, a2, . . . be

the labels of wires that have not yet fallen. Let z = |Et(W )| ⩽ k2 + 2k and consider the

Lehmer code code(Ã) where code(Ã)i equals the number of wires aj that have intersected ai,
where j > i. It is a classical fact that Lehmer codes uniquely characterize permutations in S∞.

If ai /∈ Et(W ), meaning that ai has not been to the first k levels, then by Lemma 4.11,

any aj with j > i does not intersect ai so has not been to the first k levels either. This

means that Et(W ) = {a1, a2, . . . , az} and that code(Ã)i = 0 for i > z. At the same time,

by (S2), each ai with i ⩽ z can only intersect at most k − 1 wires with larger labels.

So code(Ã)i ∈ {0, 1, . . . , k − 1} for i ∈ {1, 2, . . . , z}. As a result, the total number of pos-

sible permutations is bounded by kz ⩽ kk2+2k.
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A piece P is a segment of a generalized wiring diagram W containing the single move

(adjacent crossing or falling wire) occurring in W at some time t together with the information

of the permutations Ã−

P
:= Ã

(t−1)
W and Ã+

P
:= Ã

(t)
W . The piece P is simple (with respect to k)

if it can be obtained from a simple diagram W ∈ W̃(k). A series P1, . . . , Pr of pieces such

that Ã+
Pi

= Ã−

Pi+1
for all i may be concatenated into a pattern Q = P1 + · · · + Pr, which is

the segment of a generalized wiring diagram obtained by drawing P1, . . . , Pr next to each other,

together with the information of Ã−

Q
:= Ã−

P1
and Ã+

Q
:= Ã+

Pr
.

The following proposition shows that being simple is a local property of a generalized wiring

diagram: a diagram is simple if and only if all of its constituent pieces are simple.

Proposition 4.14. Let Q = P1 + · · · + Pr, where each piece Pi is simple with respect to k and

where Ã−

P1
= id, then Q ∈ W̃(k).

Proof. First note that Q, viewed as a generalized wiring diagram, is reduced, since each piece,

by virtue of coming from a reduced diagram and carrying with it the permutations Ã− and Ã+

clearly preserves reducedness when concatenated. The condition (S1) from Definition 4.7 is

also clearly preserved when we apply each piece, since it is equivalent to the condition that no

simple piece swaps two wires with adjacent labels, or has a wire fall from a level other than k
when the wire below it has label one larger, where we read labels from Ã−. Finally, to check

condition (S2), we can just check that for each index i and time t,

|{j < i | Ã(t)
Q (j) > Ã

(t)
Q (i)}| < k.

This is because, since Q is reduced, none of the wires with label higher than a
π
(t)
Q

(i)
which

have crossed this wire can have fallen at or before time t, so |{j < i | Ã(t)
Q (j) > Ã

(t)
Q (i)}| is

this number of wires. Since this is a condition satisfied by all Ã
(t)
W for W simple, it is satisfied

by Ã
(t)
Q = Ã−

Pt+1
.

We call a patternQ = P1+· · ·+Pr simple (with respect to k) if all of its constituent pieces Pi

are simple with respect to k. By Proposition 4.14, this does not conflict with our earlier definition

of simple diagrams.

Definition 4.15. For f ∈ N and Ã ∈ Tk, let K(f, Ã) be the maximum number of crossings

at level k among all simple patterns Q = P1 + · · · + Pr such that Ã−

P1
, . . . , Ã−

Pr
are

distinct, Ã−

P1
= Ã+

Pr
= Ã, and Q has f fallen wires. Since Tk is finite by Corollary 4.13, there are

finitely many simple patterns whose constituent pieces have distinct values of Ã−.

Theorem 4.16. For any k ∈ Z>0 we have:

ck = max
f∈N,π∈Tk

K(f, Ã)

f
. (4.1)

In particular, ck is rational.
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Proof. We first show that ck ⩾ maxf∈N,π∈Tk
K(f,π)

f
. Let (f0, Ã0) be such that K(f0, Ã0)/f0

achieves the maximum, and let Q be a simple pattern realizing K(f0, Ã0) crossings at level k,

with Ã−

Q = Ã+
Q, as in Definition 4.15. Choose R ∈ W̃(k) with Ã−

R = id, Ã+
R = Ã−

Q, and no fallen

wires. For any m ∈ N, consider the diagram

Dm := R +mQ = R +Q+ · · ·+Q︸ ︷︷ ︸
m copies

.

By Proposition 4.14, we have Dm ∈ W̃(k) since R and Q are simple. By Lemma 4.12, and

since Q has f0 fallen wires, we have Dm ∈ W̃(k, k2 + 2k +mf0). The number of intersections

on level k of Dm is the number r in R, plus mK(f0, Ã0). We conclude

ck ⩾ lim
m→∞

r +mK(f0, Ã0)

k2 + 2k +mf0
=

K(f0, Ã0)

f0
= max

f∈N,π∈Tk

K(f, Ã)

f
.

We now prove the upper bound on ck. Write M for the maximum on the right-hand side

of (4.1), and let W be any diagram from W̃(k). Express W uniquely as a sum of its constituent

simple pieces:

W = P1 + · · ·+ Pr.

Note that W has f (r) = f
(r)
W fallen wires and »(r) = »

(r)
W crossings at level k. Let i ⩽ j be a

closest pair of indices such that Ã−

Pi
= Ã+

Pj
, and write Ã for this common permutation. Consider

the encodings (f (i−1), »(i−1), Ã) and (f (j), »(j), Ã) immediately before and after the pieces Pi, Pj

respectively. Since Ã+
Pi−1

= Ã−

Pj+1
, we may form a new diagram W ′ = P1+ · · ·+Pi−1+Pj+1+

· · · + Pr by removing the piece Pi + · · · + Pj and W ′ ∈ W̃(k) by Proposition 4.14. This new

diagram has f (r)− (f (j)− f (i−1)) fallen wires and »(r)− (»(j)−»(i−1)) crossings at level k. By

construction, we have

»(j) − »(i−1)
⩽ (f (j) − f (i−1))M.

Since W ′ remains simple, we can iteratively apply this procedure until we reach a

diagram W0 with all permutations distinct. By Corollary 4.13, there are finitely many such

diagrams, so there is some maximum possible number K0 of level-k crossings in W0.

Since W ∈ W(k, k2 + 2k + f (r)), we see that

M(k, k2 + 2k + f (r)) ⩽ K0 + f (r)M.

Dividing by k2 + 2k + f (r) and letting f (r) → ∞, we obtain

ck ⩽ M,

as desired.

Corollary 4.17. The optimal density ck can be achieved by a repeatable pattern, in the sense of

Section 3.
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Proof. Let (f0, Ã0) achieve the maximum in the right-hand side of (4.1), and letQ be the diagram

realizing f0, Ã0 as in the proof of Theorem 4.16, which, by the theorem, achieves the density ck.
Taking the labels of the wires occupying the top k levels in a reduced generalized wiring dia-

gram gives a monotone weakly separated path by the same reasoning as in Proposition 2.3, and

applying this operation to Q gives the desired repeatable pattern, by construction.

Proposition 4.18. Let pk(n) := M(k, n)− ckn. Then, for sufficiently large n, pk(n) is periodic

in n.

Proof. Let M(k, n, Ã) be the maximal number of intersections on level k among diagrams

from W̃ (k, n) having final timestamp Ã. Clearly M(k, n) = maxπ∈Tk M(k, n, Ã). Define

pk(n, Ã) := M(k, n, Ã)− ckn.

It follows from the proof of Theorem 4.16 that pk(n, Ã) is a bounded function of n and Ã.

Furthermore, since ck is rational, this function takes rational values of bounded denominator,

and thus pk(n, Ã) attains only finitely many different values. Thus we may find a < b ∈ N

so that pk(a, Ã) = pk(b, Ã) for all Ã ∈ Tk, since Tk is finite by Corollary 4.13. Now, it is clear

that pk(n, Ã) depends only on {pk(n−1, Ã)}σ∈Tk . Thus we have that pk(n+b−a, Ã) = pk(n, Ã)
for all n ⩾ a and all Ã ∈ Tk. In particular, for n sufficiently large, pk(n) = maxπ∈Tk pk(n, Ã) is

periodic in n.

5. The minimization problem for finite Coxeter groups

In this section, we investigate a related question: for the longest element w0 of a finite Coxeter

group W , what is the minimum number of appearances of a generator si in R(w0), the set of

reduced words for w0. This question is very easy in type An−1 where W ≃ Sn. Namely, the

minimum number of occurrences of the simple transposition (i i+1) in R(w0) is min{i, n− i}.

We observe a surprising phenomenon with respect to these numbers and the Cartan matrix of W
(Theorem 5.2).

Throughout this section, let

W = ïs1, . . . , sn | (sisj)mij = id for all i, jð

be a finite Coxeter group generated by a set of simple reflections S = {s1, . . . , sn}. For w ∈ W ,

let ℓ(W ) denote the Coxeter length of w. For J ¦ S, the parabolic subgroup WJ is the subgroup

of W generated by J , viewed as a Coxeter group with simple reflections J . Each left coset wWJ

of WJ in W contains a unique element wJ of minimal length, and the set {wJ | w ∈ W} of

these minimal coset representatives is called the parabolic quotient W J . Letting wJ ∈ WJ be

the unique element such that wJwJ = w, we have ℓ(wJ) + ℓ(wJ) = ℓ(w) and this is called the

parabolic decomposition of w. As W is finite, W J is finite and it contains a unique element wJ
0

of maximum length. We utilize the Bruhat order on W and W J , where u ⩽ w if u equals a

subword of a (or equivalently, any) reduced word of w. For convenience, we adopt the notation

that Ji := S − {si} for each si ∈ S. We refer readers to [BB05] for a detailed exposition on

Coxeter groups.

We start with an algorithm to compute the minimum number of si that appears in R(w) for

all w.
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Proposition 5.1. Fix w ∈ W and si ∈ S. Define a sequence of Coxeter group elements

w(0), w(1), . . . as follows: w(0) = wJi and w(k+1) = (w(k)si)
Ji if w(k) ̸= id, for k ⩾ 0. This

algorithm will eventually stop (at some w(N) = id). Then the minimum number of si that ap-

pears in R(w) is the k for which w(k) = id.

Proof. First notice that in this procedure, if w(j) ̸= id, then as w(j) ∈ W Ji , it must have a

single descent at si. As a result, ℓ(w(j+1)) ⩽ ℓ(w(j)si) < ℓ(w(j)) so we will eventually end

up at the identity. This procedure also produces a (class of) reduced word of w with k si’s
where w(k) = id.

Let k be such that w(k) = id and take an arbitrary reduced word si1si2 · · · siℓ of w. Pick out

the si’s in this reduced word as iaK = iaK−1
= · · · = ia1 = i where aK < aK−1 < · · · < a1.

For j = 0, 1, . . . , K−1, let u(j) = si1si2 · · · siaj+1
which is the product from si1 to the (j+1)th si

in this reduced word counted from the right. Also say u(K) = id.

Recall the following standard fact of Coxeter groups: if x ⩽ y, then xJ ⩽ yJ for any

subset J ¢ S. This can be proved via an application of the subword property of Bruhat orders.

Also see [BB05].

We now show that u(j) ⩾ w(j) for j = 0, 1, . . . , k in the Bruhat order by induction. For the

base case, notice that both u(0) and w(0) are in the left coset wWJi and since w(0) is the minimal

coset representative, we have u(0) ⩾ w(0). Now assume u(j) ⩾ w(j) ̸= id for some j ⩾ 0.

By definition, both of them have a right descent at si so we have u(j)si ⩾ w(j)si by the fact

in the last paragraph with J = {si}. With another application of this fact with J = Ji, we

have (u(j)si)
Ji ⩾ (w(j)si)

Ji = w(j+1). At the same time, u(j+1) and u(j)si are in the same coset

of WJi by definition, so u(j+1) ⩾ (u(j)si)
Ji ⩾ w(j+1). The induction step goes through.

Finally, u(k−1) ⩾ w(k−1) ̸= id. This means u(k−1) ̸= id so K > k−1, K ⩾ k as desired.

Recall that a generalized Cartan matrix A of a Coxeter system (W,S) is a real n× n matrix

such that

• Aii = 2 for i = 1, . . . , n and Aij ⩽ 0 for i ̸= j,

• Aij < 0 if and only if Aji < 0 and AijAji = 4 cos2(Ã/mij) for i ̸= j.

We say that a generalized Cartan matrix A is restricted if mij = 3, or equivalently, there is a

single edge between si and sj in the Dynkin diagram, implies that Aij = Aji = −1. Note that

if (W,S) is simply-laced, then any restricted generalized Cartan matrix is the Cartan matrix. We

now state our main result of the section.

Theorem 5.2. Let W be a finite Coxeter group generated by S = {s1, . . . , sn} and let v ∈ R
n
>0

be such that vi is the minimum number of appearances of si in a reduced word of w0. Then there

exists a restricted generalized Cartan matrix A ∈ R
n×n of (W,S) such that Av ⩾ 0, where the

comparison is made entry-wise.

Proof. We make use of Proposition 5.1 for each type separately and provide the corresponding

restricted generalized Cartan matrix. Note that (Av)i = 2vi +
∑

j∼i Aijvj , where j ∼ i means

that the nodes i and j are adjacent in the Dynkin diagram. So Av ⩾ 0 is intuitively saying that

the value v at each node i is at least half of the weighted sum of its neighbors.
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For the classical types, we mainly argue about type Bn, whose Coxeter group W (Bn) is

isomorphic to the group of signed permutations. The argument for type Dn, whose Coxeter

groupW (Dn) is an index-2 subgroup ofW (Bn), is similar and we will omit unnecessary details.

The argument for type An is simpler. And for the exceptional types, we use Proposition 5.1 and

a computer to generate each vi, and then provide the matrix A directly.

Type Bn. Writing ī := −i, we adopt the convention that

W (Bn) = {w is a permutation on n̄, . . . , 1̄, 1, 2, . . . , n | w(i) = −w(̄i) ∀i}

which is generated by S = {s1, . . . , sn} where s1 = (1 1̄), si = (i−1 i)(i−1 ī) in cycle notation

for i = 2, . . . , n. The Dynkin diagram and the vi’s that we are about to compute can be seen in

Figure 5.1.

• • • • • • • •· · ·s1 s2 s3 sn−2 sn−1 snlabels

vi’s n n n−1 n−2 4 3 2

Figure 5.1: minimal number of occurrences of each si in reduced words of w0 of type Bn, with

labels on top and vi’s on the bottom.

We write elementw ∈ W (Bn) in one-line notation given byw(1)w(2) · · ·w(n). The longest

element is w0 = 1̄2̄ · · · n̄ while the identity is id = 12 · · ·n. Fix some si ∈ S with i ⩾ 2 and we

now run through the algorithm in Proposition 5.1. Keep notations as in Proposition 5.1, we use

induction on k to show that

w(k) = 1 2 · · · i−2 n+1−k n−k n−k−1 · · · ī i−1 n−k+2 · · · n

for k ⩾ 1, where · · · indicates a sequence of consecutive increasing integers. We start

with w(0) = 12 · · · i−1 n̄ · · · i+1 i and then

w(0)si = 1 2 · · · i−2 n̄ i−1 n−1 · · · i+ 1 i.

Taking the parabolic quotient to obtain w(1) = (w(0)si)
Ji , where Ji = S \ {si}, we effectively

get rid of the signs in coordinates 1, . . . , i− 1 and sort these values, and also sort the values in

coordinates i, i+ 1, . . . , n respectively. This gives

w(1) = 1 2 · · · i−2 n n−1 · · · i+1 i i−1

as desired, establishing the base case. Checking the inductive steps is also done in the same way,

by writing down

w(k)si = 1 2 · · · i−2 n−k n+1−k n−k−1 · · · ī i−1 n−k+2 · · · n,

sorting the values without the signs in coordinates 1, . . . , i − 1 and sorting the values

while keeping the signs in coordinates i, . . . , n to obtain w(k+1) = (w(k)si)
Ji . Finally,

when k = n+ 1− i, we see that w(k) = si so we conclude that vi = n+ 2− i.
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To see that v1 = n, we notice in fact that every time s1 is applied to reduce the length of

a signed permutation, there is one less negative values among w(1), . . . , w(n), and every time

some other si is applied, where i ⩾ 2, the number of negative values among w(1), . . . , w(n)
stays the same. This directly gives v1 = n.

Finally, to specify a restricted generalized Cartan matrix A ∈ R
n×n, it suffices to spec-

ify A12 = −2 and A21 = −1. We check that Av = (0, 1, 0, . . . , 0, 0, 1)T ⩾ 0.

Type Dn. The same argument as in type Bn works in this case, by explicitly writing down the

signed permutations w(0), w(1), . . . for each si. We omit the tedious details here and provide the

answers for vi’s in Figure 5.2. Since type Dn is simply-laced, the restricted generalized Cartan

• • • • · · · • • •
•

•2 3 4 5 n−3 n−2 n−1

+n/2,

+n/2,

Figure 5.2: minimal number of occurrences of each si in reduced words of w0 of type Dn.

matrix is fixed. We check that Av ⩾ 0, which in fact has value 0 at most coordinates.

Type An−1. We quickly go over the algorithm in Proposition 5.1. Fix i ⩽
n−1
2

.

Let Zk = {w(k)(1), . . . , w(k)(i)} so that Z0 = {n− i+ 1, . . . , n}. To obtain Zk+1 from Zk, we

exchange the largest entry of Zk with the smallest entry of {1, . . . , n} \Zk. It is then immediate

that Zi becomes {1, . . . , i} so that vi = i. By symmetry of the Dynkin diagram, vi = n − i
for i ⩾

n−1
2

. We check again that most entries of Av are zeroes, except one or two positive

integers in the middle.

Type E6, E7, E8. The vi’s are shown in Figure 5.3. We check that each vi is at least half of the

sum of its neighbors.

• • • • •

•

2 4 6 4 2

3

• • • • • •

•

3 6 9 7 5 3

5

• • • • • • •

•

5 10 15 12 9 6 3

8

Figure 5.3: minimal number of occurrences of each si in reduced words ofw0 of typeE6, E7,E8.

Type F4. The vi’s are shown in Figure 5.4 and we specify A2,3 = A3,2 = −
√
2.

Type H3 and H4. The vi’s are shown in Figure 5.5 and we specify A2,3 = −2 cos2(Ã/5),
A3,2 = −2 for type H3, and A3,4 = −2 cos2(Ã/5), A4,3 = −2 for type H4.

Type In. Here, v1 = v2 = +m12/2, so we let A1,2 = −2 cos2(Ã/m12) and A2,1 = −2.
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• • • •
3 6 6 3

Figure 5.4: minimal number of occurrences of each si in reduced words of w0 of type F4.

• • •5
3 5 5

• • • •5
5 10 15 15

Figure 5.5: minimal number of occurrences of each si in reduced words ofw0 of typeH3 andH4.
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