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Abstract 

The CRISPR-Cas system has enabled the development of sophisticated, multi-

gene metabolic engineering programs through the use of guide RNA-directed activation 

or repression of target genes.  To optimize biosynthetic pathways in microbial systems, 

we need improved models to inform design and implementation of transcriptional 

programs. Recent progress has resulted in new modeling approaches for identifying gene 

targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux 

balance models have successfully been applied to identify targets for improving 

biosynthetic production yields using combinatorial CRISPR-interference (CRISPRi) 

programs. The advent of new approaches for tunable and dynamic CRISPR activation 

(CRISPRa) promises to further advance these engineering capabilities. Once appropriate 

targets are identified, guide RNA prediction models can lead to increased efficacy in gene 

targeting. Developing improved models and  incorporating approaches from machine 

learning may be able to overcome current limitations and greatly expand the capabilities 

of CRISPR-Cas9 tools for metabolic engineering. 
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I. Introduction 

The CRISPR-Cas9 system has enabled sophisticated, multi-gene metabolic 

engineering programs in a variety of organisms 1,2,3. Catalytically inactive Cas9 (dCas9) 

has proven to be a powerful tool for gene regulation due to its ability for programmable 

RNA-guided DNA binding, allowing it to be used for CRISPR-interference (CRISPRi) or 

CRISPR-activation (CRISPRa) 4,5. CRISPRi blocks transcription by recruiting dCas9 or a 

transcriptional repressor to the promoter or open reading frame (ORF) of a gene of 

interest, while CRISPRa increases transcription through recruitment of a transcriptional 

activator to the promoter region. dCas9 can be recruited to a specific DNA sequence 

through the use of modified guide RNAs (gRNAs) known as single guide RNAs (sgRNAs) 

or scaffold RNAs (scRNAs) that recognize targets based on Watson-Crick base pairing 6. 

scRNAs mediate CRISPRa by acting as sgRNAs with RNA hairpins appended at the 3’ 

end to recruit activator domains to the CRISPR complex 6,7. Orthogonal gRNAs can be 

used for multi-gene metabolic engineering platforms capable of targeting an arbitrary set 

of endogenous and heterologous targets 8.  

Metabolic engineering is currently limited by our incomplete understanding of the 

native gene regulatory networks in the cell and our inability to predictably regulate target 

gene expression 9. For effective metabolic engineering programs, models are needed to 

both identify gene targets and implement effective transcriptional programs. Recently, 

systems-level modeling has sought to overcome these limitations. The applications of 

biological modeling for CRISPR-based metabolic engineering typically fall into one of two 

main categories: (1) using modeling tools to predict favorable gene targets 10–12, and (2) 

gRNA design to improve on-target efficiency and reduce off-target effects 13–15. 

Constraint-based genome-scale modeling is a commonly used approach for suggesting 

CRISPRi gene knockdown targets predicted to yield improved titers 12,16. Several recent 

theoretical and experimental works have shown CRISPRi targeting to be effective for 

redirecting metabolic flux 1,12,16,17. Additionally, the development of microbial CRISPRa 

has enabled activation of targets in the genome that can direct flux towards a pathway of 

interest 5,18. Algorithms that can simultaneously recommend targets for up- and down- 

regulation will greatly advance our control of metabolic flux. Once targets have been 
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identified, effective gRNAs are needed to implement the desired perturbation. gRNA 

design tools typically make predictions from biophysical models that determine the free 

energies of RNA folding and RNA:DNA hybridization, genome-wide screens that rely on 

empirical data-driven approaches, or some combination of the two methods. In both 

cases, models have been used to learn rules for sgRNA sequence design to enable highly 

efficient genome targeting for both metabolic engineering and gene editing applications. 

In this review, we will discuss the current state and outstanding limitations of CRISPR-

based metabolic engineering, as well as how systems level modeling tools will help 

advance the field. 

 

II. Genome-scale modeling for CRISPR-based metabolic engineering  

There is a prevailing question in metabolic engineering as to which genes to 

perturb and how much to up- or down-regulate their expression to achieve a desired 

phenotype. Engineers aim to divert flux away from competing pathways and maximize 

flux through their desired pathway. However, strongly repressing genes involved in 

essential pathways, such as central carbon metabolism or amino acid biosynthesis, can 

have deleterious effects on the organism including growth defects, undesired mutations 

19,20. Similarly, overexpression of some pathways can lead to metabolic burden or toxicity 

21,22. Therefore, engineers have turned to model-guided metabolic engineering platforms 

to provide insight into which genes to target and how strongly to activate or repress them 

to maximize product yield and accelerate the design-build-test-learn (DBTL) cycle. 

Genome-scale metabolic models (GEMs) are mathematical representations of 

metabolic networks based on experimental data and biochemical assumptions such as 

steady-state. Flux balance analysis (FBA) is one method to predict the movement of 

metabolites through a GEM. Algorithms such as FBA make use of a user-defined 

objective function and other constraints defined by the GEM to provide insight into 

phenotypic effects of genetic perturbations 23. FBA is based on constructing the objective 

function, assuming steady-state, and the use of linear programming to solve for a flux 

distribution. The flux distribution output fulfills the constraints derived by the GEM and 

optimizes the user-defined objective function 24,25. The solver will maximize or minimize 

the objective function depending on the user definition. The choice of the objective 
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function has a large effect on the output flux distribution and therefore the closeness of 

the distribution to measured data 26,27. In industrial biotechnology, algorithms derived from 

FBA have long been used to identify genetic interventions that maximize product yield 28–

30.  

Traditionally, genetic interventions are implemented through strain engineering to 

create knockouts or heterologously overexpress pathway genes. However, there are 

recent examples of more complex tools that can recommend optimal enzyme levels 31,32 

or targets for dynamic regulation 33,34. CRISPR systems may be particularly well-suited 

for implementing recommendations from these tools due to their tunable and dynamic 

capabilities. Additionally, there is growing attention in the use of the CRISPRa/i system 

to regulate gene targets identified through flux balance analysis 17,35–37. Still, there is a 

gap in our ability to reliably predict the degree to which a CRISPRa/i perturbation will 

affect gene expression, and the degree to which changes in expression will affect enzyme 

activity for a given gene 38,39.   

Although there are many methods able to recommend multiplexed interventions 

from GEMs, slow strain engineering cycles often limits the ability to broadly explore these 

design spaces 28,40. The use of CRISPR tools to implement perturbations may address 

this limitation. The demonstrated ability to simultaneously activate and repress multiple 

genes using CRISPRa/i in microorganisms is a fairly recent development. Lian and 

colleagues were the first to demonstrate a tri-functional CRISPR system; taking 

advantage of activation, interference, and deletion in yeast 2. Their system achieved 

significantly improved titers of two metabolic engineering targets through combinatorial 

perturbations of up to 36 genes. Similar tri-functional systems have yet to be 

demonstrated in other model organisms for biosynthesis. However, other experimental 

work has shown that combining CRISPRa/i control can help improve titers over a single 

method of regulation 2,8,41. There are several notable examples of strain design algorithms 

that use genome-scale models to recommend perturbations to multiple genes through 

multiplexed activation, repression, and knockouts 28–30,40,42–44. These tools are particularly 

well suited for use with multi-functional CRISPR-based metabolic engineering programs 

as perturbations can be quickly implemented in combination. However, none of these 

strain design tools have been validated with CRISPR-based perturbations. Instead, most 
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strain engineering has been achieved through gene knockouts and heterologous 

overexpression. The use of multi-functional CRISPR tools could greatly accelerate the 

prototyping of strains recommended by these algorithms, providing insight into the effects 

of finely-tuned and combined perturbations.   

To take greater advantage of the tunability accessible with CRISPR tools, current 

strain design tools may need to be adapted. Updating constraint-based genome-scale 

models that focus solely on deletion or knockdowns to allow activation through a given 

pathway should be straightforward 28,42. CRISPR-Cas tools have made it faster and easier 

to implement multi-functional metabolic engineering programs. Therefore, engineers 

should be encouraged to use computational tools that match their experimental 

capabilities. 

 

 

Figure 1. Current tools and opportunities for improvement of genome-scale models for 

metabolic engineering. 

 



 

8 

In recent years, the development of CRISPR tools has enabled programmable 

regulation at genomic targets in a wide array of novel microbes 45. However, identifying 

relevant targets for metabolic engineering can be challenging for microbes with 

industrially useful but understudied metabolisms. To address this issue, computational 

tools can be used to generate novel metabolic models. Model reconstruction can be 

achieved using species-specific genomic data and “top-down” or “bottom-up” 

reconstruction methods, or through a combination of these approaches 46–49. Typically, 

“top-down” approaches use a universal template model to assist with gap-filling, while a 

“bottom-up” approach may rely more on sequence homology and experimental data to 

derive metabolic network topologies 46–49. Crucially, these tools minimize the need for 

manual construction and are broadly applicable to diverse bacterial species. Recent work 

has demonstrated that the development of genome-scale models can be transformative 

for realizing the potential for metabolic engineering for non-model organisms with unique, 

desirable metabolic properties 50. For example, a previously published GEM and 

thermodynamic model of the Wood-Ljungdahl pathway in Clostridium ljungdahlii provided 

novel insights on autotrophic metabolism and potential pathways to high-value products 

generated from syngas. This model then informed the first example of CRISPRi-based 

metabolic engineering in Clostridium ljungdahlii several years later 51–53.  

To circumvent the need for a new model of each unique organism’s metabolism, 

several groups have developed machine learning-based (ML) strain design tools. These 

tools are able to recommend targets to improve bioproduction and accelerate the DBTL 

cycle without a full mechanistic understanding of the biological system 31,54,55. Both the 

Automated Recommendation Tool (ART) and EVOLVE use Bayesian ensemble 

approaches to make strain recommendations with minimal training instances 31,54. 

Bayesian models often outperform other ML algorithms on datasets that are small or 

noisy, making them a common choice for biological datasets 55. From initial 

experimentation, the user provides input parameters such as transcriptome data or 

promoter strengths, as well as the observed output, e.g. product yield. The model then 

returns predicted output levels for different input profiles. In a direct comparison of ART 

and EVOLVE, the tools showed similar overall performances for recommendations of 

promoter strengths for a five-gene tryptophan overproduction strain 54.   
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While a meaningful step towards realizing an organism-agnostic model for 

metabolic engineering, machine learning approaches typically require a great deal of 

input data to generate a predictive model. Moreover, current ML based methods are 

generally unable to provide a rationale for their predictions. The difficulty in automated 

and high-throughput data collection and analysis is a major challenge to the practical use 

of machine learning methods for synthetic biology. An integrative tool that combines 

machine learning techniques and genome-scale modeling may offer the predictive power 

of machine learning algorithms with minimal training data 54. This could theoretically be 

achieved by feeding fluxes determined from the literature and GEM simulations as inputs 

to existing machine learning tools. In addition, by combining ML with mechanistic 

modeling, better insights can be achieved to understand why a given set of perturbations 

fails to achieve a desired phenotype. 

Cell-free systems (CFS) have recently gained popularity as a means for rapidly 

prototyping metabolic engineering programs and improving experimental throughput 56,57. 

The use of CFS as a metabolic engineering platform offers many advantages over 

traditional in vivo systems, such as reduced carbon diversion towards endogenous 

metabolism and potential for exotic and toxic chemistries 58–60. However, models of CFS 

tend to focus on protein expression and resource competition and lack consideration for 

the presence of central metabolism and endogenous enzymes in the CFS 61–66. Recently, 

Martin et al. constructed a kinetic model of butanol production in a non-steady state CFS 

67. Their model incorporated over 200 reactions, metabolites, and inhibitor-enzyme pairs 

to accurately capture interactions between heterologous and endogenous metabolic 

networks and offer unintuitive predictions to improve butanol production. Their model was 

effective in identifying aldehyde dehydrogenase as the step with the most flux control 

using minimal training data, and lending insights into the effect of pairwise perturbations 

on butanol production. While these insights may have been possible without a large 

ensemble modeling approach, a significant advantage of the ensemble is that the scope 

of the model may lend itself well for being easily applied to other cell-free metabolic 

engineering efforts with minimal training data.  Still, the process of generating individual 

knockout strains and cell-free lysates can be time-intensive. To address this limitation, 

other work from this group has explored the use of multiplexed CRISPR tools in a S. 
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cerevisiae CFS to improve production of 2,3-butanediol 68. The use of CRISPR tools 

allowed the authors to rapidly assess combinatorial perturbations in the CFS without the 

need for extensive engineering of the underlying lysate strain. Further work to integrate 

these two efforts by screening model-informed combinatorial CRISPR perturbations may 

greatly accelerate DBTL cycles for cell-free metabolic engineering.  

Metabolic engineers have long been interested in leveraging dynamic control to 

separate growth and production phases, maintain healthy cell growth, and ultimately 

improve product yields 69,70. Dynamic regulation can describe simple systems that rely on 

addition of inducers to initiate gene expression, and autonomous systems that regulate 

flux based on sensing the internal state of the cell 69,71. As chemical inducers are often 

too expensive for large-scale fermentation, there is growing interest in the rational design 

of self-regulating gene expression programs 19. For effective dynamic regulation, 

metabolic engineers may require simultaneous overexpression and repression at several 

gene targets 70,72. Engineers must also avoid redundant genetic sequences, such as the 

repeated use of inducible promoters, as they may be prone to recombination 73. The 

programmability and orthogonality of the CRISPR system addresses these challenges, 

and has enabled significant improvements in the ability of synthetic biologists to 

dynamically control genes in response to environmental stimuli 74–76.  

Despite the advantages of CRISPR tools, it remains difficult to implement 

regulation at the correct time and intensity during fermentation. For example, dynamic 

control in response to the presence of a toxic intermediate must be rapid and sensitive to 

prevent accumulation while maintaining flux through the desired pathway 69,71,77. To date, 

most algorithms recommending perturbations have been limited to static control, leaving 

them unable to provide valuable insight as to when and how to implement dynamic control 

78. A model for dynamic control would be difficult to construct in practice as it may require 

further parameterization to understand how implementing perturbations at different 

stages of growth affects metabolism 79. The integration of mathematical optimization with 

kinetic models of gene expression will improve our ability to predictably implement 

dynamic control for metabolic engineering programs using CRISPR-Cas systems 36,80.  
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III. Model-informed guide RNA design 

gRNA design tools typically aim to maximize either gRNA specificity or efficiency. 

gRNA specificity is important to ensure that a given gRNA does not bind off-target in the 

genome, causing undesired growth defects or changes to metabolism. Tools for gRNA 

efficiency also ensure that the designed gRNA will fold properly, based on predicted RNA 

structure and sequence context. There are several recent reviews discussing gRNA 

design in great detail with focuses on machine learning and web-based tools 81,82. In this 

review, we focus on models with the greatest impact for constructing multi-gene 

biosynthetic programs. Therefore, special attention is paid to models that give 

consideration to systems-level design, CRISPRa/i efficiency, gRNA competition, and 

portability to microorganisms.   

 There have been many models developed to predict gRNA performance, 

quantified by off- and on-target effects, using combinations of machine learning 38,82–84, 

kinetic 85,86, and thermodynamic models 14,85,87. While early gRNA prediction models have 

been around for nearly a decade, it was only recently that large-scale models were 

updated to include functionality for CRISPRa/i targeting in addition to genome editing 88. 

For CRISPRa, predicting high-performing guides may be challenging as targetable 

positions are limited to PAMs in the promoter region. CRISPRi target positions are more 

flexible, but knockdowns closer to the TSS have been shown to be more effective 89. 

Therefore, there is significant interest in computational models that can predict ideal 

target sites and guide RNA sequences  for a gene of interest.  

The target sequence has been shown to have large effects on the degree of 

repression or activation achievable with CRISPRa/i control, in part due to both primary 

sequence composition and secondary structure of the gRNA 9,90,91. CRISPRa/i control is 

highly sensitive to target sequence composition in both prokaryotic and eukaryotic 

systems. However, models that rely solely on gRNA sequence information are vastly 

outperformed by those that incorporate sequence context and structural information as 

well, highlighting the complexity of effective gRNA design 83,92. gRNA efficiency is highly 

influenced by sequence context, both with respect to the sequence surrounding the PAM 

site 87 and the local structure at the target site 93,94. Farasat & Salis (2016) demonstrated 

the importance of incorporating sequence context and structural information into gRNA 
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design by developing an integrative biophysical model of CRISPR-Cas9 activity. Their 

model incorporates statistical thermodynamics and kinetics with next-gen sequencing 

data on on- and off-target specificity to build a system-wide understanding of Cas9 on- 

and off-target effects in the genome 86. Their mechanistic model includes kinetic 

representations of gRNA expression and folding, as well as thermodynamic 

representations of gRNA-Cas9 binding and Cas9-DNA binding. With this model, they 

unveil novel insights about differences in Cas9 off-target activity across organisms that 

previous studies focusing on gRNA sequence failed to identify. According to their model, 

the PAM-proximal seed region is the most important determinant for dCas9 binding 

affinity. Other kinetic models have found the free-energy change from the formation of the 

R-loop needed for DNA displacement is crucial for dictating Cas9 efficiency 95. These 

results may be important considerations for the design of effective gRNAs, especially for 

targets with few available PAM sites. 

A great deal about the tunability of CRISPR systems has been learned through the 

development and implementation of gRNA models. The use of truncated and mismatched 

gRNAs to tune the level of response in CRISPRa/i systems 96, a rule now leveraged often 

in metabolic engineering applications 97, was described in the CRISPRscan model 98,99. 

The use of mismatched sgRNAs for systematic titration of gene expression has further 

been modeled by Jost et al. 100. When using truncations or mismatches to tune CRISPR 

activity, the potential for off-target effects increases as gRNA specificity decreases. These 

models provide important rules for the design of effective guides.  
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Figure 2. Current considerations and opportunities for improvement of gRNA design tools 

for metabolic engineering. 

 

 Many gRNA models developed for eukaryotic systems are not portable to 

prokaryotic systems, and vice-versa. Differences in genome organization and rules for 

effective interference and activation limit the generalizability of these models across 

branches of life. Wang & Zhang sought to overcome this limitation by developing a deep 

learning model based on RNA folding parameters, melting temperatures, and 

experimental data from bacterial cells to accurately predict on- and off-target activities for 

genome targeting sgRNAs and then use transfer learning to apply their model to 

eukaryotic systems as well 84. Transfer learning is a form of machine learning useful to 

transfer parameters optimized from one dataset to another model with limited data.  

However, their experimental results confirmed previous findings 101,102 that gRNA activity 

prediction models developed for eukarya or prokarya are not appropriate for the other, 

likely due to differences in chromatin structure and genome organization. For microbial 

metabolic engineering, this results in a limited number of reliable gRNA design tools. 

Human cell lines are the most popular chassis for the creation of guide prediction models 

and software. However, these models are generally not transferable to metabolic 

engineering contexts, which typically require an understanding of CRISPR performance 

in bacteria or yeast. There is a clear need in the field for a gRNA prediction software 

suited towards metabolic engineers; that can accurately predict on- and off-target gRNA 

performance in relevant model organisms. 

Beyond predicting gRNA efficiency for a single gene target, several models have 

investigated the impact of resource competition on the efficacy of CRISPR perturbations. 

Specifically, the decrease in CRISPR efficiency that occurs as a result of dCas9 resource 

competition from expressing multiple orthogonal gRNAs is well-characterized 95,103–105. 

Clamons & Murray proposed a straightforward model for resource competition in which 

the expression of competing gRNAs reduces the available pool of CRISPR complexes 

able to perform CRISPRi at each target site by roughly 1/N, where N is the number of 

gRNAs. The Clamons & Murray model suggests that CRISPRa is more tolerant to 

resource competition than CRISPRi, however subsequent work has challenged this claim 
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106. In practice, CRISPRa is likely similarly affected by resource competition as CRISPRi 

because the number of activator complexes in the cell may be limiting. Recently, Barbier 

et al. showed that differences in gRNA binding affinities between scRNAs and sgRNAs 

leads to difficulty in predicting the behavior of combined CRISPRa/i programs in bacteria 

107. Through the use of a mathematical model for dCas9 resource competition and 

experimental validation, they demonstrated that using gRNAs with similar structures 

reduces differences in gRNA binding affinity and improves the function of multi-gRNA 

programs. These results suggest that the use of computational tools for predicting gRNA 

folding and dCas9 binding affinity will be crucial for constructing effective multi-gene 

CRISPRa/i metabolic engineering programs. 

While resource competition in CRISPRa and CRISPRi has been modeled for basic 

regulatory networks, the effect of dCas9 and activator resource competition on metabolic 

engineering productivity remains understudied. This is due in part to a lack of integrative 

models that consider the capabilities of CRISPR systems while making strain 

recommendations. For example, a model that can account for gRNA competition as the 

number of genomic targets increases may help engineers prioritize which sets of genes 

to target. Incorporating a simple gRNA competition model into strain recommendation 

tools would be straightforward; however, more complex gRNA considerations such as 

target sequence context may be more difficult to integrate.  Moving forward, these 

integrative models will be an important consideration when building large combinatorial 

metabolic engineering platforms that aim to simultaneously up- and down- regulate 

multiple genes, as there is an inherent tradeoff between the number of targets and the 

degree of perturbation. 

 

IV. Outlook and Future Directions 

 Significant advances in metabolic engineering have been achieved through the 

use of model-informed CRISPR transcriptional control programs. Models have enabled 

the prediction of effective gene targets for perturbation and the rational design of high 

performing gRNA sequences. Still, there are many limitations to existing tools that, if 

overcome, would yield substantial benefits to the field of metabolic engineering. Current 

models are helpful for identifying targets for up- or down-regulation 10–12,16,17,35,36,80,108, but 
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cannot effectively predict the optimal amount of intervention, as total activation or 

repression of a gene is rarely the optimal perturbation 19,37,55. Furthermore, CRISPRa/i 

tools will enable improved dynamic control over metabolic engineering programs 22. As 

dynamic control becomes more prevalent, models able to integrate kinetic predictions 

with strain optimization will prove increasingly valuable.  

 CRISPR-Cas systems offer several advantages over other gene regulation tools 

that make them particularly well-suited for implementing model-driven recommendations. 

Compared to other tools such as ZF or TALE proteins, CRISPR tools have more ease of 

programmability, higher modularity and multiplexing capabilities, and lower off-target 

effects 109,110. Additionally, over the last several years, CRISPR-Cas tools have been 

developed in a diverse range of microorganisms, expanding the scope of available 

chassis for metabolic engineering beyond traditional hosts. While numerous systems are 

available for implementing genetic interventions, CRISPR-based tools are uniquely able 

to accelerate engineering and DBTL cycles for strain design informed by genome-scale 

modeling 109.  

 Synthetic biologists have recently become interested in how machine learning can 

advance metabolic engineering goals 111. The design of effective gRNAs is a well-suited 

problem for machine learning. The value of machine learning for gRNA design has been 

demonstrated by the use of a deep learning algorithm to predict gRNA on- and off-target 

effects for dCas13, a relatively understudied Cas variant 112. Yu et al. recently developed 

a machine learning approach using publicly available depletion screens for prediction of 

CRISPRi guide efficiency that outperformed previous models. In addition, their model 

highlights the importance of gene expression levels and gene-specific features in making 

accurate predictions, providing novel insights into the understanding of CRISPRi screens 

for future work 38.  There are already many existing datasets and large libraries that can 

easily be screened in a high-throughput fashion if linked to a fitness score 113,114 or 

biosensor output 115,116.   

For strain design, the use of machine learning is less straightforward. Ideally, 

machine learning-based strain design algorithms would be fit on multi-omics datasets, 

including transcriptome, proteome, and metabolome data 31,117. Minimally, metabolomics 

data would be needed to relate strain genotypes to production phenotypes 97,117. 
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Alternatively, metabolite-responsive biosensors can be used to generate input data, but 

this approach is restricted by the space of available biosensors and their respective 

dynamic ranges 54,118. Additionally, biosensor outputs do not necessarily correlate 

strongly with measured metabolite production 54. In any case, the time, labor, and costs 

required to collect sufficient perturbation data to create an effective model is limiting 111. 

Porting a model to another organism, or the same organism with a novel heterologous 

pathway, may lead to a decrease in predictive power without the collection of new training 

data. Alternatively, the use of mechanistic models leads to hypothesis-driven 

experimentation, which is more cost and time efficient in the near- and long-term. 

Additionally, there is still interest in understanding the underlying mechanisms behind 

genotype/phenotype relationships. The use of machine learning hides these 

relationships, which can introduce challenges when trying to understand how or why 

machine-learning aided design fails.  

The use of constraint-based genome-scale models has been shown to be useful 

for predicting the phenotypic effect of knockouts. However, such models are less 

informative when making predictions based on more subtle changes to protein 

expression, which may be achieved through CRISPR control. Metabolic pathways include 

gene regulatory networks, and allosteric and feedback control, both of which play critical 

roles in shaping an organism’s phenotype. For example, changing the expression level 

of a single gene will change metabolite levels which, through feedback mechanisms, will 

cause changes in protein expression at other sites, resulting in further downstream 

effects. Such effects cannot be easily captured by current constraint-based models.  

Ideally, more detailed kinetic models could be developed to address challenges 

like feedback effects and regulatory networks, allowing metabolic engineers to make 

more precise predictions. While kinetic models are difficult to build, there is a growing list 

of success stories. For example, Martin et al. 67 built an in vitro pathway model of butanol 

production consisting of over 200 reactions, van Niekerk et al. 119 developed a detailed 

and validated model of energy metabolism in P. falciparum, and Millard et al. 120 built a 

validated kinetic model of core metabolism in E. coli. As kinetic models become larger, 

there is also growing importance in the reproducibility of these models 121, as a 

considerable amount of intellectual effort and expense is used to develop them. 
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Other modeling approaches include building approximate kinetic models based on 

lin-log kinetics 122,123. Approximate kinetic models are simpler than full mechanistic 

models, while also giving engineers direct access to the pathway sensitivities through 

metabolic control analysis 67,122. However, a disadvantage of lin-log models is that their 

predictive power drops if changes in gene expression are too large. Nevertheless, these 

models may still be able to predict the most promising sites for CRISPR perturbations.  

As the available toolbox for metabolic engineering using CRISPR/Cas tools grows, 

the need for quantitative and predictive models to inform experiments will become 

increasingly valuable. Integrative models capable of suggesting genetic perturbations, 

selecting effective gRNAs, and composing selections into large multi-gene CRISPRa/i 

programs will greatly improve our ability to rapidly survey combinatorial perturbations and 

accelerate the DBTL cycle.  
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