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Abstract

The CRISPR-Cas system has enabled the development of sophisticated, multi-
gene metabolic engineering programs through the use of guide RNA-directed activation
or repression of target genes. To optimize biosynthetic pathways in microbial systems,
we need improved models to inform design and implementation of transcriptional
programs. Recent progress has resulted in new modeling approaches for identifying gene
targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux
balance models have successfully been applied to identify targets for improving
biosynthetic production vyields using combinatorial CRISPR-interference (CRISPRI)
programs. The advent of new approaches for tunable and dynamic CRISPR activation
(CRISPRa) promises to further advance these engineering capabilities. Once appropriate
targets are identified, guide RNA prediction models can lead to increased efficacy in gene
targeting. Developing improved models and incorporating approaches from machine
learning may be able to overcome current limitations and greatly expand the capabilities

of CRISPR-Cas9 tools for metabolic engineering.
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. Introduction

The CRISPR-Cas9 system has enabled sophisticated, multi-gene metabolic
engineering programs in a variety of organisms 123, Catalytically inactive Cas9 (dCas9)
has proven to be a powerful tool for gene regulation due to its ability for programmable
RNA-guided DNA binding, allowing it to be used for CRISPR-interference (CRISPRIi) or
CRISPR-activation (CRISPRa) 4°. CRISPRIi blocks transcription by recruiting dCas9 or a
transcriptional repressor to the promoter or open reading frame (ORF) of a gene of
interest, while CRISPRa increases transcription through recruitment of a transcriptional
activator to the promoter region. dCas9 can be recruited to a specific DNA sequence
through the use of modified guide RNAs (gRNAs) known as single guide RNAs (sgRNAs)
or scaffold RNAs (scRNAs) that recognize targets based on Watson-Crick base pairing ©.
scRNAs mediate CRISPRa by acting as sgRNAs with RNA hairpins appended at the 3’
end to recruit activator domains to the CRISPR complex 67. Orthogonal gRNAs can be
used for multi-gene metabolic engineering platforms capable of targeting an arbitrary set
of endogenous and heterologous targets 8.

Metabolic engineering is currently limited by our incomplete understanding of the
native gene regulatory networks in the cell and our inability to predictably regulate target
gene expression °. For effective metabolic engineering programs, models are needed to
both identify gene targets and implement effective transcriptional programs. Recently,
systems-level modeling has sought to overcome these limitations. The applications of
biological modeling for CRISPR-based metabolic engineering typically fall into one of two
main categories: (1) using modeling tools to predict favorable gene targets 912, and (2)
gRNA design to improve on-target efficiency and reduce off-target effects '3-15.
Constraint-based genome-scale modeling is a commonly used approach for suggesting
CRISPRI gene knockdown targets predicted to yield improved titers 26, Several recent
theoretical and experimental works have shown CRISPRI targeting to be effective for
redirecting metabolic flux 121617 Additionally, the development of microbial CRISPRa
has enabled activation of targets in the genome that can direct flux towards a pathway of
interest '8, Algorithms that can simultaneously recommend targets for up- and down-

regulation will greatly advance our control of metabolic flux. Once targets have been



identified, effective gRNAs are needed to implement the desired perturbation. gRNA
design tools typically make predictions from biophysical models that determine the free
energies of RNA folding and RNA:DNA hybridization, genome-wide screens that rely on
empirical data-driven approaches, or some combination of the two methods. In both
cases, models have been used to learn rules for sgRNA sequence design to enable highly
efficient genome targeting for both metabolic engineering and gene editing applications.
In this review, we will discuss the current state and outstanding limitations of CRISPR-
based metabolic engineering, as well as how systems level modeling tools will help

advance the field.

. Genome-scale modeling for CRISPR-based metabolic engineering

There is a prevailing question in metabolic engineering as to which genes to
perturb and how much to up- or down-regulate their expression to achieve a desired
phenotype. Engineers aim to divert flux away from competing pathways and maximize
flux through their desired pathway. However, strongly repressing genes involved in
essential pathways, such as central carbon metabolism or amino acid biosynthesis, can
have deleterious effects on the organism including growth defects, undesired mutations
1920 Similarly, overexpression of some pathways can lead to metabolic burden or toxicity
21,22 Therefore, engineers have turned to model-guided metabolic engineering platforms
to provide insight into which genes to target and how strongly to activate or repress them
to maximize product yield and accelerate the design-build-test-learn (DBTL) cycle.

Genome-scale metabolic models (GEMs) are mathematical representations of
metabolic networks based on experimental data and biochemical assumptions such as
steady-state. Flux balance analysis (FBA) is one method to predict the movement of
metabolites through a GEM. Algorithms such as FBA make use of a user-defined
objective function and other constraints defined by the GEM to provide insight into
phenotypic effects of genetic perturbations 3. FBA is based on constructing the objective
function, assuming steady-state, and the use of linear programming to solve for a flux
distribution. The flux distribution output fulfills the constraints derived by the GEM and
optimizes the user-defined objective function 2425, The solver will maximize or minimize

the objective function depending on the user definition. The choice of the objective



function has a large effect on the output flux distribution and therefore the closeness of
the distribution to measured data 2627 In industrial biotechnology, algorithms derived from
FBA have long been used to identify genetic interventions that maximize product yield 28
30

Traditionally, genetic interventions are implemented through strain engineering to
create knockouts or heterologously overexpress pathway genes. However, there are
recent examples of more complex tools that can recommend optimal enzyme levels 3132
or targets for dynamic regulation 3334, CRISPR systems may be particularly well-suited
for implementing recommendations from these tools due to their tunable and dynamic
capabilities. Additionally, there is growing attention in the use of the CRISPRa/i system
to regulate gene targets identified through flux balance analysis 73537 Still, there is a
gap in our ability to reliably predict the degree to which a CRISPRa/i perturbation will
affect gene expression, and the degree to which changes in expression will affect enzyme
activity for a given gene 3839,

Although there are many methods able to recommend multiplexed interventions
from GEMs, slow strain engineering cycles often limits the ability to broadly explore these
design spaces 2840, The use of CRISPR tools to implement perturbations may address
this limitation. The demonstrated ability to simultaneously activate and repress multiple
genes using CRISPRal/i in microorganisms is a fairly recent development. Lian and
colleagues were the first to demonstrate a tri-functional CRISPR system; taking
advantage of activation, interference, and deletion in yeast 2. Their system achieved
significantly improved titers of two metabolic engineering targets through combinatorial
perturbations of up to 36 genes. Similar tri-functional systems have yet to be
demonstrated in other model organisms for biosynthesis. However, other experimental
work has shown that combining CRISPRal/i control can help improve titers over a single
method of regulation 284!, There are several notable examples of strain design algorithms
that use genome-scale models to recommend perturbations to multiple genes through
multiplexed activation, repression, and knockouts 28-30.40.42-44 These tools are particularly
well suited for use with multi-functional CRISPR-based metabolic engineering programs
as perturbations can be quickly implemented in combination. However, none of these

strain design tools have been validated with CRISPR-based perturbations. Instead, most



strain engineering has been achieved through gene knockouts and heterologous
overexpression. The use of multi-functional CRISPR tools could greatly accelerate the
prototyping of strains recommended by these algorithms, providing insight into the effects
of finely-tuned and combined perturbations.

To take greater advantage of the tunability accessible with CRISPR tools, current
strain design tools may need to be adapted. Updating constraint-based genome-scale
models that focus solely on deletion or knockdowns to allow activation through a given
pathway should be straightforward 242, CRISPR-Cas tools have made it faster and easier
to implement multi-functional metabolic engineering programs. Therefore, engineers

should be encouraged to use computational tools that match their experimental

capabilities.
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In recent years, the development of CRISPR tools has enabled programmable
regulation at genomic targets in a wide array of novel microbes 4°. However, identifying
relevant targets for metabolic engineering can be challenging for microbes with
industrially useful but understudied metabolisms. To address this issue, computational
tools can be used to generate novel metabolic models. Model reconstruction can be
achieved using species-specific genomic data and “top-down” or “bottom-up”
reconstruction methods, or through a combination of these approaches 46-4°. Typically,
“top-down” approaches use a universal template model to assist with gap-filling, while a
“‘bottom-up” approach may rely more on sequence homology and experimental data to
derive metabolic network topologies 46-4°. Crucially, these tools minimize the need for
manual construction and are broadly applicable to diverse bacterial species. Recent work
has demonstrated that the development of genome-scale models can be transformative
for realizing the potential for metabolic engineering for non-model organisms with unique,
desirable metabolic properties *°. For example, a previously published GEM and
thermodynamic model of the Wood-Ljungdahl pathway in Clostridium ljungdahlii provided
novel insights on autotrophic metabolism and potential pathways to high-value products
generated from syngas. This model then informed the first example of CRISPRi-based
metabolic engineering in Clostridium ljungdahlii several years later 153,

To circumvent the need for a new model of each unique organism’s metabolism,
several groups have developed machine learning-based (ML) strain design tools. These
tools are able to recommend targets to improve bioproduction and accelerate the DBTL
cycle without a full mechanistic understanding of the biological system 315455, Both the
Automated Recommendation Tool (ART) and EVOLVE use Bayesian ensemble
approaches to make strain recommendations with minimal training instances 3'.54,
Bayesian models often outperform other ML algorithms on datasets that are small or
noisy, making them a common choice for biological datasets °%°. From initial
experimentation, the user provides input parameters such as transcriptome data or
promoter strengths, as well as the observed output, e.g. product yield. The model then
returns predicted output levels for different input profiles. In a direct comparison of ART
and EVOLVE, the tools showed similar overall performances for recommendations of

promoter strengths for a five-gene tryptophan overproduction strain 4.



While a meaningful step towards realizing an organism-agnostic model for
metabolic engineering, machine learning approaches typically require a great deal of
input data to generate a predictive model. Moreover, current ML based methods are
generally unable to provide a rationale for their predictions. The difficulty in automated
and high-throughput data collection and analysis is a major challenge to the practical use
of machine learning methods for synthetic biology. An integrative tool that combines
machine learning techniques and genome-scale modeling may offer the predictive power
of machine learning algorithms with minimal training data %*. This could theoretically be
achieved by feeding fluxes determined from the literature and GEM simulations as inputs
to existing machine learning tools. In addition, by combining ML with mechanistic
modeling, better insights can be achieved to understand why a given set of perturbations
fails to achieve a desired phenotype.

Cell-free systems (CFS) have recently gained popularity as a means for rapidly
prototyping metabolic engineering programs and improving experimental throughput %57
The use of CFS as a metabolic engineering platform offers many advantages over
traditional in vivo systems, such as reduced carbon diversion towards endogenous
metabolism and potential for exotic and toxic chemistries %¢-6°. However, models of CFS
tend to focus on protein expression and resource competition and lack consideration for
the presence of central metabolism and endogenous enzymes in the CFS 6'-%6_ Recently,
Martin et al. constructed a kinetic model of butanol production in a non-steady state CFS
67. Their model incorporated over 200 reactions, metabolites, and inhibitor-enzyme pairs
to accurately capture interactions between heterologous and endogenous metabolic
networks and offer unintuitive predictions to improve butanol production. Their model was
effective in identifying aldehyde dehydrogenase as the step with the most flux control
using minimal training data, and lending insights into the effect of pairwise perturbations
on butanol production. While these insights may have been possible without a large
ensemble modeling approach, a significant advantage of the ensemble is that the scope
of the model may lend itself well for being easily applied to other cell-free metabolic
engineering efforts with minimal training data. Still, the process of generating individual
knockout strains and cell-free lysates can be time-intensive. To address this limitation,

other work from this group has explored the use of multiplexed CRISPR tools in a S.



cerevisiae CFS to improve production of 2,3-butanediol 8. The use of CRISPR tools
allowed the authors to rapidly assess combinatorial perturbations in the CFS without the
need for extensive engineering of the underlying lysate strain. Further work to integrate
these two efforts by screening model-informed combinatorial CRISPR perturbations may
greatly accelerate DBTL cycles for cell-free metabolic engineering.

Metabolic engineers have long been interested in leveraging dynamic control to
separate growth and production phases, maintain healthy cell growth, and ultimately
improve product yields °7°. Dynamic regulation can describe simple systems that rely on
addition of inducers to initiate gene expression, and autonomous systems that regulate
flux based on sensing the internal state of the cell %71, As chemical inducers are often
too expensive for large-scale fermentation, there is growing interest in the rational design
of self-regulating gene expression programs '°. For effective dynamic regulation,
metabolic engineers may require simultaneous overexpression and repression at several
gene targets %72, Engineers must also avoid redundant genetic sequences, such as the
repeated use of inducible promoters, as they may be prone to recombination 3. The
programmability and orthogonality of the CRISPR system addresses these challenges,
and has enabled significant improvements in the ability of synthetic biologists to
dynamically control genes in response to environmental stimuli 74-76,

Despite the advantages of CRISPR tools, it remains difficult to implement
regulation at the correct time and intensity during fermentation. For example, dynamic
control in response to the presence of a toxic intermediate must be rapid and sensitive to
prevent accumulation while maintaining flux through the desired pathway °7'.77. To date,
most algorithms recommending perturbations have been limited to static control, leaving
them unable to provide valuable insight as to when and how to implement dynamic control
8 A model for dynamic control would be difficult to construct in practice as it may require
further parameterization to understand how implementing perturbations at different
stages of growth affects metabolism °. The integration of mathematical optimization with
kinetic models of gene expression will improve our ability to predictably implement

dynamic control for metabolic engineering programs using CRISPR-Cas systems 36.80,
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lll. Model-informed guide RNA design

gRNA design tools typically aim to maximize either gRNA specificity or efficiency.
gRNA specificity is important to ensure that a given gRNA does not bind off-target in the
genome, causing undesired growth defects or changes to metabolism. Tools for gRNA
efficiency also ensure that the designed gRNA will fold properly, based on predicted RNA
structure and sequence context. There are several recent reviews discussing gRNA
design in great detail with focuses on machine learning and web-based tools 8'82, In this
review, we focus on models with the greatest impact for constructing multi-gene
biosynthetic programs. Therefore, special attention is paid to models that give
consideration to systems-level design, CRISPRali efficiency, gRNA competition, and
portability to microorganisms.

There have been many models developed to predict gRNA performance,
quantified by off- and on-target effects, using combinations of machine learning 38:82-84,
kinetic 8586 and thermodynamic models 148587 While early gRNA prediction models have
been around for nearly a decade, it was only recently that large-scale models were
updated to include functionality for CRISPRal/i targeting in addition to genome editing .
For CRISPRa, predicting high-performing guides may be challenging as targetable
positions are limited to PAMs in the promoter region. CRISPRI target positions are more
flexible, but knockdowns closer to the TSS have been shown to be more effective €°.
Therefore, there is significant interest in computational models that can predict ideal
target sites and guide RNA sequences for a gene of interest.

The target sequence has been shown to have large effects on the degree of
repression or activation achievable with CRISPRal/i control, in part due to both primary
sequence composition and secondary structure of the gRNA °:90.91 CRISPRa/i control is
highly sensitive to target sequence composition in both prokaryotic and eukaryotic
systems. However, models that rely solely on gRNA sequence information are vastly
outperformed by those that incorporate sequence context and structural information as
well, highlighting the complexity of effective gRNA design 8392, gRNA efficiency is highly
influenced by sequence context, both with respect to the sequence surrounding the PAM
site 8" and the local structure at the target site 9. Farasat & Salis (2016) demonstrated

the importance of incorporating sequence context and structural information into gRNA
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design by developing an integrative biophysical model of CRISPR-Cas9 activity. Their
model incorporates statistical thermodynamics and kinetics with next-gen sequencing
data on on- and off-target specificity to build a system-wide understanding of Cas9 on-
and off-target effects in the genome 8. Their mechanistic model includes kinetic
representations of gRNA expression and folding, as well as thermodynamic
representations of gRNA-Cas9 binding and Cas9-DNA binding. With this model, they
unveil novel insights about differences in Cas9 off-target activity across organisms that
previous studies focusing on gRNA sequence failed to identify. According to their model,
the PAM-proximal seed region is the most important determinant for dCas9 binding
affinity. Other kinetic models have found the free-energy change from the formation of the
R-loop needed for DNA displacement is crucial for dictating Cas9 efficiency %. These
results may be important considerations for the design of effective gRNAs, especially for
targets with few available PAM sites.

A great deal about the tunability of CRISPR systems has been learned through the
development and implementation of gRNA models. The use of truncated and mismatched
gRNAs to tune the level of response in CRISPRal/i systems %, a rule now leveraged often
in metabolic engineering applications 7, was described in the CRISPRscan model %99,
The use of mismatched sgRNAs for systematic titration of gene expression has further
been modeled by Jost et al. %, When using truncations or mismatches to tune CRISPR
activity, the potential for off-target effects increases as gRNA specificity decreases. These
models provide important rules for the design of effective guides.

gRNA Prediction Tools for CRISPR-based metabolic engineering

Current State of the Art Next Steps
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Figure 2. Current considerations and opportunities for improvement of gRNA design tools

for metabolic engineering.

Many gRNA models developed for eukaryotic systems are not portable to
prokaryotic systems, and vice-versa. Differences in genome organization and rules for
effective interference and activation limit the generalizability of these models across
branches of life. Wang & Zhang sought to overcome this limitation by developing a deep
learning model based on RNA folding parameters, melting temperatures, and
experimental data from bacterial cells to accurately predict on- and off-target activities for
genome targeting sgRNAs and then use transfer learning to apply their model to
eukaryotic systems as well 8. Transfer learning is a form of machine learning useful to
transfer parameters optimized from one dataset to another model with limited data.
However, their experimental results confirmed previous findings 191.192 that gRNA activity
prediction models developed for eukarya or prokarya are not appropriate for the other,
likely due to differences in chromatin structure and genome organization. For microbial
metabolic engineering, this results in a limited number of reliable gRNA design tools.
Human cell lines are the most popular chassis for the creation of guide prediction models
and software. However, these models are generally not transferable to metabolic
engineering contexts, which typically require an understanding of CRISPR performance
in bacteria or yeast. There is a clear need in the field for a gRNA prediction software
suited towards metabolic engineers; that can accurately predict on- and off-target gRNA
performance in relevant model organisms.

Beyond predicting gRNA efficiency for a single gene target, several models have
investigated the impact of resource competition on the efficacy of CRISPR perturbations.
Specifically, the decrease in CRISPR efficiency that occurs as a result of dCas9 resource
competition from expressing multiple orthogonal gRNAs is well-characterized 95103105,
Clamons & Murray proposed a straightforward model for resource competition in which
the expression of competing gRNAs reduces the available pool of CRISPR complexes
able to perform CRISPRI at each target site by roughly 1/N, where N is the number of
gRNAs. The Clamons & Murray model suggests that CRISPRa is more tolerant to

resource competition than CRISPRI, however subsequent work has challenged this claim
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196, In practice, CRISPRa is likely similarly affected by resource competition as CRISPRI
because the number of activator complexes in the cell may be limiting. Recently, Barbier
et al. showed that differences in gRNA binding affinities between scRNAs and sgRNAs
leads to difficulty in predicting the behavior of combined CRISPRa/i programs in bacteria
197 Through the use of a mathematical model for dCas9 resource competition and
experimental validation, they demonstrated that using gRNAs with similar structures
reduces differences in gRNA binding affinity and improves the function of multi-gRNA
programs. These results suggest that the use of computational tools for predicting gRNA
folding and dCas9 binding affinity will be crucial for constructing effective multi-gene
CRISPRal/i metabolic engineering programs.

While resource competition in CRISPRa and CRISPRi has been modeled for basic
regulatory networks, the effect of dCas9 and activator resource competition on metabolic
engineering productivity remains understudied. This is due in part to a lack of integrative
models that consider the capabilities of CRISPR systems while making strain
recommendations. For example, a model that can account for gRNA competition as the
number of genomic targets increases may help engineers prioritize which sets of genes
to target. Incorporating a simple gRNA competition model into strain recommendation
tools would be straightforward; however, more complex gRNA considerations such as
target sequence context may be more difficult to integrate. Moving forward, these
integrative models will be an important consideration when building large combinatorial
metabolic engineering platforms that aim to simultaneously up- and down- regulate
multiple genes, as there is an inherent tradeoff between the number of targets and the

degree of perturbation.

IV. Outlook and Future Directions

Significant advances in metabolic engineering have been achieved through the
use of model-informed CRISPR transcriptional control programs. Models have enabled
the prediction of effective gene targets for perturbation and the rational design of high
performing gRNA sequences. Still, there are many limitations to existing tools that, if
overcome, would yield substantial benefits to the field of metabolic engineering. Current

models are helpful for identifying targets for up- or down-regulation 10-12.16.17.35.36,80,108 '
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cannot effectively predict the optimal amount of intervention, as total activation or
repression of a gene is rarely the optimal perturbation 193755 Furthermore, CRISPRa/i
tools will enable improved dynamic control over metabolic engineering programs 22, As
dynamic control becomes more prevalent, models able to integrate kinetic predictions
with strain optimization will prove increasingly valuable.

CRISPR-Cas systems offer several advantages over other gene regulation tools
that make them particularly well-suited for implementing model-driven recommendations.
Compared to other tools such as ZF or TALE proteins, CRISPR tools have more ease of
programmability, higher modularity and multiplexing capabilities, and lower off-target
effects 199110 Additionally, over the last several years, CRISPR-Cas tools have been
developed in a diverse range of microorganisms, expanding the scope of available
chassis for metabolic engineering beyond traditional hosts. While numerous systems are
available for implementing genetic interventions, CRISPR-based tools are uniquely able
to accelerate engineering and DBTL cycles for strain design informed by genome-scale
modeling 1%,

Synthetic biologists have recently become interested in how machine learning can
advance metabolic engineering goals '"'. The design of effective gRNAs is a well-suited
problem for machine learning. The value of machine learning for gRNA design has been
demonstrated by the use of a deep learning algorithm to predict gRNA on- and off-target
effects for dCas13, a relatively understudied Cas variant ''2. Yu et al. recently developed
a machine learning approach using publicly available depletion screens for prediction of
CRISPRI guide efficiency that outperformed previous models. In addition, their model
highlights the importance of gene expression levels and gene-specific features in making
accurate predictions, providing novel insights into the understanding of CRISPRi screens
for future work 3. There are already many existing datasets and large libraries that can
easily be screened in a high-throughput fashion if linked to a fitness score 13114 or
biosensor output 115116,

For strain design, the use of machine learning is less straightforward. Ideally,
machine learning-based strain design algorithms would be fit on multi-omics datasets,
including transcriptome, proteome, and metabolome data 3''17. Minimally, metabolomics

data would be needed to relate strain genotypes to production phenotypes 97117
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Alternatively, metabolite-responsive biosensors can be used to generate input data, but
this approach is restricted by the space of available biosensors and their respective
dynamic ranges °*1'8  Additionally, biosensor outputs do not necessarily correlate
strongly with measured metabolite production 4. In any case, the time, labor, and costs
required to collect sufficient perturbation data to create an effective model is limiting .
Porting a model to another organism, or the same organism with a novel heterologous
pathway, may lead to a decrease in predictive power without the collection of new training
data. Alternatively, the use of mechanistic models leads to hypothesis-driven
experimentation, which is more cost and time efficient in the near- and long-term.
Additionally, there is still interest in understanding the underlying mechanisms behind
genotype/phenotype relationships. The use of machine learning hides these
relationships, which can introduce challenges when trying to understand how or why
machine-learning aided design fails.

The use of constraint-based genome-scale models has been shown to be useful
for predicting the phenotypic effect of knockouts. However, such models are less
informative when making predictions based on more subtle changes to protein
expression, which may be achieved through CRISPR control. Metabolic pathways include
gene regulatory networks, and allosteric and feedback control, both of which play critical
roles in shaping an organism’s phenotype. For example, changing the expression level
of a single gene will change metabolite levels which, through feedback mechanisms, will
cause changes in protein expression at other sites, resulting in further downstream
effects. Such effects cannot be easily captured by current constraint-based models.

Ideally, more detailed kinetic models could be developed to address challenges
like feedback effects and regulatory networks, allowing metabolic engineers to make
more precise predictions. While kinetic models are difficult to build, there is a growing list
of success stories. For example, Martin et al. ¢ built an in vitro pathway model of butanol
production consisting of over 200 reactions, van Niekerk et al. ''° developed a detailed
and validated model of energy metabolism in P. falciparum, and Millard et al. 120 built a
validated kinetic model of core metabolism in E. coli. As kinetic models become larger,
there is also growing importance in the reproducibility of these models %!, as a

considerable amount of intellectual effort and expense is used to develop them.
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Other modeling approaches include building approximate kinetic models based on
lin-log kinetics 122123, Approximate kinetic models are simpler than full mechanistic
models, while also giving engineers direct access to the pathway sensitivities through
metabolic control analysis 7122, However, a disadvantage of lin-log models is that their
predictive power drops if changes in gene expression are too large. Nevertheless, these
models may still be able to predict the most promising sites for CRISPR perturbations.

As the available toolbox for metabolic engineering using CRISPR/Cas tools grows,
the need for quantitative and predictive models to inform experiments will become
increasingly valuable. Integrative models capable of suggesting genetic perturbations,
selecting effective gRNAs, and composing selections into large multi-gene CRISPRa/i
programs will greatly improve our ability to rapidly survey combinatorial perturbations and

accelerate the DBTL cycle.

Acknowledgements

We thank Diego Alba Burbano, Benjamin I. Tickman, Cholpisit (Ice) Kiattisewee, and all
members of the Carothers and Zalatan groups for advice, materials, and comments on
the manuscript.

Competing interests

J.G.Z. and J.M.C are members of the Wayfinder Biosciences scientific advisory board.
R.A.L.C,, J.G.Z, and J.M.C. are inventors on patents and/or patent applications filed by
the University of Washington that describe CRISPRal/i tools in prokaryotic systems.

Funding information

This work was supported by US National Science Foundation (NSF) Award MCB
2225632 MCB (J.M.C. and J.G.Z.) and US Department of Energy (DOE) Award DE-
SC0023091 (J.M.C., J.G.Z., and H.M.S.). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF.

Author Information

Corresponding Authors

17



Ryan A. L. Cardiff - Molecular Engineering & Sciences Institute, Center for Synthetic
Biology, Department of Chemistry, Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States, https://orcid.org/0009-0001-0530-9010,
Email: cardiffr@uw.edu

Herbert M. Sauro - Molecular Engineering & Sciences Institute, Center for Synthetic
Biology, Department of Bioengineering, University of Washington, Seattle, WA 98195,
United States, https://orcid.org/0000-0002-3659-6817, Email: hsauro@uw.edu

Authors

Jesse G. Zalatan - Molecular Engineering & Sciences Institute, Center for Synthetic
Biology, and Department of Chemistry, University of Washington, Seattle, WA 98195,
United States, https://orcid.org/0000-0002-1458-0654, Email: zalatan@uw.edu

James M. Carothers - Molecular Engineering & Sciences Institute, Center for Synthetic
Biology, Department of Chemical Engineering, University of Washington, Seattle, WA
98195, United States, https://orcid.org/0000-0001-6728-7833, Email: jcaroth@uw.edu

Author Contributions
R.A.L.C. and H.M.S. wrote the manuscript with input and supervision by J.M.C. and J.G.Z.

18


https://orcid.org/0009-0001-0530-9010
mailto:cardiffr@uw.edu
https://orcid.org/0000-0002-3659-6817
mailto:hsauro@uw.edu
https://orcid.org/0000-0002-1458-0654
mailto:zalatan@uw.edu
https://orcid.org/0000-0001-6728-7833
mailto:jcaroth@uw.edu

References

(1) Li, S.; Jendresen, C. B.; Grunberger, A.; Ronda, C.; Jensen, S. |.; Noack, S;
Nielsen, A. T. Enhanced Protein and Biochemical Production Using CRISPRI-
Based Growth Switches. Metab. Eng. 2016, 38, 274-284.
https://doi.org/10.1016/j.ymben.2016.09.003.

(2) Lian, J.; HamediRad, M.; Hu, S.; Zhao, H. Combinatorial Metabolic Engineering
Using an Orthogonal Tri-Functional CRISPR System. Nat. Commun. 2017, 8 (1),
1688. https://doi.org/10.1038/s41467-017-01695-x.

(3) Kiattisewee, C.; Dong, C.; Fontana, J.; Sugianto, W.; Peralta-Yahya, P.; Carothers,
J. M.; Zalatan, J. G. Portable Bacterial CRISPR Transcriptional Activation Enables
Metabolic Engineering in Pseudomonas Putida. Metab. Eng. 2021, 66, 283—295.
https://doi.org/10.1016/j.ymben.2021.04.002.

(4) Qi, L.S.; Larson, M. H.; Gilbert, L. A.; Doudna, J. A.; Weissman, J. S.; Arkin, A. P.;
Lim, W. A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-
Specific Control of Gene Expression. Cell 2013, 152 (5), 1173-1183.
https://doi.org/10.1016/j.cell.2013.02.022.

(5) Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L. A.
Programmable Repression and Activation of Bacterial Gene Expression Using an
Engineered CRISPR-Cas System. Nucleic Acids Res. 2013, 41 (15), 7429-7437.
https://doi.org/10.1093/nar/gkt520.

(6) Zalatan, J. G.; Lee, M. E.; Almeida, R.; Gilbert, L. A.; Whitehead, E. H.; La Russa,
M.; Tsai, J. C.; Weissman, J. S.; Dueber, J. E.; Qi, L. S.; Lim, W. A. Engineering
Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds. Cell
2015, 160 (1), 339-350. https://doi.org/10.1016/j.cell.2014.11.052.

(7) Dong, C.; Fontana, J.; Patel, A.; Carothers, J. M.; Zalatan, J. G. Synthetic CRISPR-
Cas Gene Activators for Transcriptional Reprogramming in Bacteria. Nat.
Commun. 2018, 9 (1), 2489. https://doi.org/10.1038/s41467-018-04901-6.

(8) McCarty, N. S.; Graham, A. E.; Studena, L.; Ledesma-Amaro, R. Multiplexed
CRISPR Technologies for Gene Editing and Transcriptional Regulation. Nat.
Commun. 2020, 11 (1), 1281. https://doi.org/10.1038/s41467-020-15053-x.

(9) Fontana, J.; Sparkman-Yager, D.; Zalatan, J. G.; Carothers, J. M. Challenges and
Opportunities with CRISPR Activation in Bacteria for Data-Driven Metabolic
Engineering. Curr. Opin. Biotechnol. 2020, 64, 190—198.
https://doi.org/10.1016/j.copbio.2020.04.005.

(10) McAnulty, M. J.; Yen, J. Y.; Freedman, B. G.; Senger, R. S. Genome-Scale
Modeling Using Flux Ratio Constraints to Enable Metabolic Engineering of
Clostridial Metabolism in Silico. BMC Syst. Biol. 2012, 6 (1), 42.
https://doi.org/10.1186/1752-0509-6-42.

(11) Cautha, S. C.; Gowen, C. M.; Lussier, F.-X.; Gold, N. D.; Martin, V. J. J.;
Mahadevan, R. Model-Driven Design of a Saccharomyces Cerevisiae Platform
Strain with Improved Tyrosine Production Capabilities. IFAC Proc. Vol. 2013, 46
(31), 221-226. https://doi.org/10.3182/20131216-3-IN-2044.00066.

(12) Banerjee, D.; Eng, T.; Lau, A. K.; Sasaki, Y.; Wang, B.; Chen, Y.; Prahl, J.-P;
Singan, V. R.; Herbert, R. A.; Liu, Y.; Tanjore, D.; Petzold, C. J.; Keasling, J. D.;
Mukhopadhyay, A. Genome-Scale Metabolic Rewiring Improves Titers Rates and
Yields of the Non-Native Product Indigoidine at Scale. Nat. Commun. 2020, 11 (1),

19



5385. https://doi.org/10.1038/s41467-020-19171-4.

(13) Li, W.; Xu, H.; Xiao, T.; Cong, L.; Love, M. |.; Zhang, F.; Irizarry, R. A.; Liu, J. S.;
Brown, M.; Liu, X. S. MAGeCK Enables Robust Identification of Essential Genes
from Genome-Scale CRISPR/Cas9 Knockout Screens. Genome Biol. 2014, 15
(12), 554. https://doi.org/10.1186/s13059-014-0554-4.

(14) Doench, J. G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E. W.; Donovan, K.
F.; Smith, |.; Tothova, Z.; Wilen, C.; Orchard, R.; Virgin, H. W.; Listgarten, J.; Root,
D. E. Optimized sgRNA Design to Maximize Activity and Minimize Off-Target
Effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34 (2), 184—-191.
https://doi.org/10.1038/nbt.3437.

(15) Labun, K.; Montague, T. G.; Gagnon, J. A.; Thyme, S. B.; Valen, E. CHOPCHOP
v2: A Web Tool for the next Generation of CRISPR Genome Engineering. Nucleic
Acids Res. 2016, 44 (W1), W272-W276. https://doi.org/10.1093/nar/gkw398.

(16) Kim, S. K.; Seong, W.; Han, G. H.; Lee, D.-H.; Lee, S.-G. CRISPR Interference-
Guided Multiplex Repression of Endogenous Competing Pathway Genes for
Redirecting Metabolic Flux in Escherichia Coli. Microb. Cell Factories 2017, 16 (1),
188. https://doi.org/10.1186/s12934-017-0802-x.

(17) Kozaeva, E.; Volkova, S.; Matos, M. R. A.; Mezzina, M. P.; Wulff, T.; Volke, D. C.;
Nielsen, L. K.; Nikel, P. . Model-Guided Dynamic Control of Essential Metabolic
Nodes Boosts Acetyl-Coenzyme A—Dependent Bioproduction in Rewired
Pseudomonas Putida. Metab. Eng. 2021, 67, 373-386.
https://doi.org/10.1016/j.ymben.2021.07.014.

(18) Chavez, A.; Scheiman, J.; Vora, S.; Pruitt, B. W.; Tuttle, M.; P R lyer, E.; Lin, S;
Kiani, S.; Guzman, C. D.; Wiegand, D. J.; Ter-Ovanesyan, D.; Braff, J. L.;
Davidsohn, N.; Housden, B. E.; Perrimon, N.; Weiss, R.; Aach, J.; Collins, J. J.;
Church, G. M. Highly Efficient Cas9-Mediated Transcriptional Programming. Nat.
Methods 2015, 12 (4), 326—-328. https://doi.org/10.1038/nmeth.3312.

(19) Holtz, W. J.; Keasling, J. D. Engineering Static and Dynamic Control of Synthetic
Pathways. Cell 2010, 740 (1), 19-23. https://doi.org/10.1016/j.cell.2009.12.029.

(20) Schober, A. F.; Mathis, A. D.; Ingle, C.; Park, J. O.; Chen, L.; Rabinowitz, J. D;
Junier, |.; Rivoire, O.; Reynolds, K. A. A Two-Enzyme Adaptive Unit within Bacterial
Folate Metabolism. Cell Rep. 2019, 27 (11), 3359-3370.e7.
https://doi.org/10.1016/j.celrep.2019.05.030.

(21) Zhang, F.; Carothers, J. M.; Keasling, J. D. Design of a Dynamic Sensor-Regulator
System for Production of Chemicals and Fuels Derived from Fatty Acids. Nat.
Biotechnol. 2012, 30 (4), 354—359. https://doi.org/10.1038/nbt.2149.

(22) Gupta, A.; Reizman, I. M. B.; Reisch, C. R.; Prather, K. L. J. Dynamic Regulation of
Metabolic Flux in Engineered Bacteria Using a Pathway-Independent Quorum-
Sensing Circuit. Nat. Biotechnol. 2017, 35 (3), 273-279.
https://doi.org/10.1038/nbt.3796.

(23) Fang, X.; Lloyd, C. J.; Palsson, B. O. Reconstructing Organisms in Silico: Genome-
Scale Models and Their Emerging Applications. Nat. Rev. Microbiol. 2020, 18 (12),
731-743. https://doi.org/10.1038/s41579-020-00440-4.

(24) Orth, J. D.; Thiele, |.; Palsson, B. @. What Is Flux Balance Analysis? Nat.
Biotechnol. 2010, 28 (3), 245—-248. https://doi.org/10.1038/nbt.1614.

(25) Lewis, N. E.; Nagarajan, H.; Palsson, B. O. Constraining the Metabolic Genotype-

20



Phenotype Relationship Using a Phylogeny of in Silico Methods. Nat. Rev.
Microbiol. 2012, 10 (4), 291-305. https://doi.org/10.1038/nrmicro2737.

(26) Schuetz, R.; Kuepfer, L.; Sauer, U. Systematic Evaluation of Objective Functions
for Predicting Intracellular Fluxes in Escherichia Coli. Mol. Syst. Biol. 2007, 3 (1),
119. https://doi.org/10.1038/msb4100162.

(27) Garcia Sanchez, C. E.; Torres Saez, R. G. Comparison and Analysis of Objective
Functions in Flux Balance Analysis. Biotechnol. Prog. 2014, 30 (5), 985-991.
https://doi.org/10.1002/btpr.1949.

(28) Pharkya, P.; Maranas, C. D. An Optimization Framework for ldentifying Reaction
Activation/Inhibition or Elimination Candidates for Overproduction in Microbial
Systems. Metab. Eng. 2006, 8 (1), 1-13.
https://doi.org/10.1016/j.ymben.2005.08.003.

(29) OptDesign: Identifying Optimum Design Strategies in Strain Engineering for
Biochemical Production | ACS Synthetic Biology.
https://pubs.acs.org/doi/10.1021/acssynbio.1c00610 (accessed 2024-03-25).

(80) Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective |
PLOS Computational Biology.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002882
(accessed 2024-03-25).

(31) Radivojevi¢, T.; Costello, Z.; Workman, K.; Garcia Martin, H. A Machine Learning
Automated Recommendation Tool for Synthetic Biology. Nat. Commun. 2020, 11
(1), 4879. https://doi.org/10.1038/s41467-020-18008-4.

(32) Sabzevari, M.; Szedmak, S.; Penttila, M.; Jouhten, P.; Rousu, J. Strain Design
Optimization Using Reinforcement Learning. PLOS Comput. Biol. 2022, 18 (6),
e1010177. https://doi.org/10.1371/journal.pcbi.1010177.

(33) van Rosmalen, R. P.; Smith, R. W.; Martins dos Santos, V. A. P.; Fleck, C.;
Suarez-Diez, M. Model Reduction of Genome-Scale Metabolic Models as a Basis
for Targeted Kinetic Models. Metab. Eng. 2021, 64, 74—-84.
https://doi.org/10.1016/j.ymben.2021.01.008.

(34) Venayak, N.; von Kamp, A.; Klamt, S.; Mahadevan, R. MoVE Identifies Metabolic
Valves to Switch between Phenotypic States. Nat. Commun. 2018, 9 (1), 5332.
https://doi.org/10.1038/s41467-018-07719-4.

(35) Bidirectional titration of yeast gene expression using a pooled CRISPR guide RNA
approach. PNAS. https://www.pnas.org/doi/abs/10.1073/pnas.2007413117
(accessed 2022-02-28).

(36) Dusad, V.; Thiel, D.; Barahona, M.; Keun, H. C.; Oyarzun, D. A. Opportunities at
the Interface of Network Science and Metabolic Modeling. Front. Bioeng.
Biotechnol. 2021, 8, 1570. https://doi.org/10.3389/fbioe.2020.591049.

(37) Liu, Z.; Robson, P.; Cheng, A. Simultaneous Multifunctional Transcriptome
Engineering by CRISPR RNA Scaffold. bioRxiv June 22, 2022, p
2022.06.21.497089. https://doi.org/10.1101/2022.06.21.497089.

(38) Yu, Y.; Gawlitt, S.; de Andrade e Sousa, L. B.; Merdivan, E.; Piraud, M.; Beisel, C.
L.; Barquist, L. Improved Prediction of Bacterial CRISPRi Guide Efficiency from
Depletion Screens through Mixed-Effect Machine Learning and Data Integration.
Genome Biol. 2024, 25 (1), 13. https://doi.org/10.1186/s13059-023-03153-y.

(39) Wang, T.; Guan, C.; Guo, J.; Liu, B.; Wu, Y.; Xie, Z.; Zhang, C.; Xing, X.-H. Pooled

21



CRISPR Interference Screening Enables Genome-Scale Functional Genomics
Study in Bacteria with Superior Performance. Nat. Commun. 2018, 9 (1), 2475.
https://doi.org/10.1038/s41467-018-04899-x.

(40) Mahadevan, R.; von Kamp, A.; Klamt, S. Genome-Scale Strain Designs Based on
Regulatory Minimal Cut Sets. Bioinformatics 2015, 31 (17), 2844—-2851.
https://doi.org/10.1093/bioinformatics/btv217.

(41) Shaw, W. M.; Studena, L.; Roy, K.; Hapeta, P.; McCarty, N. S.; Graham, A. E,;
Ellis, T.; Ledesma-Amaro, R. Inducible Expression of Large gRNA Arrays for
Multiplexed CRISPRai Applications. Nat. Commun. 2022, 13 (1), 4984.
https://doi.org/10.1038/s41467-022-32603-7.

(42) Shen, F.; Sun, R.; Yao, J.; Li, J.; Liu, Q.; Price, N. D.; Liu, C.; Wang, Z. OptRAM:
In-Silico Strain Design via Integrative Regulatory-Metabolic Network Modeling.
PLOS Comput. Biol. 2019, 15 (3), e1006835.
https://doi.org/10.1371/journal.pcbi.1006835.

(43) Kim, J.; Reed, J. L. OptORF: Optimal Metabolic and Regulatory Perturbations for
Metabolic Engineering of Microbial Strains. BMC Syst. Biol. 2010, 4 (1), 53.
https://doi.org/10.1186/1752-0509-4-53.

(44) Razaghi-Moghadam, Z.; Nikoloski, Z. GeneReg: A Constraint-Based Approach for
Design of Feasible Metabolic Engineering Strategies at the Gene Level.
Bioinformatics 2021, 37 (12), 1717-1723.
https://doi.org/10.1093/bioinformatics/btaa996.

(45) Call, S. N.; Andrews, L. B. CRISPR-Based Approaches for Gene Regulation in
Non-Model Bacteria. Front. Genome Ed. 2022, 4, 892304.
https://doi.org/10.3389/fgeed.2022.892304.

(46) Machado, D.; Andrejev, S.; Tramontano, M.; Patil, K. R. Fast Automated
Reconstruction of Genome-Scale Metabolic Models for Microbial Species and
Communities. Nucleic Acids Res. 2018, 46 (15), 7542—7553.
https://doi.org/10.1093/nar/gky537.

(47) Zimmermann, J.; Kaleta, C.; Waschina, S. Gapseq: Informed Prediction of
Bacterial Metabolic Pathways and Reconstruction of Accurate Metabolic Models.
Genome Biol. 2021, 22 (1), 81. https://doi.org/10.1186/s13059-021-02295-1.

(48) Mendoza, S. N.; Olivier, B. G.; Molenaar, D.; Teusink, B. A Systematic Assessment
of Current Genome-Scale Metabolic Reconstruction Tools. Genome Biol. 2019, 20
(1), 158. https://doi.org/10.1186/s13059-019-1769-1.

(49) Henry, C. S.; DedJongh, M.; Best, A. A.; Frybarger, P. M.; Linsay, B.; Stevens, R. L.
High-Throughput Generation, Optimization and Analysis of Genome-Scale
Metabolic Models. Nat. Biotechnol. 2010, 28 (9), 977-982.
https://doi.org/10.1038/nbt.1672.

(50) Greene, J.; Daniell, J.; Kdépke, M.; Broadbelt, L.; Tyo, K. E. J. Kinetic Ensemble
Model of Gas Fermenting Clostridium Autoethanogenum for Improved Ethanol
Production. Biochem. Eng. J. 2019, 148, 46-56.
https://doi.org/10.1016/j.bej.2019.04.021.

(51) Woolston, B. M.; Emerson, D. F.; Currie, D. H.; Stephanopoulos, G. Rediverting
Carbon Flux in Clostridium Ljungdahlii Using CRISPR Interference (CRISPRI).
Metab. Eng. 2018, 48, 243-253. https://doi.org/10.1016/j.ymben.2018.06.006.

(52) Schuchmann, K.; Mdller, V. Autotrophy at the Thermodynamic Limit of Life: A

22



Model for Energy Conservation in Acetogenic Bacteria. Nat. Rev. Microbiol. 2014,
12 (12), 809-821. https://doi.org/10.1038/nrmicro3365.

(53) Nagarajan, H.; Sahin, M.; Nogales, J.; Latif, H.; Lovley, D. R.; Ebrahim, A.; Zengler,
K. Characterizing Acetogenic Metabolism Using a Genome-Scale Metabolic
Reconstruction of Clostridium Ljungdahlii. Microb. Cell Factories 2013, 12 (1), 118.
https://doi.org/10.1186/1475-2859-12-118.

(54) Zhang, J.; Petersen, S. D.; Radivojevic, T.; Ramirez, A.; Pérez-Manriquez, A.;
Abeliuk, E.; Sanchez, B. J.; Costello, Z.; Chen, Y.; Fero, M. J.; Martin, H. G.;
Nielsen, J.; Keasling, J. D.; Jensen, M. K. Combining Mechanistic and Machine
Learning Models for Predictive Engineering and Optimization of Tryptophan
Metabolism. Nat. Commun. 2020, 11 (1), 4880. https://doi.org/10.1038/s41467 -
020-17910-1.

(55) HamediRad, M.; Chao, R.; Weisberg, S.; Lian, J.; Sinha, S.; Zhao, H. Towards a
Fully Automated Algorithm Driven Platform for Biosystems Design. Nat. Commun.
2019, 10 (1), 5150. https://doi.org/10.1038/s41467-019-13189-z.

(56) Karim, A. S.; Dudley, Q. M.; Juminaga, A.; Yuan, Y.; Crowe, S. A.; Heggestad, J.
T.; Garg, S.; Abdalla, T.; Grubbe, W. S.; Rasor, B. J.; Coar, D. N.; Torculas, M.;
Krein, M.; Liew, F. (Eric); Quattlebaum, A.; Jensen, R. O.; Stuart, J. A.; Simpson,
S. D.; Képke, M.; Jewett, M. C. In Vitro Prototyping and Rapid Optimization of
Biosynthetic Enzymes for Cell Design. Nat. Chem. Biol. 2020, 16 (8), 912-919.
https://doi.org/10.1038/s41589-020-0559-0.

(57) Kruger, A.; Mueller, A. P.; Rybnicky, G. A.; Engle, N. L.; Yang, Z. K.; Tschaplinski,
T. J.; Simpson, S. D.; Kdpke, M.; Jewett, M. C. Development of a Clostridia-Based
Cell-Free System for Prototyping Genetic Parts and Metabolic Pathways. Metab.
Eng. 2020, 62, 95-105. https://doi.org/10.1016/j.ymben.2020.06.004.

(58) Grubbe, W. S.; Rasor, B. J.; Kruger, A.; Jewett, M. C.; Karim, A. S. Cell-Free
Styrene Biosynthesis at High Titers. Metab. Eng. 2020, 61, 89-95.
https://doi.org/10.1016/j.ymben.2020.05.009.

(59) Kay, J. E.; Jewett, M. C. A Cell-Free System for Production of 2,3-Butanediol Is
Robust to Growth-Toxic Compounds. Metab. Eng. Commun. 2020, 10, e00114.
https://doi.org/10.1016/j.mec.2019.e00114.

(60) Dudley, Q. M.; Karim, A. S.; Jewett, M. C. Cell-Free Metabolic Engineering:
Biomanufacturing beyond the Cell. Biotechnol. J. 2015, 10 (1), 69-82.
https://doi.org/10.1002/biot.201400330.

(61) Marshall, R.; Noireaux, V. Quantitative Modeling of Transcription and Translation of
an All-E. Coli Cell-Free System. Sci. Rep. 2019, 9 (1), 11980.
https://doi.org/10.1038/s41598-019-48468-8.

(62) Tickman, B. |.; Burbano, D. A.; Chavali, V. P.; Kiattisewee, C.; Fontana, J.;
Khakimzhan, A.; Noireaux, V.; Zalatan, J. G.; Carothers, J. M. Multi-Layer
CRISPRali Circuits for Dynamic Genetic Programs in Cell-Free and Bacterial
Systems. Cell Syst. 2021, 0 (0). https://doi.org/10.1016/j.cels.2021.10.008.

(63) Moore, S. J.; MacDonald, J. T.; Wienecke, S.; Ishwarbhai, A.; Tsipa, A.; Aw, R;;
Kylilis, N.; Bell, D. J.; McClymont, D. W.; Jensen, K.; Polizzi, K. M.; Biedendieck,
R.; Freemont, P. S. Rapid Acquisition and Model-Based Analysis of Cell-Free
Transcription—Translation Reactions from Nonmodel Bacteria. Proc. Natl. Acad.
Sci. 2018, 115 (19), E4340—E4349. https://doi.org/10.1073/pnas.1715806115.

23



(64) Lehr, F.-X.; Hanst, M.; Vogel, M.; Kremer, J.; Goringer, H. U.; Suess, B.; Koeppl, H.
Cell-Free Prototyping of AND-Logic Gates Based on Heterogeneous RNA
Activators. ACS Synth. Biol. 2019, 8 (9), 2163-2173.
https://doi.org/10.1021/acssynbio.9b00238.

(65) Koch, M.; Faulon, J.-L.; Borkowski, O. Models for Cell-Free Synthetic Biology:
Make Prototyping Easier, Better, and Faster. Front. Bioeng. Biotechnol. 2018, 6,
182. https://doi.org/10.3389/fbioe.2018.00182.

(66) Vilkhovoy, M.; Horvath, N.; Shih, C.-H.; Wayman, J. A.; Calhoun, K.; Swartz, J.;
Varner, J. D. Sequence Specific Modeling of E. Coli Cell-Free Protein Synthesis.
ACS Synth. Biol. 2018, 7 (8), 1844-1857.
https://doi.org/10.1021/acssynbio.7b00465.

(67) Martin, J. P.; Rasor, B. J.; DeBonis, J.; Karim, A. S.; Jewett, M. C.; Tyo, K. E. J,;
Broadbelt, L. J. A Dynamic Kinetic Model Captures Cell-Free Metabolism for
Improved Butanol Production. Metab. Eng. 2023, 76, 133—145.
https://doi.org/10.1016/j.ymben.2023.01.009.

(68) Rasor, B. J.; Yi, X.; Brown, H.; Alper, H. S.; Jewett, M. C. An Integrated in Vivo/in
Vitro Framework to Enhance Cell-Free Biosynthesis with Metabolically Rewired
Yeast Extracts. Nat. Commun. 2021, 12 (1), 5139. https://doi.org/10.1038/s41467-
021-25233-y.

(69) Brockman, I. M.; Prather, K. L. J. Dynamic Metabolic Engineering: New Strategies
for Developing Responsive Cell Factories. Biotechnol. J. 2015, 10 (9), 1360—1369.
https://doi.org/10.1002/biot.201400422.

(70) Wu, Y.; Chen, T.; Liu, Y.; Lv, X.; Li, J.; Du, G.; Ledesma-Amaro, R.; Liu, L.
CRISPRI Allows Optimal Temporal Control of N-Acetylglucosamine Bioproduction
by a Dynamic Coordination of Glucose and Xylose Metabolism in Bacillus Subtilis.
Metab. Eng. 2018, 49, 232—-241. https://doi.org/10.1016/j.ymben.2018.08.012.

(71) Hartline, C. J.; Schmitz, A. C.; Han, Y.; Zhang, F. Dynamic Control in Metabolic
Engineering: Theories, Tools, and Applications. Metab. Eng. 2021, 63, 126—140.
https://doi.org/10.1016/j.ymben.2020.08.015.

(72) Wu, Y.; Chen, T.; Liu, Y.; Tian, R.; Lv, X.; Li, J.; Du, G.; Chen, J.; Ledesma-Amaro,
R.; Liu, L. Design of a Programmable Biosensor-CRISPRi Genetic Circuits for
Dynamic and Autonomous Dual-Control of Metabolic Flux in Bacillus Subtilis.
Nucleic Acids Res. 2020, 48 (2), 996—1009. https://doi.org/10.1093/nar/gkz1123.

(73) Watt, V. M.; Ingles, C. J.; Urdea, M. S.; Rutter, W. J. Homology Requirements for
Recombination in Escherichia Coli. Proc. Natl. Acad. Sci. U. S. A. 1985, 82 (14),
4768-4772.

(74) Nihongaki, Y.; Kawano, F.; Nakajima, T.; Sato, M. Photoactivatable CRISPR-Cas9
for Optogenetic Genome Editing. Nat. Biotechnol. 2015, 33 (7), 755—-760.
https://doi.org/10.1038/nbt.3245.

(75) Cunningham-Bryant, D.; Sun, J.; Fernandez, B.; Zalatan, J. G. CRISPR-Cas-
Mediated Chemical Control of Transcriptional Dynamics in Yeast. ChemBioChem
2019, 20 (12), 1519-1523. https://doi.org/10.1002/cbic.201800823.

(76) Kundert, K.; Lucas, J. E.; Watters, K. E.; Fellmann, C.; Ng, A. H.; Heineike, B. M;
Fitzsimmons, C. M.; Oakes, B. L.; Qu, J.; Prasad, N.; Rosenberg, O. S.; Savage,
D. F.; EI-Samad, H.; Doudna, J. A.; Kortemme, T. Controlling CRISPR-Cas9 with
Ligand-Activated and Ligand-Deactivated sgRNAs. Nat. Commun. 2019, 10 (1),

24



2127. https://doi.org/10.1038/s41467-019-09985-2.

(77) Fontana, J.; Voje, W. E.; Zalatan, J. G.; Carothers, J. M. Prospects for Engineering
Dynamic CRISPR-Cas Transcriptional Circuits to Improve Bioproduction. J. Ind.
Microbiol. Biotechnol. 2018, 45 (7), 481-490. https://doi.org/10.1007/s10295-018-
2039-z.

(78) Lee, J. W.; Na, D.; Park, J. M; Lee, J.; Choi, S.; Lee, S. Y. Systems Metabolic
Engineering of Microorganisms for Natural and Non-Natural Chemicals. Nat.
Chem. Biol. 2012, 8 (6), 536—546. https://doi.org/10.1038/nchembio.970.

(79) Maia, P.; Rocha, M.; Rocha, I. In Silico Constraint-Based Strain Optimization
Methods: The Quest for Optimal Cell Factories. Microbiol. Mol. Biol. Rev. 2015, 80
(1), 45-67. https://doi.org/10.1128/mmbr.00014-15.

(80) Liu, D.; Mannan, A. A.; Han, Y.; Oyarzun, D. A.; Zhang, F. Dynamic Metabolic
Control: Towards Precision Engineering of Metabolism. J. Ind. Microbiol.
Biotechnol. 2018, 45 (7), 535-543. https://doi.org/10.1007/s10295-018-2013-9.

(81) Motoche-Monar, C.; Ordoiez, J. E.; Chang, O.; Gonzales-Zubiate, F. A. gRNA
Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement.
Biomolecules 2023, 13 (12), 1698. https://doi.org/10.3390/biom13121698.

(82) Konstantakos, V.; Nentidis, A.; Krithara, A.; Paliouras, G. CRISPR-Cas9 gRNA
Efficiency Prediction: An Overview of Predictive Tools and the Role of Deep
Learning. Nucleic Acids Res. 2022, 50 (7), 3616—3637.
https://doi.org/10.1093/nar/gkac192.

(83) Yu, Y.; Gawlitt, S.; de Andrade e Sousa, L. B.; Merdivan, E.; Piraud, M.; Beisel, C.;
Barquist, L. Improved Prediction of Bacterial CRISPRi Guide Efficiency through
Data Integration and Automated Machine Learning; preprint; Bioinformatics, 2022.
https://doi.org/10.1101/2022.05.27.493707.

(84) Wang, L.; Zhang, J. Prediction of sgRNA On-Target Activity in Bacteria by Deep
Learning. BMC Bioinformatics 2019, 20 (1), 517. https://doi.org/10.1186/s12859-
019-3151-4.

(85) Eslami-Mossallam, B.; Klein, M.; Smagt, C. V. D.; Sanden, K. V. D.; Jones, S. K,;
Hawkins, J. A.; Finkelstein, 1. J.; Depken, M. A Kinetic Model Predicts SpCas9
Activity, Improves off-Target Classification, and Reveals the Physical Basis of
Targeting Fidelity. Nat. Commun. 2022, 13 (1), 1367.
https://doi.org/10.1038/s41467-022-28994-2.

(86) Farasat, 1.; Salis, H. M. A Biophysical Model of CRISPR/Cas9 Activity for Rational
Design of Genome Editing and Gene Regulation. PLoS Comput. Biol. 2016, 12 (1),
€1004724. https://doi.org/10.1371/journal.pcbi.1004724.

(87) Corsi, G. I.; Qu, K.; Alkan, F.; Pan, X.; Luo, Y.; Gorodkin, J. CRISPR/Cas9 gRNA
Activity Depends on Free Energy Changes and on the Target PAM Context. Nat.
Commun. 2022, 13 (1), 3006. https://doi.org/10.1038/s41467-022-30515-0.

(88) Labun, K.; Montague, T. G.; Krause, M.; Torres Cleuren, Y. N.; Tjeldnes, H.; Valen,
E. CHOPCHOP v3: Expanding the CRISPR Web Toolbox beyond Genome Editing.
Nucleic Acids Res. 2019, 47 (W1), W171-W174.
https://doi.org/10.1093/nar/gkz365.

(89) Gilbert, L. A.; Horlbeck, M. A.; Adamson, B.; Villalta, J. E.; Chen, Y.; Whitehead, E.
H.; Guimaraes, C.; Panning, B.; Ploegh, H. L.; Bassik, M. C.; Qi, L. S.; Kampmann,
M.; Weissman, J. S. Genome-Scale CRISPR-Mediated Control of Gene

25



Repression and Activation. Cell 2014, 159 (3), 647—661.
https://doi.org/10.1016/j.cell.2014.09.029.

(90) Smith, J. D.; Suresh, S.; Schlecht, U.; Wu, M.; Wagih, O.; Peltz, G.; Davis, R. W.;
Steinmetz, L. M.; Parts, L.; St.Onge, R. P. Quantitative CRISPR Interference
Screens in Yeast Identify Chemical-Genetic Interactions and New Rules for Guide
RNA Design. Genome Biol. 2016, 17 (1), 45. https://doi.org/10.1186/s13059-016-
0900-9.

(91) Kocak, D. D.; Josephs, E. A.; Bhandarkar, V.; Adkar, S. S.; Kwon, J. B.; Gersbach,
C. A. Increasing the Specificity of CRISPR Systems with Engineered RNA
Secondary Structures. Nat. Biotechnol. 2019, 37 (6), 657—666.
https://doi.org/10.1038/s41587-019-0095-1.

(92) Haeussler, M.; Schonig, K.; Eckert, H.; Eschstruth, A.; Mianné, J.; Renaud, J.-B.;
Schneider-Maunoury, S.; Shkumatava, A.; Teboul, L.; Kent, J.; Joly, J.-S;
Concordet, J.-P. Evaluation of Off-Target and on-Target Scoring Algorithms and
Integration into the Guide RNA Selection Tool CRISPOR. Genome Biol. 2016, 17
(1), 148. https://doi.org/10.1186/s13059-016-1012-2.

(93) Chen, Y.; Zeng, S.; Hu, R.; Wang, X.; Huang, W.; Liu, J.; Wang, L.; Liu, G.; Cao,
Y.; Zhang, Y. Using Local Chromatin Structure to Improve CRISPR/Cas9 Efficiency
in Zebrafish. PLoS ONE 2017, 12 (8), e0182528.
https://doi.org/10.1371/journal.pone.0182528.

(94) Jensen, K. T.; Flge, L.; Petersen, T. S.; Huang, J.; Xu, F.; Bolund, L.; Luo, Y.; Lin,
L. Chromatin Accessibility and Guide Sequence Secondary Structure Affect
CRISPR-Cas9 Gene Editing Efficiency. FEBS Lett. 2017, 591 (13), 1892—-1901.
https://doi.org/10.1002/1873-3468.12707.

(95) Zhang, S.; Voigt, C. A. Engineered dCas9 with Reduced Toxicity in Bacteria:
Implications for Genetic Circuit Design. Nucleic Acids Res. 2018, 46 (20), 11115—
11125. https://doi.org/10.1093/nar/gky884.

(96) Van Hove, B.; De Wannemaeker, L.; Missiaen, |.; Maertens, J.; De Mey, M. Taming
CRISPRIi: Dynamic Range Tuning through Guide RNA Diversion. New Biotechnol.
2023, 77, 50-57. https://doi.org/10.1016/j.nbt.2023.07.001.

(97) Fontana, J.; Sparkman-Yager, D.; Faulkner, |.; Cardiff, R.; Kiattisewee, C.; Walls,
A.; Primo, T. G.; Kinnunen, P. C.; Martin, H. G.; Zalatan, J. G.; Carothers, J. M.
Guide RNA Structure Design Enables Combinatorial CRISPRa Programs for
Biosynthetic Profiling. bioRxiv November 17, 2023, p 2023.11.17.567465.
https://doi.org/10.1101/2023.11.17.567465.

(98) Moreno-Mateos, M. A.; Vejnar, C. E.; Beaudoin, J.-D.; Fernandez, J. P.; Mis, E. K;;
Khokha, M. K.; Giraldez, A. J. CRISPRscan: Designing Highly Efficient sgRNAs for
CRISPR-Cas9 Targeting in Vivo. Nat. Methods 2015, 12 (10), 982—-988.
https://doi.org/10.1038/nmeth.3543.

(99) Ding, W.; Zhang, Y.; Shi, S. Development and Application of CRISPR/Cas in
Microbial Biotechnology. Front. Bioeng. Biotechnol. 2020, 8, 711.
https://doi.org/10.3389/fbioe.2020.00711.

(100) Jost, M.; Santos, D. A.; Saunders, R. A.; Horlbeck, M. A.; Hawkins, J. S.; Scaria,
S. M.; Norman, T. M.; Hussmann, J. A.; Liem, C. R.; Gross, C. A.; Weissman, J. S.
Titrating Gene Expression Using Libraries of Systematically Attenuated CRISPR
Guide RNAs. Nat. Biotechnol. 2020, 38 (3), 355-364.

26



https://doi.org/10.1038/s41587-019-0387-5.

(101) Guo, J.; Wang, T.; Guan, C.; Liu, B.; Luo, C.; Xie, Z.; Zhang, C.; Xing, X.-H.
Improved sgRNA Design in Bacteria via Genome-Wide Activity Profiling. Nucleic
Acids Res. 2018, 46 (14), 7052—7069. https://doi.org/10.1093/nar/gky572.

(102) Cui, L.; Bikard, D. Consequences of Cas9 Cleavage in the Chromosome of
Escherichia Coli. Nucleic Acids Res. 2016, 44 (9), 4243—4251.
https://doi.org/10.1093/nar/gkw223.

(103) Huang, H.-H.; Bellato, M.; Qian, Y.; Cardenas, P.; Pasotti, L.; Magni, P.; Del
Vecchio, D. dCas9 Regulator to Neutralize Competition in CRISPRIi Circuits. Nat.
Commun. 2021, 12 (1), 1692. https://doi.org/10.1038/s41467-021-21772-6.

(104) Chen, P.-Y.; Qian, Y.; Del Vecchio, D. A Model for Resource Competition in
CRISPR-Mediated Gene Repression. In 2018 IEEE Conference on Decision and
Control (CDC); 2018; pp 4333—4338. https://doi.org/10.1109/CDC.2018.8619016.

(105) Clamons, S.; Murray, R. Modeling Predicts That CRISPR-Based Activators,
Unlike CRISPR-Based Repressors, Scale Well with Increasing gRNA Competition
and dCas9 Bottlenecking; preprint; Synthetic Biology, 2019.
https://doi.org/10.1101/719278.

(106) Manoj, K.; Del Vecchio, D. Emergent Interactions Due to Resource Competition
in CRISPR-Mediated Genetic Activation Circuits. In 2022 IEEE 61st Conference on
Decision and Control (CDC); IEEE: Cancun, Mexico, 2022; pp 1300-1305.
https://doi.org/10.1109/CDC51059.2022.9993376.

(107) Barbier, I.; Kusumawardhani, H.; Chauhan, L.; Harlapur, P. V.; Jolly, M. K;
Schaerli, Y. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR
Activation in E. Coli: Importance of Equal Guide RNA Binding Affinities to Avoid
Context-Dependent Effects. ACS Synth. Biol. 2023, 12 (10), 3064—-3071.
https://doi.org/10.1021/acssynbio.3c00375.

(108) Fang, L.; Fan, J.; Luo, S.; Chen, Y.; Wang, C.; Cao, Y.; Song, H. Genome-Scale
Target Identification in Escherichia Coli for High-Titer Production of Free Fatty
Acids. Nat. Commun. 2021, 12 (1), 4976. https://doi.org/10.1038/s41467-021-
25243-w.

(109) Liu, R.; Bassalo, M. C.; Zeitoun, R. |.; Gill, R. T. Genome Scale Engineering
Techniques for Metabolic Engineering. Metab. Eng. 2015, 32, 143-154.
https://doi.org/10.1016/j.ymben.2015.09.013.

(110) Gaj, T.; Gersbach, C. A.; Barbas, C. F., lll. ZFN, TALEN, and CRISPR/Cas-
Based Methods for Genome Engineering. Trends Biotechnol. 2013, 31 (7), 397—
405. https://doi.org/10.1016/j.tibtech.2013.04.004.

(111) Antonakoudis, A.; Barbosa, R.; Kotidis, P.; Kontoravdi, C. The Era of Big Data:
Genome-Scale Modelling Meets Machine Learning. Comput. Struct. Biotechnol. J.
2020, 78, 3287-3300. https://doi.org/10.1016/j.csbj.2020.10.011.

(112) Wessels, H.-H.; Stirn, A.; Méndez-Mancilla, A.; Kim, E. J.; Hart, S. K.; Knowles,
D. A.; Sanjana, N. E. Prediction of On-Target and off-Target Activity of CRISPR-
Cas13d Guide RNAs Using Deep Learning. Nat. Biotechnol. 2023, 1-10.
https://doi.org/10.1038/s41587-023-01830-8.

(113) de Bakker, V.; Liu, X.; Bravo, A. M.; Veening, J.-W. CRISPRIi-Seq for Genome-
Wide Fitness Quantification in Bacteria. Nat. Protoc. 2022, 17 (2), 252-281.
https://doi.org/10.1038/s41596-021-00639-6.

27



(114) McGlincy, N. J.; Meacham, Z. A.; Reynaud, K. K.; Muller, R.; Baum, R.; Ingolia,
N. T. A Genome-Scale CRISPR Interference Guide Library Enables
Comprehensive Phenotypic Profiling in Yeast. BMC Genomics 2021, 22 (1), 205.
https://doi.org/10.1186/s12864-021-07518-0.

(115) Mormino, M.; Lenitz, I.; Siewers, V.; Nygard, Y. Identification of Acetic Acid
Sensitive Strains through Biosensor-Based Screening of a Saccharomyces
Cerevisiae CRISPRI Library. Microb. Cell Factories 2022, 21 (1), 214.
https://doi.org/10.1186/s12934-022-01938-7.

(116) Wang, J.; Li, C.; Jiang, T.; Yan, Y. Biosensor-Assisted Titratable CRISPRi High-
Throughput (BATCH) Screening for over-Production Phenotypes. Metab. Eng.
2023, 75, 58-67. https://doi.org/10.1016/j.ymben.2022.11.004.

(117) St. John, P. C.; Bomble, Y. J. Approaches to Computational Strain Design in the
Multiomics Era. Front. Microbiol. 2019, 10.
https://doi.org/10.3389/fmicb.2019.00597.

(118) Kaczmarek, J. A.; Prather, K. L. J. Effective Use of Biosensors for High-
Throughput Library Screening for Metabolite Production. J. Ind. Microbiol.
Biotechnol. 2021, 48 (9—10), kuab049. https://doi.org/10.1093/jimb/kuab049.

(119) van Niekerk, D. D.; du Toit, F.; Green, K.; Palm, D.; Snoep, J. L. A Detailed
Kinetic Model of Glycolysis in Plasmodium Falciparum-Infected Red Blood Cells for
Antimalarial Drug Target Identification. J. Biol. Chem. 2023, 299 (9), 105111.
https://doi.org/10.1016/j.jbc.2023.105111.

(120) Millard, P.; Smallbone, K.; Mendes, P. Metabolic Regulation Is Sufficient for
Global and Robust Coordination of Glucose Uptake, Catabolism, Energy
Production and Growth in Escherichia Coli. PLOS Comput. Biol. 2017, 13 (2),
e1005396. https://doi.org/10.1371/journal.pcbi.1005396.

(121) Shin, J.; Porubsky, V.; Carothers, J.; Sauro, H. M. Standards, Dissemination, and
Best Practices in Systems Biology. Curr. Opin. Biotechnol. 2023, 81, 102922.
https://doi.org/10.1016/j.copbio.2023.102922.

(122) John, P. C. S.; Strutz, J.; Broadbelt, L. J.; Tyo, K. E. J.; Bomble, Y. J. Bayesian
Inference of Metabolic Kinetics from Genome-Scale Multiomics Data. PLOS
Comput. Biol. 2019, 15 (11), e1007424.
https://doi.org/10.1371/journal.pcbi.1007424.

(123) McNaughton, A. D.; Bredeweg, E. L.; Manzer, J.; Zucker, J.; Munoz Munoz, N.;
Burnet, M. C.; Nakayasu, E. S.; Pomraning, K. R.; Merkley, E. D.; Dai, Z.; Chrisler,
W. B.; Baker, S. E.; St. John, P. C.; Kumar, N. Bayesian Inference for Integrating
Yarrowia Lipolytica Multiomics Datasets with Metabolic Modeling. ACS Synth. Biol.
2021, 10 (11), 2968-2981. https://doi.org/10.1021/acssynbio.1c00267.

28



