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Abstract—Modern microcontroller software is often written in
C/C++ and suffers from control-flow hijacking vulnerabilities.
Previous mitigations suffer from high performance and memory
overheads and require either the presence of memory protection
hardware or sophisticated program analysis in the compiler.

This paper presents DeTRAP (Debug Trigger Return Ad-
dress Protection). DeTRAP utilizes a full implementation of
the RISC-V debug hardware specification to provide a write-
protected shadow stack for return addresses. Unlike previous
work, DeTRAP requires no memory protection hardware and
only minor changes to the compiler toolchain.

We tested DeTRAP on an FPGA running a 32-bit RISC-V
microcontroller core and found average execution time overheads
to be between 0.5% and 1.9% on evaluated benchmark suites
with code size overheads averaging 7.9% or less.

I. INTRODUCTION

Modern microcontroller software is mainly written in C and

C++. Unfortunately, these languages are type-unsafe, and pro-

grams written therein may have memory safety vulnerabilities

that can be exploited by control-flow hijacking attacks [55].

While restricting control flow by enforcing Control-flow In-

tegrity (CFI) [1] can mitigate these attacks, previous work has

shown that advanced control-flow hijacking attacks are still

possible if the integrity of function return addresses is not

protected [14], [25], [32]. Worse, programs on all mainstream

architectures, such as x86, ARM, and RISC-V, all suffer from

this problem [21].

Previous work has taken one of two approaches to mitigate

these sophisticated attacks. The first approach protects the

integrity of function return addresses [13], [66], [72]. However,

all of these systems induce execution time and memory

overheads. Some [66] utilize hardware memory protection

features that are intended for privilege domain separation,

such as switching to supervisor mode when manipulating the

shadow stack, but otherwise executing in user mode, requiring

a context switch on every call to a non-leaf function. The most

efficient of these systems is Silhouette [72] which imposes

1.3% performance overhead on CoreMark-Pro [31] and 3.4%

performance overhead on BEEBS [51]. Worse, the code size

overheads for these same benchmarks are 16.5% and 5.3%,

respectively, when the size of untransformed code (namely

libc and libm) are removed from the baseline.

†Contributions made while at the University of Rochester

A second approach is to detect corruption of the return

address; such detection must account for the path that control

flow has taken through the call graph in order to mitigate

sophisticated control-flow hijacking attacks. µRAI [4] is such

a system and has comparable performance overhead to Sil-

houette, averaging 2.6%1, but has code size overheads of

54.1%. µRAI also requires computing a complete call graph

at compile time, which requires sophisticated whole-program

analysis [43]. These overheads hinder adoption in micro-

controllers. Additional overheads can force manufacturers to

choose between higher security at the cost of utilizing more

expensive hardware with faster processors and more memory

or greater cost-efficiency at the cost of security.

Additionally, we seek a solution that requires no new

hardware features. New hardware features must be thoroughly

tested by manufacturers and ratified by standards bodies before

they are implemented and deployed. Since new hardware

support requires “buy-in” from multiple entities, a solution that

uses features already approved by manufacturers and standards

bodies is more likely to gain adoption.

Modern processors, such as ARM [6], [8] and RISC-V [54],

provide sophisticated processor watchpoint features that can

generate a debug watchpoint trap when certain conditions,

configured by software, occur. Unlike earlier processors, these

new debugging facilities can generate a watchpoint trap when

the program counter or a load or store address is within an

arbitrary range, or when the processor is executing a particular

instruction. Furthermore, conditions can be chained together

so that a trap occurs only when multiple conditions are

met. While previous work [57] has employed these hardware

features to implement execute-only memory, we observe that

we can use these features to implement more dynamic security

policies, such as write-protected shadow stacks, which must

distinguish stores that save return addresses from other stores

within a program.

In this paper, we leverage these debugging features to

build Debug Trigger Return Address Protection (DeTRAP):

a system that combines a novel compilation strategy with

modern processor debug facilities to provide an efficient write-

1µRAI’s overhead is 2.6% when a compiler transformation that serendip-
itously improves performance is also applied to the baseline against which
µRAI is compared.



protected shadow stack. Unlike prior work [26], [72], DeTRAP

has minimal hardware requirements: it requires no memory

protection, address translation, or privilege mode hardware.

Furthermore, DeTRAP only uses functionality already spec-

ified in the RISC-V ISA [54], [69], [70]; no new hardware

needs to pass through standards committees. Finally, DeTRAP

does not need sophisticated whole-program call graph analysis.

We prototyped DeTRAP by enhancing the RISC-V Rocket

Core [10] to fully implement the complete RISC-V debugging

facilities [54] (adding just 0.87% to the core pipeline) and

by enhancing the LLVM compiler [42] to implement a write-

protected shadow stack using these debugging features. Our

experimental results show that DeTRAP outperforms previous

work such as Silhouette [72] and µRAI [4]: DeTRAP incurs

execution time overhead of just 0.5% averaged across the

benchmarks in CoreMark-Pro and 0.8% for the BEEBS bench-

marks evaluated by Silhouette [72], an improvement of 0.5%

and 8.5% respectively. Our results also show that DeTRAP

incurs a code size overhead of 7.9% and 6.7%, respectively.

On CoreMark, DeTRAP’s execution time overhead is 1.9%, an

improvement of 5.7% against µRAI [4]; and it has a flash size

decrease of 2.7%, a ∼40% improvement. We further evaluated

against Embench [52] and found performance overhead of

1.4% with a code size decrease of 3.5%.

We evaluated a modification to the rocket core pipeline

to implement the parts of the RISC-V ISA [54] needed for

DeTRAP, and found that it can be done using just 0.14%

additional cell area (pre-routing) in core pipeline.

To summarize, the main contributions of this paper are:

• The design of the first system that uses modern pro-

cessor debugging facilities to implement efficient write-

protected shadow stacks

• A return address integrity system that can support unmod-

ified untrusted leaf functions in precompiled code and

handwritten assembly

• A DeTRAP prototype that implements our design on the

RISC-V Rocket Core [10]

• An evaluation of the hardware changes to Rocket Core

that would be needed to support DeTRAP.

• An evaluation of DeTRAP’s performance and code size

overheads, showing that DeTRAP provides the same

protection as previous work with less performance and

memory overhead. Unlike previous work [4], [72], our

evaluation methodology removes serendipitous code lay-

out changes as the source for improved performance in

our evaluation results.

II. BACKGROUND ON RISC-V DEBUG TRIGGERS

The RISC-V architecture [54] provides a rich set of primi-

tives for specifying the conditions under which the processor

should trigger a breakpoint exception. Breakpoints can be

configured to fire prior to entering a trap handler, after a

configurable number of instructions has been executed, or

based on a comparison against a program counter, load/store

address, instruction opcode, and/or data value loaded from or

stored to memory.

Breakpoint comparisons are not limited to equality check-

ing; comparisons can also be configured to trigger if a value

is less than, greater than or equal to, or unequal to another

value [54]. It is also possible to define a bitmask match,

where selected mask bits of an input value are checked against

the same bits of a stored pattern. This functionality can be used

to raise an exception if a specific instruction is to be executed

regardless of the registers encoded in the opcode.

What makes RISC-V breakpoints particularly powerful is

that multiple debug triggers can be chained together so that

the processor only traps if all conditions in the chain are

met [54]. This feature permits trapping on conditions that are

more complex than can be described by a single comparison.

For example, trapping when executing code within an arbitrary

region can be done by using two triggers, one each for the

region’s lower and upper bounds. The Debug ISA also allows

chained triggers to mix and match what is being compared.

For example, a data value trigger can be chained with a store

address trigger, trapping when the code attempts to write a

specific value to a specific memory location.

Together, these features provide efficient conditional break-

points, alleviating the need to check for conditions in the ex-

ception handler. Furthermore, because debug triggers operate

in parallel with execution, they perform checks without any

per-check performance penalty.

To balance functionality with performance and cost, cur-

rent implementations generally only include a few triggers:

SiFive’s FU540 [61] and FU740 [62] chips only include two

debug triggers per hardware thread (hart). Since triggers are

configured per-hart, this substantially limits their usability, as

applying a policy across all harts requires duplicating the

configuration across them as well, so all policies targeting

these devices must collectively fit into just two triggers.

Moreover, implementations are not required to include all

functionality from the specification. For example, SiFive’s

chips only support matches against the program counter or

load/store address and do not support bitmask matches [59],

[61], [62]; we know of no implementation that matches

against the instruction opcode or loaded/stored data value.

Furthermore, due to hardware tradeoffs, the debug specifica-

tion [54] anticipates that implementors may want to restrict the

complexity of supported triggers. Indeed, many implementa-

tions [10], [59], [61], [62] limit chaining to just two registers.

Supporting longer chains requires additional chip area and

could reduce the maximum pipeline clock frequency.

As Section IV-C discusses, DeTRAP’s design is intended for

single-core microcontrollers, similar to SiFive’s FE310, which

supports 8 triggers on its single hart [59] and allows up to

four two-trigger-chain rules to be defined.

III. THREAT MODEL

Our system protects a single embedded bare-metal applica-

tion running without an operating system kernel or supervisor.

For simplicity, we assume that the application is single-

threaded and does not utilize traps to modify control flow or

to context switch to other tasks, threads, or processes. As



with many embedded applications and processors, we assume

a single address space application running in privileged mode

without any hardware memory protection mechanisms. The

single application is benign and has no runtime-loadable code,

but may have exploitable spatial [55], [65] and temporal [2]

memory safety errors that can corrupt control data such

as return addresses and function pointers. Non-control data

attacks [15] are out of scope.

Physical attacks, such as connecting an external debugger or

modifying the data on volatile or non-volatile memories, are

also out of scope. The damage from attacks on non-volatile

storage can be mitigated through signature checking imple-

mented by trusted boot running from non-reprogrammable

mask ROM [46], [48]. We do not mitigate attacks via

separately-programmed devices that can autonomously modify

system memory, except to the extent that such requests may

be initiated after the processor writes to a memory-mapped

register of the peripheral (e.g., DMA engines [53]).

IV. DESIGN

DeTRAP provides a write-protected compressed shadow

stack which securely stores return addresses. Such a system

has trusted code, which is permitted to save return addresses

to the shadow stack, perform I/O operations, and write to

security-critical data needed for DeTRAP’s operation; the rest

of the code is untrusted code that should be unable to write

to the shadow stack or security-sensitive registers.

In this section, we first present the requirements that

DeTRAP must meet to enforce return address integrity (Sec-

tion IV-A). We then explain how DeTRAP lays out the

address space to minimize the number of debug triggers

it needs (Section IV-B) and how it configures those debug

registers to prevent untrusted code from modifying the shadow

stack or other security-critical data (Section IV-C). Next, we

explain how DeTRAP transforms code to implement a write-

protected shadow stack (Sections IV-E and IV-F). Finally, we

discuss additional precautions that DeTRAP takes to ensure

that its protections will operate as intended (Section IV-G–

Section IV-H).

A. Security Requirements

Our design employs a compressed shadow stack [18].

Silhouette [72] summarizes three high-level invariants that any

shadow stack-based approach for return address integrity must

maintain: (1) A return address is stored either in the shadow

stack or in a register that is never spilled to memory. (2) The

shadow stack and the register for return addresses cannot be

corrupted. (3) A function’s epilogue always retrieves the return

address that is stored by the function’s prologue. For DeTRAP,

we identify five security requirements that must be met to

maintain the three invariants.

First, return addresses are always stored to a trusted location

for use by function epilogues. Specifically:

Requirement 1 Return addresses used for control flow can

only be stored in a dedicated CPU register and the shadow

stack, and the writes of return addresses can only occur in a

function’s prologue. (Sections IV-D and IV-H)

Second, a write-protected shadow stack provides no pro-

tection unless a function’s epilogue reads the return address

from the correct location within the shadow stack. DeTRAP

uses a shadow stack pointer (SSP) which reads/writes return

addresses from/to the shadow stack. The SSP is stored in

a dedicated hardware register. However, this design could

inadvertently access an incorrect return address or an arbitrary

value from outside the write-protected shadow stack if the SSP

points to the wrong location. This leads to

Requirement 2 Return addresses must always be retrieved

from an uncorrupted CPU register or via an uncorrupted

shadow stack pointer. (Sections IV-D, IV-E and IV-G)

Additionally, as DeTRAP protects the shadow stack using

the processor’s debugging facilities, the following requirement

must be met:

Requirement 3 Software cannot reconfigure the processor’s

debug registers to modify its trap conditions. (Section IV-H)

Furthermore, we need to ensure that forward control-flow

transfers (e.g. calls via function pointers) can only target

predetermined destinations. Not only does this mitigate various

control-flow hijacking attacks, e.g., return-to-libc attacks [65],

but it also permits DeTRAP to use code scanning techniques

(like those of Hodor [35]) to ensure that untrusted code does

not use instructions that our design deems unsafe. Therefore:

Requirement 4 Indirect function calls/jumps always branch

to the beginning of a function, and intra-function indirect

jumps always use a destination address loaded from their

precomputed jumptable. (Section IV-F)

Finally, as previous work has noted [24], [68], restricting

control flow is useless if an attacker can modify executable

code or CFI metadata. DeTRAP therefore enforces:

Requirement 5 All executable code and any data used to en-

force CFI cannot be corrupted. (Sections IV-B, IV-C and IV-E)

B. Memory Layout

Binary executables typically have separate sections for code,

read-only initialized data (rodata), initialized writable data

(data), and uninitialized writable data (bss). DeTRAP must

prevent corruption of code and security-critical data. DeTRAP

therefore further divides the data sections to distinguish be-

tween those whose integrity it must protect, i.e., sections for

which corruption would violate a security requirement, and

those that can be modified safely by untrusted code.

Thus, we have both untrusted stack and shadow stack sec-

tions, as well as the untrusted data/bss and trusted data/bss

sections. Since the rodata section may include data used for

control flow, such as lookup tables for switch statements,

DeTRAP must also protect its integrity. Most systems include

a memory mapped I/O (MMIO) area for access to peripher-

als and configuring the processor. As some peripherals, such

as direct memory access (DMA) engines [53], could be used

to violate invariants, DeTRAP must also protect the MMIO

area from untrusted writes.





must use special prologue and epilogue code to safely save

the return address to and restore it from the shadow stack.

Since function prologues write return addresses to the

shadow stack, they must utilize code (called a trampoline)

within the trusted code region. For each non-leaf function,

the DeTRAP compiler generates runtime trampolines, located

within the trusted code region, that writes the return address

to the shadow stack. When a function (e.g., foo) needs to

save its return address, its prologue (see Listing 1) first calls

its associated trampoline (foo$trampoline) in the trusted

code segment. This trampoline (see Listing 2) saves the return

address, which was set by the call instruction, to the write-

protected shadow stack, and then jumps back to the start of its

associated function’s original prologue (foo$postjump).

To optimize performance, when calling a function with

a trampoline, the call is modified to directly branch to the

trampoline (e.g., foo$trampoline). If a function has no

external linkage and all calls to it are replaced by calls to its

trampoline code, the compiler can further reduce code size

by removing the jump to the trampoline (Listing 1 lines 2-3)

from the function’s prologue.

For non-leaf functions, DeTRAP inserts code into the func-

tion epilogue to restore the return address from the shadow

stack (see Listing 3). Unlike function prologues, epilogues

need no trampoline in the trusted code region because they

do not write to the shadow stack. DeTRAP’s code generator,

CFI (Section IV-F), and code scanner (Section IV-H) ensure

that the shadow stack pointer is never corrupted, guaranteeing

that the epilogue always loads the correct return address from

the write-protected shadow stack.

E. Trap Handling

If unprivileged code attempts to write to the write-limited

region or the shadow stack overflows, the debug triggers

described in Section IV-C will cause a trap. To ensure that this

trap is handled properly by trusted code, DeTRAP therefore

performs initial handling of all traps. If the trap is an exception

within trusted code, or was caused by an attempt to violate

DeTRAP’s protections, the handler will terminate execution.

However, not all traps are caused by violations of DeTRAP’s

security requirements, such as timer interrupts. In these cases,

DeTRAP’s handler will create a trap frame and invoke the

application’s (untrusted) handler.

To protect against corruption of potentially sensitive pro-

cessor state, the trap frame is always saved to the shadow

stack. When handling interrupts, this ensures that the untrusted

handler cannot potentially subvert sensitive operations in-

progress (e.g., return address handling code within prologues

1 .section .trusted.text

2 foo$trampoline:

3 sw ra, 0(x3)

4 addi x3, x3, 4

5 j foo$postjump

Listing 2: Return Address Save Trampoline

or epilogues). The untrusted handler can still modify data

outside the write-limited region to, for example, set a flag

or copy data into or out of an I/O buffer.

For exceptions in unprivileged code, the trap frame is copied

onto the untrusted stack for the application’s handler to modify,

with some limitations. The shadow stack pointer and return

address registers are always restored from the trap frame on

the shadow stack, ensuring that they cannot be corrupted.

The untrusted handler can modify the program counter only

to increment it to the next instruction, for example when

emulating a floating-point instruction on a system without a

floating-point unit. Any other modification of the PC could

violate control-flow, and is prohibited. If the untrusted handler

attempts a prohibited modification, this is treated like any other

violation, and execution is terminated.

DeTRAP includes a code scanner (see Section IV-H), which

verifies that untrusted code, including the application’s trap

handler, does not include the trap return (mret) instruc-

tion. Because it is not safe for the untrusted handler to

modify the shadow stack pointer, the application cannot use

the trap handler to transfer control between threads, as in

an interrupt-driven scheduler. If it were necessary to enable

context switching, methodology similar to that of Kage [28]

could be applied—the trusted code could save per-task state

in a per-task shadow stack within the write-limited region and

switch between them on-demand.

F. Forward-edge Control Flow Integrity

DeTRAP’s debugger triggers enforce shadow stack integrity

(Section IV-C), and DeTRAP ensures that trap handlers cannot

corrupt the SSP (Section IV-E). However, to completely pre-

vent the exploitation or misuse of the SSP, DeTRAP also must

ensure that forward-edge control flow cannot transfer to the

middle of function prologues and epilogues. Specifically, inter-

function forward branches must jump to the first instruction

of a function’s prologue, and intra-function branches must

jump to a valid location within the function. Additionally,

on processors supporting variable-length instructions, such

as RISC-V’s “C” Compressed Instruction Extension [69],

DeTRAP must ensure that branches jump to the beginning

of an intended instruction, as there might be a coincidental

and valid sequence of instructions that is an offset from the

intended instructions that could subvert DeTRAP’s security.

For intra-function control-flow integrity, specifically, in-

direct jumps from switch statements, LLVM—the com-

piler upon which DeTRAP is based—compiles them to use

1 # Restore original stack pointer

2 addi sp, sp, FRMSIZE

3 # Load return address from shadow stack

4 lw ra, -4(x3)

5 # Decrement shadow stack pointer

6 addi x3, x3, -4

7 jr ra # Original Function Return

Listing 3: DeTRAP Function Epilogue



a bounds-checked jumptable. For indirect function calls,

DeTRAP uses LLVM’s icall-cfi [19], [64], which pro-

vides type-based CFI, meeting more than the minimum re-

quirements above (more details in Section V-C). A more fine-

grained CFI could provide better protection against forward-

edge threats, such as call-oriented [56] and function-reuse [34]

attacks, but is unnecessary for reverse-edge protection.

Forward-CFI can prevent mismatches between function

prologues and epilogues for most programs. However, mis-

uses of setjmp/longjmp may disrupt the balance. Since

setjmp/longjmp are infrequently used in programs for

embedded systems, we provide our design for handling them

in ??.

G. Shadow Stack Overflow and Underflow

DeTRAP uses a shadow stack pointer to read/write re-

turn addresses from/to the shadow stack, and keep it from

being corrupted. Although the DeTRAP code scanner (Sec-

tion IV-H), ensures that the SSP is only modified in trusted

code and function epilogues (Section IV-D), it is also nec-

essary to ensure that the SSP cannot underflow or overflow.

While it would be possible to add bounds checks for overflow

after each increment, we instead use an additional debug

trigger that matches on writes to the last entry of the shadow

stack. Because writes to the shadow stack are strictly incre-

mental, this is sufficient to detect an overflow without any

runtime penalties. Underflow would imply either corruption

of the shadow stack pointer, which is checked for by the

code scanner, or a violation of proper control flow (such as

illegal execution of function prologue/epilogue code), which

is handled by DeTRAP’s CFI (Section IV-F). This also allows

DeTRAP to avoid bounds checks for underflow.

H. Code Scanning

After compiling and linking a program, DeTRAP runs a

code scanner on the generated executable and warns about any

vulnerabilities the code scanner discovers. This code scanner

provides two critical services. First, as all code runs in the

processor’s privileged mode, the code scanner ensures that

the program does not use privileged instructions to bypass

DeTRAP’s protections. Second, the code scanner ensures that

all native code (code generated by the DeTRAP compiler,

assembly code written by hand, and code generated by other

compilers) does not break DeTRAP’s security guarantees.

1) External Code: External precompiled code and hand-

written assembly must either use DeTRAP’s return ad-

dress handling (Section IV-D), handwritten or generated via

DeTRAP’s compiler, or consist only of functions that keep

the return address in the ra register (e.g.: leaf functions).

Otherwise, the code scanner will detect unsafe loading of the

return address. It is the user’s responsibility to ensure that any

linked external code that is in the trusted code section does

not violate DeTRAP’s requirements.

2) Configuration Protection: Untrusted code must not mod-

ify the debug trigger or trap handler configurations as doing

so could nullify DeTRAP’s protections. The debug trigger

and trap handler configurations are governed on RISC-V by

Control and Status Registers (CSRs) [54], [70] configured

via the CSRR* instructions [69] that perform a read-modify-

write operation. The CSR to be modified is encoded as an

immediate value embedded in the opcode. The code scanner

assumes that any CSR instruction that is not an atomic

bit set/clear instruction with a hard-coded zero input will

modify its targeted CSR. If the code scanner finds a CSRR

instruction that modifies CSRs governing debugging and trap

handling, it rejects the program; all other CSR modifications

are permitted.

3) Call and Return Verification: We designed DeTRAP so

that all native code loaded on to the system follows DeTRAP’s

requirements. This includes code compiled by the DeTRAP

compiler and external code such as hand-written assembly

language code and library code compiled by other compilers

e.g., a C standard library compiled by GCC. To this end, the

DeTRAP code scanner performs the following checks on all

native code linked into the final binary executable.

First, the code scanner verifies that all indirect branches,

including those in assembly and precompiled code, are pre-

ceded by the appropriate CFI checks as Section IV-F describes.

Second, the code scanner ensures that either the ra register has

not been modified or that it has been spilled and reloaded from

the shadow stack as Section IV-D describes. Additionally, the

code scanner verifies that only function epilogue code modifies

the shadow stack pointer register and that it does so only by

decrementing the register by the correct amount (as shown in

Listing 3). Third, the code scanner verifies that only trusted

code uses the trap return instruction mret [70].

There are some functions that do not follow DeTRAP’s

conventions but are still safe to use, e.g., indirect jumps in

the memset() function in libc. The code scanner permits a

developer who has vetted such jumps to add them to a whitelist

with their destinations. This allows the scanner to confirm that

the functions otherwise meet DeTRAP’s requirements.

V. IMPLEMENTATION

Our implementation is based on a purpose-built runtime

and a modified version of Clang and LLVM [42] 15.0.7.

We also enhanced the Rocket core [10] RISC-V processor to

implement a more recent version of the debug trigger ISA [54]

. As our benchmarks do not use it, we did not implement the

setjmp/longjmp handling from ??.

A. Rocket Core Modifications

The upstream Rocket breakpoint module is based on the

0.13 draft of the RISC-V Debug Support Specification. Im-

plementations are free to support as little of the specification

as they want, using write-any-read-legal (WARL) semantics

such that a read-back of the configuration register will reflect

only what is supported. Unfortunately, Rocket’s breakpoint

module implementation does not properly support combining

both program counter (PC) and memory triggers into the same

chain, even though its WARL read-back implies it should.

This deviation from the specification is undocumented and



prevented DeTRAP from working properly. Because DeTRAP

needs this functionality, we modified the implementation to

properly support such a chain.

In the Rocket core pipeline, the breakpoint module effec-

tively has two breakpoint units (BPUs) that eavesdrop on the

outputs from each stage of execution. The PC BPU monitors

the instruction fetch (IF) stage to determine if a PC trigger

should fire; the MEM BPU checks the input of the memory

(MEM) stage — the output of the execute (EXE) stage — for

matches against memory read or write triggers. For chained

triggers, all triggers in the chain must match during the

same cycle for an exception to be raised. However, each

instruction is executing in only a single pipeline stage at a

time. Consequently, in any given cycle, the breakpoint module

is examining the behavior of different instructions in the PC

and MEM BPUs. What DeTRAP needs is to have the MEM

stage generate a trap if the instruction matched a PC trigger

when it was examined by the PC BPU a few cycles earlier.

We fixed this problem by adding pipeline registers to

the outputs of the instruction decode (ID) and EXE stages

to track whether individual triggers matched the instruction

address. These PC-based “pretriggers” then feed back into

the breakpoint module alongside the memory stage inputs

and are combined with the memory triggers to ensure that

mixed chains properly raise exceptions. Our evaluation in

Section VII-F shows that this change uses negligible additional

area and energy and brings the implementation into compli-

ance with the specification.

B. Shadow Stack Implementation

We modified the Clang/LLVM compiler to implement the

write-protected shadow stack described in Section IV-D. Our

modification of function prologues and epilogues is based

on Clang’s ShadowCallStack [20]. Since we built DeTRAP

before the RISC-V ABI designated x3 as a platform regis-

ter [16], [17] and ShadowCallStack adopted it as the shadow

stack pointer register [40], our implementation uses x18 as

the shadow stack pointer register like the original RISC-V

ShadowCallStack implementation., unlike the code shown

in Listings 2 and 3. Our implementation writes a copy of

the return address to both the shadow stack and the orig-

inal untrusted stack; returns use the write-protected copy

from the shadow stack. This implementation allows existing

code that reads the return address from the stack, such as

__builtin_return_address, to function without mod-

ification. DeTRAP, also like ShadowCallStack [20], merely

uses the return address on the write-protected shadow stack on

function return and does not check whether the return address

restored from the shadow stack matches the return address on

the original untrusted stack.

C. Forward-Edge CFI Implementation

To ease implementation of forward-edge control flow pro-

tection, we used Clang/LLVM’s existing indirect function call

checking -fsanitize=cfi-icall [19], [64]. At compile

time, this CFI creates jumptable entries for each function that

is address-taken, sorted by the function type signature; when

taking the address of a function, it then substitutes the address

of the jumptable entry instead. Indirect calls are rewritten to

verify that the pointer is aligned with and in-bounds of those

jumptable entries that match the expected type signature, and

then the function is called via the jump table entry. This form

of CFI exceeds the minimum requirements for forward-edge

control flow identified in Section IV-F. If greater precision on

forward-edge control flow is desired, an alternative DeTRAP

implementation can use other forward-edge CFI mechanisms

(e.g., label-based CFI [1] with a precise call graph).

D. nospill Attribute for CFI-Sensitive Data

CFI sensitive data is data that is used to check the desti-

nations of indirect branches, including constant values used

in CFI run-time checks and switch statement jump calcu-

lations, and the values of validated pointers. Previous work

has noted that LLVM’s forward-edge CFI implementation [19]

may spill CFI sensitive data to the stack [22], [44], making the

this data vulnerable to memory safety attacks. DeTRAP adds

a new nospill attribute to LLVM IR, which will prevent a

virtual register from being spilled to the stack. We discuss the

details of nospill in Appendix ??.

E. Code Scanner

We implemented the DeTRAP code scanner, discussed in

Section IV-H, using LLVM’s MC disassembler library. The

scanner first identifies all reachable code by examining the

symbol table for all functions, including forward-edge CFI

jumptable entries (see Section V-C) and switch jumptable

destination pointers. It also reads the section headers to be

able to distinguish between trusted and untrusted code.

Next, inspired by the static analyzer of Jalyoan, et. al. [37],

the scanner traces all possible execution paths, generating a

directed graph of basic blocks. The input value for return

instructions (jr ra) is checked to ensure that it is either

unmodified since the preceding call, or was loaded from

the shadow stack.

To handle connecting basic blocks that are linked via

indirect branches, the scanner checks the instructions leading

up to the jump to ensure that the destination is either statically

known (e.g., a long jump, which first requires an auipc [add

upper immediate to PC] instruction before the jr [jump to

offset from register] jump) or is loaded from (switch) or

checked against (indirect call) a jumptable, and the results

are used when connecting the basic blocks. Whitelists were

added for handwritten assembly that performs safe indirect

jumps that do not rely on jumptables (e.g., newlib’s RISC-V

memset, which includes jumps whose offset is directly com-

puted, rather than being loaded from a table).

While tracing the discovered instructions in untrusted code,

the scanner checks for corruption of the shadow stack pointer,

and other dangerous instructions (see Section IV-H).

F. Runtime

Applications are linked to a custom runtime that contains

trusted code, including startup code necessary to implement



TABLE II: Generated System-on-Chip Configuration

Core rv32imafdc at 50 MHz
Branch Target Buffer 28-entry
Branch History Table 512-entry
Return Address Stack 6-entry
Breakpoints 8, address match only
Phys Mem Protection 8 regions, 4 byte granularity
Cache line 64 bytes
L1 Data 64 KiB, 4-way
L1 Code 16 KiB, 2-way
L2 (Shared Inclusive) 256 KiB, 8-way 5 MSHRs
On-board DDR3 256 MiB ×16 at 333 MHz CL5

DeTRAP. Standard library support is provided by the RISC-V

newlib port [50] based on revision 83d4bf, with compiler

support routines from compiler-rt 15.0.7. The runtime also

includes code for tracking and reporting the outputs of per-

formance counters via the serial port.

VI. SECURITY BENEFIT

To examine DeTRAP’s security, we examined its effec-

tiveness against RiscyROP [21]: the most sophisticated at-

tack against RISC-V of which we know. RiscyROP found

that, compared to x86 and ARM32, it is more challenging

to find useful gadgets on RISC-V, due to multiple factors

such as differences in calling conventions. However, it also

found that one can launch powerful code-reuse attacks to

call arbitrary functions with attacker-controlled arguments.

RiscyROP mainly exploits two types of gadgets: (1) those

that load a return address from the stack and return to that

address (called stack-based jump), and (2) those that jump

to an attacker-controlled register (called jump-to-register),

which corresponds to indirect function calls. RiscyROP an-

alyzed libc and several applications and reported that the

majority of gadgets are stack-based jumps,2 which are also

used multiple times in its proof-of-concept attack. DeTRAP

provides RAI, thus preventing stack-based jump gadgets from

being exploited. As a result, DeTRAP can thwart the attack

demonstrated by RiscyROP. Additionally, RiscyROP’s jump-

to-register gadgets can be exploited to target arbitrary loca-

tions, while DeTRAP restricts those gadgets to only target the

beginning of a group of functions using CFI (Section IV-F),

which also mitigates Jump-Oriented Programming [12]. Over-

all, DeTRAP significantly reduces the control-flow hijacking

attack surface for RISC-V.

VII. PERFORMANCE EVALUATION

To evaluate DeTRAP’s performance, we used the Chip-

yard [5] System-on-Chip (SoC) framework version 1.6.2 to

generate verilog for a full system with our modified Rocket

core [10] RISC-V implementation. We ran our design on a

Digilent Arty A7-100T Development Board [27] and used

Xilinx Vivado 2021.2 to synthesize and implement the verilog

to run on the on-board XC7A100TCSG324-1 FPGA.

2Figure 3 of RiscyROP [21] shows the distribution of gadgets, but the paper
does not summarize the statistics.

We configured the SoC to be similar to the SiFive Freedom

E310 [60] Arty (an E31 [58] core implementation for Arty

A7 development boards) and FE310 [59] SoC. To support

large applications that require more memory than available on

the FPGA, such as those in CoreMark Pro [31], we changed

the memory system to be backed by the 256 MiB on-board

DRAM, and use a 256 KiB shared inclusive L2 cache sized

to fit in the remaining FPGA SRAM. The L1 code and data

caches are 16 KiB and 64 KiB, respectively, corresponding to

the sizes of the code and data tightly-integrated memories on

the (F)E310. The L1 data cache is 4-way set associative (the

same as the L1 data caches on an ARM M7 [7] or M55 [9]).

Like in the E310, our L1 code cache is 2-way set associative

but lacks the tightly-integrated memory (ITIM) functionality.

To evaluate benchmarks that use hardware floating-point in-

structions, we added a 64-bit FPU to the core (the FPU is

an optional feature on E31 cores [58]). We also increased

the number of additional event counters from two to the ISA

maximum of 29 for enhanced data collection. Table II shows

the full configuration.

A. Build Configuration

We used our modified Clang/LLVM toolchain and runtime

(see Sections V-C and V-F) to build the evaluated bench-

marks. We compiled all code with -O2 optimizations, link-

time optimization, and linker relaxation enabled. We compiled

benchmarks to use hardware floating-point instructions and the

floating-point ABI. Except for any file-specific or benchmark-

specific flags, all compiler and linker options, including those

for optimization and sanitizers, are common across all sources

(including compiler-rt). We compared this baseline to a binary

that additionally enables DeTRAP protections.

B. Code Layout Effects on Performance

When evaluating benchmark performance, we observed run-

to-run performance variations of less than 0.1%. However, as

also seen in previous work [49], changes in memory layout

impacted performance by 1% or more. For example, a build

with all DeTRAP protections enabled could execute faster than

one with none of its protections, even though the DeTRAP

build executes more instructions.

To reduce the chance that fortuitous memory layouts make

our approach faster, we compiled each benchmark with 100

different layouts: one layout generated by the default settings

in the compiler and linker and 99 pseudorandom layouts

provided by LLD’s --shuffle-sections option [63].

We then report results from the fastest layout of each build.

The fastest layouts of each build are compared to each other

even though they are likely to have been linked with different

--shuffle-sections values. When evaluating generated

code sizes, we also use the sizes for the fastest build.

C. Benchmark Suites

We evaluated several benchmarks. CoreMark-Pro [31]

benchmarks are from revision 4832cc. We set the iteration

count for each benchmark to the smallest value that would still



run for at least 10 seconds. We modified the zip benchmark

to use pre-computed sample data, rather than generating it on-

chip during the untimed initialization phase. Embench [52]

benchmarks are from revision d9b30c. We left the iteration

counts unmodified. The number of iterations of each bench-

mark was based on their scaling factors divided by our proces-

sor’s speed. BEEBS [51] benchmarks were obtained from its

git repository [11], commit 049ded. We set each benchmark’s

iteration count so that it would run for at least 1 second or

100 iterations, whichever was longer. CoreMark [30] is from

revision b24e397 and used unmodified.

For some programs in BEEBS and Embench, the compiler

was able to optimize away the entire benchmark’s compu-

tation. In several cases, constant propagation allowed the

compiler to calculate the benchmark’s result at compile-time,

so the compiler transformed the benchmark to simply output

the precomputed result. For other benchmarks, the result was

never used, so the compiler removed the computation alto-

gether as unnecessary. Alternately, the compiler determined

that each iteration performed an identical computation, and

so emitted code that only performed the computation once

regardless of how many iterations were requested. Affected

Embench benchmarks were identified by manually examin-

ing the generated native code for benchmarks that ran for

less than one second. For BEEBS benchmarks, we ran each

benchmark with varying iteration counts, using the instruction

retire count from each run to establish how many instructions

were run per iteration. We then manually examined the gen-

erated native code for benchmarks that ran fewer than 100

instructions per iteration. Once identified, we added empty

inline assembly statements to prevent these optimizations from

removing the benchmark’s core computation. Inputs were

marked as “written” at the beginning of each iteration and

outputs as “read”. Embench benchmarks modified to prevent

these optimizations were: cubic, st, statemate, and tarfind.

BEEBS benchmarks modified were: aha-compress, bs, crc,

crc32, cubic, fibcall, frac, janne, lcdnum, nbody, newlib-exp,

newlib-mod, ns, qurt, sglib-queue and whetstone. Floating-

point benchmarks that performed verification against expected

values – ludcmp, matmult, nbody, st, and stb perlin – were

modified to allow for a small difference in the expected result

due to floating-point rounding differences. We also fixed out-

of-bounds array accesses in select and qsort, corrected duff to

use the correct source and destination arrays, and modified

function parameter types in sha256 to work properly with

LLVM’s indirect function call type checking.

D. Execution Times

Table III shows runtime performance for the CoreMark-

Pro, Embench, and CoreMark benchmarks. Due to limited

space, Table III only shows a statistical summary of the 80

individual benchmarks in BEEBS; full results from BEEBS

can be found in ??. Across all benchmarks we evaluated,

the relative DeTRAP performance ranged from 0.991× (0.9%

faster) to 1.201× (20.1% slower). The geometric mean across

the 112 individual benchmarks was 1.011× (1.1% overhead).

TABLE III: Execution Times

Benchmark -O2 DeTRAP Benchmark -O2 DeTRAP
(s) (×) (s) (×)

CoreMark-Pro
cjpeg 10.51 1.003 parser 11.74 1.006
core 191.1 1.031 radix 10.47 1.000
linear 12.20 1.000 sha 10.18 1.006
loops 51.34 1.002 zip 10.53 1.000
nnet 49.36 1.001
min 10.18 1.000
max 191.1 1.031
geomean 1.005

Embench
aes 3.723 1.000 picojpeg 4.326 1.012
crc32 2.961 1.000 primecount 12.45 1.000
cubic 2.077 1.017 qrduino 3.332 1.001
edn 6.902 1.000 sglib 3.285 1.011
huffbench 2.872 0.999 sha256 3.834 1.035
matmult-int 2.758 1.055 slre 3.464 1.013
md5sum 2.347 0.998 st 0.184 1.000
minver 0.518 1.000 statemate 0.216 1.018
mont64 5.716 1.006 tarfind 1.586 1.001
nbody 0.180 1.000 ud 3.834 1.002
nsichneu 3.097 1.016 wikisort 0.399 1.133
min 0.180 0.998
max 12.45 1.133
geomean 1.014

BEEBS (Summary) CoreMark
min 1.015 0.991
max 1.489 1.201 coremark 10.40 1.019
geomean 1.010

Comparing to Related Work. For the subset of BEEBS

benchmarks reported by Silhouette [72], DeTRAP perfor-

mance ranged from 0.991× to 1.131×, with a geometric mean

of 1.008×. By comparison, Silhouette’s performance overhead

on these benchmarks was between 1.001× and 1.510×, av-

eraging 1.102× — DeTRAP is 8.5% faster. Silhouette also

evaluated CoreMark Pro, with performance between 1.001×

and 1.049×, averaging 1.010× — DeTRAP is 0.5% faster.

Although we did not evaluate against most benchmarks evalu-

ated by µRAI [4], we did run the CoreMark benchmark [30].

DeTRAP’s overhead on CoreMark is 1.9%, while µRAI’s

overhead is 8.1% — DeTRAP is 5.7% faster than µRAI.

E. Code Size

Embedded systems often have limited memory; keeping

code size small is critical. We therefore evaluated DeTRAP’s

code size overheads by measuring the size of the code sections

of each ELF executable. For each build of each benchmark, we

measured size from the memory layout that had the smallest

execution time. Due to limited space, we summarize the results

in Table IV; full results can be seen in ??.

DeTRAP has code size overheads that average 4.5% across

all benchmarks. Compared to Silhouette, which had a code size

overhead of 8.9% on CoreMark Pro and 2.3% on a subset of

BEEBS, DeTRAP’s respective overheads are 7.9% and 6.7%

— 1% better and 4.4% worse. However, we note that DeTRAP

instruments the standard library and board support code, which

Silhouette does not. When we subtract the standard library

code, Silhouette’s average code size overheads become 16.5%



TABLE IV: Relative Code Sizes

-O2 DeTRAP -O2 DeTRAP
(KiB) (×) (KiB) (×)

CoreMark-Pro Embench
min 28.50 1.043 min 16.74 0.947
max 52.25 1.238 max 34.43 1.101
geomean 1.079 geomean 0.965

BEEBS CoreMark
min 7.254 0.951
max 28.14 1.375 coremark 22.68 0.964
geomean 1.064

on CoreMark Pro and 5.3% on BEEBS, making DeTRAP’s

overheads 7% better and 1.3% worse respectively.

Instead of evaluating code size, µRAI reports “Flash” uti-

lization, which we understand to include code, read-only data,

and initialized writable data. On CoreMark, µRAI has ∼40%

Flash overhead, while DeTRAP’s code, data, and rodata shows

a 2.7% reduction in size — DeTRAP is ∼40% better.

F. Hardware Utilization

We evaluated the increased chip area (a proxy for manu-

facturing cost) needed to implement the required features for

DeTRAP (see Section V-A). We used Chipyard [5] version

1.10.0’s Hammer [45] VLSI design flow, utilizing Open-

ROAD [3] to implement the design for the Sky130 PDK [29].

The baseline design was a TinyRocketConfig with 4 debug

trigger registers. We compared this to a modified 4-trigger

design that meets DeTRAP’s requirements. Our changes in-

crease the unrouted pipeline core area (not counting cache or

scratchpad) by 0.14%. For comparison, the 20 KiB of SRAM

arrays used by the cache and scratchpad require 800% more

area than a routed pipeline core.

VIII. RELATED WORK

Memory management hardware has been used to mitigate

memory safety attacks, even within single-address-space em-

bedded applications. Kage [28] and Silhouette [72] utilize

the ARM Memory Protection Unit (MPU) to create memory

regions that only normal store instructions can modify; they

then transform all untrusted store instructions into store-with-

translation instructions that cannot write into these protected

regions. They place shadow stacks and other security-critical

data in these protected regions. uXOM [41] uses the same

technique to implement execute-only memory.

RECFISH [66] also uses a MPU-protected shadow stack

but requires a supervisor call to privileged code to push

return addresses. IskiOS [33] leverages Intel PKU [36] to

secure a shadow stack, temporarily enabling writes to the stack

via a configuration register while writing a return address.

CHERI [71] uses hardware-enforced capabilities, ensuring

that new capabilities can be derived only from preexisting

capabilities. Even if an application overwrites a return address,

unless that write happened to be a valid code pointer, attempts

to return to the corrupted address will fail. RetTag [67]

adds pointer authentication instructions to the RISC-V ISA

to authenticate return addresses. In contrast, DeTRAP makes

no ISA modifications, requiring only the existing debug ISA.

µRAI [4] statically computes a complete call graph and

encodes all jumps statically in read-only code jumptables.

A dedicated register encodes the current location on the

call tree, allowing the code to check against each possible

return location, and return specifically to that location. If the

register is corrupted, the jumptable lookup will not find a valid

return address and fail. DeTRAP does not need to compute a

complete callgraph and has less code memory overhead.

O-CFI [47] uses layout modification to ensure that all valid

indirect targets have a known alignment, and clustering, which

allows a bounds check to determine the validity of a branch

target. The location of the table of valid bounds is randomized

and saved only to a register, preventing leaks of the bounds

lookup table’s (BLT’s) base address. However, O-CFI’s pro-

tections will fail if an attacker can find the table, for example

via a side channel attack of the BLT register saved to a kernel

stack, or by scanning read-only memory locations for values

that match a known valid indirect pointer (e.g. a return address

spilled to the stack). Redactor [23] uses execute-only memory

and statically generated trampolines with random memory and

register layouts to prevent an attacker from reliably generating

a usable gadget chain. Moreover, unlike DeTRAP, both O-CFI

and Redactor must compute a reverse control-flow graph ahead

of time, and their reverse CFI is not context-sensitive; an

attacker can potentially redirect reverse control flow to the

wrong caller, even without knowledge of the BLT’s location.

DeTRAP provides context-sensitive reverse CFI, even against

omniscient attackers.

Recent work has used debugging hardware to enforce non-

discriminatory security policies that apply to all code; once

configured, enabling access requires explicitly disabling the

watchpoint. PicoXOM [57] provides execute-only code mem-

ory using watchpoint hardware and prevents reconfiguration

of the memory-mapped watchpoint registers. Jang, et. al. [38]

used watchpoints to allow a userspace application to selec-

tively lock and unlock regions via a system call; they also use

watchpoints to prevent kernel access to user memory and to

make kernel memory execute-only [39].

PHMon [26] adds an execution trace/monitor unit to the

processor core. This monitor includes a small programmable

unit that can perform actions in response to detected events.

One use of the unit is to implement its own shadow stack,

listening for call and return instructions to know when to push

and pop addresses, interrupting the system if it detects a return

to an address that does not match what it saved. Compared

with DeTRAP, PHMon adds substantial hardware to the core,

and because it only monitors a trace of completed execution, it

can only throw a trap after instructions have been committed.

IX. FUTURE WORK

Several directions exist for future work. We can explore

using debug triggers to solve other security challenges, such as

protecting additional control data [28] or isolating application

components [35]. We can also explore whether improvements

to debug triggers e.g., new data matching features or longer

chain support, improves their utility for security enforcement.
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