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Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in
metazoans. In decapod crustaceans, RTKs are implicated in various
physiological processes, such molting and growth, limb regeneration,
reproduction and sexual differentiation, and innate immunity. RTKs are
organized into two main types: insulin receptors (InsRs) and growth factor
receptors, which include epidermal growth factor receptor (EGFR), fibroblast
growth factor receptor (FGFR), vascular endothelial growth factor receptor
(VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of
crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome
transcriptome database, which included all major crustacean taxa, showed that
RTK sequences segregated into receptor clades representing InsR (72
sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR
(PVR; 235 sequences). These four receptor families were distinguished by the
domain organization of the extracellular N-terminal region and motif sequences
in the protein kinase catalytic domain in the C-terminus or the ligand-binding
domain in the N-terminus. EGFR1 formed a single monophyletic group, while the
other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3,
and PVR1-2. In decapods, isoforms within the RTK subclades were common.
InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and
fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat,
furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of
FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a
cadherin tandem repeat domain. PVRs had between two and five
immunoglobulin-like domains. A classification nomenclature of the four RTK
classes, based on phylogenetic analysis and multiple sequence alignments,
is proposed.
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Introduction

Receptor tyrosine kinases (RTKs) are cell membrane receptors
that mediate the actions of peptide growth factors in metazoan
organisms. In humans, there are 55 RTKs organized into 19
subfamilies or classes, as it is now recognized that three kinases in
the lemur class phosphorylate serine/threonine residues (1, 2). Of
these, five RTK classes are the most common across metazoan taxa:
epidermal growth factor receptor (EGFR; Class I); insulin receptor,
IGF1 receptor, and the insulin receptor-related receptor (InsR; Class
II); platelet-derived growth factor receptor (PDGFR; Class III);
vascular endothelial growth factor receptor (VEGFR; Class IV); and
fibroblast growth factor receptor (FGFR; Class V) (3, 4). All RTKs
share a similar organization with an N-terminal extracellular region
containing dimerization and ligand-binding domains, an o-helical
transmembrane domain, and a C-terminal region containing a
tyrosine kinase domain and tyrosine-rich C-terminus. An
intracellular juxtamembrane segment, located between the
transmembrane and tyrosine kinase domains, mediates
autoinhibition by interacting with the activation loop in the kinase
domain (3-6). InsR is a heterotetramer of disulfide-linked of
subunits resulting from furin cleavage of a protein precursor (7).
InsR ligands include insulin, insulin-like growth factors (IGFs), and
insulin-like peptides (ILPs) (3, 7). By contrast, EGFRs, FGFRs,
PDGEFRs, and VEGFRs are monomers in the cell membrane and
form homodimers or heterodimers upon binding of their respective
ligands and activation (3, 4, 8). Isoforms that differ in ligand binding
affinity and specificity are common (3, 7, 9-11). Receptor activation
results in autophosphorylation of tyrosines in the juxtamembrane
segment and the C-terminus and phosphorylation of signal
transduction proteins that are recruited to the receptor (3-7). RTKs
can activate various signal transduction pathways, such as MAPK-
ERK, PI3K/Akt/mTOR, JAK/STAT, and PLC/PKC, that stimulate
cell proliferation, growth, and metabolism (1, 3, 5-7, 9-12).

RTK classes are distinguished by the functional domains in the
N-terminal extracellular region (1, 6). InsRs are characterized by
two leucine-rich repeats (Receptor L1 and L2) flanking a furin-like
cysteine-rich domain and two fibronectin type 3 (FN3) domains in
the o subunit (7, 13). EGFRs are characterized by L1 and L2
domains alternating with two furin-like cysteine-rich domains (6,
8, 14). FGFRs have three immunoglobulin-like domains (D1, D2,
and D3), with a seven or eight amino acid “acid box” linking D1 and
D2 (6, 9). PDGFRs and VEGFRs are structurally related, which
suggests a common origin. PDGFR and VEGFR have five or seven
immunoglobulin-like domains (D1 to D7), respectively, that are
involved in ligand binding (6, 11, 15).

In crustaceans, RTKs have been implicated in diverse
physiological processes, particularly those involving reproduction,
development, immunity, and growth. EGFR plays a role in ovarian
development in the mud crab, Scylla paramamosain (16). EGFR and
FGEFR are linked to the ability of S. paramamosain and red swamp
crayfish (Procambarus clarkii) to mount immune responses to
pathogens (17-19). Knockdown of Mr-EGFR slows organismal
growth, but it has no effect on molting frequency in freshwater
prawn, Macrobrachium rosenbergii (20). By contrast, knockdown of
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Mr-InsR has no effect on organismal growth, but results in
abnormalities in development of male sex characteristics and
reproductive organs (21, 22). In Chinese mitten crab, Eriocheir
sinensis, Es-InsR expression is increased in limb regenerates and
blocking InsR signaling with GSK1838705A slows regenerate growth
(23). A male-specific InsR may be involved in sexual differentiation in
Pacific whiteleg shrimp, Litopenaeus vannamei; Chinese shrimp,
Fenneropenaeus chinensis; Eastern spiny lobster, Sagmariasus
verreauxi; and S. paramamosain (24-27). VEGFR/PDGEFR signaling
is involved in immune responses to viral infection in L. vannamei; in
hemopoiesis in signal crayfish, Pascifasticus leniusculus; and in
regulating lipid metabolism in S. paramamosain (28-30).

Transcriptomics has assisted in the identification of RTKs in
crustacean tissues, but these receptors have not been fully
characterized (17, 26, 31-39). Moreover, annotation and
characterization of RTKs in diverse crustacean taxa has been
hampered by databases that are limited to a relatively small
number of species and taxonomic groups. Consequently, the
number of RTK genes and/or isoforms present in crustaceans is
unknown. Additionally, the patterns of evolution and
diversification of RTKs across the Pancrustacea remain to be
elucidated (31). CrusTome, a comprehensive multi-species
database of crustacean transcriptomes (40), was used to identify
contiguous sequences encoding insulin, EGF, FGF, and PDGF/
VEGF (PV) receptors in malacostracan and non-malacostracan
crustaceans. A similar approach was used to identify G protein-
coupled receptor candidates for crustacean hyperglycemic hormone
neuropeptides (41). Characterization of decapod RTKs was
emphasized, particularly in blackback land crab, Gecarcinus
lateralis and green shore crab, Carcinus maenas, which have
served as models for molting physiology for decades (42-52).
Moreover, C. maenas is an invasive species that has established
populations in temperate coastal regions (53). Its rapid growth and
tolerance of a wide range of environmental conditions have
contributed to its success (54-56). In G. lateralis, Gl-InsR, GI-
EGEFR, GI-FGFR, and other RTK signaling genes are expressed in
transcriptomes of the molting gland (Y-organ), suggesting that
growth factors have a direct effect on the synthesis of steroid
molting hormones (ecdysteroids) (32, 33, 38, 46). RTKs in C.
maenas have not been characterized. Phylogenetic analysis and
multiple sequence alignments revealed a rich diversity of RTK genes
and isoforms. A classification nomenclature, based on InsR, EGFR,
FGFR, and PVR clades and subclades, is proposed.

Materials and methods

Protein reference sequences for each receptor were collected
from the NCBI GenBank database with a focus on arthropod
sequences when available (Supplementary Material 1). Four
iterative BLAST searches using these reference sequences against
the CrusTome database (v.0.1.0) were then conducted to ensure that
all possible matching sequences were found for a comprehensive
phylogenetic analysis (40, 57). Using Multiple Alignment using Fast
Fourier Transform (MAFFT; v.7.490; (58), the BLAST search hits
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and the original reference sequence dataset were aligned with
settings optimized for multi-domain proteins (as per (59) and to
place a higher importance on accuracy rather than speed (-dash-
originalseqonly -genfpair -maxiterate 1000). The -dash parameter
allowed MAFFT to refine the alignment by employing sequences
from the Database of Aligned Structural Homologs (DASH; (60),
which includes structural information to improve the alignment
processes. Subsequently, ClipKIT (61), with the smart-gap
parameter, was used to trim the alignment gaps while retaining
phylogenetically informative sites for the most accurate
phylogenetic inference. A maximum-likelihood phylogenetic
reconstruction was undertaken with IQ-TREE (62) to accurately
create a phylogeny of the sequences found for each given receptor
using the models of evolution indicated by ModelFinder (63); VT+R8
for InsR, JTT+I+I+R6 for EGFR, VT+F+R7 for FGFR, and WAG+F
+I+I+R7 for PDGFR/VEGFR). These trees were refined to reduce
partial sequences (less than 200 aa for EGFR, 350 aa for InsR, 200 aa
for PDGFR/VEGEFR, 170 aa for FGFR), sequences with ambiguous or
unknown residues (often found in Daphnia predicted
transcriptomes), and any sequences that confidently lacked the
domain organization of RTKs. Final phylogenies were
reconstructed using the pruned input dataset. All final trees, their
corresponding input files, and the alignments for G. lateralis and C.
maenas can be found in Supplementary Material 2. Branch support
for the finalized phylogenetic reconstructions was assessed via two
complementary methods, the Ultra-Fast Bootstrap approximation
(UFBoot; 1,000 iterations) and an approximate Bayes test (64-66).

A multiple sequence alignment restricted to brachyuran species
was performed following the MAFFT strategy outlined above, to
identify putative residues of structural and/or functional
significance conserved across taxa (Supplementary Material 3).
This alignment was subsequently used as input for the Motifs
from Annotated Groups in Alignments (MAGA) tool (67) to
identify motifs that could be employed to discriminate between
RTK classes without the need of large-scale phylogenetic analyses.
This tool consisted of a supervised method to detect motifs that can
identify sites of structural, functional, and/or evolutionary
significance based on sequence conservation within and across
groups, as defined by the previous phylogenetic analyses. Multiple
sequence alignments were produced to assess sequence content and
conservation across receptor types and subclades among select
decapod species. These alignments were generated with the
MAFFT strategy and subsequently visualized with a custom script
(code available at https://github.com/invertome/scripts/tree/main/
plots; from (41). Additionally, the script generated sequence logo
plots depicting the proportion of each residue found per alignment
site. Amino acid residue colors that are proximal in color space, in
both the alignments and logo plots, denote similarities in
physicochemical characteristics of the corresponding residues
(68). Additionally, further examination using NCBI's Conserved
Domain Database (69) assisted with the comparison and
identification of sequences. In this study, the protein sequences
were analyzed using a database of recognized domains, which
revealed commonly-found domains in RTKs, as well as domains
that suggested a non-RTK identity.
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Results

Phylogenetic analysis of receptor
tyrosine kinases

Maximum-likelihood phylogenetic analysis of crustacean RTKs
in the CrusTome database produced a well-supported tree with four
major clades, corresponding to InsR, EGFR, FGFR, and PVR classes
(Figure 1). The EGFR class consisted of a single monophyletic
group, designated EGFR1 (Figure 1). The other classes segregated
into subclades denoting possible receptor subtypes. The analyses
supported a classification nomenclature based on these clades and
subclades. The InsR clade had three subclades, designated InsR1,
InsR2, and InsR3; the FGFR clade had three subclades, designated
FGFRI1, FGFR2, and FGFR3; and the PVR clade had two subclades,
designated PVR1 and PVR2 (Figure 1; full unedited tree provided in
Supplementary Material 2).

Table 1 summarizes the distribution of RTK sequences obtained
from pancrustacean and tardigrade transcriptomes in the
CrusTome database. The 51 decapod species had the highest
number of RTK sequences, which included 60 InsR sequences
(Table 1). Fewer InsR sequences were identified in non-decapod
taxa; the next highest number was eight sequences in 22 isopod
species, followed by four sequences in two euphausiid species
(Table 1). InsR sequences were not obtained from transcriptomes
from the other 11 taxa (Table 1). By contrast, growth factor receptor
sequences were well represented in seven pancrustacean taxa: a total
of 344 in decapods; 128 in 22 isopod species; 97 in 26 amphipod
species; 95 in two branchiopod species; 55 in two euphausiid

PVR (PDGFR/VEGFR)
R2
R1
/ %/'/'
=
R1
R2

InsR

EGFR - R3

R1

FIGURE 1

Phylogenetic analysis of pancrustacean receptor tyrosine kinases. A
phylogenetic tree synthesized using all the initial references
sequences, all decapod sequences, and the identified sequences
found in other species from other studies using a WAG+F+R9
substitution model of evolution. The pink clade represents an overall
InsR identity. The green clade is EGFR, and the blue and purple are
FGFR and PVR, respectively. Non-RTK and non-decapod sequences
were removed for clarity. The full unedited tree can be found in
Supplementary Material 2.
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TABLE 1 Summary of CrusTome pancrustacean and tardigrade receptor
tyrosine kinase sequences.

# InsR EGFR FGFR
of
Species

Decapoda 51 60 77 129 138 404
Amphipoda 26 0 34 59 4 97
Isopoda 22 8 53 62 13 136
Copepoda 8 0 9 38 6 53
Euphausiacea 2 4 26 24 5 59
Branchiopoda 2 0 19 15 61 95
Bathynellacea 1 0 2 3 1 6
Cirripedia 1 0 4 0 4 8
Remipedia 2 0 2 3 0 5
Stomatopoda 1 0 2 0 3 5
Leptostraca 1 0 0 1 0 1
Mysida 1 0 0 1 0 1
Hexapoda 3 0 5 11 17 33
Tardigrada 2 0 3 4 0 7

Taxonomic distribution of insulin receptor (InsR), epidermal growth factor receptor (EGFR),
fibroblast growth factor receptor (FGFR), and platelet-derived growth factor/vascular
endothelial growth factor receptor (PVR) sequences identified in the CrusTome 1.0
database and included in the final phylogenies (40). RTK sequences previously deposited in
Genbank are not included. Sequences available in Supplementary Material 1.

species; 53 in eight copepod species; and 33 in three hexapod
species (Table 1).

Crustacean insulin receptors

The InsR tree had four subclades that reflected crustacean
taxonomic classifications with high bootstrap values supporting
each branch (Figure 2). There were three InsR subclades,
designated InsR1, InsR2, and InsR3 (Figure 2). A conserved
domain search identified the fourth subclade as EGEFR, as the
sequences contained a PTKc/EGFR-like catalytic domain
(Figure 2B; see section “Crustacean epidermal growth factor
receptors” below). The InsR1 subclade included sequences from
Hexapoda and Malacostraca, including Euphausiacea (krill) and
Decapoda (Achelata, Astacidea, Brachyura, and Caridea)
(Figure 2A). The InsR2 subclade included sequences from
Hexapoda and Decapoda (Achelata, Anomura, Astacidae, and
Brachyura) (Figure 2A). The InsR3 subclade included sequences
from Isopoda and Decapoda (Achelata, Anomura, Astacidea,
Caridea, and Brachyura) (Figure 2B).

The contig sequences encoding InsRs from selected decapod
species are presented in Table 2. The InsR1 subclade was
represented by single contigs in G. lateralis (Gl-InsR1), C. maenas
(Cm-InsR1), Cancer borealis (Cb-InsR1), and Eriochier sinensis (Es-
InsR1) (Table 2). GI-InsRI was a partial sequence, as it lacked the
kinase domain (Figure 3). Its identity was confirmed by its
phylogenetic proximity to Es-InsR1 (Erisil_EVmO000629t3), which
had all the domains identified in RTKs, including the protein
tyrosine kinase domain (Figure 2A). The GI-InsR1 contig
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sequence had a transmembrane domain and two fibronectin type
3 (FN3) domains in the N-terminal region (Figure 3). A GI-InsR2
contig sequence was not extracted from the CrusTome database.
However, InsR2 contigs were identified in C. maenas, C. borealis, S.
paramamosain, F. chinensis, and S. verreauxi (Table 2). In the third
subclade, three GI-InsR3 isoforms, designated GI-InsR3-Al, GI-
InsR3-A2, and Gl-InsR3-A3, were identified (Figure 2B, Table 2).
A full-length sequence of GIl-InsR3-Al was obtained manually by
combining three overlapping partial contig sequences
(GeclaM_EVmO001193t2/2, GeclaM_EVmO001193t2/1, and
GeclaM_EVmO001193t2/8). Gl-InsR3-A2 and Gl-InsR3-A3 were
partial sequences (Figure 3). DNA alignment identified highly
conserved regions shared between the GIl-InsR3-Al, -A2, and -A3
sequences (Supplementary Material 2). Gl-InsR3-A1 contained two
leucine-rich repeat (Receptor L1 and L2) domains, a furin-like
cysteine-rich region, two FN3 domains, a transmembrane domain,
and a protein tyrosine kinase catalytic domain (Figure 3). Two C.
maenas isoforms, designated Cm-InsR3-A1 and Cm-InsR3-A2, were
also found in this subclade (Table 2, Figure 2B).

Multiple sequence alignment of the identified decapod InsR
sequences kinase domain with a Drosophila melanogaster reference
revealed remarkable conservation of ATP-binding sites (10 out of
12 sites), including those outside (Figure 4; reference alignment
positions #1823, #1846, #1848, #1895, #1897, and #1901) and in the
loop regions (reference alignment positions #1967, #1968, #1970,
and #1984). Peptide-binding residues on the other hand were only
conserved across InsR subtypes in 5 out of 11 identified sites
(Figure 4, reference alignment positions #1967, #1968, and #2006;
positions #2015, #2050 in the loop region). MAGA search identified
conserved motifs in decapod InsR proteins (67). A VHRDLAARNC
motif, located in the catalytic loop, was conserved in all decapod
InsRs, which distinguished the InsRs from the decapod growth
factor RTKs (Table 3, Figure 4, reference alignment positions #1960
to #1969; Supplementary Material 1). The three InsR subclades were
distinguished by motif sequences in a 20-amino acid stretch located
proximal to the beginning of the first FN3 domain in the N-
terminus. There were four residues in the motif that were
conserved in all decapod InsRs (Table 3, Supplementary Material
4). The 20-amino acid sequence was highly conserved in InsR1
(Table 3, Supplementary Material 4, reference sequence positions
#840 to #859). Although the motif sequences varied among InsR2
and InsR3 subclades, there were consistent differences in the
sequences to distinguish the two subclades (Table 3).

Crustacean epidermal growth
factor receptors

Phylogenetic analysis showed that the crustacean EGFRs grouped
as a single clade, designated EGFRI, with remarkable conservation
across all pancrustacean taxa, including Branchiopoda, Cirripedia,
Copepoda, Decapoda, and Hexapoda (Figures 5A, B). Within the
decapods, EGFR1 sequences clustered into discrete taxonomic groups
(Achelata, Anomura, Astacidea, Brachyura, and Caridea) (Figure 5).
Multiple EGFR1 isoforms were identified in G. lateralis, C. maenas,
and S. paramamosain (Table 4). DNA alignment of the G. lateralis
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FIGURE 2

« 49

 EGFR

Insulin receptor phylogeny. A phylogenetic tree of InsR exhibiting an array of species, including two G. lateralis genes and three C. maenas genes.
Inset depicts entire tree, divided into sections (A) (InsR1 and InsR2) and (B) (InsR3 and EGFR), for orientation. Further analysis of the conserved
domains of the ROT67026.1 sequence suggested an identity other than an RTK, making it an outgroup for the tree. Support values correspond to
the approximate Bayes test and the Ultra-Fast Bootstrap approximation with the VT+R8 substitution model of evolution. Images from PhyloPic:
Homarus (lobster) by Steven Traver; Caridina multidentate (shrimp) by Douglas Teles da Rosa; Metacarcinus magister (Dungeness crab) by Harold
Eyster; Pagurus pubescens (hermit crab) by T. Michael Keesey; and Sophophora melanogaster (fly) by Andy Wilson.

isoforms showed that the four sequences, designated GI-EGFRI-AI,
-A2, -A3, and -A4, were likely products of a single gene (Figure 5B,
Table 4, Supplementary Material 2). Four C. maenas isoforms,
designated Cm-EGFRI-Al, -A2, -A3, and -A4, grouped proximally
to G. lateralis and other brachyurans (Figure 5B, Table 4,
Supplementary Material 2). In S. paramamosain, three contig
sequences obtained from the CrusTome database grouped with
three previously-described EGFR1 coding sequences (17)
(Figure 5B, Table 4, Supplementary Material 2).

A conserved domain search for the G. lateralis and S.
paramamosain EGFR sequences (17) and a D. melanogaster
reference sequence showed a highly conserved domain organization.
The N-terminal region contained two leucine repeat (Receptor L)
domains, a furin-like cysteine rich region, and a growth factor receptor
domain IV (Figure 6). The C-terminal region had an EGFR-like
protein tyrosine kinase catalytic domain. The D. melanogaster
sequence and Sp-EGFRI sequence had an additional furin-like
repeat (Figure 6). Multiple sequence alignment of the catalytic
domain of the decapod EFGR with a Drosophila reference revealed
high conservation of ATP-binding sites in the catalytic and activation
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loop regions (Figure 7). Ten peptide-binding residues were identified
based on homology to Drosophila, nine of which were conserved
across Decapoda and Hexapoda (Figure 7, reference alignment
positions #1080, #1109, #1111, #1112, #1113, #1115, #1116, #1125,
#1128). Only one peptide binding site differed between Drosophila
and the decapods investigated (Figure 7, reference alignment position
#1126), with both presenting hydrophilic residues (arginine and
glutamine, respectively) in the aforementioned position.

Crustacean fibroblast growth
factor receptors

Phylogenetic analysis of the CrusTome database identified three
FGFR subclades, designated FGFR1, FGFR2, and FGFR3 (Figure 8).
The three FGFR subclades included various pancrustacean
taxonomic groups, with decapod species represented in all three
subclades (Figures 8A-C).

Multiple FGFR contigs were identified in decapod species
(Figure 8, Table 5). Analysis of G. lateralis FGFRI sequences and
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TABLE 2 Classification of decapod insulin receptors.

10.3389/fendo.2024.1379231

Name Species Tissue Transcript ID Accession #

Gl-InsR1 G. lateralis YO GeclaM_Evm006589t1* OR767207
Cm-InsR1 C. maenas CNS CarmaC_EvmO002785t1 OR767208
Es-InsR1 E. sinensis MD Erisil_Evm000629t2*

Erisil_Evm000629t3
Cb-InsR1 C. borealis N Canbol_Evm005946t1*
Cm-InsR2 C. maenas CNS CarmaC_Evmo001651t1 OR767210

YO CarmaY_Evm006907t1* OR767209

Cb-InsR2 C. borealis N Canbol_Evm004089t1*

Canbol_Evmo002105t1
Sp-InsR2 S. paramamosain Testis Sp-IR! 0Q361826
Fc-InsR2 F. chinensis Testis, AG Fc-IAGR? AVU05021.1
Lv-InsR2 L. vannamei Unknown Lv-IR? XP027207730.1
Sv-InsR2 S. verreauxi Various Sv-TKIR* ANC28181.1
Gl-InsR3-A1 G. lateralis YO GeclaM_EvmO001193t2+ OR772928
Gl-InsR3-A2 G. lateralis YO GeclaM_EvmO001193t4* OR772876
Gl-InsR3-A3 G. lateralis YO GeclaM_EvmO001193t7* OR772877
Cm-InsR3-Al C. maenas CNS CarmaC_Evm00618t1 OR772927
Cm-InsR3-A2 C. maenas CNS CarmaC_Evm00618t3 OR772929
Mr-InsR3 M. rosenbergii Unknown Mr-IR® AKF17681.1
Es-InsR3 E. sinensis Unknown Es-InR® XP050738123.1

Canbol_EvmO002658t1
Cb-InsR3 C. borealis N Canbol:Evm 005343t1

Contigs encoding InsRs in the CrusTome 1.0 database and previously identified InsRs in other decapods. Gene names are the proposed classification, based on clades and subclades from

taxonomically comprehensive phylogenetic analyses. Both Cm-InsR2 sequences have the same classifications, as one was a partial sequence of the other a full-length sequence. Species: Gecarcinus
lateralis, Carcinus maenas, Cancer borealis, Sagmariasus verreauxi, Fenneropenaeus chinensis, Litopenaeus vannamei, Scylla paramamosain, Macrobrachium rosenbergii, and Eriocheir sinensis.

Tissue sources: AG, androgenic gland; CNS, central nervous system; MD, multiple developmental stages of whole larvae; and N, neural tissues. GenBank accession numbers included, if known.

Sequences are available in Supplementary Material 1. Asterisk (*) indicates partial sequence; open reading frame incomplete. +Combination of three partial contigs: GeclaM_Evm001193t2/2,
GeclaM_Evmo001193t2/1, and GeclaM_Evm001193t2/8.

'from (27).
2from (25).
from (24).
“from (26).
*from (21, 27).
from (23).

C. maenas FGFRI, FGFR2, and FGFR3 sequences showed that the
isoforms were products from a single gene for each subclade. In G.
lateralis, two isoforms, designated GI-FGFRI-Al and -A2, were
apparently alternatively-spliced products of the same gene, based
on highly conserved regions in the DNA alignment (Table 5,
Supplementary Material 2). There were also two C. maenas
isoforms of a single gene (Cm-FGFRI-AI and Cm-FGFRI-A2;
Table 5, Supplementary Material 2). The FGFR2 and FGFR3
subclades had one G. lateralis contig sequence in each subclade
(GI-FGFR2 and GI-FGFR3) and two C. maenas isoform sequences in
the FGFR2 subclade (Cm-FGFR2-A1 and Cm-FGFR2-A2) (Table 5,
Supplementary Material 2). Sequence alignment of C. maenas
FGFR3 showed that the sequences were nearly identical,
suggesting either allelic variation or slight discrepancies caused by
the difference in tissue types (YO vs. CNS; Table 5).

Frontiers in Endocrinology

The decapod FGFR sequences showed a similar domain
organization. Analysis of the G. lateralis GI-FGFR1-Al sequence,
the Sp-FGFR3 and Pc-FGFR4 sequences from previous studies
(18, 19), and a D. melanogaster reference FGFR sequence showed
two to three immunoglobulin-like domains in the N-terminal
region and a protein tyrosine kinase catalytic domain in the C-
terminal region (Figure 9). GI-FGFRI1-A2 was a partial sequence
missing a portion of the N-terminal sequence; only one
immunoglobulin-like domain was identified (Figure 9). GI-FGFR2
and GI-FGFR3 were partial sequences that lacked immunoglobulin
domains (Table 5, Figure 9). Interestingly, the N-terminus of GI-
FGFR2 had a cadherin tandem repeat domain (Figure 9).

MAGA search and a multiple sequence alignment of the FGFR
contigs in Table 5 identified a motif in the catalytic domain that
distinguished the three decapod FGFR subclades (Table 6) (67). The
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Domain organization of Drosophila and decapod insulin receptors. Listed sequences include a model organism (D. melanogaster), G. lateralis
sequences, and identified genes in other species using the classification as listed in the original referenced studies (Table 2)

113-amino acid sequence in FGFR1 and 112-amino acid sequences
in FGFR2 and FGFR3 were bounded by a conserved “VAVK” at the
N-terminal end and a conserved “HRDLA” at the C-terminal end
(Figure 10; reference alignment positions #1492-1495 and #1606-
1611, respectively). Moreover, multiple sequence alignments of the
catalytic domain of decapod FGFRs with a Drosophila reference
revealed amino acids in the ATP-binding and peptide-binding sites
that distinguished the decapod FGFRs. The four residues for ATP
binding within the catalytic loop and activation loop regions were
completely conserved in decapod and Drosophila FGFRs (Figure 10;
reference alignment positions #1613, #1614, #1616, and #1629). Six
of the ten peptide-binding residues were completely conserved in all
the decapod FGFRs (Figure 10; reference alignment positions
#1613, #1646, #1648, #1650, #1651, and #1660). Interestingly, the
other four residues were conserved within each of the three
subtypes (Figure 10, reference alignment positions #1644, #1647,
#1661, and #1663). Specifically, at position #1644, the residues in
FGFR1, FGFR2, and FGFR3 were lysine (K), arginine (R), or
glutamine (Q), respectively. At position #1647, the residues in
FGFRI, FGFR2, and FGFR3 were glutamate (E), aspartate (D), or
R, respectively. At position #1661, the residues in FGFRI, FGFR2,
and FGFR3 were phenylalanine (F), F, or tyrosine (Y), respectively.
At position #1663, the residues in FGFR1, FGFR2, and FGFR3 were
R, asparagine (N), or methionine (M), respectively.

Crustacean vascular endothelial and
platelet-derived growth factor
receptors (PVRs)

Initially, VEGFR and PDGFR phylogenetic trees were created
separately (Supplementary Material 2). BLAST searches identified
the same sequences in both trees, indicating that crustacean
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VEGFRs and PDGFRs constituted a single RTK class.
Consequently, a phylogenetic analysis was conducted on a single
group, designated PDGF/VEGF-related receptors (PVRs).
Phylogenetic analysis identified three well-supported subclades
that further segregated along taxonomic lineages (Figure 11).
BLAST searches of the outgroup subclade identified sequences as
low-density lipoprotein receptors (Figure 11A). The remaining two
subclades were designated PVR1 and PVR2 (Figure 11). PVRI
included sequences from Euphausiacea, Stomatopoda, and
Decapoda (Anomura, Astacidea, Brachyura, Caridea, and
Dendrobranchiata) (Figures 11A, B). PVR2 included sequences
from diverse pancrustacean taxa (e.g., Amphipoda, Branchiopoda,
Cirripedia, Copepoda, Decapoda, Euphausiacea, Hexapoda, and
Isopoda) (Figures 11C, D).

Several PVRI contig sequences were identified in decapods
(Table 7). One C. maenas gene was identified with four isoforms,
designated Cm-PVRI-Al, -A2, -A3, and -A4 (Figure 11B, Table 7,
Supplementary Material 2). Two contigs are listed for each of the Cm-
PVRI-AL, -A2, and -A4 isoforms, as they had small variations that may
be due to different tissue sources (Table 7, Supplementary Material 2).
Only one PVRI contig sequence was identified in G. lateralis, C.
borealis, S. paramamosain, and Pacifasticus leniusculus (Table 7).

The decapod PVR2 sequences were separated into two well-
supported groups, designated PVR2-A and PVR2-B (Figures 11C,
D, Table 7). Two G. lateralis contigs, designated GI-PVR2-Al and
GI-PVR2-A2, differed in single nucleotide polymorphisms,
suggesting that they were products of two genes (Table 7,
Supplementary Material 2). By contrast, two C. maenas isoforms
of one gene were identified (Cm-PVR2-Ala and Cm-PVR2-Alb;
Table 7). Two C. maenas contigs, one from CNS and the other from
YO, were assigned to Cm-PVR2-Ala, due to their high similarity in
sequence identity (Table 7, Supplementary Material 2). Four
sequences were assigned to Lv-PVR2-A and two sequences were
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Multiple sequence alignment and logo plot of the catalytic domain of Drosophila and decapod insulin receptors. Includes representative species
from Table 2 (Gecarcinus lateralis, Carcinus maenas, Cancer borealis, Sagmariasus verreauxi, Fenneropenaeus chinensis, Scylla paramamosain,
Macrobrachium rosenbergii, and Eriocheir sinensis) and Drosophila melanogaster INSR1 (Accession: AAC47458.1) as a reference for comparison. The
alignment illustrates the composition and length of conserved regions within subclades that reflect putative differences in ligands and/or binding
affinities between receptor types. Catalytic loop and activation loop regions are demarcated by red and blue rectangles, respectively. ATP-binding
and peptide-binding amino acid residues are annotated with green circles and orange squares, respectively, above the reference position. Partial
sequences were excluded for ease of visualization and interpretation. MSA color scheme corresponds to similarities in physicochemical properties of
amino acid residues. Logo plot illustrates conserved amino acid residues as a proportion of all the sequences included.

TABLE 3 Motif sequences distinguishing decapod insulin receptors.

Receptor FN3 sequences Catalytic
loop sequence
InsR1 RYAVYVETDTVADADIGARS VHRDLAARNC
InsR2 RYAVXVKxxSLxSSxxGAQS VHRDLAARNC
InsR3 xYAXYVxxYYTDxxKxxSRS VHRDLAARNC

InsR1, InsR2, and InsR3 were distinguished by a 20-amino acid motif sequence located near
the N-terminal end of the first FN3 domain in the N-terminal region. All InsRs had a
conserved 10-amino acid sequence in the catalytic loop in the catalytic domain in the C-
terminal region. Residues that are identical between all the sequences from Table 2 are
indicated by bold font. Consensus sequences were obtained using the MAGA tool (67) and
multiple sequence alignment (Figure 4).

assigned to Sp-PVR2-A without further analysis (Table 7). In the
PVR2-B group, G. lateralis had two isoforms from one gene,
designated GI-PVR2-Bla and -Blb, and C. maenas had four
isoforms from one gene, designated Cm-PVR2-Bla, -BIb, -Blc,
and -Bld (Table 7, Supplementary Material 2). Two contigs,
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obtained from YO and CNS transcriptomes, were assigned to
Cm-PVR2-Bla, as the contigs had high sequence identity
(Table 7, Supplementary Material 2). Three contig sequences were
assigned to Es-PVR2-B and two sequences were assigned to Cb-
PVR2-B without further analysis (Table 7).

A conserved domain search of the G. lateralis, L. vannamei, and
P. leniusculus PVR sequences and a D. melanogaster reference
sequence revealed a similar domain organization. The N-terminal
region had between two and five immunoglobulin-like domains
(Figure 12). The C-terminal region had a protein tyrosine kinase
catalytic domain (Figure 12).

MAGA search and a multiple sequence alignment of the contigs
in Table 7 identified a 46-amino acid motif in the catalytic domain
that distinguished the PVRI and PVR2 subclades (Table 8) (67).
The motif was bounded a conserved “HGDLA” at the N-terminal
end and a conserved “PxKW” at the C-terminal end (Table 8,
Figure 13, reference alignment positions #1348-1352 and #1390-
1393, respectively). It should be noted that the glycine (G) in the
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HGDLA sequence was replaced by an arginine (R) in Lv-VEGFR2
(Supplementary Material 2) (70). The PVR motif was located N-
terminal to the FGFR motif, with the HGDLA/HRDLA sequence
marking the N-terminal and C-terminal boundaries of the PVR and

TABLE 4 Classification of decapod EGF receptors.

FGFR motifs, respectively (Tables 6, 8). Multiple sequence
alignment of the catalytic domain of decapod PVRs with a
Drosophila melanogaster reference revealed structural diversity
between and within PVR subtypes (Figure 13). The four amino

Name Species Tissue Transcript 1D Accession #
GI-EGFR1-Al G. lateralis YO GeclaM_Evm000571t2* OR772878
GI-EGFRI-A2 G. lateralis YO GeclaM_Evm000571t3 OR772879
GI-EGFRI-A3 G. lateralis YO GeclaM_EvmO000571t1* OR772880
GI-EGFRI-A4 G. lateralis YO GeclaM_Evm000571t4 OR772881
Cm-EGFRI-Al C. maenas YO CarmaY_Evm000552t1 OR772882
Cm-EGFRI-A2 C. maenas CNS CarmaC_Evm000672t2 OR772883
Cm-EGFRI-A3 C. maenas YO CarmaY_Evm000552t2 OR772884
Cm-EGFR-1A4 C. maenas CNS CarmaC_Evmo000672t1 OR772885
Lv-EGFRI1 L. vannamei PW PenvanEVm000428t1
Es-EGFRI E. sinensis MD Erisil_Evm000423t1

Erisil_Evm000423t2
Cb-EGFRI C. borealis N Canbol_Evmo000431t1
Sp-EGFRI-A1 S. paramamosain Ov Sp-EGFR' MT663764.1
S. paramamosain Various Sp-EGFR1? WAR33937.1
Sp-EGFRI-A2 S. paramamosain Various Sp-EGFR2a’ WAR33938.1
Sp-EGFRI-A3 S. paramamosain Various Sp-EGFR2b” WAR33939.1
Sp-EGFR’ S. paramamosain w ScyparEVm000437t1*
(Continued)
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TABLE 4 Continued

Name Species Tissue Transcript ID Accession #
Sp-EGFR’ S. paramamosain w ScyparEVm000437t2*
Sp-EGFR? S. paramamosain w ScyparEVm000437t3*

Contigs encoding EGFRs in the CrusTome 1.0 database and previously identified EGFRs in other decapods. Gene names are the proposed classification, based on clades and subclades from
taxonomically comprehensive phylogenetic analyses. Species: Gecarcinus lateralis, Carcinus maenas, Litopenaeus vannamei, Eriocheir sinensis, Cancer borealis, and Scylla paramamosain. Tissue
sources: CNS, central nervous system; MD, multiple developmental stages of whole larvae; N, neural tissues; Ov, ovary; PW, pooled whole organism; W, whole organism; and YO, Y-organ.
Sequences available in Supplementary Material 1. Asterisk (*) indicates partial sequence; open reading frame incomplete.

'from (16). Sp-EGFR and Sp-EGFRI encode the same protein.

from (17).

*Not assigned to isoforms.
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sequences, and identified genes in other species using the classification as listed in the original referenced studies (Table 4).

acids identified in the ATP-binding site in the catalytic and
activation loop region were completely conserved (Figure 13;
reference alignment positions #1354, #1355, #1357, and #1370).
By contrast, only four of the ten peptide-biding residues were
completely conserved in decapod PVRs (Figure 13, reference
alignment positions #1354, #1383, #1390, and #1400). Analogous
to the FGFRs, four of the other six peptide-binding residues were
conserved between the three PVR subtypes (Figure 13, reference
alignment positions #1387, #1389, #1399, and #1402). Specifically,
at position #1387, PVR1, PVR2A, and PVR2B had glycine (G),
aspartate (D) or alanine (A), or D (Figure 13). At position #1389,
PVRI1, PVR2A, and PVR2B had valine (V), methionine (M) or
leucine (L), or M, respectively. At position #1399, PVRI, PVR2A,
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and PVR2B had L, isoleucine (I), or I, respectively. At position
#1402, PVR1, PVR2A, and PVR2B had G, arginine (R) or lysine
(K), or R, respectively. The residues at positions #1385 and #1386
were more variable (Figure 13).

Discussion

Phylogenetic analysis of the CrusTome database yielded the
most extensive catalog of Pancrustacea RTK contig sequences to
date. The large number of species from major Crustacea taxa
provided a higher confidence in distinguishing RTK types and
identifying genes and isoforms. A total of 988 contigs encoding
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Multiple sequence alignment and logo plot of the catalytic domain of Drosophila and decapod EGF receptors. Includes representative species from
Table 4 (Gecarcinus lateralis, Carcinus maenas, Cancer borealis, Litopenaeus vannamei, Scylla paramamosain, and Eriocheir sinensis) and Drosophila
melanogaster EGFR (Accession: NP476759.1) as a reference for comparison. The alignment illustrates the composition and length of conserved
regions within subclades that reflect putative differences in ligands and/or binding affinities between receptor types. Catalytic loop and activation
loop regions are demarcated by red and blue rectangles, respectively. ATP-binding and peptide-binding amino acid residues are annotated with
green circles and orange squares, respectively, above the reference position. Partial sequences were excluded for ease of visualization and
interpretation. MSA color scheme corresponds to similarities in physicochemical properties of amino acid residues. Logo plot illustrates conserved
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© = ATP binding amino acid residue
B =Peptide binding amino acid residue

RTKs in the CrusTome database were identified in 118 crustacean
species, 36 in three hexapod species, and nine in two tardigrade
species (Table 1, Supplementary Material 1). The sequences
segregated into well-supported clades and subclades, which
formed the basis for their classification into RTK types and
subtypes (Figure 1). InsR and EGFR were sister clades, as they
shared furin-like repeat and leucine-rich repeat (Receptor L)
domains in the N-terminal region (Figures 1, 3, 6) (6-8, 72).
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FGFR and PVR were clustered together, as they had
immunoglobulin domains in the N-terminal region (Figures 1, 9,
12) (6,9, 11, 72). This is consistent with the inferred evolutionary
histories with the ancestral versions being and/or containing InsR
and EGFR domains, and FGFR, PDGEFR, and VEGFR constituting
later evolved receptors (72, 73). Interestingly, while the other
receptors distributed into a number of subclades, EGFR was
highly conserved across crustacean taxa, suggesting that its role in
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Fibroblast growth factor receptor phylogeny. A phylogenetic tree of FGFR consisting of three clades with a G. lateralis and C. maenas gene in each.
Inset depicts entire tree, divided into sections (A) (FGFR1), (B) (FGFR2), and (C) (FGFR3), for orientation. Support values correspond to the
approximate Bayes test and the Ultra-Fast Bootstrap approximation with the VT+F+R7 substitution model of evolution. Images from PhyloPic, as

credited in Figure 2; Copepoda by Joel Vikberg Wernstrom.

physiological processes is conserved across the Metazoa. RTK
subclades often contained diverse pancrustacean taxa, and their
topologies mirrored pancrustacean evolutionary history (74). This
suggests that ancient duplication events gave rise to the diversity of
RTKs observed today (31). In addition, the aforementioned
phylogenetic reconstructions and classification resulted in a high
diversity of newly characterized arthropod RTK sequences.

Frontiers in Endocrinology

Sixty decapod InsR sequences were organized into three subtypes,
designated InsR1, InsR2, and InsR3 (Figure 1, Table 1). InsRI contigs
were identified in G. lateralis, C. maenas, E. sinensis, and C. borealis
transcriptomes (Table 2). InsR2 contigs were identified in C. maenas,
C. borealis, S. paramamosain (Sp-IR), F. chinensis (Fc-IAGR), and S.
verreauxi (Sv-TKIR) (Figure 2, Table 2, Supplementary Material 2).
InsR3 contigs were identified in G. lateralis (3 isoforms), C. maenas (2
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TABLE 5 Classification of decapod FGF receptors.

10.3389/fendo.2024.1379231

Name Species Tissue Transcript ID Accession #
GI-FGFRI-A1 G. lateralis YO GeclaM_EVm002929t1 OR772886
GI-FGFRI-A2 G. lateralis YO GeclaM_EVm002929t2* OR772887
Cm-FGFRI1-Al C. maenas YO CarmaY_EVmO002162t1 OR772889
Cm-FGFRI-A2 C. maenas CNS CarmaC_EVm002432t1 OR772888
Pc-FGFR1 P. clarkii He/Hp P. clarkii FGFR4' ONO012066
Sp-FGFR1 S. paramamosain He S. paramamosain FGFR3? ON045327
Lv-FGFRI L. vannamei P PenvanEVm002603t1*

PenvanEVm002603t2*

PenvanEVm002603t3*
Es-FGFRI E. sinensis MD Erisil_EVmO001548t4

Erisil_EVmO001548t5
Cb-FGFR1 C. borealis N Canbol_EVm001941t1
Sp-FGFR1 S. paramamosain w ScyparEVm001242t1

ScyparEVm001242t2

ScyparEVm001242t4
GI-FGFR2 G. lateralis YO GeclaM_EVmO002487t1* OR772890
Cm-FGFR2-A1 C. maenas YO CarmaY_EVmO002842t1 OR772891
Cm-FGFR2-A2 C. maenas CNS CarmaC_EVmO003254t1 OR772893
Lv-FGFR2 L. vannamei P PenvanEVmO006460t1*
Es-FGFR2 E. sinensis MD Erisil_EVm002489t1
Cb-FGFR2 C. borealis N Canbol_EVmO008362t1*
Sp-FGFR2 S. paramamosain w ScyparEVm001704t1
GI-FGFR3 G. lateralis YO GeclaM_EVmO004876t1* OR772892
Cm-FGFR3 C. maenas CNS CarmaC_EVmO000598t1 OR772895

C. maenas YO CarmaY_EVm000502t1 OR772894

Es-FGFR3 E. sinensis MD Erisil_EVm002432t1

Erisil_EVmO006998t2*
Cb-FGFR3 C. borealis N Canbol_EVm001234t1
Sp-FGFR3 S. paramamosain w ScyparEVm009244t1*
Lv-FGFR3 L. vannamei P PenvanEVm000438t1*

Classification of contigs encoding decapod FGFRs in the CrusTome 1.0 database and previously identified FGFRs in other decapods. Classification was based on clades and subclades from

taxonomically comprehensive phylogenetic analyses. Species: Gecarcinus lateralis, Carcinus maenas, Procambarus clarkii, Litop s va

i, Eriocheir si

is, Cancer borealis, and Scylla

paramamosain. Tissue sources: CNS, central nervous system; He, hemocytes; Hp, hepatopancreas; MD, multiple developmental stages of whole larvae; N, neural tissues; P, pooled whole

organism; W, whole organism; and YO, Y-organ. Sequences available in Supplementary Material 1. Asterisk (*) indicates partial sequence; open reading frame incomplete.

from (19).
2from (18).

isoforms), M. rosenbergii (Mr-IR), and C. borealis (Figure 2, Table 2,
Supplementary Material 2). GIl-InsRI contained a nucleotide
sequence of 1264 bp; Gl-InsR3-Al, -A2, and -A3 contained
nucleotide sequences of 5647 bp, 2530 bp, and 2206 bp,
respectively. The de novo assemblies produced only partial
sequences, possibly due to low levels of expression in the
sequenced tissues. A full-length GI-InsR3-A1 sequence was
constructed from three overlapping partial contigs (Table 2). GI-
InsR3-A1 was similar to cDNAs encoding M. rosenbergii insulin
receptor (Mr-IR) and E. sinensis insulin-like receptor (Es-InR); the
sequences were assigned to the R3 subclade (Table 2, Supplementary
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Material 2) (21, 23). An InsR binds insulin-like androgenic gland
hormone (IAG), an insulin-like peptide (ILP) that determines male
sexual characters by the androgenic gland (75-77). InsR2 subclade
members in S. paramamosain, S. verreauxi, L. vannamei, and F.
chinensis (Table 2) appear to be IAG receptors, as InsR2 is only
expressed in male reproductive tissues (e.g., testis, sperm duct,
terminal ampullae, and androgenic gland) and RNAi knockdown
of InsR2 reduces testicular development (25, 27). Moreover, in vitro
binding assays show interactions between IAG and InsR2 (25, 26).
The ligands of the InsR1 and InsR3 subclades are unknown. dsRNA
knockdown of Mr-IR/Mr-InsR-R3 did not result in sex reversal,
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Domain organization of Drosophila and decapod FGF receptors. Listed sequences include a model organism (D. melanogaster), all G. lateralis
sequences found, and identified genes in other species using the classification as listed in the original referenced studies (Table 5).

TABLE 6 Motif sequences distinguishing the three decapod FGFRs.

Receptor Consensus sequences

FGFR1 VAVKMLKEGHTDXxELMDLVSEMEMMKMIGTHINIINLLGCC
TQDGPLYVVVEYAAHGNLRDYLRNxRxxSGYERXIGQExxxxxx
xDLVSFxxQVARGMEYLxSxKCIHRDLAARNVL

FGFR2 VAVKTXKESAxxRERxDLVQELKVLKXLGxHxNVxSxLx
CCxxKxPxFxxLEYMxxGKLQSXLRxSRADTxYxN-

LHGSSSSxTPxDLxxxxY QxxRGMEFLxRNxxxHRDLAXRNxL

FGFR3 VAVKGVKxGAGXxKEKQDLLXELXIMQHxGxxxNVVTLL

GCCTQQEPxxVIMEYVMFGKLLXFLRDHRTRxNYYN-
FSSDTXALTSxDLTRFACQVAxGCEYxQSRGITHRDLAXRNXL

FGFRI1, FGFR2, and FGFR3 were distinguished by a 118-amino acid motif sequence in FGFR1
and by 117-amino acid sequences in FGFR2 and FGFR3, located in the catalytic domain in the
C-terminal region. The 16-amino acid catalytic loop is underlined. Residues that are identical
between all the sequences from Table 5 are indicated by bold font. Consensus sequences were
obtained using the MAGA tool (67) and multiple sequence alignment (Figure 10).

suggesting that a different InsR gene is involved (21). However, Tan
et al. (2020) reported sex reversal in one or two M. rosenbergii
individuals with dsRNA or siRNA knockdown of Mr-IR (22). Es-InR/
Es-InsR3 is implicated in limb regeneration, as Es-InR is up-regulated
in limb regenerates and an InR inhibitor (GSK1838705A) suppresses
limb regenerate growth (23).

Seventy-seven decapod EGFR sequences were organized into a
single monophyletic clade (EGFRI; Figure 1, Table 1). The
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assignment of the EGFRIs to a single clade was supported by
the high amino acid sequence identity in the catalytic domain
(Figure 7). Multiple isoforms were common (Figure 5, Table 4). G.
lateralis had one EGFR gene with four isoforms obtained from the
YO transcriptome; the contigs ranged from 4280 bp to 5550 bp
and classified as GI-EGFRI-A1, -A2, -A3, and -A4 (Figure 5,
Table 4). Four C. maenas EGFR isoforms were also obtained -
two from the YO transcriptome and two from the CNS
transcriptome (Figure 5, Table 4). This compares to a single
6864-bp M. rosenbergii EGFR sequence obtained from the SRA
database (Table 4) (20). Single EGFR sequences were also obtained
from L. vannamei, E. sinensis, and C. borealis transcriptomes
(Table 4). Three distinct EGFR transcripts varying between 5076
bp and 5457 bp have been identified in S. paramamosain (Table 4)
(17). cDNAs encoding two genes, designated Sp-EGFRI and Sp-
EGFR2, were obtained by PCR of genomic DNA, followed by
RACE of RNA from hepatopancreas (17). Sp-EGFRI produces a
single coding sequence, whereas Sp-EGFR2 produces two
alternatively-spliced isoforms, designated Sp-EGFR2a and Sp-
EGFR2b (17). Previously, a full-length Sp-EGFR sequence was
cloned from ovary (16). As the protein sequences of Sp-EGFR and
Sp-EGEFRI are identical, it is likely that they are products of the
same gene. Comprehensive phylogenetic analyses and multiple
sequence alignments in the present study suggest that all three
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Multiple Sequence Alignment of FGFR Kinase Domain
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FIGURE 10

amino acid residues as a proportion of all the sequences included.

Multiple sequence alignment and logo plot of the catalytic domain of Drosophila and decapod FGF receptors. Includes representative species from
Table 5 (Gecarcinus lateralis, Carcinus maenas, Procambarus clarkii, Eriocheir sinensis, Cancer borealis, and Scylla paramamosain) and Drosophila
melanogaster FGFR (Accession: BAA03617.1) as a reference for comparison. The alignment illustrates the composition and length of conserved
regions within subclades that reflect putative differences in ligands and/or binding affinities between receptor types. Catalytic loop and activation
loop regions are demarcated by red and blue rectangles, respectively. ATP-binding and peptide-binding amino acid residues are annotated with
green circles and orange squares, respectively, above the reference position. Partial sequences were excluded for ease of visualization and
interpretation. MSA color scheme corresponds to similarities in physicochemical properties of amino acid residues. Logo plot illustrates conserved

© = ATP binding amino acid residue
B = Peptide binding amino acid residue

sequences are isoforms of one gene and not two separate gene
products as previously hypothesized by Cheng et al. (17). Three
partial contig sequences identified in the CrusTome database
matched the three S. paramamosain cDNA sequences (Table 4,
Figure 5, Supplementary Material 2). Thus, there are three Sp-
EGEFR coding sequences, which are designated Sp-EGFRI-AI, -A2,
and -A3 (Table 4).

Decapod EGFRs, which are widely expressed in tissues, mediate
physiological processes involving growth and differentiation. Mr-
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EGER is expressed in thoracic ganglion, heart, hepatopancreas,
muscle, ovary in females, and testis and sperm duct in males (20).
dsRNA knockdown of Mr-EGFR in male prawns inhibits molt-
incremental growth; inhibits growth of a male-specific secondary
sexual characteristic (appendix masculina); and disrupts eye
ommatidia organization (20). In S. paramamosain, EGFRs are
expressed in all tissues (16, 17). Sp-EGFR/Sp-EGFRI-AI is
expressed in 14 tissues, with higher expression in heart, YO,
ovary, gill, and stomach (16). Sp-EGFR1/Sp-EGFRI1-Al, Sp-
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FIGURE 11

PDGFR/VEGFR-related receptor (PVR) phylogeny. A phylogenetic tree of PVR of four potential G. lateralis genes and three C. maenas genes. Inset
depicts entire tree, divided into sections (A) (PVR1), (B) (PVR1), and (C) (PVR2), and (D) (PVR2). Support values shown correspond to the approximate
Bayes test and the Ultra-Fast Bootstrap approximation with the WAG+F+I+1+R7 substitution model of evolution. Images from PhyloPic, as credited in
Figure 2; Penaeus monodon (tiger prawn) by T. Michael Keesey; Squilla mantis (mantis shrimp) by T. Michael Keesey; and Euphausiidae (krill) by

Steven Haddock.
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TABLE 7 Classification of decapod PDGF/VEGF-related receptors (PVRs).

Name Species Tissue Transcript ID Accession #
GI-PVRI G. lateralis YO GeclaM_EVm000425t1 OR772896
Cm-PVRI-Al C. maenas CNS CarmaC_EVmO000535t6 OR772898
YO CarmaY_EVmO000455t4* OR772897
Cm-PVRI-A2 C. maenas CNS CarmaC_EVmO000535t1 OR772899
YO CarmaY_EVm000455t1 OR772911
Cm-PVRI-A3 C. maenas YO CarmaY_EVmO000455t5 OR772912
Cm-PVRI-A4 C. maenas CNS CarmaC_EVmO000535t4 OR772914
YO CarmaY_EVmO000455t3 OR772913
Cb-PVRI C. borealis N Canbol_EVmO002684t1*
Es-PVRI E. sinensis MD Erisil_EVmO000492t1*
Erisil_EVmO000492t3*
Erisil_EVmO000492t4
Cb-PVRI C. borealis N Canbol_EVm000387t1*
Sp-PVRI S. paramamosain w ScyparEVmO000253t1
PI-PVRI P. leniusculus HeTC PL_PVRI1! KY444650
GI-PVR2-Al G. lateralis YO GeclaM_EVmO000511t1 OR772915
GI-PVR2-A2 G. lateralis YO GeclaM_EVmO000521t1 OR772917
Cm-PVR2-Ala C. maenas CNS CarmaC_EVmO001015t1* OR772916
YO CarmaY_EVm000863t2* OR772918
(Continued)
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TABLE 7 Continued

10.3389/fendo.2024.1379231

Name Species Tissue Transcript ID Accession #
Cm-PVR2-A1b C. maenas YO CarmaY_EVmO000863t1 OR772920
Lv-PVR2-A L. vannamei Various LvVEGFR1* KM280384

Various LvVEGFR2? MF417824
PW PenvanEVmO001782t4*
PW PenvanEVmO001782t5
Sp-PVR2-A S. paramamosain w ScyparEVmO000304t1
ScyparEVmO000304t3
GI-PVR2-Bla G. lateralis YO GeclaM_EVm000503t1 OR772919
GI-PVR2-B1b G. lateralis YO GeclaM_EVm000503t2* OR772921
Cm-PVR2-Bla C. maenas YO CarmaY_EVm000567t1 OR772922
CNS CarmaC_EVmO000679t1 OR772923
Cm-PVR2-Blb C. maenas CNS CarmaC_EVmO000679t4* OR772925
Cm-PVR2-Blc C. maenas CNS CarmaC_EVmO000679t3* OR772924
Cm-PVR2-Bld C. maenas CNS CarmaC_EVmO000679t5* OR772926
Es-PVR2-B E. sinensis MD Erisil_EVm001938t1
Erisil_EVm001938t3*
Erisil_EVm001938t6*
Cb-PVR2-B C. borealis N Canbol_EVmO000508t1
Canbol_EVm004877t1

Contigs encoding PVRs in the CrusTome 1.0 database and previously identified PVRs in other decapods. Gene names are the proposed classification, based on clades and subclades from
taxonomically comprehensive phylogenetic analyses. The C. maenas sequences with the same classification are the same version of a gene/isoform from different tissues with the small differences
in sequences. Species: Gecarcinus lateralis, Carcinus maenas, Pacifastacus leniusculus, Cancer borealis, Eriocheir sinensis, Litopenaeus vannamei, and Scylla paramamosain. Tissue sources: CNS,
central nervous system; HeTC, Hematopoietic Tissue Cells; N, neural tissues; MD, multiple developmental stages of whole larvae; PW, pooled whole organism; W, whole organism; and YO, Y-

organ. Sequences available in Supplementary Material 1. Asterisk (*) indicates partial sequence; open reading frame incomplete.
from (29).
2from (70, 71).
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FIGURE 12

Domain organization of PDGF/VEGF (PV) receptors. Listed sequences include a model organism (D. melanogaster), all G. lateralis sequences found,
and identified genes in other species using the classification as listed in the original referenced studies (Table 7). The shaded light green sections are

the kinase-insert domains in mammalian PDGFRs and VEGFRs (6).
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TABLE 8 Motif sequences distinguishing the decapod PVRs.

Receptor Consensus sequences

PVRI YQIAKGMEYLAFKKVLHGDLAARNVLLxx
NNVVKISDEGLAKDIYxNxNYKKxxxGPVPVKW

PVR2A WQxAxGMxYLSRRxxLHGDLAARNLLLx
DNNVKISDFGxSRxxYxxxxYxKxxDxxxPxKW

PVR2B WQVAXGMxYLxxRKVLHGDLAARNLLLxDDNxx
KISDFGLSRXxMYKKDxYMKKxDDLMPIKW

PVRI1, PVR2A, and PVR2B were distinguished by 62-amino acid motif sequences spanning
the catalytic and activation loops in the catalytic domain in the C-terminal region. Catalytic
loop indicated by double underline and activation loop indicated by dashed underline.
Residues that are identical between all the sequences from Table 7 are indicated by bold font.
Consensus sequences were obtained using the MAGA tool (67) and multiple sequence
alignment (Figure 13).

EGFR2a/Sp-EGFRI-A2, and Sp-EGFR2b/Sp-EGFRI-A3 are
expressed in 8 tissues (17). Sp-EGFRI1/Sp-EGFRI1-Al and Sp-
EGFR2a/Sp-EGFR1-A2 are expressed at higher levels than Sp-
EGFR2b/Sp-EGFRI-A3 in gill, hepatopancreas, ganglion, stomach,
and muscle (17). Sp-EGFR signaling promotes ovarian
development. Sp-EGFR mRNA levels increase in early and late
vitellogenic stages (16). Human EGF stimulates vitellogenesis and
Sp-Vitellogenin receptor expression in oocytes in vitro, which is
inhibited by EGFR inhibitors AG1478 and PD153035 (16).

10.3389/fendo.2024.1379231

One hundred and twenty-nine decapod FGFR sequences were
organized into three clades, designated FGFR1, FGFR2, and FGFR3
(Figure 1, Table 1). FGFRI contigs were identified in G. lateralis (2
isoforms), C. maenas (2 isoforms), L. vannamei, E. sinensis, C.
borealis, and S. paramamosain (Table 5). A cDNA encoding Sp-
FGFR3 was cloned from S. paramamosain hemocytes (18). As the
Sp-FGFRI contig sequences and the Sp-FGFR3 sequence were
similar (Figure 8A), Sp-FGFR3 was assigned to the FGFRI
subtype (Sp-FGFRI; Table 5). Likewise, a cDNA encoding Pc-
FGFR4, which was cloned from P. clarkii hemocytes and
hepatopancreas (19), clustered with other decapod FGFRI
sequences (designated Pc-FGFRI; Figure 8A). GI-FGFRI1 proteins
with less than three immunoglobulin domains were partial
sequences (Figure 9). FGFR2 and FGFR3 contigs were identified
in G. lateralis, C. maenas (2 isoforms), L. vannamei, E. sinensis, C.
borealis, and S. paramamosain; all seven FGFR2 and all seven
FGFR3 sequences were novel (Table 5). The N-terminal region of
GI-FGFR2 and GI-FGFR3 lacked immunoglobulin domains
(Figure 9). Interestingly, GI-FGFR2 had a cadherin tandem repeat
domain, which occurs in other RTKs (78). This illustrates the
challenge of using sequence-similarity based methods for growth
factor receptor identification. However, their identity as FGFRs was
confirmed by the conserved protein tyrosine kinase domain shared
by all the decapod sequences (Figures 9, 10).

Multiple Sequence Alignment of PVR Kinase Domain

PEEEERREERERRRRRRES ]

05 TEG(L Gl

R LD VLAY LR LG

20

FIGURE 13

Multiple sequence alignment and logo plot of the catalytic domain of Drosophila and decapod PDGF/VEGF (PV) receptors. Includes representative
species from Table 7 (Gecarcinus lateralis, Carcinus maenas, Cancer borealis, Eriocheir sinensis, and Scylla paramamosain) and Drosophila
melanogaster PVR (Accession: NP001260235.1) as a reference for comparison. The alignment illustrates the composition and length of conserved
regions within subclades that reflect putative differences in ligands and/or binding affinities between receptor types. Catalytic loop and activation
loop regions are demarcated by red and blue rectangles, respectively. ATP-binding and peptide-binding amino acid residues are annotated with
green circles and orange squares, respectively, above the reference position. Partial sequences were excluded for ease of visualization and
interpretation. MSA color scheme corresponds to similarities in physicochemical properties of amino acid residues. Logo plot illustrates conserved

amino acid residues as a proportion of all the sequences included.
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There are few reports on the functions of FGFRs in decapods,
and those studies are restricted to members of the FGFR1 subclade.
The functions of FGFR2 and FGFR3 are unknown. In P. clarkii and
S. paramamosain, FGFR1 is involved in innate immunity. Viral and
bacterial infection increases mRNA levels of Sp-FGFR3 in the
hepatopancreas and Pc-FGFR4 in hemocytes and hepatopancreas
(18, 19). Moreover, RNAi knockdown of Pc-FGFR4 and Sp-FGFR3
or FGFR inhibitor (Pemigatinib) decreased mRNA levels of
immunity-related genes (18, 19). FGFR1s are broadly expressed in
crustacean tissues, with higher Pc-FGFR4 mRNA levels in eyestalk
ganglia, stomach, heart, intestine, and hepatopancreas and higher
Sp-FGFR3 levels in hepatopancreas, muscle, intestine, and heart (18,
19). Given their wide tissue expression, it is likely that FGFRs are
involved in other processes. For example, in crayfish and other
decapods, FGF controls blastemal growth during the initial stage of
limb regeneration (79).

The PVRs were the most diverse of the four RTK classes. A total
of 138 decapod PVR sequences were divided into two major
subclades (PVR1 and PVR2; Figures 1, 11, Table 7). PVR2 was
further divided into PVR2A and PVR2B sequences, with PVR2B
brachyuran-specific (Figures 11C, D, Table 7). The PVR tree was
constructed by using PDGFR and VEGEFR sequences jointly, as
vertebrate VEGFR and PDGFR are not clearly differentiated in
invertebrates (80). The evolution of VEGFRs and PDGFRs parallels
the diversification and expansion of VEGFs in metazoans (81). An
ancestral VEGFR/PDGFR ortholog, originally discovered in
Drosophila, was designated PVR (PDGFR and VEGFR-Related
Receptor), which diverged and led to PDGFR and VEGFR genes
in vertebrates (80, 82). The lack of a clear distinction between
PDGFR and VEGEFR genes has contributed to inconsistencies in the
annotation of homologous sequences in invertebrates. According to
the classification proposed in Table 7, PVR1 sequences were
identified in G. lateralis, C. maenas (4 isoforms), C. borealis, E.
sinensis, S. paramamosain, and P. leniusulus (29). PVR2A
sequences were identified in G. lateralis (2 isoforms), C. maenas
(2 variants of one isoform), L. vannamei (2 isoforms; (70, 71), and S.
paramamosain. PVR2B sequences were identified in G. lateralis (2
variants of one isoform), C. maenas (4 variants of one isoform), C.
borealis, and E. sinensis.

PVR signaling is implicated in diverse physiological processes in
decapods. In L. vannamei, five VEGFs and two VEGFRs are part of
the immune response to viral infections; knockdown of VEGF and
VEGFR expression reduces mortality, suggesting that PVR
signaling supports viral replication (70, 71, 83-85). VEGF- and
VEGFR-like immunoreactivities are localized in the eyestalk ganglia
of the swamp ghost crab (Ucides cordatus), suggesting that VEGF is
involved in neuron and glial cell differentiation and maintenance
(86). In S. paramamosain, a VEGF-like gene (Sp-vegfb) has a role in
lipid accumulation in the hepatopancreas and other tissues (30). In
P. leniusculus, PVR signaling controls hematopoiesis by affecting
extracellular transglutaminase (TGase) activity. PI-PVRI is
expressed in hemocytes and hematopoietic tissue (HPT) (29).
Sunitinib malate, a PVR inhibitor, decreases HPT progenitor cell
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migration and round cell morphology and increases HPT cell
spreading and extracellular TGase activity (29).

Multiple sequence alignments of the catalytic domain aided the
identification and classification of decapod RTKs. All four RTK
classes shared three consensus motifs: the glycine-rich loop
(GxGxFG), which plays a role in ATP binding; the aspartate-
phenylalanine-glycine motif (DFG) near the activation loop; and
the histidine-arginine-aspartate-leucine-alanine (HRDLA) motif in
the catalytic loop (Supplementary Material 3) (87, 88). The only
variation was in the PVR sequences, in which glycine replaced the
arginine in the catalytic loop motif (HGDLA, Figure 13). Members
of the EGFR class were readily identified by the high conservation in
the catalytic domain; there were only four positions in the entire
305-amino acid sequence that differed (Figure 7). All the InsR had
the same “VHRDLAARNC” sequence in the catalytic loop (Table 3;
Figure 4), but the three InsR subtypes differed in sequences of a 20-
amino acid motif located in the first FN3 domain in the N-terminal
region (Table 3). The three FGFR subtypes differed in motif
sequences (118 amino acids in FGFR1 and 117 amino acids in
FGFR2 and FGFR3) that included the catalytic loop (Table 6,
Figure 10). While conserved motifs are certainly useful in
discriminating RTK types and subtypes, further work is required
to elucidate their functional relevance. The complete conservation
of the residues involved in ATP binding and peptide binding in
EGFR1 (Figure 7) suggests that all members of the clade share the
same catalytic properties. By contrast, the residues involved in ATP
binding and peptide binding in the InsR, FGFR, and PVR sequences
were not always conserved (Figures 4, 10, 13), suggesting that the
subtypes within each clade differ in catalytic properties.

Processes such as development, growth, homeostasis, cell
proliferation, and metabolism are regulated by growth factors,
many of which are mediated by RTKs (3, 4, 82). In insects, RTK
signaling controls molting by stimulating mechanistic target of
rapamycin (mTOR)-dependent synthesis and secretion of molting
hormones (ecdysteroids) by the prothoracic gland (82, 89-93). By
contrast, the control of mTOR-dependent YO ecdysteroidogenesis
by growth factor/RTK signaling has not been established (46). In G.
lateralis, previous identification of GI-EGF, GI-FGF, GI-EGFR, Gl-
FGFR, and GI-InsR in the YO transcriptome suggested that growth
factors stimulate ecdysteroidogenesis, possibly through an autocrine
mechanism (32, 33, 38, 46). The identification of multiple subtypes
and isoforms provides a comprehensive catalog of RTK genes for
functional analysis. Many of these RTKs were expressed in G.
lateralis and C. maenas YO transcriptomes (Tables 2, 4, 5, 7). The
YO is primarily regulated by molt-inhibiting hormone (MIH), a
neuropeptide that binds to a G protein-coupled receptor to inhibit
ecdysteroid synthesis (41, 45, 46). A drop in MIH release from
neurosecretory neurons in the eyestalk ganglia activates the YO and
the animal enters early premolt (45). Growth factor receptors may
sustain high rates of ecdysteroid synthesis by the committed YO
during mid- and late premolt (46). For example, EGFR signaling in
the prothoracic gland supports ecdysteroidogenesis during the lava
to pupa transition in Drosophila (92).
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Conclusions

Bioinformatic and phylogenetic analysis using the CrusTome
database yielded a rich diversity of hundreds of RTK contigs
distributed across all crustacean taxa. The sequences were
organized into InsR, EGFR, FGFR, and PVR clades, subclades,
and isoforms, providing a framework for a classification
nomenclature. Moreover, this extensive catalog of crustacean
RTKs facilitates a systematic analysis of InsR, EGFR, FGFR, and
PVR functions in various physiological processes, including, but not
limited to, molting and growth, reproduction, regeneration,
development and metamorphosis, nutrition and metabolism, and
immunity, as well as their interactions with environmental stressors
arising from climate change (94-96). Moreover, a greater
understanding of growth factor/RTK signaling has important
applications to sustainable aquacultural practices and the
development of entirely new bioindustries, such as cellular
agriculture and cultivated meats (28, 97-102).
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