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Abstract Breaking atmospheric gravity waves (GWs) in the tropical stratosphere are essential in driving the

roughly 2‐year oscillation of zonal winds in this region known as the Quasi‐Biennial Oscillation (QBO). As

Global Climate Models (GCM)s are not typically able to directly resolve the spectrum of waves required to drive

the QBO, parameterizations are necessary. Such parameterizations often require knowledge of poorly

constrained physical parameters. In the case of the spectral gravity parameterization used in this work, these

parameters are the total equatorial GW stress and the half width of phase speed distribution. Radiosonde

observations are used to obtain the period and amplitude of the QBO, which are compared against values

obtained from a GCM. We utilize two established calibration techniques to obtain estimates of the range of

plausible parameter values: History matching & Ensemble Kalman Inversion (EKI). History matching is found

to reduce the size of the initial range of plausible parameters by a factor of 98%, requiring only 60 model

integrations. EKI cannot natively provide any uncertainty quantification but is able to produce a single best

estimate of the calibrated values in 25 integrations. When directly comparing the approaches using the

Calibrate, Emulate, Sample method to produce a posterior estimate from EKI, history matching produces more

compact posteriors with fewer model integrations at lower ensemble sizes compared to EKI; however, these

differences become less apparent at higher ensemble sizes.

Plain Language Summary Atmospheric gravity waves (GWs) are buoyancy driven oscillations

which propagate through the atmosphere and deposit momentum where they break. This momentum exchange

plays a significant role in setting various large‐scale atmospheric phenomena, of which a prominent example is

the Quasi‐Biennial Oscillation (QBO), a roughly 2‐year oscillation of winds in the tropical stratosphere. Many

of the waves responsible for creating these large scale patterns are too small to be simulated by climate models.

Thus, we use parameterizations to estimate their impact on the large scale. These parameterizations have

settings that require tuning, to enable the model to produce variability that matches the observed climate. In this

work, we utilize and compare two techniques: History matching and Ensemble Kalman Inversion. These

methods are combined with observations of the QBO to tune the settings for the GW parameterization.

1. Introduction

Global Climate Models (GCM)s are powerful tools for understanding and predicting the evolution of the Earth's

climate. For computational cost reasons, the current generation of climate models have a resolution of

O(100km) in the horizontal. Motions on scales smaller than this model resolution and which vary on time

scales smaller than a model time step are not explicitly resolved, but can significantly impact the resolved

scales of motion.

One such subgrid‐scale process is atmospheric gravity waves (GW)s, which are generated in the atmosphere by a

wide range of sources including mountains, deep convective storms and fronts (Fritts & Alexander, 2003). The

horizontal scale of these GWs can range from tens to thousands of kilometers (Alexander et al., 2010). GWs are

responsible for substantial momentum transport from their source region to higher levels in the atmosphere, where

they break and deposit the momentum into the mean flow (Fritts & Alexander, 2003). This breaking of GWs in the

stratosphere plays a substantial role in driving large scale atmospheric patterns, including the Quasi‐Biennial

Oscillation (QBO).

The QBO is the dominant mode of variability in the tropical stratosphere and consists of alternating descending

westerly and easterly zonal winds with a period of around 28 months. The QBO is forced by a mixture of various

tropical waves (Holton & Lindzen, 1972). However, to simulate a spontaneous QBO in models, the impact of
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small scale GWs (approximated by GW parameterizations), appears crucial (Dunkerton, 1997; Lindzen &

Holton, 1968).

In practice, GW parameterizations can be divided into two classes, orographic parameterizations (Lott &

Miller, 1997), useful for studying the impact of stationary mountain waves, and non‐orographic parameterizations

which typically utilize a spectrum of GW phase speeds. We concern ourselves with the latter, specifically the

commonly used parameterization developed by Alexander and Dunkerton, henceforth referred to as AD99

(Alexander & Dunkerton, 1999). In practice, default parameter settings are chosen manually based on whether a

given parameter produces realistic behavior of large scale, observable patterns known to be driven by GWs.

Whilst these default choices are often sufficient to test the implementation of a parameterization, the choice of

parameters is rarely optimal. The task of obtaining an optimal set of parameters based on observations of a related

phenomenon is known as calibration. Calibration can be formulated as an inverse problem in which a complex

model, which is a function of parameterization settings, outputs some estimate of a real world observable. In this

work an intermediate complexity GCM implementing AD99 was used to output predictions of the QBO period

and amplitude. The root mean squared error (RMS) between the predictions and the observations weighted by the

uncertainties was used as the loss function for the calibration. Due to the computational cost of running such a

GCM, this loss function cannot practically be optimized by conventional gradient descent methods.

Various classes of methods exist to solve inversion problems. In this work, we will utilize an approach known as

Bayesian history matching. This approach was initially developed to calibrate models for oil exploration (Craig

et al., 1997) and has found wide utility in various disciplines. This includes in calibrating models of galactic

formation (Williamson et al., 2013), HIV disease transmission (Andrianakis et al., 2015) and recently in cali-

brating multi timescale dynamical systems (Lguensat et al., 2023).

During each iteration of history matching, the current “plausible” parameter space is sampled and forward model

integrations at the sampled points are used to obtain estimates of the observables. An emulator, trained on the

results of the model integrations is then used to predict the observables across the space. By comparing these

predictions to the true observables we calculate an implausibility statistic which is minimized in regions of space

where the predictions agree with the observations or those with high uncertainties. By determining the regions

where this implausibility is below a certain threshold we obtain the “Not Ruled Out Yet” (NROY) space (Wil-

liamson & Vernon, 2013), a uniform space of parameters that, relative to the uncertainties, simulate a QBO

consistent with observations.

An alternate calibration method known as Ensemble Kalman Inversion (EKI) was investigated on AD99 in a

previous study (Mansfield & Sheshadri, 2022); and has also been utilized in the calibration of other parame-

terization schemes, for example, Dunbar et al. (2021). EKI is a gradient free optimization method, which con-

verges upon a singular point that minimizes a loss function (Iglesias et al., 2013; Kovachki & Stuart, 2019).

Whilst an emulator is not required for the update step of the calibration in EKI, it is required in order to reconstruct

the complete posterior distribution to obtain a structure that is analogous to the NROY space in history matching

(Cleary et al., 2021), a process known as Calibrate, Emulate, Sample (CES).

In this paper, we present the results of applying an implementation of history matching for calibrating the AD99

parameterization and a comparison to the EKI calibration method (Mansfield & Sheshadri, 2022). The method

and theory of this technique in addition to the emulator development are described in Section 2. The results of the

history matching algorithm are then presented in Section 3, with a comparison to EKI made in Section 3.1. A

discussion of the relative ability of EKI and history matching to calibrate the AD99 parameterization is presented

in Section 4.

2. Method

2.1. Computational Configuration

In this investigation, we utilize the Model of an Idealized Moist Atmosphere (MiMA) (Garfinkel et al., 2020;

Jucker & Gerber, 2017), an intermediate complexity GCM that contains an implementation of the AD99

parameterization. The model is run at a T42 spectral resolution using 40 vertical levels on a 128 × 64 longitude‐

latitude grid. This corresponds to a resolution of around 310 km at the equator, far too coarse to directly resolve

much of the spectrum of GWs (Baldwin et al., 2001). In order to capture a sufficient number of complete QBO
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cycles to characterize the distribution, 20 years of forward integration are performed. A mixture of cold start and

hot start integrations are utilized in this investigation, with cold starts initialized with a uniform temperature of

260K and with a spin up period of 20 years. Hot start integrations utilized already initialized MiMA integration

states containing a QBO, which only required a 2‐year spinup period and are used once the cold start runs were

completed.

As we calibrated based on observations of the QBO in this investigation, we focused on the tropical parameters of

AD99 following the approach of Mansfield and Sheshadri (2022). These are the ctropicsw & B
eq
t parameters,

henceforth referred to as cw and Bt. The former of these parameters sets the half width of the half maximum

Gaussian spectrum of GW phase speeds that will be utilized by AD99 within the tropics. The Bt factor corre-

sponds to the equatorial GW total momentum stress and is used within AD99 to set the GW intermittency factor

via a re‐scaling of the GW spectrum. Neither of these parameters are well constrained by observations and as such

form the target parameters for our calibration.

2.2. Observations of the QBO

Radiosonde observations, primarily over Singapore, which were provided by the Freie Universität Berlin

(Kunze, 2007) are used as reference data for the QBO. Specifically, monthly averaged zonal wind speeds at the

10 hPa level are used. A 5 months rolling mean is used to remove noise and high frequency components of the

signal that are not due to the QBO. The QBO period is calculated using the Transition Time method commonly

employed by other studies (Bushell et al., 2022; Richter et al., 2020; Schenzinger et al., 2017). In this method, the

signal is divided into individual periods based on the transition from the westerly to the easterly phase, which then

allows the period to be calculated directly as the time difference between each transition. This yields a sample of

the QBO periods from which an estimate of the population mean with an associated error is calculated via the

Central Limit Theorem. The QBO amplitude is calculated from the same smoothed signal of the zonal wind, u, by

calculating: (umax − umin)/2 for each individual QBO cycle obtained via the Transition Time method above. As

with the period, we use the Central Limit Theorem to determine an estimate for the QBO mean amplitude, with the

associated error calculated as σ/
����
N

:
.

Using this method, the mean period of the QBO is calculated to be TQBO = 27.92 ± 0.86 months and the mean

amplitude is determined to be: AQBO = 22.90 ± 0.52m/s. When applied to the model output from MiMA, the

zonal wind component at the 10.9 hPa level, zonally averaged from 5°S to 5°N is used. The same method is

employed to extract a distribution of the periods and amplitudes of the smoothed signal which are then averaged.

2.3. History Matching

The objective of history matching is to iteratively reduce the size of the NROY space of parameters θ that go into a

model f(θ) that produces as output an estimate of some physical observable y:

f (θ) = y + ϵf (1)

ϵf > N(0, Σ f ) (2)

Where ϵf is the model uncertainty in predicting y. This error is assumed to be drawn from a zero mean Gaussian

distribution with covariance Σf. We further assume for simplicity that errors in the prediction of each component

of y are independent and thus Σf will be a diagonal matrix. History matching utilizes real world measurements z of

the observables y. Such measurements z will also contain an error term:

z = y + ϵz (3)

ϵz > N(0, Σz) (4)

Where again ϵz represents the error in the observations of the physical process y which is also assumed to follow a

zero mean Gaussian with each observation being independent of each other. In this investigation f represents

forward integrations of MiMA and thus our chosen parameters, θ, correspond to the aforementioned settings of

the AD99 parameterization:
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θ = (cw,Bt) (5)

Meanwhile the outputs of this model are the mean period and amplitude of the QBO in the zonal wind component

at the 10 hPa level calculated using the method as described above for the radiosonde data:

f(θ) = (TQBO,AQBO) (6)

The history matching procedure requires the specification of some initial parameter search space, typically the

largest possible range of plausible values of θ. Based on domain knowledge we determined that the initial

plausible range of phase speed half‐widths ranged from 5 to 80 m/s, whilst the plausible maximum equatorial

momentum fluxes where chosen to range from 1 to 7 mPa.

As forward integrations of a GCM are expensive, we wish to minimize the number of required integrations. In the

conventional history matching approach this is achieved by developing an emulator that is trained on a small

number of true integrations and predicts the target vector z across the entire parameter space. The points for these

integrations are randomly sampled with a space filling objective. To that end, we utilize Maximin Latin Hy-

percube sampling (McKay et al., 1979), which is a computationally efficient method for sampling a uniform unit

hypercube. To draw N samples from a k dimensional hypercube space, this method works by subdividing the

space into a grid where each axis contains n smaller hypercubes of size (1/n)k. We then pick n of these smaller

cubes as our sample points at random, subject to the criterion that along each axis of the grid, each (1/n) subsection

contains one and only one smaller hypercube. In the 2‐dimensional case this is analogous to the problem of trying

to position chess rooks such that no rook directly attacks another (Golomb & Posner, 1964). The additional

maximin constraint enforces that out of all possible valid configurations, we pick configurations such that the

minimum distance between any two sub hypercubes is maximized. This choice ensures that the samples chosen

are as space filling as possible by removing valid “compact” configurations; for example, a configuration where

samples are drawn along the diagonals of the hypercube.

In this work, we investigate the impact in sampling with different number of points at each iteration to determine

the optimal tradeoff between computation time and emulator accuracy. Specifically, we determined the impact of

sampling 5, 10, 20, and 50 points from the NROY space at each iteration, with more points allowing for a more

accurate emulator at the expense of greater computational cost. The number of points sampled at each iteration is

denoted asN. Previous literature suggests that the optimal number of sample points per iteration is 10× p, where p

is the number of input parameters (Loeppky et al., 2009). After completing the corresponding integrations we

obtained a training set {θi} of points with associated estimates for the QBO observables {zi} which have an

estimated error {σi}.

For each iteration, once the parameters were sampled and the forward integrations completed, we developed a

Gaussian Process (GP) based emulator, which is a popular choice in literature for developing emulators for low

dimensional settings (Andrianakis et al., 2015; Vernon et al., 2010; Williamson et al., 2013). GPs are a gener-

alization of the multivariate Gaussian distribution to the infinite dimensional case. In this non parametric case the

mean vector is replaced by the mean function whilst the covariance matrix is replaced by a kernel function which

expresses the covariance between any two points. In this work we choose a zero mean function as our prior which

is a conventional choice in literature (Rasmussen & Williams, 2005). This emulator allows us to estimate z across

the entirety of the parameter space. Specifically, we trained one GP Regression emulator, implemented via the

scikit‐learn library (Pedregosa et al., 2011), per each dimension of the output vector of the model. Thus with a 2‐

dimensional output vector, two independent GPs are trained on the 2D input parameter space. At each iteration,

the input parameters are scaled to have zero mean and unit variance along each feature axis using a Standard

Scaler. Additionally, each output training label in the regression is normalized to have a zero mean and unit

variance which typically gives the best training performance for the default case where a zero mean, unit variance

prior is used in the regression.

One important pathological case that needed to be considered for the input data to the GP training was the case

where no QBO was present in the output signal, defined as no transition in the zonal wind direction across the

entire 20‐year window. There are a variety of approaches to deal with these cases, however in this work we

decided to exclude data points with no QBO present. This was done because the QBO breakdown results in a non
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smooth critical transition in the QBO period and amplitude. Thus, if these points were included in the emulator

training it would likely be captured poorly by the emulator and greatly bias the mean value of the emulator

predictions. For history matching, the best way to deal with such anomalous points is to manually exclude regions

of the space that are clearly implausible such as those with Bt or cw values below those needed to drive a QBO.

The choice of kernel in GP Regression is also critical for setting the smoothness of the emulated functions as well

as for setting the scale of the emulator variance at each point. For this work the Radial Basis Function (RBF)

kernel as defined below is used:

K(θ, θ2) = C exp(−|θ − θ2|2
2l

) (7)

where l and C are kernel hyperparameters representing the characteristic length scale and scale factor. The

standard scaling of our input and output parameters gives a convenient choice for our length scale and scale factor

of C = l = 1, as the standard deviation of the input points will by construction be 1.

In addition to the hyperparameter tuning, a “nugget” term is provided. This adds fixed values to the diagonal

components of the kernel matrix to represent noise or measurement error and has been shown to be useful when

fitting emulators for noisy models, such as climate models (Williamson et al., 2015). We use the nugget to include

the noise in the training data, estimated from the distribution across QBO cycles for each training data point.

The final stage of an iteration of history matching is to calculate the implausibility, a measure of how likely it is

that a given point of the current NROY space is consistent with observations subject to some user defined cutoff.

Thus a small implausibility implies that either a parameter configuration is predicted to produce an output very

close to the observations or that there is sufficiently large uncertainty in the predicted value at that point that the

point must remain in consideration for future iterations. In the standard univariate history matching case, the

implausibility takes the form of the Mahalanobis distance:

I = | Æf (θ) − z|���������������
σ2
z + σ2

Æf

: (8)

Where σz is the observational uncertainty and σ Æf is the uncertainty in the emulator prediction. Typically for the

univariate case (Andrianakis et al., 2015; Couvreux et al., 2021; Lguensat et al., 2023; Williamson et al., 2013),

Pukelsheim's rule is invoked which states that for a continuous unimodal distribution 95% of the probability mass

lies within 3 standard deviations of the mean value (Pukelsheim, 1994). For the multivariate case, as in this work

with a 2‐dimensional z, there are various definitions of the implausibility. One approach is to calculate for the jth

component of z, the corresponding univariate implausibility Ij and then define the total implausibility as:

I = max
j
Ij (9)

A more robust method is to follow the approach of Vernon et al. (2010) and calculate a full multivariate

implausibility of the form:

I2 = ( Æf − z)T(Σz + Σ Æf )−1 ( Æf − z). (10)

Here Σz is the covariance matrix of the observational uncertainty defined previously in Equation 4 and Σ Æf is the

covariance matrix of the emulator at a given point x in the parameter space. As the emulator for each component

of f is trained independently of the others, Σ Æf will also be a diagonal matrix, however one could consider a more

advanced multivariate emulator that outputs a non diagonal matrix for Σ Æf . Equation 10 demonstrates that the

implausibility corresponds to a sum of squared random variables, which will follow a χ2 distribution with a

number of degrees of freedom equal to the number of dimensions in the output space. Thus we can use a χ2

hypothesis test to reject areas of the parameter space which have a χ2 statistic above some critical value corre-

sponding to a given significance level (Vernon et al., 2010). In the specific case of this investigation a significance

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004163

KING ET AL. 5 of 15

 1
9
4
2
2
4
6
6
, 2

0
2
4
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u
p
u
b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
2
9
/2

0
2
3
M

S
0
0
4
1
6
3
 b

y
 S

tan
fo

rd
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

4
/0

5
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



level of 1% corresponds to a cut off implausibility squared of I2max = 9.21 a threshold which is very similar to the

Imax = 3 used to invoke Pulkshiem's rule in the univariate case.

Once this cut‐off is applied, the next iteration NROY space is obtained, from which additional samples can be

drawn. As this space is unlikely to be a rectangular space, the Latin Hypercube sampling approach cannot be

utilized. For simplicity, exclusion based sampling was performed. For this, random samples were uniformly

drawn over the smallest bounding volume of the NROY space and were rejected if they lay outside the

calculated NROY space. This process was continued until N samples inside of the NROY space were obtained.

By running additional MiMA integrations at these points, a new emulator can be trained utilizing the new

points alongside the existing ones which allows more of the NROY space to be ruled implausible with each

iteration resulting in a chain of GP emulators being developed (Salter & Williamson, 2016). These iterations

can be performed continually until the NROY space has sufficiently converged. In this work, this is defined as

when the fractional change in the area of the NROY space between consecutive iterations falls below a

threshold for which we chose a cut off of 5%.

2.4. Ensemble Kalman Inversion

In this work we also compare the results of the calibration obtained via history matching with that obtained by

EKI. The EKI algorithm can be considered as an inverse formulation of the ensemble Kalman filter, beginning

with some prior set of parameters {θ(n)} which are progressively updated by comparison between the estimates of

observables at these parameters with the true observables. This is achieved by performing a global minimization

(Kovachki & Stuart, 2019) of the Mahlobonis distance, defined in Equation 8. For a prediction of some state f(θ)

as defined in Equation 1, the nth ensemble member is updated via the following update equation (Iglesias

et al., 2013):

θ
(n)
t+1 = θ(n)t + C f θ(Γ + C f f )−1( y − f (θ)) (11)

Where Cff is the empirical covariance between the forward integrations for all ensemble members and Γ is the

error covariance matrix representing the uncertainty in observations and predictions of the observations.

Meanwhile Cfθ, is a cross covariance matrix defined as:

(C f θ)ij = 1

N
3N
n=1

(f(θ(n))
i
− f i)(θ(n)

j − θj) (12)

At each iteration t, the current best estimate of the calibrated parameter values is taken as the ensemble mean.

Iterations are run continually until the ensemble mean converges to a fixed value. Unlike history matching, EKI

is an optimization algorithm which alone does not provide any estimates of the distribution of the plausible

parameter and thus it cannot be used for uncertainty quantification. To address this, the CES approach

developed by Cleary et al. (2021) can be used to draw samples from the calibrated posterior distribution of

parameters. Under CES, a GP Emulator, as described in the previous section, is trained using all ensemble

members from all time steps up to and including the current time step in order to predict the observables over

the entire parameter space.

In contrast to history matching, where we train a chain of emulators at each iteration to further refine the current

NROY space, under CES we need a single emulator that is able to perform well across the entire parameter space.

Several adjustments are therefore made to the GP architecture described in Section 2.3, including using a

“MinMax” scaler to transform the input parameters, as opposed to a zero mean unit variance standard scaler. This

is needed under EKI as ensemble members converge to a single point with an increasingly small variance. Under a

standard scaler this increasingly rescales points from earlier iterations to be further away from the origin. This

causes the emulator to have insufficient support close to the boundaries of the parameter space, giving weak

performance here. Under “MinMax” scaling each input parameter is re‐scaled such that the total range spans the

interval [0,1]. This choice removes the basis for choosing a fixed length scale of 1 in the RBF kernel in Equation 7,

therefore hyperparameter tuning of this scale is required during the emulator training. In addition, to improve the

performance of the emulator over the wider parameter space, a white noise kernel is added to account for un-

resolved noise as defined below:
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κ(θ,θ2) = §««σ
2 if θ = θ2

0 otherwise
(13)

This learns a fixed covariance across the full parameter space and is used to improve the uncertainty estimates of

the emulator during inference. As before, we also include the nugget term that defines the noise for each training

data point during the emulator training.

In order to tune the above hyperparameters, the log marginal likelihood p(y|θ; l, C, σ) is optimized in accordance

with the method described by Rasmussen and Williams (2005). This optimization approach naturally tends to

favor hyperparameter choices that give models of intermediate complexity, balancing model complexity with

quality of model fit.

Once this emulator is obtained we assume a Gaussian function at each point, yielding a likelihood function of the

form:

p( y|θ) = 1���������
detΓ

: exp(−1

2
(y − Æf)TΓ(θ)−1 (y − Æf)) (14)

where in the above, Æf represents the mean value predicted by the GP emulator at point θ. By use of Bayes' law

combined with the uniform prior distribution specified previously we may calculate the posterior distribution p(θ|

y). The Metropolis‐Hastings algorithm, a Markov Chain Monte Carlo method, is then used to sample this pos-

terior distribution (Metropolis et al., 1953).

For this work, EKI runs are launched with the same ensemble sizes, N, as those used in history matching as the

number of sample points per iteration (5, 10, 20, and 50 points). In addition, the Latin Hypercube samples drawn

in the first iteration of history matching were also used as the initial ensemble members for EKI. This setup

allowed for a comparison between the convergence characteristics of EKI and history matching to be conducted,

noting that for both approaches the time taken to perform the forward integration, f(θ) on each sample far exceeds

the time taken to perform the calibration step.

3. Results

The first test case for history matching that is investigated utilized N = 50 sample points. MiMA integrations are

performed to train the GP emulator, and its performance for predicting the QBO period is demonstrated in

Figure 1. Demonstration of the Gaussian Process (GP) Emulator trained on 50 samples taken at two distinct cross‐sections at

fixed Bt (a) and cw (b). Indicated is the mean GP estimate in solid blue with the 95% confidence interval shaded. The solid

black line indicates the observed Quasi‐Biennial Oscillation period with the dashed black lines indicating the 95% confidence

interval in the observational value.
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Figure 1. Two cross sections are indicated where Bt and cw are kept at constant values in θ space. Indicated in

black is the observed value for the QBO period as taken from the radiosonde data along with the associated 95%

confidence interval of the observational uncertainty indicated using dashed black lines. Indicated in solid blue in

Figure 1 is the mean GP prediction with the shaded blue indicating the 95% confidence interval for the prediction.

The viability of the emulator is validated by withholding a single point out of the training set and using it as a

validation point. For the case for the single point withheld in the 50 point case, the emulator is capable of pro-

ducing a prediction compatible with the withheld point. We use a two sided t‐test to determine whether the

emulated mean value for the QBO period and amplitude is consistent with that of the withheld point. The test

statistic value for the QBO period is 0.73 and for the QBO amplitude the test statistic is −1.23. The p‐value for

both of these statistics lie within a standard significance level of 5%, indicating consistency of the emulator

predictions with the MiMA GCM.

The emulator predictions in Figure 2 suggest that the emulator has learned non trivial relationships between the

input parameters and the QBO statistics. For example, for a cw greater than approximately 20 m/s, the QBO

amplitude is primarily set by Bt. In the emulator for the QBO period, it is observed that there is a horseshoe shaped

region in which the QBO period is predicted to be consistent with observations. Both these features are useful to

explain the structure of the implausibility in Figure 3, where we see that the gradients in the implausibility space

are substantially greater along the Bt axis than the cw axis, forming a “banana” shaped region. The form of this

space resembles that obtained by Mansfield and Sheshadri (2022) when an uncertainty quantification analysis was

performed on AD99 using EKI.

After applying the implausibility cutoff using a χ2 hypothesis test, we obtain the next iteration NROY space from

which samples can be drawn uniformly. These are indicated in Figure 4, which also shows the evolution of the

NROY space and the samples taken for the next iteration of history matching. As seen, after this first iteration the

area of the NROY space is reduced substantially, by a factor of 91.8%.

We define the NROY space as being converged once the relative change in the area of the NROY space from one

iteration to the next is less than 5%. For measuring the speed of convergence, a convenient metric is the total

number of forward integrations of MiMA that needed to be performed, as this represents by far the largest

computational cost of the calibration. For the N = 50 case demonstrated above, convergence was obtained after 5

iterations, which required a total of 250 forward integrations of MiMA.

As mentioned in Section 2, a range of N are investigated. A reduced number of sample points will result in a less

accurate and confident emulator, however this has the benefit that the emulator will be updated more frequently.

This can allow for obviously implausible regions of space to be ruled out without requiring that region of space to

be directly sampled. Figure 5 displays the area of the NROY space against the cumulative number of MiMA

Figure 2. Emulator predictions across the initial Not Ruled Out Yet space for both the Quasi‐Biennial Oscillation (QBO)

period and the QBO amplitude. Training points for the emulator are indicated with blue crosses.
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forward integrations that were performed for each sample size. It can be seen

that using fewer sample points per iteration attains convergence with the

fewest model integrations, with N = 5 converging after 40 forward in-

tegrations of MiMA. However, as indicated in Figure 5, this convergence is

reached with a larger NROY space which was greater than 5% of the original

space area. This was substantially higher than configurations with higher N,

all of which achieved convergence with an NROY area of less than 2.5% of

the original area.

As such, a configuration with N = 10 is seen to be the best performing,

reaching convergence after 60 forward integrations of MiMA. The full chain

of subsequent NROY spaces can be seen in Figure 6. The final converged area

of this run was 2.06% the size of the original space area for this configuration

and is centered on the point cw = 45.62 m/s and Bt = 2.94 mPa. As mentioned

by various authors, history matching does not give preference to any one point

located within the final NROY space, as all points are assumed to be equally

“plausible” (Andrianakis et al., 2015; Williamson et al., 2015).

3.1. Comparison With Ensemble Kalman Inversion

As introduced in Section 2.4, the EKI method is also used for the calibration

of AD99 parameters utilizing the same QBO mean statistics as the ground

truth observations. Analogously to history matching, ensemble sizes of 5, 10,

20, and 50 were used. In the optimization framework of EKI, these ensemble

sizes can be considered similar to batch sizes in mini‐batch gradient descent, where smaller batches run quicker

however take less accurate steps whilst larger batches are more computationally intensive with more accurate

individual steps.

Figure 7 shows the ensemble members for the first 4 iterations of EKI using an ensemble size of 10 particles with

the trajectory of a single member of EKI, indicated in gray. It is seen that the ensemble members gradually

converge toward the bottom right of the figure, which is similar to the location seen with history matching. The

ensemble mean represents the current best estimate of the optimal parameter value. The evolution of the ensemble

mean with increased iterations is seen in Figure 8 for each ensemble size investigated. It is evident that the

ensemble mean position converges to a single point with subsequent iterations. The exact location of this opti-

mum along the cw axis appeared to be substantially different in the N = 20 case than for the smaller ensemble

sizes. This is likely due to the presence of multiple local optima in the parameter space, with the difference

between their calibrated values indistinguishable from each other when ac-

counting for the process level noise in the true QBO signal.

This behavior under EKI means that the centroid of the ensemble represents

the best estimate of a calibrated parameter at any given iteration, in contrast to

history matching where there is no preference given to the centroid over any

other point. Figure 8 demonstrates that regardless of choice of ensemble size,

this centroid always converges on a singular point. This is in contrast to what

is seen with history matching in Figure 9 where the centroid often appears to

move erratically. However it can be seen that for all N, approximately the

same centroid point is obtained. For EKI, convergence about the final point

can be seen to take approximately 5 to 6 iterations for all the ensemble sizes

indicated above, implying the speed of convergence is not a strong function of

ensemble size. This is further indicated in Figure 10 which shows the RMS

magnitude of all the ensemble update vectors obtained via Equation 11. In this

we observe that this update vector magnitude decays at a similar rate for all

ensemble sizes considered. This ensemble size invariance indicates that EKI

is a strong algorithm if the objective of the calibration is to obtain a single best

estimate of a parameter, and such a calibration can be performed rapidly with

a small ensemble size, with N = 5 resulting in an approximately converged

Figure 3. Calculated implausibility between the emulator in Figure 2 and the

Quasi‐Biennial Oscillation observations. Lower values imply regions of

space that either agree more with observations or have higher uncertainties.

Figure 4. Demonstration of applying the χ2 exclusion criterion and uniformly

sampling the next iteration Not Ruled Out Yet space.
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centroid after 25 total GCM integrations, with Figure 10 showing minimal

updates to the ensemble members beyond this point.

As mentioned above, history matching does not produce an equivalent “best

estimate” and thus to provide a comparison, the ability of both approaches to

quantify the uncertainty in the calibrated parameters is estimated. In quan-

titative terms this translates to obtaining an estimate of the posterior distri-

bution: p(θ|y). In an ideal case, this posterior distribution would be as

“compact” as possible given the observation noise level, indicating that we

have a narrow set of calibrated values that reproduce consistent observables.

The NROY space from history matching provides a rough heuristic for this

posterior distribution subject to a uniform assumption whilst the CES

methodology as described in Section 2.4 can be used to obtain an estimate of

the full posterior distribution (Cleary et al., 2021). In Figure 11a we show

10,000 sample points drawn from the estimated posterior distribution

sampled via the Metropolis‐Hastings algorithm for an EKI calibration at

iteration 6 and N = 10. Meanwhile Figure 11b shows an equivalent sample

of 10,000 sample points drawn from the iteration 6, N = 10 history matching

NROY space, which was the first iteration to meet the N = 10 NROY

convergence criterion.

To gain an estimate of the compactness of each sample space, we can calculate the normalized average spread of

the posterior sampled points about the centroid for both EKI and history matching, shown in Figure 12a as a

function of the number of model integrations. An equivalent estimate of the NROY space can also be calculated

by use of Equation 10 for the implausibility calculated using EKI via the CES emulator across the entire space and

utilizing the same implausibility cutoff as for history matching. In other words, this represents where 95% of the

probability mass lies. This is seen in Figure 12b.

It is evident from both figures that for low ensemble sizes, history matching is able to obtain a substantially more

compact calibrated space when considering both NROY and normalized spread. This is in contrast to the behavior

in Figures 8 and 9 where for small ensemble sizes EKI is able to obtain a converged centroid much more rapidly

than history matching at small N, indicating the relative strengths of these approaches. For the larger ensemble

size of N = 20 and N = 50, the differences between the two approaches become less apparent. However, the

NROY comparison shows that the EKI equivalent NROY space is not able to

collapse as compactly as seen under history matching. This comparison is

limited however, as it neglects to take into account that the estimated NROY

under EKI is not sampled from uniformly as it is under history matching. As

the comparison using the RMS posterior sample spread takes into account the

non‐uniform nature of the EKI posterior compared against the uniform history

matching approach, the spread likely better reflects the true quantification of

the compactness. The main downside of comparing RMS spread in comparison

to the NROY area for history matching is that in cases where the centroid of the

NROY space is not itself within the NROY space is that the normalized spread

will not tend to zero even as the NROY area does tend to zero. Figure 12a,

indicates that for N= 5 and N= 10 history matching draws a far more compact

set of posterior samples compared to EKI and requires only approximately 50

GCM integrations to do so. This can be understood by the approach that history

matching takes as it spends more time obtaining samples near the edges of the

initial parameter space compared to EKI, allowing for more confident emulator

performance in these regions yielding the more compact posterior. Thus in

contrast to the centroid result described above, Figure 12 indicates that history

matching can provide a converged posterior distribution of the plausible pa-

rameters with only 5 to 10 ensemble members, in concurrence with the results

described in Section 3.1.

Figure 5. Comparison of the area of the Not Ruled Out Yet space as function

of the number of 20 years forward integrations of MiMA that were required

indicated for various number of sample points per iteration.

Figure 6. Demonstration of the convergence of the Not Ruled Out Yet space

for the N = 10 case.
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4. Discussion

In this investigation we presented an implementation of the history matching

procedure for calibrating the AD99 GW parameterization based on obser-

vations of the QBO. We showed that a chain of GP regression emulators is

capable of acting as a feasible emulator across the entire parameter space. The

history matching procedure was successful at converging the initial NROY

space by a factor of up to 98%, producing a compact region of plausible

parameters. We showed that this result is robust across different choices of

ensemble sizes, with a size of N = 10 converging the fastest.

We also compared history matching with an alternative calibration method,

EKI. We found that this algorithm is capable of obtaining a single optimal

calibrated value in best agreement with the observations, which it can do

rapidly at small ensemble sizes. The Calibrate‐Emulate‐Sample (CES)

method was used to obtain an estimate of the posterior distribution across the

entire parameter space for comparison to the NROY space generated by

history matching. It was found when considering the mean spread of the

samples drawn from both methodologies that for the large ensemble sizes of

N = 20 and N = 50, both methods gave posteriors with a similar degree of

compactness, however the smaller ensembles showed that history matching

was able to obtain a stronger degree of compactness.

One key constraint that was imposed for simplicity in this work was the low dimensional space chosen for both the

observables and the input parameters. Such a constraint was useful for reducing the number of iterations required

to obtain convergence for both methodologies, in addition to making the outputs easy to visualize. Future work

Figure 7. Positions of ensemble members during Ensemble Kalman

Inversion (EKI) for the first 4 iterations with an ensemble size of 10. The

gray arrow indicates the trajectory taken by a single member under EKI.

Figure 8. Evolution of the centroid for each ensemble size under Ensemble Kalman Inversion.
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could look to increase the dimensionality of both the observable vector and the input parameters. In the case of the

QBO, introducing a 3rd observable variable would allow the calibration to be based on the peak easterly and

westerly velocities of the QBO instead of the amplitude. This could be significant given the acknowledged

westerly bias present in GCMs (Bushell et al., 2022). Palmer demonstrated how this could be alleviated with an

orographic GW parameterization scheme (Palmer et al., 1986) and in ongoing

work, we are considering the calibration of both orographic and non‐

orographic schemes in conjunction. Finally, we also restricted the calibra-

tion in this work to just the tropical parameters for AD99, however extra‐

tropical and polar parameters in principle also need to be calibrated.

As these additional considerations all increase the number of dimensions of

the input and output spaces, both history matching and EKI may require a

dramatically increased number of iterations to converge. It is possible that for

history matching this may be a challenge, as for the ensemble sizes considered

in this work, the density of members in the NROY space will decrease

exponentially with the number of parameters, resulting in a reduced support

for the emulator and thus a greatly less confident one. This is in contrast to

EKI which has demonstrated efficiency even at large numbers of parameters

(Kovachki & Stuart, 2019; Pahlavan et al., 2023). Another calibration algo-

rithm that could be investigated in future work is Bayesian Optimization

(Garnett, 2023; Shahriari et al., 2016) which has proven popular within the

domain of hyperparameter optimization for machine learning methods. This

method works similarly to history matching as it involves using GP

Regression to approximate the behavior of the model at different parameters.

Figure 9. Evolution of the centroid for each ensemble size under history matching.

Figure 10. Normalized root mean squared magnitude of the update vectors

under Ensemble Kalman Inversion for each ensemble size.
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Unlike history matching, an “acquisition function” is also obtained which is used to determine regions in the

parameter space to be sampled for future iterations. Such functions often make a trade off between exploring

unsampled regions of the space and exploitation of regions of the space where the error between the predictions

and observations is minimized. This approach should in principle provide for a more optimal sampling in high

dimensional spaces compared to the uniform approach of history matching; however, this does come at the cost of

more user‐defined choices in the acquisition function.

Other calibration methods within the same family as EKI also exist. An example is Ensemble Kalman Sampling

(Ding & Li, 2021; Garbuno‐Inigo et al., 2020) which includes an additional random walk component on top of the

Figure 12. Comparison of the (a) normalized spread and (b) Not Ruled Out Yet area methods for quantifying the relative

uncertainty in the Ensemble Kalman Inversion and history matching calibrations.

Figure 11. Comparison between estimates of the posterior distribution p(θ|y) between Ensemble Kalman Inversion (a) and

history matching (b) after 6 iterations, N = 10.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004163

KING ET AL. 13 of 15

 1
9
4
2
2
4
6
6
, 2

0
2
4
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u
p
u
b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
2
9
/2

0
2
3
M

S
0
0
4
1
6
3
 b

y
 S

tan
fo

rd
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

4
/0

5
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



EKI update step. Such a random walk prevents the EKI ensemble members from falling into local minima during

the loss function optimization and should lead to the final Ensemble Kalman Sampling ensemble members being

distributed according to the posterior distribution without CES being explicitly required. Ensemble Kalman

Sampling can be shown to produce exact results and converge in finite time in the case where the posterior

distribution is Gaussian. However, no such assertion can be made for the more general non linear case. Unscented

Kalman Inversion is another recent method in the Kalman filter family of calibration methods that also aims to

directly capture the posterior distribution (Huang et al., 2022) by allowing for nonlinear effects to be estimated

during the update step in a Kalman filter.

Overall, our calibration of AD99 in MiMA using history matching and EKI showed that both methods are able to

competently reduce a large initial range of parameters and produce a compact space of plausible parameters that

result in QBO statistics that resemble observations. Techniques such as Bayesian Optimization as well as the

above mentioned newly developed techniques have not yet been widely applied to aiding climate model

development. We expect that future work probing the utility of these techniques for climate model calibration

should prove useful in further constraining the plausible range of parameters, and thus potentially allow for more

accurate model predictions with uncertainty quantification. These techniques also allows us to determine the

future range of variability in observables such as the QBO period and amplitude under various CO2 forcing

scenarios using the current calibrated parameters.

Data Availability Statement

The “Quasi‐Biennial‐Oscillation (QBO) Data Series” developed by the Freie Universität Berlin (Kunze, 2007)

was used as the source of zonal wind observations of the QBO. This data set can be found at https://www.geo.fu‐

berlin.de/en/met/ag/strat/produkte/qbo/index.html. The Model of an idealized Moist Atmosphere GCM code-

base can be found at https://github.com/mjucker/MiMA. The code developed during the course of this work is

available in two repositories: one for the generic history matching implementation & another for performing the

analysis and model runs specific to the AD99 calibration. The history matching code is made available at https://

github.com/Eddy‐Stanford/History‐Matching‐Core and can also be installed via the history‐matching package

available on PyPI. The analysis and model run code is available at https://github.com/Eddy‐Stanford/QBO‐

History‐Matching. The output data from the climate model integrations as well as the intermediate calibration

output data can be found at https://purl.stanford.edu/yk246my3948. For Ensemble Kalman Inversion, we used the

EnsembleKalmanProcess.jl library developed and maintained by CLiMA, available at https://github.com/CliMA/

EnsembleKalmanProcesses.jl. Scripts used for this AD99 calibration can be found at https://github.com/lm2612/

EKI_OBS.
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