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Abstract Subgrid‐scale processes, such as atmospheric gravity waves (GWs), play a pivotal role in shaping

the Earth's climate but cannot be explicitly resolved in climate models due to limitations on resolution. Instead,

subgrid‐scale parameterizations are used to capture their effects. Recently, machine learning (ML) has emerged

as a promising approach to learn parameterizations. In this study, we explore uncertainties associated with a ML

parameterization for atmospheric GWs. Focusing on the uncertainties in the training process (parametric

uncertainty), we use an ensemble of neural networks to emulate an existing GW parameterization. We estimate

both offline uncertainties in raw NN output and online uncertainties in climate model output, after the neural

networks are coupled. We find that online parametric uncertainty contributes a significant source of uncertainty

in climate model output that must be considered when introducing NN parameterizations. This uncertainty

quantification provides valuable insights into the reliability and robustness of ML‐based GW parameterizations,

thus advancing our understanding of their potential applications in climate modeling.

Plain Language Summary Climate models are unable to resolve processes that vary on length and

time scales smaller than the model resolution and timestep. For example, atmospheric gravity waves (GWs),

which are waves created when winds encounter disturbances to the flow, such as mountains, convection and

fronts, can have wavelengths smaller than the spacing between grid cells. Climate models use

“parameterizations” to capture the effect of these processes. Machine learning based parameterizations are

becoming popular because they can learn relationships purely from data. However, we do not have a good

understanding of the uncertainties introduced through machine learning parameterizations. This study estimates

uncertainties associated with training a neural network (NN) GW parameterization. We explore uncertainties in

the NN output, as well as the uncertainties in the climate model output, when the NN is used for the GW

parameterization.

1. Introduction

1.1. Subgrid‐Scale Parameterizations

General circulation models (GCMs) simulate the entire Earth system by coupling a dynamical core, which

numerically solves the primitive equations for atmospheric flow, with other physical components called “subgrid‐

scale parameterizations”. The latter includes dynamical processes occurring on scales smaller than the grid‐scale

(generally O(100 km) for a typical GCM; Chen et al., 2021), such as convection and short wavelength gravity

waves (GWs), and non‐dynamical processes, such as radiation, atmospheric chemistry, and cloud and aerosol

microphysics. Subgrid‐scale parameterizations make up a large portion of the computational cost associated with

GCM simulations and sometimes make drastic assumptions for the sake of computational cost, for example, they

typically do not permit horizontal momentum transport (single column assumption) and assume an instantaneous

balance in the vertical direction (steady‐state assumption) (e.g., Achatz et al., 2023; Voelker et al., 2024; Wang

et al., 2022). This can introduce additional sources of model uncertainty. This has motivated the demand for faster

and/or higher accuracy schemes that use machine learning (ML)/artificial intelligence (AI), which hold out the

potential for training on large volumes of training data and performing fast inferences when invoked.

ML‐based subgrid‐scale parameterizations have demonstrated skill across a wide range of atmospheric processes

including convection, clouds, aerosols, radiation and GWs (e.g., Brenowitz & Bretherton, 2019; Brenowitz

et al., 2020; Chantry et al., 2021; Chevallier et al., 2000; Espinosa et al., 2022; Gentine et al., 2018; Harder

et al., 2022; Krasnopolsky & Fox‐Rabinovitz, 2006; O’Gorman & Dwyer, 2018; Perkins et al., 2023; Rasp

et al., 2018; Ukkonen, 2022; Yu et al., 2023; Yuval et al., 2021; Yuval & O’Gorman, 2020). However, few studies

have explored the uncertainties associated with these. Stochastic subgrid‐scale parameterizations have been
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developed by sampling from parametric distributions, learned through neural networks (Guillaumin &

Zanna, 2021) and generative adversarial networks (GANs) (Gagne II et al., 2020; Nadiga et al., 2022; Perezhogin

et al., 2023). These studies focus on stochastic representations to improve model accuracy since they may better

represent scaling properties (Palmer, 2019). Including uncertainty estimates can also be beneficial in assessing the

trustworthiness of model predictions (Haynes et al., 2023; McGovern et al., 2022), and this has gained some

attention in weather and climate prediction studies (e.g., Delaunay & Christensen, 2022; Gagne et al., 2014, 2017;

Gordon & Barnes, 2022; Weyn et al., 2021). Here, we explore uncertainty quantification in a ML subgrid‐scale

parameterization (a type of model uncertainty; Hawkins & Sutton, 2009; Palmer, 2019), focusing on GW

parameterizations.

The remainder of this section presents background information on atmospheric GWs, their parameterizations, and

their impacts on the stratospheric circulation. Section 2 provides an introduction to uncertainty quantification in

the context of ML. Section 3 outlines the methods and data used in this study and Section 4 presents the results,

including both offline and online uncertainty quantification. In Section 5, we present conclusions and discuss

implications for future ML subgrid‐scale parameterizations.

1.2. Atmospheric Gravity Waves

Atmospheric GWs are important drivers of middle atmosphere circulation as they transport momentum upwards

and away from their sources in the lower troposphere (Fritts &Alexander, 2003). They are forced by perturbations

to a stable stratified flow, for instance, orography, convection, and frontogenesis. They propagate primarily in the

vertical and, due to the decreasing density in the upper atmosphere, grow in amplitude. Gravity waves transfer

momentum into the ambient flow when they break, which occurs when they reach a saturation amplitude or a

critical level, when the phase speed matches the wind speed. This provides a forcing on the mean flow in the

middle and upper atmosphere and has a substantial impact on atmospheric circulation, including in driving the

Quasi‐Biennial Oscillation (QBO) in the equatorial stratosphere (Baldwin et al., 2001) and affecting the occur-

rence of Sudden Stratospheric Warmings (SSWs) in the polar stratosphere during winter (Wang & Alex-

ander, 2009), described further in Section 1.3.

GWwavelengths can range fromO(1 km) toO(1000 km) , which presents a challenge for accurate representation
in global climate models (GCMs). While the primitive equations do capture GW dynamics, typical GCM res-

olutions are O(100 km) , resulting in a large portion of the GW spectrum being un‐ or under‐resolved. Param-

eterizations must be employed to model the impacts of subgrid‐scale GWs on the mean flow and are critical for

obtaining realistic circulation, for example, to induce a spontaneous QBO (Bushell et al., 2020). Some studies find

GW parameterizations to be necessary even in kilometer‐scale resolution simulations (Achatz et al., 2023;

Polichtchouk et al., 2023), suggesting that the need for accurate parameterizations will persist even as modeling

centers move toward high resolution GCMs (or “digital twins”; e.g., Bauer et al., 2021).

1.2.1. Gravity Wave Parameterizations

GCMs usually make use of both an orographic and a non‐orographic GW parameterization to capture their effects.

Machine learning alternatives to GW parameterizations have recently gained attention in several forms. Chantry

et al. (2021), Espinosa et al. (2022) and Hardiman et al. (2023) present ML emulators of existing non‐orographic

GW schemes, while Dong et al. (2023) and Sun et al. (2023) use ML to learn GW momentum fluxes from high

resolution simulations.

This study can be viewed as a continuation of the work by Espinosa et al. (2022), which develops an emulator of a

non‐orographic GW parameterization designed primarily for convectively forced GWs (Alexander & Dunker-

ton, 1999). Note that this ML parameterization is, at best, as accurate as the scheme it aims to emulate and is not

significantly faster than the original physics‐based scheme, which could be due to coupling of the NN within a

Fortran‐based GCM (Atkinson et al., 2024). Rather, this NN emulator is used as a first step toward probing

uncertainties introduced when replacing a GW parameterization with an emulator, when we have a “ground truth”

parameterization for reference.
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1.3. Gravity Wave Effects

1.3.1. Quasi‐Biennial Oscillation

Gravity waves strongly influence the stratospheric circulation. In the tropical stratosphere, the dominant mode of

variability is the Quasi‐Biennial Oscillation (QBO), in which the equatorial stratospheric zonal winds alternate

between easterly and westerly and descend downwards with time, with a period of around 28 months

(Gray, 2010). The change in direction is driven by breaking waves across a range of scales (Baldwin et al., 2001;

Lindzen & Holton, 1968), with modeling studies suggesting that non‐orographic GW parameterizations

contribute around half of the forcing required for a simulated QBO (Holt et al., 2020). We will use the QBO to

diagnose performance of GW parameterizations in the tropics throughout this study.

1.3.2. Stratospheric Polar Vortex

As well as driving the equatorial stratospheric circulation, GWs are also influential at high latitudes. Gravity

waves affect the stratospheric polar vortex in both hemispheres, as they contribute to the breakdown of the polar

vortices, influencing the frequency and properties of SSWs (Siskind et al., 2007, 2010; Wang & Alexander, 2009;

Whiteway et al., 1997; Wright et al., 2010) and the timing of the Spring final warming (Gupta et al., 2021). SSWs

are defined as a reversal of the zonal mean zonal winds at 60°N at 10 hPa (Butler et al., 2015) which is followed by

large and rapid temperature increases (>30–40 K) in the polar stratosphere. They occur around 6 times per decade

in the Northern hemisphere, but are not common in the Southern hemisphere. We will use these polar vortex

breakdown events to diagnose performance of GW parameterizations in the extratropics.

2. Uncertainty Quantification

Uncertainties can be categorized into two types: aleatoric uncertainty and epistemic uncertainty (Hüllermeier &

Waegeman, 2021). Aleatoric uncertainty is used to describe the variability in a system that is due to inherently

random effects (Haynes et al., 2023; Hüllermeier & Waegeman, 2021). It represents the statistical or stochastic

nature of a system, such as flipping a coin or rolling a dice. In the ML literature, aleatoric uncertainty is used to

refer to uncertainty in the data (even if it does not originate from a stochastic system, Hüllermeier & Waege-

man, 2021). It includes internal variability of the system and observational uncertainties in the data. In contrast,

epistemic uncertainty is caused by a lack of knowledge about the best model for a system. In theML literature, it is

used to refer to uncertainty in the model. It includes structural uncertainties from the choice of ML architecture,

parametric uncertainties in estimating model parameters, and out‐of‐sample uncertainties which arise when

predicting outside of the range of the training data.

In this study, we aim to quantify parametric uncertainty, a type of epistemic uncertainty, in an ML‐based

parameterization for GWs. We expect this to also capture out‐of‐sample uncertainties, that is, increased uncer-

tainty when generalizing to a situation that lies outside of the training data distribution. For simplicity, we do not

estimate aleatoric uncertainty in the training data, and we also do not consider structural uncertainty. Future

studies may wish to account for these additional types of uncertainty for a more complete picture. There are

several methods that could be used to estimate parametric uncertainty (Abdar et al., 2021). Here, we use an

ensemble of deep neural networks or “deep ensembles”, which involves training multiple identical neural net-

works, each with a different initialization (Lakshminarayanan et al., 2017). Each NN converges upon slightly

different parameters which are then used to predict an ensemble, from which statistics can be obtained. This is a

relatively simple approach to implement, although can be costly as it requires repetition during training and

evaluation. Deep ensembles have been used in climate model applications for prediction (Weyn et al., 2021), but

have not been used for subgrid‐scale parameterizations. In this context, deep ensembles could be viewed as a ML

complement to “perturbed parameter ensembles” (PPE), which involve perturbing physics‐based parameters for

uncertainty quantification (e.g., Murphy et al., 2007; Sengupta et al., 2021; Sexton et al., 2021).

3. Methods

3.1. Gravity Wave Parameterization Setup

Alexander and Dunkerton (1999; hereafter AD99) present a simple non‐orographic GW parameterization that has

been used in various GCMs, including GFDL's Atmospheric Model 3 (Donner et al., 2011), Isca (Vallis

et al., 2018), and MiMA (Jucker & Gerber, 2017). AD99 estimates GW drag (GWD) in both the zonal and
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meridional directions for each level in a column, at each grid‐cell and timestep. When coupled into a climate

model, GW drag or forcing acts to accelerate or decelerate winds (i.e., it is a wind tendency). As a spectral

parameterization, AD99 defines a spectrum of GWs at a source level with momentum flux distributed by phase

speeds, assumed to follow a Gaussian distribution centered at 0 m/s with half‐width 35 m/s. This spectrum of

GWs propagates upwards until the waves reach the critical level (when the wind speed equals the phase speed of

the waves), when breaking occurs and drag is deposited.

3.2. Atmospheric Model Setup

We use an intermediate complexity GCM, a Model of an idealized Moist Atmosphere (MiMA) (Jucker &

Gerber, 2017). It is run at spectral resolution T42, corresponding to 64 latitudes by 128 longitudes (approximately

2.8° or 300 km grid spacing at the equator), with 40 model levels. The level top is 0.18 hPa, with a strong

dissipating sponge layer in the upper three levels (0.85–0.18 hPa). AD99 is coupled into MiMA with the pa-

rameters described above and with a fixed source level defined to be 315 hPa in the tropics and decreasing in

height with latitude, roughly in line with the tropopause. The model is run with an advection timestep of 10 min

and a physics timestep, which includes calling the GW parameterization, of 3 hr.

3.3. Atmospheric Model Diagnostics

In this study, we use the QBO and the polar vortices to measure the performance of GW parameterizations in the

tropics and extratropics, respectively. For the tropics, we estimate the simulated QBO period and amplitudes at

10 hPa, where the QBO amplitude is generally a maximum (Bushell et al., 2020; Richter et al., 2020). We consider

the QBO winds to be defined by the zonal mean zonal winds between 5°S and 5°N. Following Schenzinger

et al. (2017), we estimate the period of a QBO cycle by the length between transition times from westward and

eastward flow, after applying a 5‐month binomial filter to remove high frequency variability. The amplitude is

estimated as the absolute maximum of the QBO winds during each cycle. The same analysis could be considered

for other levels in the stratosphere, however we note that MiMA exhibits biases where QBOwinds do not descend

far into the lower stratosphere, terminating at around 60 hPa. For this reason, we focus on the upper stratosphere,

10 hPa, where the QBO signal is clearest (Garfinkel et al., 2022).

In the extratropics, subgrid‐scale GWs contribute toward the breakdown of the polar vortices. Here, we consider

GW parameterization effects on the number of Northern hemisphere SSWs per decade and the timing of the final

warming of the Southern hemisphere polar vortex.

3.4. Machine Learning Setup

We use the NN GW parameterization developed by Espinosa et al. (2022). This is trained on MiMA simulations

using the AD99 GW parameterization, described above (Alexander & Dunkerton, 1999). Espinosa et al. (2022)

show that the NN emulator, trained on 1 year of data, achieves an accurate representation of the AD99 scheme

both offline and online. For the online tests, Espinosa et al. (2022) replace the original AD99 scheme in MiMA

with the NN emulator within MiMA and show that these coupled NN simulations produce a QBO consistent with

the original AD99 simulation. Furthermore, when tested on an out‐of‐sample climate under 4 × CO2 forcing, the

NN simulations remained stable and reproduced similar changes to the QBO as the AD99 simulations.

Espinosa et al. (2022) emulate the zonal and meridional GWDwith two independently trained but almost identical

fully connected NNs. The inputs to the zonal GWD network are zonal winds at all levels, u, temperature at all

levels, T, surface pressure, ps, and latitude, λ, and similarly for the meridional GWD the inputs are meridional

winds at all levels, v, T, ps, and λ. MiMA uses 40 pressure levels, giving a total of 82 inputs into the NN. The

architecture consists of one shared hidden layer followed by another four pressure level specific layers (see Figure

S1 in Supporting Information S1). The NNs output the zonal/meridional GW drag for all 40 pressure levels. Note

that the pressure levels closest the surface should always predict zero, where there is no GWD below the source of

the GWs. Although these layers are redundant, we include them because the AD99 GW source level changes with

latitude to follow the approximate level of the tropopause. Following Espinosa et al. (2022), we normalize the

input and output data to have a zero mean and standard deviation of 1. For the pressure levels below the source

level, where all GWD values are exactly zero and standard deviation is undefined, we fix the outputs to zero.

Although we follow the same architecture as Espinosa et al. (2022), there are some software differences in our

implementation. Firstly, we opt for PyTorch (Paszke et al., 2019) rather than Keras and TensorFlow (Abadi
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et al., 2015; Chollet & others, 2015) for the ML library. Secondly, Espinosa et al. (2022) use the forpy software

(Rabel, 2019) to call python code in the Fortran‐based climate model. This resulted in a slow‐down of roughly

2.5× when replacing AD99 with the NN emulator. Instead, we use FTorch (https://github.com/Cambridge‐ICCS/

FTorch), a software package that directly calls the existing Torch C++ interface from Fortran, resulting in faster

inference. We use a pre‐released version of FTorch (Atkinson et al., 2024) and we find a 20% slow‐down in the

NN simulations relative to the AD99 simulations, although we have not explored if this could be optimized

further.

In this study, we capture parametric uncertainty of the NN emulator presented in Espinosa et al. (2022) using deep

ensembles (Lakshminarayanan et al., 2017). We repeatedly train an ensemble of size 30 independent NNs, each

with the same architecture and trained on the same data but with different random seed initializations. The random

seed affects the initialization of the NN parameters and the shuffling order of data during training, leading to

slightly different parameters when converged. Following Espinosa et al. (2022), we train the NNs with 1 year of

data, selected so that it contains a typical QBO cycle with a period and amplitude similar to the long‐term mean

period and amplitude. The choice to use only 1 year for training data was made because offline tests showed

sufficient accuracy that did not benefit greatly from additional data, as well as for consistency with Espinosa

et al. (2022). It also tests the ability of the ML‐based parameterization to generalize, including generalization to

the other phase of the QBO. This is representative of how ML‐based parameterizations are typically designed,

where they are trained and validated on a limited data set but once coupled, are used over longer time periods and

may encounter different data regimes than contained in the training data set. We use the following 1 year of data

for the validation data set, and the following 20 years are used for the test data set, requiring 22 years of simulation

data in total. This long period is required for comparing long‐term statistics of the model such as properties of the

QBO and polar vortices. Figure 1 shows (a) the QBO zonal winds and (b) the QBO zonal GW drag over this data

set up to year 12.

4. Results

4.1. Offline Predictions

Figure 2 shows an example of GW drag (GWD) profiles for a single grid cell close to the equator for (a) the zonal

component and (b) the meridional component, with the black line indicating the ground truth from the AD99

parameterization and the red line indicating the mean prediction across all NN ensemble members. The orange

shading represents 1 standard deviation across all ensemble members. Animations showing the evolution of this

Figure 1. The QBO (a) zonal winds and (b) zonal gravity wave drag for the training, validation, and test data set.
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GWD profile can be found in the Supporting Materials. The NNs agree well on the GW profiles and the ground

truth falls within the 1 standard deviation range for across most model levels for the zonal component. The

meridional component generally captures the patterns within the profile but is found to be less accurate, even

when considering the uncertainty estimates.

To measure the errors, we calculate the continuous ranked probability score (CRPS), a generalization of mean

absolute error that allows for comparison of probability distributions. The use of CRPS to measure error between

a predicted probability distribution and a single ground truth has long been used for verification of ensemble

weather forecasts (Hersbach, 2000), and has recently been adopted for probabilistic ML (Gneiting & Raf-

tery, 2007). Figure 3 shows CRPS for (a) zonal and (b) meridional GWD predictions over a range of latitudes.

CRPS is measured in the same units as the variable, ms−2 for GWD, but note the scale of the axis is reduced by

10× relative to the GW drag magnitudes in Figure 2. We find lower errors in the lower and mid‐stratosphere that

increase with height, where GW drag magnitudes also increase. We see good performance across all latitudes.

Figure 2. Example profiles of (a) zonal and (b) meridional gravity wave drag at one grid‐cell and one timestep in the tropics

where the black line indicates the ground truth from the AD99 parameterization, the red line indicates the mean prediction

across all neural network ensembles and the orange shading indicates 1 standard deviation across these ensembles.

Figure 3. Continuous Ranked Probability Score for (a) zonal and (b) meridional gravity wave drag for different latitudes over

the test data set.
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4.2. Offline Uncertainty Estimates

One common problem in uncertainty quantification of deep learning algorithms is in ensuring that uncertainty

estimates are reasonable, often known as calibration of uncertainty (Lakshminarayanan et al., 2017). A well‐

calibrated ML model should predict low uncertainties when errors are small and high uncertainties when er-

rors are large (e.g., when the data is out‐of‐sample). Figure 4 shows the 1 standard deviation uncertainty estimates

against the ensemble mean absolute errors estimated for the test data set, with the colors representing the density

of points. Ideally, these should be correlated and lie approximately along the y = x line shown in the dashed line.

Points above the y = x line are underconfident and points below are overconfident. Although the errors and

predicted uncertainties are correlated, we see that the NNs suffer from overconfidence and frequently underes-

timate the uncertainty relative to the error. This is typical behavior for ML uncertainty estimates, including those

based on deep ensembles (Abdar et al., 2021), and may be not be surprising given we only consider one type of

uncertainty (parametric uncertainty) and do not consider structural uncertainty or data uncertainty in these es-

timates. This overconfidence is systematic across all levels of the stratosphere and occurs for both zonal and

meridional NNs, but especially for the meridional predictions.

4.3. Offline and Online Probability Distributions

Once coupled online into MiMA, the ensembles begin to diverge from each other even though they are initialized

from the same state. This is partly due to the chaotic nature of the atmosphere where minute differences in one

atmospheric variable can lead to very different atmospheric states after some time. Even introducing relatively

minor differences in the GWD profiles, such as those in Figure 2, can lead to very different atmospheric states.

Here, we aim to quantify how uncertainties in Figure 2 propagate into the GCM. We examine long‐term statistics

in order to separate out the NN parametric uncertainty from the internal variability.

Figure 4. Ensemble uncertainty (measured as 1 standard deviation amongst the ensemble predictions) against ensemble error

(measured as the mean absolute error across all ensemble predictions) for (a) zonal and (b) meridional gravity wave drag for

the test data set between 5°S and 5°N at 10 hPa. Each individual point represents a single prediction at one timestep and grid‐

cell and they are shaded according to density. The black dashed line shows the y = x line.

Figure 5. (a) zonal and (b) meridional gravity wave drag distributions for AD99 simulations (black), offline NN predictions

(blue) and online NN simulations (red) at 10 hPa between 5°S and 5°N.
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We consider GWD in the tropics, due to its influence on the QBO. Figure 5 shows distributions of GWD in the

upper stratosphere at 10 hPa for (a) zonal and (b) meridional components, where the black line indicates ground

truth from the AD99 MiMA simulations, the blue line indicates the offline NN predicted GWD and the red line

indicates the online NN predicted GWD. Both offline and online distributions are centered over the same location

as AD99, indicating that the NN does not introduce a bias. In the lower stratosphere, the distributions are virtually

indistinguishable (not shown). However, in the upper stratosphere at 10 hPa, the NN distributions take a different

shape than AD99. This is particularly notable around the low negative zonal GWD values, where AD99 predicts

an asymmetric GWD distribution with a positive skew. The NN distributions are more symmetric between

positive and negative values. This may be because ML optimizes for RMSE which may overly smooth GWD

profiles, reducing asymmetry between positive and negative drag. The online NN distributions are slightly

smoother than the offline NN distributions. We suggest that this must be caused by the interaction between the

predicted GWD and the winds when coupled online. This is verified by Figure 6a, which shows distributions of

zonal winds near the equator at 10 hPa, where online distributions tend to be smoother and weaker than the AD99

distributions.

Figure 5b shows that the online and offline meridional distributions are highly similar, even though they are

smoothed out at low magnitudes. This overly smooth distribution exists for each individual NN, suggesting it

originates from structural errors, rather than parametric uncertainty (Figures S2–S3 in Supporting Informa-

tion S1). This is in contrast to the zonal GWD distributions, which show greater variation between individual

NNs, suggesting greater parametric uncertainty. Even though the meridional NN is generally less accurate (e.g.,

Figure 2b), the meridional component of GWD does not appear to diverge when coupled online. Similarly,

Figure 6b shows the distribution of the meridional winds to be unchanged when the NNs are coupled. This appears

to be robust across different latitudes (Figures S4–S7 in Supporting Information S1) and indicates that the

meridional circulation is not highly sensitive to the effects of subgrid‐scale GWD, possibly due to lower

magnitude of the meridional winds.

4.4. QBO Uncertainties

Ultimately, we are interested in how the NN estimations for GWD influence the climatology and its variability

when coupled into a GCM. We examine statistics of the QBO in MiMA by calculating the QBO period and

amplitude at 10 hPa for each QBO cycle within 400 years of AD99 simulations and the 600 years of NN sim-

ulations (from 30 simulations each of 20 years simulations), shown in Figure 7. While the mean period of the

QBO across all simulation years are similar, the NN ensembles show increased variability that can be attributed to

the parametric uncertainty. The NNs also appear to introduce a bias that reduces the QBO amplitude, consistent

with the reduction in QBO zonal winds (Figure 6). These increases in QBO variability originate from differences

between NN ensemble members (and therefore from the learned NN parameters), each of which tends to maintain

fairly consistent QBO periods and amplitudes within the 20 years simulation. The results shown here are derived

from the 10 hPa winds, however, we also found this to be robust at 30 hPa.

Figure 6. (a) zonal and (b) meridional wind distributions for AD99 (black) and online NN simulations (red) at 10 hPa between

5°S and 5°N.
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We estimate parametric uncertainty by considering the increase in variability that arises due to the NNs.

Assuming QBO cycles are normally distributed in both AD99 and in the ensemble of NNs, the additional

variability from the uncertainty in parameters, σparam, can be calculated as

σ2param = σ2NNs − σ
2

AD99 (1)

where σ2AD99 is the variance in the AD99 simulations and σ
2
NNs is the total variance across all NN ensemble

members. These results are shown in Table 1. Notably, the parametric uncertainty is significantly larger than the

internal variability in the AD99 simulations, for both the QBO period and amplitude. It is possible that these

uncertainties are underestimates of the true parametric uncertainty, given the overconfidence noted in offline tests

(Figure 4). Still, the uncertainties in NN parameters are much greater than uncertainties in the parameters in the

physics‐based scheme AD99, estimated to be 1.53 months and 2.14 m/s for the period and amplitude respectively,

in Mansfield and Sheshadri (2022) under the same model set‐up. This highlights the importance of uncertainty

quantification, regardless of whether the parameterization is physics‐based or ML based.

Figure 7. Violin plots showing distributions of QBO (a) period and (b) amplitude for the AD99 simulations in gray and for

NN simulations in orange. The boxplots also show the median, upper and lower quartiles and each point represents a single

QBO cycle.

Table 1

Mean and Variability of QBO Calculated Across MiMA Simulations Using AD99 Versus the Ensemble of NNs

Mean Variability (measured as 1 standard deviation)

AD99

Ensemble of

NNs

Internal

variability in

AD99, σAD99

Total variability

in ensemble of

NNs, σNNs

Parametric

uncertainty,

σparam

Period (months) at 10 hPa 25.32 26.78 2.03 3.82 3.25

Amplitude (m/s) at 10 hPa 28.29 25.91 2.17 3.86 3.18

Note. Means are estimated across all QBO cycles in a 400 years long MiMA simulation using AD99 and in 600 years of

simulations from the 30‐member, 20 years long simulations from the ensemble of NNs. Variability is measured as 1 standard

deviation between all QBO cycles. Parametric uncertainty is calculated assuming QBO cycles are normally distributed

(Equation 1).
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4.5. Polar Vortex Uncertainties

The QBO is one phenomenon that is strongly influenced by GW dynamics. The stratospheric polar vortices in

both hemispheres also depend upon GW activity. In particular, the breakdown of the polar vortex during SSWs

and in the springtime final warming is driven by both planetary‐scale and subgrid‐scale GWs, and the variability

of these events could also be impacted by changes to the GW parameterization. For the northern hemisphere polar

vortex, we consider the frequency of SSWs and for the southern hemisphere, we consider polar vortex lifetime.

Figure 8 shows there is no obvious distinction between the variability of these properties between the AD99 and

NN simulations, thus making the attribution of extratropical changes (and therefore, the calibration of extra-

tropical parameters in AD99 and other schemes; Mansfield & Sheshadri, 2022) rather challenging.This may be

because the breakdown of the polar vortices is driven by both planetary‐scale waves and subgrid‐scale GWs,

thereby reducing the impact of any changes to the parameterization. Furthermore, some studies find there may be

a compensation effect between resolved Rossby waves and unresolved GWs during SSW events (e.g., Cohen

et al., 2013), while some studies suggest that small scale GWs influence polar vortex recovery after a SSW more

strongly than the breakdown itself (Wicker et al., 2023).

5. Conclusions

This study uses deep NN ensembles to quantify parametric uncertainties in a ML parameterization of GW drag.

We use the NN architecture of Espinosa et al. (2022) trained on 1 year of data simulated by the intermediate

complexity GCM, MiMA, which uses AD99 GW parameterization (Alexander & Dunkerton, 1999; Jucker &

Gerber, 2017). An ensemble of 30 identical neural networks are trained, each initialized with a different random

seed. This ensemble allows us to estimate parametric uncertainties in NN weights and biases. First, we assessed

uncertainties in raw GWD output, which we refer to as offline uncertainties. We find fairly consistent results

across all neural networks. Then, we used the FTorch library to couple the NN into MiMA, allowing for GCM

simulations that use the ML parameterization in place of the traditional physics‐based scheme (Atkinson

et al., 2023). We assess uncertainties in GCM output for GW drag and wind, refering to these as online un-

certainties. We find increased online uncertainty, particularly for zonal winds.

Comparing long‐term statistics of the climate within MiMA using the physics‐based scheme AD99 and the

ensemble of neural networks, showed that the use of NN emulators can alter the circulation significantly. We

found that the NNs from the ensemble produce a bias in the QBO toward reduced amplitudes and dramatically

increase the variability of the QBO, with uncertainty fromNN parameters increasing the variability between QBO

cycles by over 50%. Uncertainty quantification of parameterizations should therefore not be overlooked when

Figure 8. Histograms showing (a) the Northern hemisphere number of SSWs per decade and (b) the Southern hemisphere

polar vortex lifetime for AD99 simulations in gray and the NN simulations in orange.
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developing ML‐based schemes for future climate models. Our findings reiterate results from previous studies that

find that, even when offline tests indicate “good” NN performance with relatively low uncertainties, the coupling

of ML schemes into climate models can still introduce a significant source of uncertainty (Brenowitz et al., 2020;

Lin et al., 2023). Learning distributions on the model parameters could provide a basis for further parameter

refinement, for example, acting as a Bayesian prior distribution that could be constrained through online cali-

bration, such as derivative‐free optimization Ensemble Kalman methods (Pahlavan et al., 2023). As with

traditional parameterization calibration, this could lead to improved QBO statistics and reduced parametric un-

certainty. Interestingly, we find that the behavior and breakdown of the polar vortex is not strongly dependent on

the parameterization, which may be partially due to influences from planetary‐scale waves. This suggests that it

may not be possible to further calibrate NN parameters to polar vortex properties, and is comparable to the

difficulties in calibration of extratropical parameters of AD99 (Mansfield & Sheshadri, 2022).

We only scratch the surface of uncertainty quantification for ML parameterizations. Firstly, we describe only one

type of uncertainty: parametric uncertainty, a type of epistemic (model) uncertainty. There exists a wide range of

ML approaches that could be used for this task, including Bayesian Neural Networks, Monte Carlo dropout

generative models and deep ensembles (Abdar et al., 2021). We used deep ensemble methods for this task

(Lakshminarayanan et al., 2017), due to their simplicity to implement. However, this approach is computationally

costly during both training and evaluation, requiring the use of ensembles which is not feasible for long climate

model integrations. Another limitation is that we assume our NN architecture is sufficient to fully capture the data

(no structural uncertainty), although this is likely not the case, especially for the meridional NNs (Figure S2 in

Supporting Information S1). A more complete picture would be given by also assessing aleatoric (data) un-

certainties. We note that our parametric uncertainty estimates would change given a different training data set,

which makes detangling the effects of epistemic and aleatoric uncertainty a challenge (Haynes et al., 2023;

Hüllermeier & Waegeman, 2021). For example, training this model with more than 1 year of data would

potentially reduce the uncertainties estimated here. This would be a useful topic of further research, identifying

how much data is sufficient for accurate online performance. Additionally, learning the relative contributions

between model and data uncertainties would be insightful when designing ML parameterizations. Aleatoric

uncertainties could be estimated through the use of Bayesian neural networks or Monte Carlo dropout (Abdar

et al., 2021), by parameterizing GW outputs as a distribution (Guillaumin & Zanna, 2021; Haynes et al., 2023), or

through generative models such as GANs (Gagne II et al., 2020; Nadiga et al., 2022; Perezhogin et al., 2023).

Secondly, the ML parameterization used here is an emulator of an existing scheme, allowing us to compare

against a ground truth simulation. Future studies may wish to extend this to train ML models on gravity‐wave

resolving simulations, for example, with kilometer‐scale resolution models such as IFS (Anantharaj

et al., 2022), WRF (Sun et al., 2023) or ICON (Hohenegger et al., 2023). When using novel training data sets from

high resolution simulations, we do not have online “true” distributions to compare against, which could present

challenges when disentangling the various sources of variability. Furthermore, it also raises the issue of under-

standing the role of aleatoric uncertainty, for instance, in the choice of training data and method for estimating

GW drag (Sun et al., 2023).

Thirdly, MiMA is an intermediate complexity atmospheric circulation model. One may expect that coupling this

atmospheric model to other Earth system components, such as the ocean, land, and sea‐ice, would introduce

further uncertainties. Therefore, we might consider the results presented here as a lower bound on the un-

certainties we could expect to see in fully operational Earth system models that employ ML parameterizations.

Extending this study to higher complexity Earth system models would be significantly more costly, however, this

could be worthwhile toward better informing the design of ML parameterizations, which ultimately could lead to

efficient but accurate hybrid GCMs that combine traditional dynamical solvers with novel ML parameterizations.

Data Availability Statement

The code to run simulations, train neural networks and replicate plots presented in this paper is available at https://

github.com/lm2612/WaveNet_UQ and is permanently stored at https://zenodo.org/doi/10.5281/zenodo.

11200997. The data required to reproduce the results are available at https://doi.org/10.25740/zv875tm6846. This

includes the AD99 MiMA simulations generated for training, validation and testing, all NN torchscript models,

and MiMA files required to initialize the online simulations. We also include the post‐processed zonal mean
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winds and GW drag in the QBO and polar vortex regions for all NN simulations and the first 3 years of offline and

online simulations for all ensemble members. The FTorch library for coupling PyTorch to Fortrain is maintained

by Cambridge Institute of Computing for Climate Science (ICCS) and can be found at https://github.com/

Cambridge‐ICCS/FTorch. The version we used is available at https://doi.org/10.5281/zenodo.12594686. The

Model of an idealized Moist Atmosphere (MiMA) is maintained by Martin Jucker and is available at https://

github.com/mjucker/MiMA. The version of MiMA that uses FTorch for coupling to the PyTorch emulator used

in this study can be found at https://github.com/lm2612/MiMA/tree/ML‐laura.
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