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Abstract Subgrid-scale processes, such as atmospheric gravity waves (GWSs), play a pivotal role in shaping
the Earth's climate but cannot be explicitly resolved in climate models due to limitations on resolution. Instead,
subgrid-scale parameterizations are used to capture their effects. Recently, machine learning (ML) has emerged
as a promising approach to learn parameterizations. In this study, we explore uncertainties associated with a ML
parameterization for atmospheric GWs. Focusing on the uncertainties in the training process (parametric
uncertainty), we use an ensemble of neural networks to emulate an existing GW parameterization. We estimate
both offline uncertainties in raw NN output and online uncertainties in climate model output, after the neural
networks are coupled. We find that online parametric uncertainty contributes a significant source of uncertainty
in climate model output that must be considered when introducing NN parameterizations. This uncertainty
quantification provides valuable insights into the reliability and robustness of ML-based GW parameterizations,
thus advancing our understanding of their potential applications in climate modeling.

Plain Language Summary Climate models are unable to resolve processes that vary on length and
time scales smaller than the model resolution and timestep. For example, atmospheric gravity waves (GWs),
which are waves created when winds encounter disturbances to the flow, such as mountains, convection and
fronts, can have wavelengths smaller than the spacing between grid cells. Climate models use
“parameterizations” to capture the effect of these processes. Machine learning based parameterizations are
becoming popular because they can learn relationships purely from data. However, we do not have a good
understanding of the uncertainties introduced through machine learning parameterizations. This study estimates
uncertainties associated with training a neural network (NN) GW parameterization. We explore uncertainties in
the NN output, as well as the uncertainties in the climate model output, when the NN is used for the GW
parameterization.

1. Introduction
1.1. Subgrid-Scale Parameterizations

General circulation models (GCMs) simulate the entire Earth system by coupling a dynamical core, which
numerically solves the primitive equations for atmospheric flow, with other physical components called “subgrid-
scale parameterizations”. The latter includes dynamical processes occurring on scales smaller than the grid-scale
(generally O(100 km) for a typical GCM; Chen et al., 2021), such as convection and short wavelength gravity
waves (GWs), and non-dynamical processes, such as radiation, atmospheric chemistry, and cloud and aerosol
microphysics. Subgrid-scale parameterizations make up a large portion of the computational cost associated with
GCM simulations and sometimes make drastic assumptions for the sake of computational cost, for example, they
typically do not permit horizontal momentum transport (single column assumption) and assume an instantaneous
balance in the vertical direction (steady-state assumption) (e.g., Achatz et al., 2023; Voelker et al., 2024; Wang
etal., 2022). This can introduce additional sources of model uncertainty. This has motivated the demand for faster
and/or higher accuracy schemes that use machine learning (ML)/artificial intelligence (AI), which hold out the
potential for training on large volumes of training data and performing fast inferences when invoked.

ML-based subgrid-scale parameterizations have demonstrated skill across a wide range of atmospheric processes
including convection, clouds, aerosols, radiation and GWs (e.g., Brenowitz & Bretherton, 2019; Brenowitz
et al., 2020; Chantry et al., 2021; Chevallier et al., 2000; Espinosa et al., 2022; Gentine et al., 2018; Harder
et al., 2022; Krasnopolsky & Fox-Rabinovitz, 2006; O’Gorman & Dwyer, 2018; Perkins et al., 2023; Rasp
etal., 2018; Ukkonen, 2022; Yu et al., 2023; Yuval et al., 2021; Yuval & O’Gorman, 2020). However, few studies
have explored the uncertainties associated with these. Stochastic subgrid-scale parameterizations have been
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developed by sampling from parametric distributions, learned through neural networks (Guillaumin &
Zanna, 2021) and generative adversarial networks (GANs) (Gagne II et al., 2020; Nadiga et al., 2022; Perezhogin
et al., 2023). These studies focus on stochastic representations to improve model accuracy since they may better
represent scaling properties (Palmer, 2019). Including uncertainty estimates can also be beneficial in assessing the
trustworthiness of model predictions (Haynes et al., 2023; McGovern et al., 2022), and this has gained some
attention in weather and climate prediction studies (e.g., Delaunay & Christensen, 2022; Gagne et al., 2014, 2017,
Gordon & Barnes, 2022; Weyn et al., 2021). Here, we explore uncertainty quantification in a ML subgrid-scale
parameterization (a type of model uncertainty; Hawkins & Sutton, 2009; Palmer, 2019), focusing on GW
parameterizations.

The remainder of this section presents background information on atmospheric GWs, their parameterizations, and
their impacts on the stratospheric circulation. Section 2 provides an introduction to uncertainty quantification in
the context of ML. Section 3 outlines the methods and data used in this study and Section 4 presents the results,
including both offline and online uncertainty quantification. In Section 5, we present conclusions and discuss
implications for future ML subgrid-scale parameterizations.

1.2. Atmospheric Gravity Waves

Atmospheric GWs are important drivers of middle atmosphere circulation as they transport momentum upwards
and away from their sources in the lower troposphere (Fritts & Alexander, 2003). They are forced by perturbations
to a stable stratified flow, for instance, orography, convection, and frontogenesis. They propagate primarily in the
vertical and, due to the decreasing density in the upper atmosphere, grow in amplitude. Gravity waves transfer
momentum into the ambient flow when they break, which occurs when they reach a saturation amplitude or a
critical level, when the phase speed matches the wind speed. This provides a forcing on the mean flow in the
middle and upper atmosphere and has a substantial impact on atmospheric circulation, including in driving the
Quasi-Biennial Oscillation (QBO) in the equatorial stratosphere (Baldwin et al., 2001) and affecting the occur-
rence of Sudden Stratospheric Warmings (SSWs) in the polar stratosphere during winter (Wang & Alex-
ander, 2009), described further in Section 1.3.

GW wavelengths can range from O(1 km) to @(1000 km) , which presents a challenge for accurate representation
in global climate models (GCMs). While the primitive equations do capture GW dynamics, typical GCM res-
olutions are @(100 km), resulting in a large portion of the GW spectrum being un- or under-resolved. Param-
eterizations must be employed to model the impacts of subgrid-scale GWs on the mean flow and are critical for
obtaining realistic circulation, for example, to induce a spontaneous QBO (Bushell et al., 2020). Some studies find
GW parameterizations to be necessary even in kilometer-scale resolution simulations (Achatz et al., 2023;
Polichtchouk et al., 2023), suggesting that the need for accurate parameterizations will persist even as modeling
centers move toward high resolution GCMs (or “digital twins”; e.g., Bauer et al., 2021).

1.2.1. Gravity Wave Parameterizations

GCMs usually make use of both an orographic and a non-orographic GW parameterization to capture their effects.
Machine learning alternatives to GW parameterizations have recently gained attention in several forms. Chantry
et al. (2021), Espinosa et al. (2022) and Hardiman et al. (2023) present ML emulators of existing non-orographic
GW schemes, while Dong et al. (2023) and Sun et al. (2023) use ML to learn GW momentum fluxes from high
resolution simulations.

This study can be viewed as a continuation of the work by Espinosa et al. (2022), which develops an emulator of a
non-orographic GW parameterization designed primarily for convectively forced GWs (Alexander & Dunker-
ton, 1999). Note that this ML parameterization is, at best, as accurate as the scheme it aims to emulate and is not
significantly faster than the original physics-based scheme, which could be due to coupling of the NN within a
Fortran-based GCM (Atkinson et al., 2024). Rather, this NN emulator is used as a first step toward probing
uncertainties introduced when replacing a GW parameterization with an emulator, when we have a “ground truth”
parameterization for reference.
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1.3. Gravity Wave Effects
1.3.1. Quasi-Biennial Oscillation

Gravity waves strongly influence the stratospheric circulation. In the tropical stratosphere, the dominant mode of
variability is the Quasi-Biennial Oscillation (QBO), in which the equatorial stratospheric zonal winds alternate
between easterly and westerly and descend downwards with time, with a period of around 28 months
(Gray, 2010). The change in direction is driven by breaking waves across a range of scales (Baldwin et al., 2001;
Lindzen & Holton, 1968), with modeling studies suggesting that non-orographic GW parameterizations
contribute around half of the forcing required for a simulated QBO (Holt et al., 2020). We will use the QBO to
diagnose performance of GW parameterizations in the tropics throughout this study.

1.3.2. Stratospheric Polar Vortex

As well as driving the equatorial stratospheric circulation, GWs are also influential at high latitudes. Gravity
waves affect the stratospheric polar vortex in both hemispheres, as they contribute to the breakdown of the polar
vortices, influencing the frequency and properties of SSWs (Siskind et al., 2007, 2010; Wang & Alexander, 2009;
Whiteway et al., 1997; Wright et al., 2010) and the timing of the Spring final warming (Gupta et al., 2021). SSWs
are defined as a reversal of the zonal mean zonal winds at 60°N at 10 hPa (Butler et al., 2015) which is followed by
large and rapid temperature increases (>30—40 K) in the polar stratosphere. They occur around 6 times per decade
in the Northern hemisphere, but are not common in the Southern hemisphere. We will use these polar vortex
breakdown events to diagnose performance of GW parameterizations in the extratropics.

2. Uncertainty Quantification

Uncertainties can be categorized into two types: aleatoric uncertainty and epistemic uncertainty (Hiilllermeier &
Waegeman, 2021). Aleatoric uncertainty is used to describe the variability in a system that is due to inherently
random effects (Haynes et al., 2023; Hiillermeier & Waegeman, 2021). It represents the statistical or stochastic
nature of a system, such as flipping a coin or rolling a dice. In the ML literature, aleatoric uncertainty is used to
refer to uncertainty in the data (even if it does not originate from a stochastic system, Hiillermeier & Waege-
man, 2021). It includes internal variability of the system and observational uncertainties in the data. In contrast,
epistemic uncertainty is caused by a lack of knowledge about the best model for a system. In the ML literature, it is
used to refer to uncertainty in the model. It includes structural uncertainties from the choice of ML architecture,
parametric uncertainties in estimating model parameters, and out-of-sample uncertainties which arise when
predicting outside of the range of the training data.

In this study, we aim to quantify parametric uncertainty, a type of epistemic uncertainty, in an ML-based
parameterization for GWs. We expect this to also capture out-of-sample uncertainties, that is, increased uncer-
tainty when generalizing to a situation that lies outside of the training data distribution. For simplicity, we do not
estimate aleatoric uncertainty in the training data, and we also do not consider structural uncertainty. Future
studies may wish to account for these additional types of uncertainty for a more complete picture. There are
several methods that could be used to estimate parametric uncertainty (Abdar et al., 2021). Here, we use an
ensemble of deep neural networks or “deep ensembles”, which involves training multiple identical neural net-
works, each with a different initialization (Lakshminarayanan et al., 2017). Each NN converges upon slightly
different parameters which are then used to predict an ensemble, from which statistics can be obtained. This is a
relatively simple approach to implement, although can be costly as it requires repetition during training and
evaluation. Deep ensembles have been used in climate model applications for prediction (Weyn et al., 2021), but
have not been used for subgrid-scale parameterizations. In this context, deep ensembles could be viewed as a ML
complement to “perturbed parameter ensembles” (PPE), which involve perturbing physics-based parameters for
uncertainty quantification (e.g., Murphy et al., 2007; Sengupta et al., 2021; Sexton et al., 2021).

3. Methods
3.1. Gravity Wave Parameterization Setup

Alexander and Dunkerton (1999; hereafter AD99) present a simple non-orographic GW parameterization that has
been used in various GCMs, including GFDL's Atmospheric Model 3 (Donner et al., 2011), Isca (Vallis
et al., 2018), and MiMA (Jucker & Gerber, 2017). AD99 estimates GW drag (GWD) in both the zonal and
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meridional directions for each level in a column, at each grid-cell and timestep. When coupled into a climate
model, GW drag or forcing acts to accelerate or decelerate winds (i.e., it is a wind tendency). As a spectral
parameterization, AD99 defines a spectrum of GWs at a source level with momentum flux distributed by phase
speeds, assumed to follow a Gaussian distribution centered at O m/s with half-width 35 m/s. This spectrum of
GWs propagates upwards until the waves reach the critical level (when the wind speed equals the phase speed of
the waves), when breaking occurs and drag is deposited.

3.2. Atmospheric Model Setup

We use an intermediate complexity GCM, a Model of an idealized Moist Atmosphere (MiMA) (Jucker &
Gerber, 2017). It is run at spectral resolution T42, corresponding to 64 latitudes by 128 longitudes (approximately
2.8° or 300 km grid spacing at the equator), with 40 model levels. The level top is 0.18 hPa, with a strong
dissipating sponge layer in the upper three levels (0.85-0.18 hPa). AD99 is coupled into MiMA with the pa-
rameters described above and with a fixed source level defined to be 315 hPa in the tropics and decreasing in
height with latitude, roughly in line with the tropopause. The model is run with an advection timestep of 10 min
and a physics timestep, which includes calling the GW parameterization, of 3 hr.

3.3. Atmospheric Model Diagnostics

In this study, we use the QBO and the polar vortices to measure the performance of GW parameterizations in the
tropics and extratropics, respectively. For the tropics, we estimate the simulated QBO period and amplitudes at
10 hPa, where the QBO amplitude is generally a maximum (Bushell et al., 2020; Richter et al., 2020). We consider
the QBO winds to be defined by the zonal mean zonal winds between 5°S and 5°N. Following Schenzinger
et al. (2017), we estimate the period of a QBO cycle by the length between transition times from westward and
eastward flow, after applying a 5-month binomial filter to remove high frequency variability. The amplitude is
estimated as the absolute maximum of the QBO winds during each cycle. The same analysis could be considered
for other levels in the stratosphere, however we note that MiMA exhibits biases where QBO winds do not descend
far into the lower stratosphere, terminating at around 60 hPa. For this reason, we focus on the upper stratosphere,
10 hPa, where the QBO signal is clearest (Garfinkel et al., 2022).

In the extratropics, subgrid-scale GWs contribute toward the breakdown of the polar vortices. Here, we consider
GW parameterization effects on the number of Northern hemisphere SSWs per decade and the timing of the final
warming of the Southern hemisphere polar vortex.

3.4. Machine Learning Setup

We use the NN GW parameterization developed by Espinosa et al. (2022). This is trained on MiMA simulations
using the AD99 GW parameterization, described above (Alexander & Dunkerton, 1999). Espinosa et al. (2022)
show that the NN emulator, trained on 1 year of data, achieves an accurate representation of the AD99 scheme
both offline and online. For the online tests, Espinosa et al. (2022) replace the original AD99 scheme in MiMA
with the NN emulator within MiMA and show that these coupled NN simulations produce a QBO consistent with
the original AD99 simulation. Furthermore, when tested on an out-of-sample climate under 4 X CO2 forcing, the
NN simulations remained stable and reproduced similar changes to the QBO as the AD99 simulations.

Espinosa et al. (2022) emulate the zonal and meridional GWD with two independently trained but almost identical
fully connected NNs. The inputs to the zonal GWD network are zonal winds at all levels, u, temperature at all
levels, T, surface pressure, p,, and latitude, 4, and similarly for the meridional GWD the inputs are meridional
winds at all levels, v, T, p,, and 2. MiMA uses 40 pressure levels, giving a total of 82 inputs into the NN. The
architecture consists of one shared hidden layer followed by another four pressure level specific layers (see Figure
S1 in Supporting Information S1). The NNs output the zonal/meridional GW drag for all 40 pressure levels. Note
that the pressure levels closest the surface should always predict zero, where there is no GWD below the source of
the GWs. Although these layers are redundant, we include them because the AD99 GW source level changes with
latitude to follow the approximate level of the tropopause. Following Espinosa et al. (2022), we normalize the
input and output data to have a zero mean and standard deviation of 1. For the pressure levels below the source
level, where all GWD values are exactly zero and standard deviation is undefined, we fix the outputs to zero.
Although we follow the same architecture as Espinosa et al. (2022), there are some software differences in our
implementation. Firstly, we opt for PyTorch (Paszke et al., 2019) rather than Keras and TensorFlow (Abadi
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Figure 1. The QBO (a) zonal winds and (b) zonal gravity wave drag for the training, validation, and test data set.

et al., 2015; Chollet & others, 2015) for the ML library. Secondly, Espinosa et al. (2022) use the forpy software
(Rabel, 2019) to call python code in the Fortran-based climate model. This resulted in a slow-down of roughly
2.5% when replacing AD99 with the NN emulator. Instead, we use FTorch (https://github.com/Cambridge-ICCS/
FTorch), a software package that directly calls the existing Torch C++ interface from Fortran, resulting in faster
inference. We use a pre-released version of FTorch (Atkinson et al., 2024) and we find a 20% slow-down in the
NN simulations relative to the AD99 simulations, although we have not explored if this could be optimized
further.

In this study, we capture parametric uncertainty of the NN emulator presented in Espinosa et al. (2022) using deep
ensembles (Lakshminarayanan et al., 2017). We repeatedly train an ensemble of size 30 independent NNs, each
with the same architecture and trained on the same data but with different random seed initializations. The random
seed affects the initialization of the NN parameters and the shuffling order of data during training, leading to
slightly different parameters when converged. Following Espinosa et al. (2022), we train the NNs with 1 year of
data, selected so that it contains a typical QBO cycle with a period and amplitude similar to the long-term mean
period and amplitude. The choice to use only 1 year for training data was made because offline tests showed
sufficient accuracy that did not benefit greatly from additional data, as well as for consistency with Espinosa
et al. (2022). It also tests the ability of the ML-based parameterization to generalize, including generalization to
the other phase of the QBO. This is representative of how ML-based parameterizations are typically designed,
where they are trained and validated on a limited data set but once coupled, are used over longer time periods and
may encounter different data regimes than contained in the training data set. We use the following 1 year of data
for the validation data set, and the following 20 years are used for the test data set, requiring 22 years of simulation
data in total. This long period is required for comparing long-term statistics of the model such as properties of the
QBO and polar vortices. Figure 1 shows (a) the QBO zonal winds and (b) the QBO zonal GW drag over this data
set up to year 12.

4. Results
4.1. Offline Predictions

Figure 2 shows an example of GW drag (GWD) profiles for a single grid cell close to the equator for (a) the zonal
component and (b) the meridional component, with the black line indicating the ground truth from the AD99
parameterization and the red line indicating the mean prediction across all NN ensemble members. The orange
shading represents 1 standard deviation across all ensemble members. Animations showing the evolution of this
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Figure 2. Example profiles of (a) zonal and (b) meridional gravity wave drag at one grid-cell and one timestep in the tropics
where the black line indicates the ground truth from the AD99 parameterization, the red line indicates the mean prediction
across all neural network ensembles and the orange shading indicates 1 standard deviation across these ensembles.

GWD profile can be found in the Supporting Materials. The NNs agree well on the GW profiles and the ground
truth falls within the 1 standard deviation range for across most model levels for the zonal component. The
meridional component generally captures the patterns within the profile but is found to be less accurate, even
when considering the uncertainty estimates.

To measure the errors, we calculate the continuous ranked probability score (CRPS), a generalization of mean
absolute error that allows for comparison of probability distributions. The use of CRPS to measure error between
a predicted probability distribution and a single ground truth has long been used for verification of ensemble
weather forecasts (Hersbach, 2000), and has recently been adopted for probabilistic ML (Gneiting & Raf-
tery, 2007). Figure 3 shows CRPS for (a) zonal and (b) meridional GWD predictions over a range of latitudes.
CRPS is measured in the same units as the variable, ms™~2 for GWD, but note the scale of the axis is reduced by
10x relative to the GW drag magnitudes in Figure 2. We find lower errors in the lower and mid-stratosphere that
increase with height, where GW drag magnitudes also increase. We see good performance across all latitudes.

Continuous Ranked Probability Score
a) Zonal b) Meridional

10! 4

Pressure (hPa)

/ — <85°s — <85°s
—— 55°-65°S —— 55°65°S
25°-35°5 25°-35°5
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0 1 2 3 4 5 0 1 2 3 4 5
CRPS for Zonal GWD (ms~2) le-6 CRPS for Meridional GWD (ms~2)  1€—6

Figure 3. Continuous Ranked Probability Score for (a) zonal and (b) meridional gravity wave drag for different latitudes over
the test data set.
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Confidence of neural networks at latitudes 5°S-5°N at 10.9 hPa
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Figure 4. Ensemble uncertainty (measured as 1 standard deviation amongst the ensemble predictions) against ensemble error
(measured as the mean absolute error across all ensemble predictions) for (a) zonal and (b) meridional gravity wave drag for
the test data set between 5°S and 5°N at 10 hPa. Each individual point represents a single prediction at one timestep and grid-
cell and they are shaded according to density. The black dashed line shows the y = x line.
4.2. Offline Uncertainty Estimates
One common problem in uncertainty quantification of deep learning algorithms is in ensuring that uncertainty
estimates are reasonable, often known as calibration of uncertainty (Lakshminarayanan et al., 2017). A well-
calibrated ML model should predict low uncertainties when errors are small and high uncertainties when er-
rors are large (e.g., when the data is out-of-sample). Figure 4 shows the 1 standard deviation uncertainty estimates
against the ensemble mean absolute errors estimated for the test data set, with the colors representing the density
of points. Ideally, these should be correlated and lie approximately along the y = x line shown in the dashed line.
Points above the y = x line are underconfident and points below are overconfident. Although the errors and
predicted uncertainties are correlated, we see that the NN suffer from overconfidence and frequently underes-
timate the uncertainty relative to the error. This is typical behavior for ML uncertainty estimates, including those
based on deep ensembles (Abdar et al., 2021), and may be not be surprising given we only consider one type of
uncertainty (parametric uncertainty) and do not consider structural uncertainty or data uncertainty in these es-
timates. This overconfidence is systematic across all levels of the stratosphere and occurs for both zonal and
meridional NNs, but especially for the meridional predictions.
4.3. Offline and Online Probability Distributions
Once coupled online into MiMA, the ensembles begin to diverge from each other even though they are initialized
from the same state. This is partly due to the chaotic nature of the atmosphere where minute differences in one
atmospheric variable can lead to very different atmospheric states after some time. Even introducing relatively
minor differences in the GWD profiles, such as those in Figure 2, can lead to very different atmospheric states.
Here, we aim to quantify how uncertainties in Figure 2 propagate into the GCM. We examine long-term statistics
in order to separate out the NN parametric uncertainty from the internal variability.
Distributions of Gravity Wave Drag for Equator at 10.9 hPa
a Zonal b) Meridional
300000 A ]
—— AD99
250000 1 — Offline
—— Online
200000 -
150000 -
100000 -
50000
o] ]
—1100 *0‘,75 70‘,50 —0:25 0.‘00 0.‘25 0..I'>0 0,‘75 1,60 —1i00 fO‘.75 v0:50 —-0125 0.‘00 0.‘25 0,50 0.‘75 1.60
Zonal GWD (ms™2) le-5 Meridional GWD (ms~2) le-5
Figure 5. (a) zonal and (b) meridional gravity wave drag distributions for AD99 simulations (black), offline NN predictions
(blue) and online NN simulations (red) at 10 hPa between 5°S and 5°N.
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Distributions of Wind for Equator at 10.9 hPa
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Figure 6. (a) zonal and (b) meridional wind distributions for AD99 (black) and online NN simulations (red) at 10 hPa between
5°S and 5°N.

We consider GWD in the tropics, due to its influence on the QBO. Figure 5 shows distributions of GWD in the
upper stratosphere at 10 hPa for (a) zonal and (b) meridional components, where the black line indicates ground
truth from the AD99 MiMA simulations, the blue line indicates the offline NN predicted GWD and the red line
indicates the online NN predicted GWD. Both offline and online distributions are centered over the same location
as AD99, indicating that the NN does not introduce a bias. In the lower stratosphere, the distributions are virtually
indistinguishable (not shown). However, in the upper stratosphere at 10 hPa, the NN distributions take a different
shape than AD99. This is particularly notable around the low negative zonal GWD values, where AD99 predicts
an asymmetric GWD distribution with a positive skew. The NN distributions are more symmetric between
positive and negative values. This may be because ML optimizes for RMSE which may overly smooth GWD
profiles, reducing asymmetry between positive and negative drag. The online NN distributions are slightly
smoother than the offline NN distributions. We suggest that this must be caused by the interaction between the
predicted GWD and the winds when coupled online. This is verified by Figure 6a, which shows distributions of
zonal winds near the equator at 10 hPa, where online distributions tend to be smoother and weaker than the AD99
distributions.

Figure 5b shows that the online and offline meridional distributions are highly similar, even though they are
smoothed out at low magnitudes. This overly smooth distribution exists for each individual NN, suggesting it
originates from structural errors, rather than parametric uncertainty (Figures S2-S3 in Supporting Informa-
tion S1). This is in contrast to the zonal GWD distributions, which show greater variation between individual
NN, suggesting greater parametric uncertainty. Even though the meridional NN is generally less accurate (e.g.,
Figure 2b), the meridional component of GWD does not appear to diverge when coupled online. Similarly,
Figure 6b shows the distribution of the meridional winds to be unchanged when the NN are coupled. This appears
to be robust across different latitudes (Figures S4-S7 in Supporting Information S1) and indicates that the
meridional circulation is not highly sensitive to the effects of subgrid-scale GWD, possibly due to lower
magnitude of the meridional winds.

4.4. QBO Uncertainties

Ultimately, we are interested in how the NN estimations for GWD influence the climatology and its variability
when coupled into a GCM. We examine statistics of the QBO in MiMA by calculating the QBO period and
amplitude at 10 hPa for each QBO cycle within 400 years of AD99 simulations and the 600 years of NN sim-
ulations (from 30 simulations each of 20 years simulations), shown in Figure 7. While the mean period of the
QBO across all simulation years are similar, the NN ensembles show increased variability that can be attributed to
the parametric uncertainty. The NNs also appear to introduce a bias that reduces the QBO amplitude, consistent
with the reduction in QBO zonal winds (Figure 6). These increases in QBO variability originate from differences
between NN ensemble members (and therefore from the learned NN parameters), each of which tends to maintain
fairly consistent QBO periods and amplitudes within the 20 years simulation. The results shown here are derived
from the 10 hPa winds, however, we also found this to be robust at 30 hPa.
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Figure 7. Violin plots showing distributions of QBO (a) period and (b) amplitude for the AD99 simulations in gray and for
NN simulations in orange. The boxplots also show the median, upper and lower quartiles and each point represents a single
QBO cycle.

We estimate parametric uncertainty by considering the increase in variability that arises due to the NNs.
Assuming QBO cycles are normally distributed in both AD99 and in the ensemble of NNs, the additional
variability from the uncertainty in parameters, 6,,.,m, can be calculated as

2 _ 2 2
Oparam — ONNs — AD99 )

where 6% g0 is the variance in the AD99 simulations and o%y, is the total variance across all NN ensemble
members. These results are shown in Table 1. Notably, the parametric uncertainty is significantly larger than the
internal variability in the AD99 simulations, for both the QBO period and amplitude. It is possible that these
uncertainties are underestimates of the true parametric uncertainty, given the overconfidence noted in offline tests
(Figure 4). Still, the uncertainties in NN parameters are much greater than uncertainties in the parameters in the
physics-based scheme AD99, estimated to be 1.53 months and 2.14 m/s for the period and amplitude respectively,
in Mansfield and Sheshadri (2022) under the same model set-up. This highlights the importance of uncertainty
quantification, regardless of whether the parameterization is physics-based or ML based.

Table 1
Mean and Variability of QBO Calculated Across MiMA Simulations Using AD99 Versus the Ensemble of NNs

Mean Variability (measured as 1 standard deviation)
Internal Total variability Parametric
Ensemble of variability in in ensemble of uncertainty,
AD99 NNs AD99, 6599 NN, onns o
Period (months) at 10 hPa 25.32 26.78 2.03 3.82 3.25
Amplitude (m/s) at 10 hPa 28.29 2591 2.17 3.86 3.18

Note. Means are estimated across all QBO cycles in a 400 years long MiMA simulation using AD99 and in 600 years of
simulations from the 30-member, 20 years long simulations from the ensemble of NNs. Variability is measured as 1 standard
deviation between all QBO cycles. Parametric uncertainty is calculated assuming QBO cycles are normally distributed
(Equation 1).
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Figure 8. Histograms showing (a) the Northern hemisphere number of SSWs per decade and (b) the Southern hemisphere
polar vortex lifetime for AD99 simulations in gray and the NN simulations in orange.

4.5. Polar Vortex Uncertainties

The QBO is one phenomenon that is strongly influenced by GW dynamics. The stratospheric polar vortices in
both hemispheres also depend upon GW activity. In particular, the breakdown of the polar vortex during SSWs
and in the springtime final warming is driven by both planetary-scale and subgrid-scale GWs, and the variability
of these events could also be impacted by changes to the GW parameterization. For the northern hemisphere polar
vortex, we consider the frequency of SSWs and for the southern hemisphere, we consider polar vortex lifetime.
Figure 8 shows there is no obvious distinction between the variability of these properties between the AD99 and
NN simulations, thus making the attribution of extratropical changes (and therefore, the calibration of extra-
tropical parameters in AD99 and other schemes; Mansfield & Sheshadri, 2022) rather challenging.This may be
because the breakdown of the polar vortices is driven by both planetary-scale waves and subgrid-scale GWs,
thereby reducing the impact of any changes to the parameterization. Furthermore, some studies find there may be
a compensation effect between resolved Rossby waves and unresolved GWs during SSW events (e.g., Cohen
et al., 2013), while some studies suggest that small scale GWs influence polar vortex recovery after a SSW more
strongly than the breakdown itself (Wicker et al., 2023).

5. Conclusions

This study uses deep NN ensembles to quantify parametric uncertainties in a ML parameterization of GW drag.
We use the NN architecture of Espinosa et al. (2022) trained on 1 year of data simulated by the intermediate
complexity GCM, MiMA, which uses AD99 GW parameterization (Alexander & Dunkerton, 1999; Jucker &
Gerber, 2017). An ensemble of 30 identical neural networks are trained, each initialized with a different random
seed. This ensemble allows us to estimate parametric uncertainties in NN weights and biases. First, we assessed
uncertainties in raw GWD output, which we refer to as offline uncertainties. We find fairly consistent results
across all neural networks. Then, we used the FTorch library to couple the NN into MiMA, allowing for GCM
simulations that use the ML parameterization in place of the traditional physics-based scheme (Atkinson
et al., 2023). We assess uncertainties in GCM output for GW drag and wind, refering to these as online un-
certainties. We find increased online uncertainty, particularly for zonal winds.

Comparing long-term statistics of the climate within MiMA using the physics-based scheme AD99 and the
ensemble of neural networks, showed that the use of NN emulators can alter the circulation significantly. We
found that the NNs from the ensemble produce a bias in the QBO toward reduced amplitudes and dramatically
increase the variability of the QBO, with uncertainty from NN parameters increasing the variability between QBO
cycles by over 50%. Uncertainty quantification of parameterizations should therefore not be overlooked when
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developing ML-based schemes for future climate models. Our findings reiterate results from previous studies that
find that, even when offline tests indicate “good” NN performance with relatively low uncertainties, the coupling
of ML schemes into climate models can still introduce a significant source of uncertainty (Brenowitz et al., 2020;
Lin et al., 2023). Learning distributions on the model parameters could provide a basis for further parameter
refinement, for example, acting as a Bayesian prior distribution that could be constrained through online cali-
bration, such as derivative-free optimization Ensemble Kalman methods (Pahlavan et al., 2023). As with
traditional parameterization calibration, this could lead to improved QBO statistics and reduced parametric un-
certainty. Interestingly, we find that the behavior and breakdown of the polar vortex is not strongly dependent on
the parameterization, which may be partially due to influences from planetary-scale waves. This suggests that it
may not be possible to further calibrate NN parameters to polar vortex properties, and is comparable to the
difficulties in calibration of extratropical parameters of AD99 (Mansfield & Sheshadri, 2022).

We only scratch the surface of uncertainty quantification for ML parameterizations. Firstly, we describe only one
type of uncertainty: parametric uncertainty, a type of epistemic (model) uncertainty. There exists a wide range of
ML approaches that could be used for this task, including Bayesian Neural Networks, Monte Carlo dropout
generative models and deep ensembles (Abdar et al., 2021). We used deep ensemble methods for this task
(Lakshminarayanan et al., 2017), due to their simplicity to implement. However, this approach is computationally
costly during both training and evaluation, requiring the use of ensembles which is not feasible for long climate
model integrations. Another limitation is that we assume our NN architecture is sufficient to fully capture the data
(no structural uncertainty), although this is likely not the case, especially for the meridional NNs (Figure S2 in
Supporting Information S1). A more complete picture would be given by also assessing aleatoric (data) un-
certainties. We note that our parametric uncertainty estimates would change given a different training data set,
which makes detangling the effects of epistemic and aleatoric uncertainty a challenge (Haynes et al., 2023;
Hiillermeier & Waegeman, 2021). For example, training this model with more than 1 year of data would
potentially reduce the uncertainties estimated here. This would be a useful topic of further research, identifying
how much data is sufficient for accurate online performance. Additionally, learning the relative contributions
between model and data uncertainties would be insightful when designing ML parameterizations. Aleatoric
uncertainties could be estimated through the use of Bayesian neural networks or Monte Carlo dropout (Abdar
etal., 2021), by parameterizing GW outputs as a distribution (Guillaumin & Zanna, 2021; Haynes et al., 2023), or
through generative models such as GANs (Gagne II et al., 2020; Nadiga et al., 2022; Perezhogin et al., 2023).

Secondly, the ML parameterization used here is an emulator of an existing scheme, allowing us to compare
against a ground truth simulation. Future studies may wish to extend this to train ML models on gravity-wave
resolving simulations, for example, with kilometer-scale resolution models such as IFS (Anantharaj
etal., 2022), WRF (Sun et al., 2023) or ICON (Hohenegger et al., 2023). When using novel training data sets from
high resolution simulations, we do not have online “true” distributions to compare against, which could present
challenges when disentangling the various sources of variability. Furthermore, it also raises the issue of under-
standing the role of aleatoric uncertainty, for instance, in the choice of training data and method for estimating
GW drag (Sun et al., 2023).

Thirdly, MiMA is an intermediate complexity atmospheric circulation model. One may expect that coupling this
atmospheric model to other Earth system components, such as the ocean, land, and sea-ice, would introduce
further uncertainties. Therefore, we might consider the results presented here as a lower bound on the un-
certainties we could expect to see in fully operational Earth system models that employ ML parameterizations.
Extending this study to higher complexity Earth system models would be significantly more costly, however, this
could be worthwhile toward better informing the design of ML parameterizations, which ultimately could lead to
efficient but accurate hybrid GCMs that combine traditional dynamical solvers with novel ML parameterizations.

Data Availability Statement

The code to run simulations, train neural networks and replicate plots presented in this paper is available at https://
github.com/Im2612/WaveNet_UQ and is permanently stored at https://zenodo.org/doi/10.5281/zenodo.
11200997. The data required to reproduce the results are available at https://doi.org/10.25740/zv875tm6846. This
includes the AD99 MiMA simulations generated for training, validation and testing, all NN torchscript models,
and MiMA files required to initialize the online simulations. We also include the post-processed zonal mean
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