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Abstract

Environment sensing is a fundamental task in mobile aug-

mented reality (AR). However, on-device sensing and com-

puting resources often limit mobile AR sensing capability,

making high-quality environment sensing challenging to

achieve. In recent years, in-context sensing, a new sensing

system design paradigm, has emerged with the promise of

achieving accurate, e�cient, and robust sensing results. In

this work, we �rst formally de�ne the in-context sensing

design paradigm. We summarize its primary challenges as

the uncertainty of environmental information availability. To

quantify the impact of sensing context data, we present two

in-depth case studies that show how it can impact di�erent

aspects of mobile AR sensing systems.

CCS Concepts

• Computing methodologies→Mixed / augmented re-

ality; • Human-centered computing → Ubiquitous and

mobile computing systems and tools.
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1 Introduction

Understanding the physical environment is a fundamental

task for mobile augmented reality (AR), which aims to in-

tegrate virtual and physical content seamlessly. This goal

requires accurate and robust environment sensing across

multiple properties, including, but not limited to, device mo-

tion, object distances, and environmental lighting [9]. The

quality of environment sensing directly contributes to the

mobile AR user experiences. For example, camera depth infor-

mation is often needed to place virtual objects at the correct

distance in virtual try-on applications [27].

Traditional AR systems typically rely on computer vision

methods to extract the environment information from the

current AR device camera image [4]. However, as a single

input source, the current camera image often does not o�er

su�cient environmental information to support the desired

immersive mobile AR user experiences. As the software and

hardware ecosystem evolves, mobile AR environment sens-

ing systems have started shifting to taking more comprehen-

sive environment information from multi-sensor and multi-

modal inputs. Unfortunately, sensing systems on mobile AR

devices are often constrained by many physical limitations in

computing and sensory devices, rendering the raw on-device

sensing power insu�cient to match the complexity of the

physical environment.

More recently, new research works have started to lever-

age contextual information from user, device, and environ-

ment elements to improve mobile AR sensing systems’ capa-

bility [7, 19, 31]. In later sections, we refer to this context-

aware environment-sensing paradigm as in-context sensing.

By leveraging information from the sensing context, the in-

context sensing design promises a future of AR environment

sensing with better accuracy, e�ciency, and robustness. In

§2, we present a formal de�nition of the in-context sensing

design paradigm.

However, adopting the in-context design for mobile AR

sensing systems also presents unique challenges in acquir-

ing and managing context data. Through a comprehensive

survey of environment sensing tasks and AR system design

support, we summarize the primary challenge of in-context
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Table 1: A survey of in-context environment-sensing system design and their context data usage.

Category Paper
Sensing Context Data Sensing Context Data Contribution

Modality Multi-timestamp Accuracy Robustness E�ciency

Device Tracking
ORB-SLAM3. [3] Acceleration, Orientation ✗ ✓ ✓ N/A

Kimera-VIO. [17] Acceleration, Orientation ✗ ✓ ✓ N/A

Object Detection
Zhang, Zhishuai, et al. [28] Semantics ✗ ✓ N/A N/A

Chen, Chenglizhao, et al. [6] Depth ✗ ✓ N/A ✓

Object Tracking
BundleTrack [22] Depth ✓ N/A N/A N/A

BundleSDF [23] Depth ✓ ✓ ✓ N/A

Lighting Estimation
Xihe [30] Depth, Device Pose ✓ ✓ ✓ ✓

LitAR [31] Device Pose, Ambient Light, Depth ✓ ✓ ✓ N/A

Depth Estimation
Sparse SPN [21] Device Pose ✓ N/A N/A ✓

Sartipi et al. [18] Device Pose ✓ ✓ N/A ✓

sensing system design as the uncertainty of environment in-

formation availability. In other words, although critical envi-

ronment information may be presented and extracted from

sensing context data, their presence is not guaranteed. In §3

and §4, we present two case studies to investigate: (i) how

could di�erent environment context data presence impact

the accuracy of environment sensing? And (ii) what sys-

tematic designs can be made to address the uncertainty of

context data? Our investigation looks into two representative

sensing tasks: metric depth estimation, a task that demands

precise environment observations, and lighting estimation, a

task that requires broad environment observations.

In the �rst task, we investigate how metric depth esti-

mation accuracy varies when metric depth estimation mod-

els are deployed to AR devices with di�erent camera focal

length con�gurations. We also show how the accuracy and

e�ciency of metric depth estimation models can be reliably

improved by using camera parameter information and sim-

ple controls of camera focal length. In the second case study,

we investigate how accumulated environment observation

point clouds can contribute to the lighting estimation task.

Compared to natural user mobility in an object placement

task, lighting estimation accuracy can improve up to 40%

with guided user movements. Similarly, point cloud sharing

between nearby users can improve the estimation accuracy

signi�cantly by 33%. In both experiments, the interaction

between the lighting estimation task and the information

provides shows promising aspects of in-context sensing.

We summarize our main contribution as follows:

• We present a formulation of in-context environment sens-

ing, an emerging environment sensing design paradigm

for mobile AR that promises higher environment sensing

quality with better accuracy, robustness, and e�ciency.

• We present a survey on recent context-aware environment

sensing system design and identify the primary design

challenge as the uncertainty of environment information

availability.

• We present two case studies on representative in-context

sensing system designs of metric depth estimation and

lighting estimation. Through the studies, we identify three

opportunities to address the primary challenge: (i) sensory

device manipulation, (ii) guided user mobility, and (iii)

connected context sources.

2 Promises and Challenges

Pioneer research in context-aware AR systems demon-

strated that important environment information can be ex-

tracted from camera frames for task planning and decision-

making [20]. Taking inspiration from the prior research on

how context can augment the sensing process, we de�ne

mobile AR in-context environment sensing as:

An environment sensing process that combines current AR

camera image with information retrieved through interactions

with an AR device, user, and environmental elements.

Broadly, sensing context data can be collected from on-

device or externally connected sensors throughout the AR

application session.

Promises of sensing context data. Table 1 summarizes

our survey on recent mobile AR environment sensing sys-

tems with their respective usage of context data. We make

several key observations from this survey. First, sensing con-

text data improves sensing accuracy. Many systems utilize

multi-modal and multi-timestamp context data to provide

complementary information to camera image data. For exam-

ple, device pose data generated by IMU sensors are often used

in metric depth estimation systems to reduce the ambiguity

of metric scale estimation [11, 12, 26]. These complementary

data often provide information that is hard to extract from

camera images. In particular, we have noticed device tracking

and camera depth data are used across several sensing cate-

gories, potentially due to their critical role in reconstructing

spatial and temporal environments.

Secondly, we noticed that sensing context data contributes

to the overall robustness of the sensing system. In sensing
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tasks with temporal optimizations, such as VI-SLAM sys-

tems [3, 17], the improvement of device tracking accuracy

is associated with increased historical views. Additionally,

awareness of environmental factors, such as localization data,

can help reduce the ambiguity of the sensing goal. This in-

formation can be leveraged to help sensing systems adapt to

di�erent environments. For example, the estimation meth-

ods often di�er for lighting estimation between indoor and

output scenes [15, 16, 31].

Thirdly, sensing context data also contributes to the e�-

ciency of environment sensing systems. As mobile AR sens-

ing context data provides an understanding of the environ-

ment information, historical context can often be reused

even when the device is moved to new positions. Some en-

vironment information, such as 3D geometry, can often be

extracted from environment mapping results in sensing con-

text data [29]. This information can help to reduce the de-

pendencies of complicated 3D geometry processing in many

DNN-based sensing systems and reduce the complexities of

the DNN model. Additionally, reusing sensing context data

can reduce sensory device activation [18], potentially saving

mobile AR system power consumption.

Lastly, although sensing context contributes to overall

accuracy improvements, common grounds of system-wide

sensing context support has not been reached. We noticed

that, although on-device sensor data can be directly lever-

aged for environment-sensing tasks, interacting between

custom sensing systems and the sensors is di�cult due to

the limitations in hardware access. On the one hand, this lim-

itation protects the information privacy of AR users [14, 19].

On the other hand, it prevents AR developers and researchers

from building more sophisticated sensing systems. Allowing

safe and �exible sensor hardware access to sensing systems

is one of the primary open research questions. Additionally,

cross-device connectivity is often limited to speci�c devices

or proprietary solutions on current AR systems.

Primary challenge. Supporting in-context environment

sensing is a di�cult task with challenges ranging from multi-

ple aspects, including data quality, network connectivity, and

computational e�ciency. Here, we summarize the primary

challenge as the uncertainty of environment information avail-

ability. In other words, the availability of sensing context

data strongly depends on the interactivity between sensing

tasks and information providers, causing uncertainty in the

overall sensing quality. A main impacting factor is the in-

tended usage behavior of AR applications. In particular, the

trajectory of the user’s movement is usually in�uenced by

the AR applications’ design rather than the user’s interest in

environment sensing. For example, maximizing environment

observation coverage through a moving camera is a key goal

in achieving high-quality environment tracking and light-

ing estimation. Mismatched mobility interests usually cause

harm to the quality of environmental sensing as they limit

the environmental observation coverage, blur camera mo-

tions, and cause sensor drifts. Solving this challenge requires

new system designs that model the uncertainty of sensing

context and provide new ways of ensuring its quality, such

as multi-sensor collaboration or guided user mobility.

3 Case Study: Metric Depth Estimation

Metric depth estimation plays an important role in AR appli-

cations, enabling the seamless integration of virtual objects

into the physical world. However, single image depth estima-

tion models, a simple and popular method for depth sensing,

often face challenges like scale ambiguity, over�tting to spe-

ci�c camera models, and high model complexity, as discussed

in our previous work [10] and various studies [11, 12, 26]. In

this case study, through analyzing recent works, we demon-

strate that high-quality depth estimation results on mobile

AR can be achieved using camera parameters and simple

controls of camera focal length.

Experiments Setup. For our experiments, we used

three state-of-the-art (SOTA) models: ZoeDepth-M12-N [2],

DepthAnything [24], and HybridDepth [8]. The �rst two

are heavy and large single-image depth estimation models,

while HybridDepth is a depth model that utilizes additional

camera data (focal stack) for depth estimation. In particular,

the focal stack is a set of images created with intentional

manipulation of camera focus distances. We use this hard-

ware manipulation method to demonstrate howmetric depth

estimation tasks can interact with device hardware.

We selected the ARKitScenes [1], an AR-focused dataset

captured with mobile cameras. We loaded the models with

the provided pre-trained weights and evaluated them on the

o�cial evaluation set of ARKitScenes. All evaluations were

performed on an NVIDIA RTX 4090 GPU. We processed and

resized the input images to the desired size for each model

before feeding them into the models. To measure inference

time, we recorded the average inference time of each model

on the ARKitScenes dataset’s evaluation set.

Device hardware-awareness. (1) Scale Ambiguity. Single

Image Depth models cannot reliably determine the absolute

scale of objects within a scene. This scale ambiguity arises

because the models rely solely on visual cues without addi-

tional context, leading to inaccuracies in depth prediction.

Even human eyes can be misled into thinking that the last

two photos are taken at the same distance, but the actual

measurements reveal that these images were taken at two dif-

ferent distances. This discrepancy occurs due to the nature of

camera intrinsics, which include parameters like focal length

and sensor size. These intrinsic parameters in�uence how
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Figure 1: Visual examples of metric depth estimation

results. Camera parameters provide important cues on met-

ric depth estimation. With this information, Metric3D [13]

signi�cantly outperforms ZoeDepth [2], which uses only a

single image as the input data.

the 3D world is projected onto the 2D image plane, causing

similar objects at di�erent distances to appear the same size.

Without additional contextual information, such as focus dis-

tances or multiple viewpoints, the depth estimation model

cannot resolve these ambiguities.

(2) Over�tting to Speci�c Camera Models. Single image

depth models are often tailored to the characteristics of the

training dataset, which typically involves images captured

by speci�c camera models with a unique focal length and

sensor size. As we discussed in the �rst challenge, this will

cause some scale problems if we use a camera di�erent from

the training dataset. For instance, Figure 1 compares two

depth models: Metric3D [12, 26], which integrate camera

parameters during training, and ZoeDepth [2], which relies

only on visual information. The same scene and objects were

captured using two di�erent mobile cameras with distinct

camera parameters. ZoeDepth [2], which relies solely on

visual data, shows signi�cant variation in its measurement of

the object (keyboard), with the perceived size changing based

on the camera used, resulting in high errors compared to the

ground truth values (yellow). Conversely, Metric3D, which

incorporates camera parameters as additional data, produces

more stable and robust results. Another interesting issuewith

relying solely on visual data is the impact of di�erent viewing

angles, which can signi�cantly a�ect depth estimation. This

reliance on speci�c camera models and solely visual data

leads to poor generalization when the models are applied

to images from di�erent cameras or environments, which

questions their capability in AR scenarios.

(3) Model complexity and inference time. Based on our ex-

periments and recent works [8, 12, 26], we realized that in-

corporating additional data can address the mentioned chal-

lenges of scale ambiguity and over�tting. Furthermore, it

can lead to more accurate and robust depth estimation with

smaller and faster models, which are more mobile-friendly

Table 2: Zero-shot evaluation comparison of current

state-of-the-art (SoTA) models, trained on NYU Depth

V2, on the ARKitScenes validation set. Bold indicates

the best results.

Model RMSE ↓ AbsRel ↓ #Params ↓

ZoeDepth-M12-N [2] 0.61 0.33 344.82M

ZeroDepth [11] 0.62 0.37 233M

DepthAnything [24] 0.53 0.32 335.79M

HybridDepth [8] 0.367 0.40 65.6M

Table 3: Performance comparison of the three SOTAmod-

els on Nvidia RTX 4090. Bold values represent the best

results.

Model Inference time Size #Params

ZoeDepth-M12-N [2] 86 ± 6 ms 1.28 GB 344.82M

DepthAnything [24] 57 ± 5 ms 1.25 GB 335.79M

HybridDepth [8] 25 ± 2 ms 0.24 GB 65.6M

and better suited for real-time AR scenarios. As shown in

Tables 2 and 3, the HybridDepth model demonstrates ex-

cellent zero-shot performance on AR-speci�c datasets such

as ARKitScenes [1]. Speci�cally, HybridDepth achieved an

RMSE of 0.367 and an AbsRel of 0.40 with only 65.6 million

parameters, signi�cantly outperforming other SOTA models

such as ZoeDepth-M12-N and DepthAnything, which have

larger model sizes and more parameters.

In terms of inference time and model size, HybridDepth

also excels. It has an average inference time of 25 ± 2 ms,

which is approximately 65% faster than DepthAnything (57 ±

5 ms) and 71% faster than ZoeDepth-M12-N (86 ± 6 ms). The

model size of HybridDepth is 0.24 GB, which is around 81%

smaller than DepthAnything (1.25 GB) and ZoeDepth-M12-

N (1.28 GB). This demonstrates that integrating additional

data sources, such as focus distances and focal lengths, can

produce smaller, faster, and more e�cient models without

compromising accuracy, resulting in more robust and accu-

rate depth estimation.

Key Takeaway: Hardware parameters, e.g., camera focal

length, present important opportunities for building accurate,

e�cient, and robust in-context sensing systems. Acquiring

context information from intentionally manipulated hard-

ware, such as depth from defocus clues, has shown to be a

promising way to create reliable context data.

4 Case Study: Lighting Estimation

Lighting estimation is a fundamental environment-sensing

task that estimates omnidirectional lighting from limited
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