


• We design and implement an end-to-end pipeline HYBRID-
DEPTH that demonstrates the feasibility and potential of fus-
ing focal stack information with relative depth to achieve robust
metric depth estimation.

• HYBRIDDEPTH establishes new SOTA results on two tested
datasets, i.e., NYU Depth v2, DDFF12.

2 RELATED WORK

Relative depth estimation focuses on the relative ordering of pixel
depths without providing metric information, simplifying training
and enhancing generalization. Recent Models [14, 13], achieve
strong zero-shot performance through scale-invariant loss functions
and diverse dataset training. These models excel in structural and
segmentation accuracy, essential for AR tasks. Our work builds on
these advancements to achieve robust metric depth performance.

Single-Image Metric Depth Estimation provides exact depth
values using a single image. Approaches like ZoeDepth [3], and
AdaBin [6] treat metric regression as a classification problem or
leverage relative depth models on single RGB images. However,
their performance on unseen data is limited [7].

Depth from Focus (DFF) estimates depth by identifying the
sharpest focus distance for each pixel, utilizing the each pixel’s
sharpness level. Traditional methods [12] require large focal stacks,
which are impractical due to data and time constraints. New deep
learning methods [9, 1] address this by efficiently finding the best
focal plane for each pixel but face challenges when suitable focal
planes are missing, leading to potential inaccuracies.

3 HYBRIDDEPTH: ROBUST METRIC DEPTH ESTIMATION

Problem Formulation. The goal is to estimate metric depth using
only the camera and its features, determining the 3D metric infor-
mation (distance from each pixel to the camera lens). This is a
challenging task due to information loss during image capture. Our
method must generalize across diverse environments and provide
accurate geometric depth maps for mobile AR.

Solution. Figure 2 illustrates HYBRIDDEPTH, a depth estima-
tion pipeline leveraging Depth from Focus (DFF) and relative depth
estimation. Inspired by prior works [17, 1], HYBRIDDEPTH with
novel modifications in loss functions (§4.1.1), training processes
(§4.1), and intermediate data processing (§3.3) to optimize for fo-
cal stack processing. HYBRIDDEPTH consists of three main stages.
It begins by processing a focal stack, from which we select a single
frame as the input for the relative depth branch and feed the en-
tire stack into the DFF branch. The output from the relative depth
branch forms the foundation of our depth map. Unlike other ap-
proaches [3], our pipeline focuses on preserving the structural accu-
racy and generalizability of relative depth models by scaling the rel-
ative depth into metric depth mathematically and refining it’s scale
errors with a small scale refinement model. The modular design
of HYBRIDDEPTH enhances flexibility, allowing each component
(i.e., the DFF and the relative depth models) to be independently
updated or replaced, thereby continuously improving performance.

3.1 Capturing Relative and Metric Depth 1

The first phase of our approach involves two key modules selected
to generate the necessary intermediate data for the entire depth es-
timation pipeline: the Single-Image Relative Depth Estimator and
the DFF Metric Depth Estimator. In the subsequent stages, we will
use the metric information provided by the DFF module and fuse it
with the relative depth map generated by the Single-Image module.
Single-Image Relative Depth Estimator. This module generates
a relative depth map, which serves as the foundational layer for our
depth estimation process. By using this depth map as a base, we
ensure that the final output maintains structural integrity, producing
sharp, well-defined edges and preserving object boundaries. We
used a small version of Depth anything [19] for this module.
DFF Metric Depth Estimator. This module provides the criti-
cal scale and metric information necessary to convert the relative

depth map into a metric depth map. Given a focal stack as input,
the DFF module produces a dense metric depth map of the scene.
This metric depth map is then used to convert the relative depth
map from the Single-Image Relative Depth Estimator to the metric
depth map. In implementation we used the Depth from Focal Stack
model DFV [1], specifically employing differential focus volumes
to capture depth map.

3.2 Fusing Relative and Metric Depth information 2

This is the first step we are trying to mathematically fuse metric
information from DFF branch to the relative depth.
The Global Scale and Shift alignment. The global scaler trans-
forms relative depth data into metric depth using scale and shift
adjustments, as modeled by Equation (1):

Metric Depth = Scale×Relative Depth+Shift (1)

The Scale and Shift parameters are calculated using the least-
squares fitting technique with the Metric Depth value from DFF.
This approach aligns the relative depth map with the DFF metric
data, minimizing discrepancies and producing an intermediate met-
ric depth output. This method is different from other conventional
methods [3, 19] that use deep learning-based models to fuse two
depths and can preserve the integrity of the original relative depth
map. This method combines the strengths of relative depth estima-
tion with precise metric information.

3.3 Refinement. 3

Global scale and shift alignment can introduce errors, as it attempts
to convert the entire relative depth map to metric depth using just
two numbers. This simplification can lead to inaccuracies in some
pixels and regions. To address this, we first calculate the scale dif-

ference between the globally scaled depth map from step 2 and

the DFF branch output from step 1 . This allows us to build a new
scale map by dividing these two depth maps. However, since both
the DFF branch and the globally scaled depth maps can contain er-
rors, the resulting scale map may also be imprecise. Consequently,
we introduce a refinement layer that applies local scale corrections
to different pixels of the globally scaled depth map using the scale
map derived from DFF.
The Scale Refinement Layer. To construct this layer, we utilize
a customized version of MiDaS-small [15] initialized with pre-
trained ImageNet [4] weights, similar to the model used in [17], to
correct scale errors in individual pixels. Our refinement approach
differs from that of [17], which deals with sparse depth and uses
scale regression to fill empty regions of the scale map (comes from
sparse depth). Instead, we leverage all the depth values from the
DFF to build a scale map based on the globally scaled depth map.
This method allows us to effectively apply scale refinement to each
pixel.We feed it an input of two concatenated data channels: the
globally scaled depth map and the DFF-derived scale map. This
approach allows the scale refinement model to learn and apply lo-
cal scale adjustments, enhancing the overall accuracy.

4 IMPLEMENTATION DETAILS

4.1 Training

We use the AdamW optimizer, configured with hyperparameters
β1 = 0.9, β2 = 0.999, and λ = 0.001. Training involves different
learning rates adjusted according to the dataset: 3× 10−4 for the
NYU Depth dataset, 1× 10−5 for DDFF12. We use one NVIDIA
A100 40GB GPU for training, with dataset-specific batch size: 24
for NYU Depth v2, 8 for DDFF12. We trained the model until the
validation loss converges and pick the one with lowest loss.

We use the original data size for NYU Depth v2 and for
DDFF12, the input size is set to 224×224 pixels with random crop
and flip augmentations applied for training but used the original
image size of 383×552 for evaluation like other DFF-based meth-
ods [1]. Frames in focal stacks were arranged in ascending order of
focal distance to maintain consistency of depth processing.
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Figure 2: An overview of HYBRIDDEPTH which consists of three stages: (1) capture a focal stack and pass the frames through two branches; (2)
calculate scale and shift based on estimated relative and metric depth maps using least-squares fitting; (3) input a globally scaled depth map
and a processed version of the Metric DFF branch output to the refinement model to output the updated scale map, which will be applied to the
globally scaled depth map to get the final depth map.

4.1.1 Loss Function

Previous work like VI-Depth [17] uses L1 loss for regression tasks,
but it is sensitive to distance range changes, affecting zero-shot
performance. To improve this, we adopt the scale-invariant loss
function LSILog from [5] and incorporate a multi-scale gradient loss
function Lgrad to enhance visual quality and boundary preservation.
The overall loss function L is defined as:

L = LSILog +0.5×Lgrad, (2)

where LSILog is:

LSILog = 10×

√

var(g)+β × (mean(g))2, (3)

with g = log(d +α)− log(dgt +α).
The gradient loss Lgrad is:

Lgrad =
1
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Here, ∇ denotes the spatial gradient, s is the scale factor, d is
the predicted depth, dgt is the ground truth depth, and H and W
are the depth map dimensions. This combined loss optimizes both
scale-invariant and gradient-based aspects, enhancing depth map
accuracy and geometric detail.

4.2 Data Synthesizing

The ability to synthesize focal stack is vital for overcoming the lim-
itations associated with the availability of datasets containing real
focal stacks. To develop a model capable of operating effectively
across various AR scenarios and allowing robust comparisons with
state-of-the-art models, we used a method from [9, 16] to artificially
recreate focal stacks from a single image to train and evaluate our
model on datasets like NYU Depth v2.

5 EXPERIMENTS

We evaluated HYBRIDDEPTH’s performance on different datasets.
Our method combines monocular depth estimation and depth-from-
focus (DFF) solutions. So we compared HYBRIDDEPTH with both
single-image and DFF models.

A challenge in comparing our method with SOTA models was
the lack of a common benchmark for both DFF and monocular
depth models that included focal stack images. We addressed this
by selecting NYU Depth v2 as a single-image depth dataset and
creating synthesized focal stacks using the method in §4.2. Addi-
tionally, we used a real-world DFF-based dataset to compare HY-
BRIDDEPTH with other models using focal stack images as input.

RGB Ours ZoeDepth GT

Figure 3: Qualitative comparisons between our model, and
ZoeDepth [3] on the NYU Depth v2 dataset.

Table 1: Performance comparison on the NYU Depth v2 dataset with
focal stack size of 10. Bold values represent the best results. The
evaluation uses an upper bound of 10 meters on the ground truth
depth map. All the numbers for other works have been taken from
the corresponding papers.

Model Type⋆ RMSE ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑

AdaBin[6] SIDE 0.364 0.103 0.903 0.984 0.997

ZoeDepth [3]† SIDE 0.270 0.075 0.96 0.995 0.999
VPD [21] SIDE 0.254 0.069 0.96 0.995 0.999
Depth Anything [19] SIDE 0.206 0.056 0.984 0.998 1.000
Ours DFF 0.202 0.041 0.988 0.998 1.000

⋆ SIDE stands for single image depth estimation.
† We used ZoeDepth-M12-N version.

• DDFF dataset [8] is a real-world DFF dataset captured using
a light-field camera across 12 scenes. The training set consists
of six scenes with 100 samples each, and the test set includes
six scenes with 20 samples each. Each sample comprises a 10-
frame focal stack with a corresponding ground truth disparity
map at a resolution of 383 × 552 pixels. For our experiments,
we used a focal stack of 5 frames.

• NYU [10] is a benchmark for monocular depth estimation in in-
door scenes. It includes over 24K labeled RGB and depth image
pairs in the training set and 654 pairs in the test set, with ground
truth depth maps at a resolution of 640 × 480 pixels.

Our experiments show that our model outperforms current SOTA
models on all the mentioned datasets by a good margin. We also
provide a qualitative comparison between our model’s depth maps
and a SOTA model [3].

5.1 Comparison to the State-of-the-Art

As discussed earlier, to ensure a fair comparison, we directly com-
pared our model with other works on the specific datasets that they



Table 2: Performance comparison on the DDFF12 dataset. Bold
values represent the best results. We used the same split as DFV [1].
All the numbers for other works have been taken from the DFV paper.

Model MSE ↓ RMSE ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑

DFV [1] 5.70×10−4 0.0213 0.17 0.76 0.94 0.98

Defocus-Net [9] 8.61×10−4 0.0255 0.17 0.61 0.94 0.97

DDFF [8] 8.97×10−4 0.0276 0.24 0.61 0.88 0.96

DFFintheWild [18] 5.7×10−4 - 0.17 0.776 0.874 0.939

Ours 555...555888×××111000−−−444 0.0205 0.16 0.79 0.94 0.98

trained on. We achieved this by using two different types of works,
namely state-of-the-art (SOTA) single image depth models [3, 6,
21, 19] and models based on depth from focus/defocus [1, 9].
Results on DDFF12. This dataset is a challenging dataset for
depth-from-focus (DFF) methods since it contains large texture-
less areas where focus cues are not very visible in the focal stack.
Table 2, shows that our model achieves excellent results and out-
performs the current SOTA model [1] on this dataset, with an MSE
of 5.6×10−4, an RMSE of 0.0205, and an AbsRel of 0.16. These
results demonstrate that our model can effectively address scale in-
accuracies through an additional layer of scale refinement and per-
form better than DFF models, specifically in cases with texture-less
regions and weak focus cues.
Results on NYU Depth v2. Table 1 shows that our model achieves
a new state-of-the-art performance on this dataset and outperforms
all the other models, including single image and DFF-based meth-
ods. Our model shows a smaller amount of error on all of our eval-
uation metrics. The models HYBRIDDEPTH outperforms includ-
ing more complex models such as VPD [21], Depth Anything [19],
ZoeDepth [3]). This result highlights the efficacy of using focal
stack clues for depth estimation task. Figure 3 shows the qualita-
tive comparison of our work with Zoedepth [3]. Our model demon-
strates a better visual quality and outputs smoother and more ac-
curate depth maps. Unlike Zoedepth, our model is also capable
of capturing depth over long distances. Also, HYBRIDDEPTH can
capture some small objects depth details.

6 CONCLUSION AND FUTURE WORK

Achieving robust and accurate metric depth in the wild is a chal-
lenging problem. Recent work has demonstrated that even SOTA
models like Zoedepth struggle with real-world AR scenarios. We
tackle this challenge with the design of HYBRIDDEPTH, an end-
to-end metric depth estimation pipeline that fuse the focal stack
and relative depth information. We show that HYBRIDDEPTH out-
performs both single image and DFF models on commonly used
datasets: NYU Depth v2 and DDFF12.HYBRIDDEPTH’s superior
performance only requires the use of cameras, which are widely
available on almost all mobile devices. Compared to solutions that
rely on specialized hardware like LiDAR or ToF sensors, HYBRID-
DEPTH is more deployment friendly. Currently, the DFF branch in
HYBRIDDEPTH represents the most significant source of errors in
our pipeline, particularly due to scaling errors in situations where
the focal stack does not include an ideal focus for certain pixels.
As part of future work, we will investigate methods to selectively
capture depth values that are close to the focus distance, thereby
ensuring the accuracy of the provided depth values.
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