Practical Error Estimation for
Denoised Monte Carlo Image Synthesis

Arthur Firmino Ravi Ramamoorthi

KeyShot, Technical University of California,
University of Denmark San Diego
Denmark USA

arthur.firmino@keyshot.com ravir@cs.ucsd.edu

Jeppe Revall Frisvad Henrik Wann Jensen
Technical University of KeyShot
Denmark USA
Denmark henrik.jensen@keyshot.com
jerf@dtu.dk

ESENEY]

~ —— RelSE 15
v S22+ |
- SiZX%,/\, T
L L)
50 90 99 99.9

Figure 1: An example demonstrating that our error estimation framework for Monte Carlo denoised images reliably estimates
an image’s ground truth relative squared error (RelSE) distribution at different average sample counts (spp). We show that the
RelSE of a denoised pixel i follows a scaled noncentral chi-squared distribution, with scale sl.2 and noncentrality ;. To estimate

these parameters, we hierarchically aggregate noisy per pixel estimates of error and variance. Knowing 51.2 and 1;, we can
accurately estimate the image’s error distribution, visualized per pixel (middle) and as the upper half of a logistic-logarithmic
percentile plot (rightmost), leading to a robust stopping criterion for denoised Monte Carlo image synthesis.

ABSTRACT

We present a practical global error estimation technique for Monte
Carlo ray tracing combined with deep learning based denoising.
Our method uses aggregated estimates of bias and variance to deter-
mine the squared error distribution of the pixels. Unlike unbiased
estimates for classical Monte Carlo ray tracing, this distribution
follows a noncentral chi-squared distribution, under reasonable
assumptions. Based on this, we develop a stopping criterion for
denoised Monte Carlo image synthesis that terminates rendering
once a user specified error threshold has been achieved. Our results
demonstrate that our error estimate and stopping criterion work
well on a variety of scenes, and that we are able to achieve a given
error threshold without the user specifying the number of samples
needed.

CCS CONCEPTS

« Computing methodologies — Rendering.

KEYWORDS

Error estimation, denoising, Monte Carlo, path tracing, stopping
criterion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH Conference Papers "24, July 27-August 01, 2024, Denver, CO, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0525-0/24/07

https://doi.org/10.1145/3641519.3657511

ACM Reference Format:

Arthur Firmino, Ravi Ramamoorthi, Jeppe Revall Frisvad, and Henrik Wann
Jensen. 2024. Practical Error Estimation for Denoised Monte Carlo Im-
age Synthesis. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Papers "24 (SSIGGRAPH Conference Papers
"24), July 27-August 01, 2024, Denver, CO, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3641519.3657511

1 INTRODUCTION

Monte Carlo algorithms such as path tracing have become the de
facto standard in production rendering [Keller et al. 2015; Chris-
tensen and Jarosz 2016; Pharr 2018], owing to their simplicity of
implementation, ability to handle complex scenes and light trans-
port scenarios, and scalability. Although initially impeded by high
computational costs due to their large sample count requirement,
advances in ray tracing specific hardware as well as image denoising
algorithms have enabled their widespread adoption.

As sample variance between different scenes and across image
space within the same scene is generally inhomogeneous, render-
ing to within an acceptable error threshold can often require some
amount of trial-and-error work as the end user tries to ascertain
a suitable sample count for a given scene. Monte Carlo denoising
which effectively trades variance for bias further complicates this
process as the easily perceived stochastic noise is no longer avail-
able to help guide the artist, and important details may be blurred
out of the image entirely. While recent works have sought to im-
prove the convergence of Monte Carlo denoising through adaptive
sampling [Vogels et al. 2018; Salehi et al. 2022; Firmino et al. 2023],
as well as ensuring consistency [Firmino et al. 2022; Back et al. 2022;
Gu et al. 2022; Back et al. 2023], they do not consider the problem of

https://doi.org/10.1145/3641519.3657511
https://doi.org/10.1145/3641519.3657511

SIGGRAPH Conference Papers 24, July 27-August 01, 2024, Denver, CO, USA

estimating the global error to enable a stopping criterion for Monte
Carlo rendering of a denoised image.

When using an unbiased rendering technique, image error can
simply be estimated using sample variance. This error estimate
can then function as a stopping criterion, and a user can specify a
desired maximum error instead of a sample count [Lee et al. 1985].
With the widespread use of image denoising, we need a different
error estimation method as the denoiser invariably introduces bias
(and an estimator’s mean-squared error, MSE, is the sum of its
variance and squared bias). Most denoisers today are based on deep
learning and the bias they introduce is not obvious.

An error-predicting network [Vogels et al. 2018], a dual-buffering
method [Back et al. 2022], and Stein’s unbiased risk estimate (SURE)
[Li et al. 2012; Firmino et al. 2022] have been used to estimate
the MSE of denoised images. We focus on SURE and consider its
suitability for guiding a stopping criterion. Some of the issues we
tackle are that SURE is very noisy for low sample counts and SURE
really estimates the expected value of per pixel squared error and
not the error of a given realization. Based on our investigation, we
present an improved error estimation method practical as a guide
for stopping of Monte Carlo denoised images. Figure 1 provides an
example of our estimated error in comparison to the ground truth
error at 32 and 512 samples per pixel (spp) on average.

2 RELATED WORK

A stopping criterion often goes hand-in-hand with adaptive sam-
pling because an estimate of the distribution of error in a rendered
image can serve both purposes. In unbiased rendering, an estimate
of the variance is an estimate of the squared error. For n samples in
a pixel, the sum of squared differences between sample and sample
mean is expected to follow a chi-squared distribution with n — 1
degrees of freedom. An option is then a per-pixel stopping criterion
that changes with the number of samples based on the maximum
tolerated variance and the cumulative distribution function (cdf) of
the chi-squared distribution [Lee et al. 1985]. In a different approach,
Dippé and Wold [1985] expect an error inversely proportional to
the square root of the number of samples and estimate the factor
of proportionality using rendered pixel values for several differ-
ent sample counts. This factor is used to estimate the number of
samples required in a pixel to end up with a pixel error below a
desired bound. Alternatively, the width of a confidence interval for
the pixel value can be used as a stopping criterion [Purgathofer
1987; Tamstorf and Jensen 1997]. Such early work did not consider
the error of denoised images, but we use the observation that the
squared error follows a chi-squared distribution [Lee et al. 1985].
Adaptive hierarchical integration is a way to improve path trac-
ing convergence by controlling the sampling rate in nodes of a kd
tree [Kajiya 1986]. One approach is to refine the kd tree accord-
ing to a variance estimate and the area of each node and then use
a confidence interval and a coverage condition as the stopping
criterion [Painter and Sloan 1989]. With a focus on directional dis-
continuities in the rendered image (edge-like features), Guo [1998]
uses progressive refinement of image blocks to locate the parts of
an image that require more samples. For every progressive update,
each of the few selected pixels in each block is rendered using the
hierarchical integration of Kajiya [1986] with the stopping criterion

Firmino, A. et al.

of Painter and Sloan [1989]. We take inspiration from this early
work and use a kd tree to adaptively split the image into blocks
that we use for averaging of noisy per-pixel SURE estimates.

Mitchell [1987] uses a contrast threshold to have a per-pixel
stopping criterion more closely related to visual perception of error.
The contrast of a pixel is computed from different sample values
obtained in a supersampling cell. Other work has applied a percep-
tually based threshold model too [Bolin and Meyer 1998; Ramasub-
ramanian et al. 1999; Myszkowski 2002]. We incorporate spatial
contrast sensitivity in our method with inspiration from the Alip
error metric by Andersson et al. [2020].

Various stopping criteria are based on different pixel quality
metrics. One approach is to use entropy from information theory
and keep refining the image until the samples in a region provide
sufficiently homogeneous information [Rigau et al. 2003a,b; Xu
et al. 2007]. Another metric is based on fuzziness from fuzzy set
theory [Xu et al. 2006]. Some researchers train a discriminator to
learn binary human noise classification (noisy or not) and use it as
a stopping criterion with no user parameter [Constantin et al. 2016;
Takouachet et al. 2017; Buisine et al. 2021a,b]. These approaches
however do not perform error estimation, so we cannot use them
to render an image to be approximately within some error bound.

To have a robust stopping criterion, biased rendering techniques
need an error estimation framework different from the variance-
based approach used for unbiased techniques [Overbeck et al. 2009;
Hachisuka et al. 2010]. Denoising introduces bias and its application
means that another error estimation framework is needed regard-
less of the technique used for rendering the input to the denoiser.
Such error estimation and associated stopping criteria have been
derived for non-neural denoisers [Moon et al. 2013; Kalantari and
Sen 2013]. In the case of neural denoisers, probabilistic error bounds
are not as easily derived.

Because the neural denoiser is more of a black box, we need
more general error estimation techniques. These are either expen-
sive to evaluate or difficult to bound. One approach is per-pixel
error estimation based on the difference between two images ren-
dered with equal sample count (dual-buffering) [Dammertz et al.
2010; Rousselle et al. 2012]. Dammertz et al. [2010] combined this
approach with a hierarchical refinement of image blocks similar
to ours. Back et al. [2022] used the dual-buffer approach together
with a neural denoiser, but this requires rendering and denoising of
two images for each iteration. An error-predicting network [Vogels
et al. 2018] depends on its training dataset and may be arbitrarily
off, making it hard to bound even probabilistically. Use of SURE is
another general error estimation technique [Li et al. 2012; Rousselle
et al. 2013] that has been used with neural denoising [Firmino et al.
2022, 2023]. The usefulness of SURE for estimating the global image
error in the context of neural denoising of Monte Carlo rendered
images is however unknown. Thus, we use hierarchical image block
refinement to improve SURE-based error estimation for neural de-
noising and develop a stopping criterion for denoised Monte Carlo
rendering based on this error estimation.

3 ERROR ESTIMATION FRAMEWORK

Our proposed framework is based on estimating the squared error
distribution over a Monte Carlo denoised image. In Section 3.1, we

Practical Error Estimation for Denoised Monte Carlo Image Synthesis

lay out our theoretical assumptions and show that the squared error
of a denoised pixel follows a noncentral chi-squared distribution.
In Section 3.2, we present SURE and extend it to estimate relative
squared error and a modified error metric that incorporates spatial
contrast sensitivity. This is followed by Section 3.3 in which we
detail how to compute SURE using the Jacobian-vector product,
and Section 3.4 where we present an adaptive algorithm for block
averaging the noisy error estimate. In Section 3.5, we show how
these estimates relate to the parameters of the aforementioned
noncentral chi-squared distribution, and finally in Section 3.6 we
present our stopping criterion that is based on computing the upper
percentile of an image’s error distribution. An overview of our error
estimation framework and the steps involved is later detailed in
Algorithm 2.

3.1 Theory

Suppose ¥ : RN - RN is a denoiser and X € RN is a non-
denoised rendered image of N pixels times channels. A denoised
Monte Carlo pixel of index i is denoted ¥;(X), and to understand
its error distribution, we can approximate it by a weighted average
of neighbouring pixels plus bias:

Fi(X) = W;" X +b; (1)

with W; € RN and b; € R. This approximation equals the first two
terms of the Taylor series of 7;(X). Given that the denoiser’s neural
network is at least piece-wise smooth, this approximation should
be well founded for small enough input deviations. Assuming X
is normally distributed with mean y € RN and covariance matrix
% € RNXN the random variable %7 (X) — yi; representing the error
of F;(X) is then also normally distributed with mean and variance,
respectively,

pei =Wl p+bi—pi, s, =WIswW,. @)

We base our assumption of the distribution of X on the central
limit theorem, which states that in limit of many samples the dis-
tribution of the sample mean approaches a normal distribution.
Following from these assumptions, the square of 7;(X) — y; is then
distributed according to a scaled noncentral chi-squared distribu-
tion with one degree of freedom [Muirhead 2009], siz)(f A with
scale and noncentrality, respectively, ’

5i = sg},-, A= ”g,i/sg,i' ®)
It is important to clarify the distinction between the measured
squared error (7 (X) — pi;)?, often reported in research results, and
its expectation value E[(%7(X) — p;)?]. The latter is a constant
while the former follows the aforementioned distribution which is
positively skewed. This positive skewness makes it impractical to
apply a maximum bound on the squared error, even for denoised
images, unless that bound is probabilistic. Figure 2 exemplifies
this distinction. These conclusions regarding the squared error
distribution also extend to relative squared error (RelSE), which is
simply squared error divided by a constant:

(Fi(X) = m)*

RelSE =
p2+1072

©

SIGGRAPH Conference Papers "24, July 27-August 01, 2024, Denver, CO, USA

- le-3

le-6

4e2

- 2e2

T T T I 0
0 2e-3 4e-3 6e-3 8e-3 le-2

Figure 2: Percentile plot of the relative squared error (RelSE)
of a Monte Carlo denoised image (top) and of its distribution
for an individual pixel (bottom). In the top plot, the blue
line shows sorted RelSE, where X is rendered with 32 spp.
The line shows the expected value of RelSE, com-
puted by rendering X 4096 times with distinct seeds, and the
shaded regions illustrate different quantiles of the pixel’s
RelSE distribution. In the bottom plot, we show a normalized
histogram of the RelSE of a pixel at the 80th percentile, and
the probability density function of a noncentral chi-squared
distribution with parameters sl.2 =252%x10"* and A; = 9.42
computed from the 4096 images.

Figure 3: Visualizing SURE (middle) on a
color scale. Note the high variance of its per-pixel estimates,
often leading to negative estimates despite the non-negativity
of the actual RelSE (right). This high variance motivates the
hierarchical aggregating of these per-pixel estimates in our
error estimation framework. The estimates are from a 32 spp
rendered and denoised image (left).

/negative

3.2 Error Estimation using SURE

Stein’s unbiased risk estimate (SURE) can be used for estimating
the MSE of a point estimate of the mean of normally distributed
random variables in an unbiased manner [Stein 1981]. When used
for estimating the expected value of per-pixel squared errors in
denoised images [Li et al. 2012], its unbiased-ness rests in part on
the assumption that the sample means of the rendered image follow
a normal distribution, an assumption we explore further below. It
is relevant to state that SURE estimates the expected squared error,

E[SURE[F7(X)]] = E[(Fi(X) — mi)?], ()

and not the squared error of a given realization, (77(X) — p;)2.
Using SURE, the estimate for the per-pixel expected squared error
of a denoised image is given by [Liu 1994]

SURE[F(X)] = (Fi(X) - Xi)? + 2(J#(X) 2)ii = Ziz, (6)

SIGGRAPH Conference Papers 24, July 27-August 01, 2024, Denver, CO, USA

where X is the covariance matrix of X, which may be estimated
during rendering, and J#(X) is the denoiser’s Jacobian matrix at
X. The middle term, 2(J#(X) %);;, can be estimated using either
the Monte Carlo SURE method [Ramani et al. 2008; Firmino et al.
2022], or using the Jacobian-vector product [Firmino et al. 2023].

The error estimate introduced above suffers from high variance,
as illustrated in Figure 3, made further challenging by the fact
that we are often interested in the error of denoised images at
relatively low sample counts compared to non-denoised images.
This is especially true when denoising with neural denoisers.

While SURE presents us with a method of estimating the ex-
pected squared error, this metric skews heavily to the brightest
parts of the image. We can improve upon this simply by dividing
by the square of the maximum channel of the denoised pixel, plus
some positive epsilon, yielding a biased estimate of the relative
squared error:

SURE[i(X)]
max;ep (i) 7:](X)2 +1072°

SURE"[(X)] = (7)

where P (i) denotes the pixel of index i, such that max ;¢ p ;) %5 (X)
is the maximum value of that pixel’s three color channels. The bias
stems from the fact that in general E[1/X] # 1/E[X], and from
the dependence between the two estimates in the ratio. Since the
variance of 7;(X) is small relative to that of the numerator, we
expect this additional bias to be acceptable for our purposes.

Qualitative inspection of error images reveals that relative squared
error often peaks on single pixels near small aliased details such as
sharp edges, which may not be perceptually significant under regu-
lar viewing conditions. Inspired by the ILIP error metric [Andersson
etal. 2020], we can augment the error estimate by incorporating spa-
tial contrast sensitivity, expressed as a series of low-pass filters in
the Ycyc, opponent space, with the width and shape of these filters
being determined by the human eye’s sensitivity to spatial changes
in the Y, ¢y, and c¢; channels. We rely on the implementation by
Andersson et al. [2020] to define these filters. As the operations
involved, color transformations and filter convolutions, are linear,
we can derive an unbiased error estimate that incorporates these.
Concretely, given a matrix M € RN*N we find that

SUREy[F(X)] = (MF (X) = MX)ZH(MS(2]-(X) =DM i, (8)
such that E[SURE y; [F;(X)]] = E[(MF (X) —My)l.z], with notation
as in Eq. 6 and I as the identity matrix. The proof follows from the

substitution of X with y + €, where e ~ N (0, %), and from Stein’s
Lemma. Denoting M; as the i-th row of M, then

(MiF(X) = MiX)? = (MiF (X) — Mipt — Mje)®
= (M;F(X) — Mip)? — 2(Mze) (M F (X) — Mip) + (M;e)?.(9)

We expand the middle term to calculate its expected value as follows

N N
E[(Mie)My(F(X) = 0] =B | > Mij | 3" Migeej (Fr(X) =)
j=1 k=1

Firmino, A. et al.

Figure 4: Comparing relative squared error with (right) and
without (middle) incorporating spatial contrast sensitivity, as
described in Sec. 3.2. The modified metric places less empha-
sis on error that is not perceptually relevant under regular
viewing conditions, such as along edges and fine details that
are not easily perceived in the denoised image (left).

N N
ZMij(ZMikE[ejﬁ(xn)
j k=1

Jj=1
N N N F
= Z M;j (Z Mg (szlE[ﬁ(X)]))
= =t = !
N N N
= > M (ZMik(E[k(X)]Z)k j| = 2, Mij (MEF(X)]Z)
j=1 k=1 j=1

= (M(ME[J#(X)]2)7);; = (MZE[JL(X)IM)i

The third equality involves use of the multivariate form of Stein’s
Lemma [Liu 1994], and a similar procedure can be used to show
that BE[(Mie)?] = (MEMT);;. The proof concludes by applying the
expected value operator to Eq. 9 and using the derived solutions,
then rearranging it in the form of the right-hand side of Eq. 8,
thus showing it to be an estimate of the expected perceptually
augmented squared error. The relative version of this estimate is
then

SUREy [i(X)]

. 10
manep(i)(M¢(X))? + 1072 (10

SURE, [i(X)] =

Figure 4 illustrates the difference in error magnitudes when incor-
porating spatial contrast sensitivity, expressed in the matrix M. We
later report results with and without this addition.

3.3 Computing SURE

To estimate the terms
2(J7(X))i and (ME(2JE(X) =DM)

of Egs. 6 and 8, respectively, we derive the quadratic form whose
expectation matches the desired quantity. It is known, given a
square matrix A € RNXN and a centered random-variable € with
covariance matrix 3, that E[e” Ae] = tr[AZ] [Muirhead 2009]. It
can also be shown that E[¢;(A€);] = (AX);;. From this, we arrive
at the estimates

Elei(Jr(X)e)il = U#(X) 2)ii (11)
E[(Me);(M(2]#(X) = I)e)i] = (MZ(2]£(X) =DM)iz . (12)
The random variable e is sampled from AN (0, %), where 3 is the esti-

mated covariance matrix of X. The matrix 3. is in practice diagonal
except for elements representing pairs of color channels from the

Practical Error Estimation for Denoised Monte Carlo Image Synthesis

same pixel. However, since 3 may not be positive semi-definite, we
use singular value decomposition to generate €. Computing Jr(X)o
for v € RN can be done using the Jacobian-vector product (also
known as forward-mode auto-differentiation) [Baydin et al. 2018],
and Mo is implicitly calculated by applying the corresponding op-
erations to v.

3.4 Block Averaging of SURE

Individual per-pixel error estimates using SURE, although unbiased,
are unreliable due to their high variance as previously illustrated.
We propose averaging neighbouring error estimates by means of a
kd tree over image space, which adaptively splits blocks of pixels
along the block’s longest axis as long as the block-averaged SURE
estimates are expected to remain reliable.

In the homoskedastic case (5 = ¢2I), results from Bellec and
Zhang [2021] imply SURE[¥ (X)] is within a small fraction of the
actual error || g—F (X)||? when the actual error is of an order greater
than o2N1/2, For clarity, we rewrite the stated inequality as:

NT12 Z < Z SURE[F;(X)].
i€[1..N] i€[1..N]
We base the splitting criterion of our kd tree on this result and split
a given block B if the following condition would hold true for both
of its children blocks, 81 and B, and their intersection with each
of the color channels G, k € {1, 2,3}:

1B; N C| 712 Z sr< Z SURE'[F(X)], (13)
i€ B;NCx i€ B;NCk
where fllr.l. = flii/(maxjep(i) ?}SX)Z +1072). In the case ofusing
SURER/I then an estimate of (MXM);; is used in place of ;. Fig-
ure 5 exemplifies the result of recursively applying this splitting
criterion, which is detailed in Algorithm 1.

ALGORITHM 1: Adaptive block-wise splitting of image plane.

Input :Estimated relative covariance matrix 3* € RN*N (sparse
3 X 3 block diagonal), and error estimates SURE" € RN.
Output:Disjoint set of blocks { By, By, ...} spanning the image.

ComputeBlocks (3F, SURE", B « Block (Width, Height, 3))

1 | if LongestAxisLength(8B) > 1 then

2 splitBlock « true

3 By, By « SplitAlonglongestAxis(B)

4 foreach color channel k € {1,2,3} do

5 a «— Sum(Z", BiNCr)/VI8B1 N Cx| < Sum(SURE", B1NCx)
6 b« sum(S*, BoNCr) /| B2 N Cr| < Sum(SUREY, B,NCy)
7 splitBlock « splitBlock and a and b

8 if splitBlock then

9 B « ComputeBlocks(2F, SURE", B;)

10 By — ComputeBlocks(i‘, SURE', B5)

1 return {84, B,}
12 | return {B}

3.5 Estimating Error Distribution Parameters

While the adaptive kd tree is useful for finding suitable minimum
block sizes for which the mean SURE value is reliable, this can
still result in an overly coarse error estimate over image space due

SIGGRAPH Conference Papers "24, July 27-August 01, 2024, Denver, CO, USA

Figure 5: Block averaged SURE and false color visualization
of the blocks, for two different sample counts, and for which
the block sizes were computed by recursively applying the
splitting criterion of Eq. 13, as in Algorithm 1 (magnitude of
SURE exaggerated for clarity).

Figure 6: Estimated parameters of the per-pixel error distri-
bution si2)(f), (magnitudes exaggerated for clarity), from a
s/

32 spp rendering. The scale parameter si2 (left) is the denoised
pixel’s estimated relative variance, while 51‘2 (A; + 1) (middle),
with 1; calculated as in Eq. 14, corresponds to the error dis-
tribution’s mean. The rightmost images, which the middle
image should ideally match, shows the expected RelSE and
was computed from 20 independent image.

to the large block size, especially at lower sample counts, which
do not capture the heterogeneous error distribution within each
block. To estimate values relating to the image’s error distribution,
while capturing its heterogeneity, we propose modelling the er-
ror distribution of each pixel i as a scaled noncentral chi-squared
distribution with one degree of freedom, si2)(12’ A We set the scale pa-

rameter si2 equal to the denoised pixel’s estimated relative variance
Var'[F;(X)], and set the noncentrality parameter such that the er-
ror’s mean, E[sl.z)(lz/l}] = 31.2 (A + 1), is equal to the block-estimated
SURE value scaled in proportion to the block’s per-pixel variance
estimates:

A = max 2Zjes(i)nc(i) SURE'[F;(X)] o1 e

Zjes(iync(i) Varr[F;(X)] + 1076

where B(i) and C(i) denote the block and color channel of index i,
respectively. Figure 6 visualizes the estimated parameters and their
relation to the expected relative squared error.

3.6 SURE-Based Stopping Criterion

We assume rendering is performed progressively, with additional
samples being rendered with each progressive update and that
these samples may be distributed uniformly or according to some
adaptive sampling scheme. We also assume that the denoiser ¥ has
either negligible or vanishing bias with increasing sample count,
such that achieving the desired quality is possible. This is achieved

SIGGRAPH Conference Papers 24, July 27-August 01, 2024, Denver, CO, USA

using a consistent denoiser [Back et al. 2023] or denoising with
post-correction [Firmino et al. 2022; Gu et al. 2022].

To propose a robust and practical implementation of a stopping
criterion for denoised Monte Carlo rendering, so as to automatically
terminate rendering when some measure of quality is achieved, with
this measure being consistent across scenes, we formalize such a
criterion as any predicate function befitting the following form:

P#(X|7) : RN 5 {0,1}

where 7 is a user parameter, returning 1 when rendering should
terminate. To evaluate the performance of such a stopping func-
tion, it is useful if there exists a ground truth stopping function,
P‘f}]; (X|7, p), having knowledge of the reference image p = E[X].
Given such a function, we wish to find a practical method for com-
puting P#(X|7) that minimizes its discrepancy with the ground
truth.

Given parameters siz and A;, the cumulative distribution function
Fi(x) of the proposed error distribution si2)(f A of pixel i can be
computed, as can the cumulative distribution function of the error
distribution of the entire image,

F(x) = (1/N)) Fi(x). (15)
Given an error threshold 7, we can then estimate the proportion of

pixels whose error is below that threshold which forms the basis of
our proposed stopping function:

Pg(X|p,7) = 1 [F(7) 2 p]. (16)
In practice, we fix the parameter p € [0, 1] to 0.999, which would
correspond to 99.9% of the pixels having error less than the user
specified threshold 7. Computation of the ground truth stopping
function, for evaluation purposes, involves merely comparing the
error at the given percentile to the threshold. An overview of our
complete error estimation framework is in Algorithm 2.

4 IMPLEMENTATION

In our experiments, we used Mitsuba 3 [Jakob et al. 2022] CPU ren-
derer to render images and Intel’s Open Image Denoise [Afra 2019]
in combination with a post-correction denoising method [Firmino
et al. 2022] to denoise images and to avoid the otherwise non-
vanishing bias from preventing stopping. Iterative adaptive sam-
pling, as described by Firmino et al. [2023], was also used in all of
our experiments to achieve faster error convergence over uniform
sampling. Our stopping criterion was also evaluated iteratively,
with an iteration step size of 32 (average) samples per pixel. This
is reflected in our terminal sample counts being multiples of 32.
Denoising and computation of the pixel-wise error estimates (Sec-
tion 3.3) was performed on the GPU using PyTorch [Paszke et al.
2019], while the block averaging of SURE and computation of the
distribution parameters and stopping function (Sections 3.4, 3.5, and
3.6) was performed on the CPU. We tested our method on a set of 20
publicly available scenes [Bitterli 2016]. For a representative scene
(BATHROOM) at 10241024 resolution, denoising and computation
of SURE took 90 milliseconds, block averaging 29 milliseconds, and
computation of the stopping function another 11 milliseconds. Com-
pared to the mean per-iteration rendering duration of 3.2 seconds,
the relative overhead is only 4%. When compared to the adaptive
sampling of Firmino et al. [2023], the inclusion of our stopping

Firmino, A. et al.

ALGORITHM 2: Overview of our error estimation framework.

Input :Current iteration’s noisy rendered estimates X € RN,
estimates of pixel channel covariance matrix 3 € RV*N
(sparse 3 X 3 block diagonal), and error threshold 7.

Output:Result of our SURE-based stopping criterion.

// Denoise and Compute SURE (Section 3.3)

1€ «— SampleNormal(0,3)

2 F(X), (Je) « EvaluateDenoiserAndJVP(X, €)

3 SURE —(FX)-X)0(F(X)-X)+e0 (2(Je) —€)
4 SURE" «— SURE / (PixelWiseMax (F(X))% +1072)
5 Var® «— (Je) © (Je) / (PixelWiseMax(F(X))2 +1072)
6 51 -3 / (PixelWiseMax (F(X))? +1072)
// Block splitting (Section 3.4, Algorithm 1)

7 {Bo, B, ...} — ComputeBlocks (3, SURE")

// Estimating distribution parameters (Section 3.5)

8 foreach indexi € [1..N] do

9 | Cr « ColorChannelOf(i)

10 | B « BlockOf(i,{By, B1,...})
Sum(SURE", BNCy.) 1) 1

i — —_— K -
n Ai max (Sum(Var‘, BNCy)+1076>

12 |s? « Varl

// Compute SURE-based stopping function (Section 3.6)
13 Fe—0

14 foreach indexi € [1..N] do

15 | F—F+ ComputeNoncentralChiSquaredCDF(r/s?,Ai)/N
16 return F > 99.9%

criterion incurs a runtime penalty of just 1-2%, see Table 2, because
denoising and the Jacobian-vector product are computed for the
adaptive sampling in any case.

5 RESULTS AND DISCUSSION

Our error estimation framework estimates parameters of the under-
lying error distributions to evaluate the mixed cumulative distribu-
tion function at the specified threshold. We evaluate the proposed
stopping criterion by comparing it to its ground truth version,
which computes the RelSE using the reference image and finds the
percentage of pixels below the specified threshold. In all our results,
we fix the percentile value to 99.9%, such that quality can be tuned
by only one parameter. Results are shown in Table 1 for our experi-
ments using SURE" and SURE} ;. We use smaller error thresholds
for the SURE} experiments as the magnitude of the estimates is
generally smaller. In our results, we deviate from the original defi-
nition of Eq. 4 for relative square error, replacing its denominator
with that of Eq. 7 (or Eq. 10), so as to match our estimates.

Our experiments show good agreement, here defined as stopping
within one third or one step (32 samples per pixel) of the true sample
count, in 52 out of 60 cases (87%), and in 49 out of 60 cases (82%)
for the SURE" and SURE},; experiments, respectively. Failure cases
generally appear to be scene-dependent, spanning both experiments
and different error thresholds. We examined one of these cases
in Figure 10, finding that scene elements giving rise to extreme
sample variance lead to slow convergence and erroneous error
estimates. Pixels with such sample distributions would require more
samples for their means to converge to a normal distribution (never

Practical Error Estimation for Denoised Monte Carlo Image Synthesis

SIGGRAPH Conference Papers "24, July 27-August 01, 2024, Denver, CO, USA

Table 1: To evaluate our proposed stopping criterion, we compare its terminal sample count to the sample count at which the
given threshold 7 is actually achieved by 99.9% of pixels (values in parentheses), for twenty different scenes and six different
thresholds. For the top three rows, the threshold is specified as relative squared error, and for the bottom three rows it is as
perceptual relative squared error which incorporates spatial contrast sensitivity (denoted by the subscript M). The cell colors
indicate if our criterion stopped too early (in red) or too late (in blue), in terms relative to the parenthesized values and with
colors determined by the scale (left). Light red or blue indicate that the terminal sample count from our stopping criterion

closely agrees with ground truth.

.

N N
& & e S S FEE s S
SERP SN $ & & L s ¢ & & & & & &
FEFFT e 2 F T FIFTES FF&FFF &S
R A A A A R A S R A A A A
0.050 1280 96 352 64 64 544 64 64 2624 96 128 64 288 64 384 64 96 64 32 896 1
: (1536) (64) (448) (64) (64) (512) (64) (64) (2784) (64) (160) (64) (288) (96) [(192)] (64) (64) (64) (64) (1408)
0.020 4672 320 1408 128 64 1824 64 160 7808 128 640 64 992 256 416 96 96 96 64 4192 1,
) (4864) (416) (1664) (160) (64) (2272) (96) (96) (8288) (128) (576) (64) (992) (288) (992) (96) (96) (96) (128) (7776)
0.010 11776 1472 4032 352 64 6368 192 160 17280 256 1568 160 2528 704 | 896 192 160 192 320 (14112
) 13344)(1696) (4576) (352) (64) (7200) (224) (192) (21600) (224) (1440) (160) (2624) (736) (4288) (160) (192) (224) (384) | ()
0.010 608 64 352 64 64 416 64 64 1024 64 96 64 192 64 224 64 64 64 64 480 0
CIIM608) (96) (384) (64) (64) (672) (64) (64) (992) (64) (160) (64) (192) (64) (736) (64) (64) (64) (64) (704)
0.005, 1536 128 960 64 64 896 64 128 2240 64 352 64 448 160 | 256 64 96 64 96 1376 Y,
’ (1568) (288) (992) (64) (64) (1600) (64) | (64) (2048) (64) (352) (64) (480) (192) (1952) (64) (96) (64) (128) (1760)
0.003 2944 288 1888 96 64 1952 96 160 4032 96 704 96 896 352 | 640 96 128 64 192 2368
: (2976) (672) (1856) (96) (64) (3104) (96) (128) (3616) (96) (704) (64) (896) (352) [(4544) (64) (160) (96) (224) (5824) | -1

converging if variance is infinite), breaking one of the assumptions
underlying SURE.

We compare some terminal images for different error thresholds
in Figure 8, and in Figure 7 we visualize the relative squared error
images and show how our framework accurately estimates different
percentiles of the images’ relative squared error distribution, similar
to how is shown in Figure 1.

Our framework accounts not only for variance but also for the
bias in denoised images, as a consequence of relying on SURE which
estimates both quantities. In Figure 9 we compare our error estima-
tion to previous work which only estimates variance [Firmino et al.
2023] and consequently underestimates squared error. From this
comparison we conclude that our method and its block averaging
of SURE, reliably estimates the non-centrality parameter A; (Eq. 14),
and thus accounts for bias when estimating squared error.

The practical use case of our proposed framework and its associ-
ated stopping criterion is in enabling the automatic termination of
Monte Carlo denoised rendering at an appropriate sample count,
an otherwise time consuming trial-and-error process for the user.

6 LIMITATIONS AND FUTURE WORK

Applying SURE to Monte Carlo denoising requires assuming the
sample means are normally distributed, else the estimate may be
biased. Provided sample variance is finite and samples independent,
the sample mean’s distribution tends to a normal distribution in
the limit of many samples, as per the central limit theorem. How
many samples are required, for the assumption to be valid, cannot
be answered in general and depends on the sample distributions,
which in practice are diverse [Elek et al. 2019], possibly plagued by
outliers [Zirr et al. 2018], or having infinite variance [Kalos 1963;
Georgiev et al. 2013].

s} Qi+ 1) ==sixf, —RelSE

v-0T 3si24bo| © ,_0T 3S[oYbo)

99 99.9

90

50
Figure 7: Here we visualize, in false color, the estimated ex-
pected RelSE (based on the computed parameters siz and A;;
upper left cuts) and the actual RelSE (lower right cuts), for
two different scenes (KITCHEN and CAR) and at two different
stopping thresholds (0.050 and)- The percentile error
plots (rightmost), show the predicted error from the distri-
bution of si2)(f A (computed by inverting the CDF of Eq. 15),
and the actual error (RelSE). The estimated expected RelSE
siz(li + 1) is also plotted (its line computed by sorting indi-
vidual estimates), which is lower than the actual error at the
upper percentiles as predicted.

The splitting criteria defined in Eq. 13 will fail to split if the
estimated error from SURE is erroneously small or negative. This
may happen due to the aforementioned bias or due to variance
inherent in the estimates despite aggregating. For this reason, better
error estimation results are sometimes had when pre-splitting to
smaller blocks (e.g. 200 x 200 pixel sized blocks) before applying
the criterion. The result by Bellec and Zhang [2021] which inspires

SIGGRAPH Conference Papers 24, July 27-August 01, 2024, Denver, CO, USA

Firmino, A. et al.

Table 2: Equal quality (8x32spp iterations) comparison of total runtime for our error estimation framework (top values) against
the adaptive sampling method of Firmino et al. [2023] (values in parentheses), for the 20 different scenes listed in Table 1. In this
scenario, the inclusion of our proposed stopping criterion incurs a small overhead of only 1-2% as denoising and computation

of the Jacobian-vector product are already performed.

> Yé& N ¥ ¥ o
& S N R & S S & & $ s < &
*2390 *2890 QOQ\N o a‘—?g & & %%,& Rod Cé&e $ @Cﬁ éc’%. éc’g. & C'g:& Q'd;: QGY%) ?So{é
& F &S Y& S S RN RS R S
33.36s 28.65s 30.56s 21.68s 18.81s 31.92s 15.57s 32.90s 31.25s 19.87s 28.35s 20.46s 33.29s 29.08s 37.75s 15.30s 22.06s 31.26s 35.20s 24.22s

(32.94s) (28.28s) (30.20s) (21.32s) (18.45s) (31.56s) (15.265) (32.54s) (30.88s) (19.51s) (27.98s) (20.055) (32.93s) (28.72s) (37.39s) (15.05s) (21.70s) (30.89s) (34.79s) (23.865)

our criterion, does not account for the extra variance from our
estimation of the covariance matrix ¥ and its heteroskedasticity.

We incorporated spatial contrast sensitivity into the squared
error metric used in this work to increase its perceptual relevance,
similar to Anderssson et al. [2020] in the construction ILIP. Due to
our requirement that these additions involve only linear operations,
and being limited to squared differences, we did not incorporate
other perceptual aspects into the metric, and differences were com-
puted in the linear RGB color space and with each channel weighted
equally. Finding a more perceptually relevant metric which may
still be estimated unbiasedly by Eq. 8 remains future work.

7 CONCLUSION

We have presented a framework for estimating the error of Monte
Carlo denoised images. Noting that each pixel’s squared error
should follow a noncentral chi-squared distribution, we estimate
the distribution’s parameters by aggregating estimates of bias and
variance by way of a kd tree. Given these parameters, we can es-
timate the error distribution of the denoised image, including the
very top percentiles, which we use to guide our stopping criterion.
In our experiments, we find close agreement between our terminal
sample counts and the sample count at which the specified error
threshold is actually achieved. Our error estimation framework
thus provides a reliable method of finding a suitable sample count
for a given desired quality, without the need for trial-and-error by
the end user.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback
and constructive suggestions used to improve this paper. Acknowl-
edgments are also due to the artists behind the following scenes
used in this work: Mareck (BATHROOM), nacimus (BATHROOM?2),
SlykDrako (BEDROOM), piopis (CAR), thecali (CAR2, SPACESHIP),
NovaZeeke (CLASSROOM), cekuhnen (COFFEE), Wig42 (DINING-
ROOM, LIVING-ROOM, LIVING-ROOM-3, STAIRCASE), aXel (GLASS-
OF-WATER), MrChimp2313 (HOUSE), Jay-Artist (KITCHEN, LIVING-
ROOM-2), UP3D (LAMP), vajrablue (ROVER), NewSee21035 (STAIR-
CASE2), Benedikt Bitterli (TEAPOT-FULL). This research is a part
of PRIME which is funded by the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska
Curie grant agreement No. 956585. This work was supported in
part by NSF grant 2212085. We also acknowledge gifts from Adobe,
Google and Qualcomm, and the Ronald L. Graham Chair.

REFERENCES

Attila T. Afra. 2019. Intel® Open Image Denoise. https://www.openimagedenoise.org/.

Pontus Andersson, Jim Nilsson, Tomas Akenine-Moéller, Magnus Oskarsson, Kalle
Astrém, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020), 15-1. https://doi.org/
10.1145/3406183

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2022. Self-
supervised post-correction for Monte Carlo denoising. In SSIGGRAPH 2022 Confer-
ence Papers. ACM, 18:1-18:8. https://doi.org/10.1145/3528233.3530730

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2023. Input-
dependent uncorrelated weighting for Monte Carlo denoising. In SIGGRAPH Asia
2023 Conference Papers. ACM, 9:1-9:10. https://doi.org/10.1145/3610548.3618177

Atilim Guines Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jef-
frey Mark Siskind. 2018. Automatic differentiation in machine learning: a survey.
Journal of Marchine Learning Research 18, 153 (2018), 1-43. http://jmlr.org/papers/
v18/17-468.html

Pierre C Bellec and Cun-Hui Zhang. 2021. Second-order Stein: SURE for SURE and
other applications in high-dimensional inference. The Annals of Statistics 49, 4
(2021), 1864-1903.

Benedikt Bitterli. 2016. Rendering Resources. https://benedikt-bitterli.me/resources/.
Mark R. Bolin and Gary W. Meyer. 1998. A perceptually based adaptive sampling
algorithm. In SIGGRAPH ’98. 299-309. https://doi.org/10.1145/280814.280924
Jérome Buisine, André Bigand, Rémi Synave, Samuel Delepoulle, and Christophe
Renaud. 2021a. Stopping criterion during rendering of computer-generated images
based on SVD-entropy. Entropy 23, 1 (2021), 75. https://doi.org/10.3390/e23010075

Jérome Buisine, Fabien Teytaud, Samuel Delepoulle, and Christophe Renaud. 2021b.
Guided-generative network for noise detection in Monte-Carlo rendering. In Inter-
national Conference on Machine Learning and Applications (ICMLA). IEEE, 61-66.
https://doi.org/10.1109/ICMLA52953.2021.00018

Per H. Christensen and Wojciech Jarosz. 2016. The path to path-traced movies.
Foundations and Trends in Computer Graphics and Vision 10, 2 (2016), 103-175.
https://doi.org/10.1561/0600000073

Joseph Constantin, Ibtissam Constantin, Andre Bigand, and Denis Hamad. 2016. Per-
ception of noise in global illumination based on inductive learning. In Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 5021-5028. https:
//doi.org/10.1109/IJCNN.2016.7727861

Holger Dammertz, Johannes Hanika, Alexander Keller, and Hendrik Lensch. 2010. A
hierarchical automatic stopping condition for Monte Carlo global illumination. In
Proceedings of the Winter School of Computer Graphics. 159-164.

Mark A. Z. Dippé and Erling Henry Wold. 1985. Antialiasing through stochastic
sampling. Computer Graphics (SSIGGRAPH ’85) 19, 3 (July 1985), 69-78. https:
//doi.org/10.1145/325334.325182

Oskar Elek, Manu M. Thomas, and Angus Forbes. 2019. Learning patterns in sample
distributions for Monte Carlo variance reduction. arXiv:1906.00124 [cs.GR]. https:
//doi.org/10.48550/arXiv.1906.00124

Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann Jensen. 2022. Progressive
denoising of Monte Carlo rendered images. Computer Graphics Forum 41, 2 (May
2022), 1-11. https://doi.org/10.1111/cgf.14454

Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann Jensen. 2023. Denoising-aware
adaptive sampling for Monte Carlo ray tracing. In SIGGRAPH 2023 Conference
Proceedings. ACM, 32:1-32:11. https://doi.org/10.1145/3588432.3591537

Iliyan Georgiev, Jaroslav Krivanek, Toshiya Hachisuka, Derek Nowrouzezahrai, and
Wojciech Jarosz. 2013. Joint importance sampling of low-order volumetric scattering.
ACM Transactions on Graphics 32, 6 (2013), 164:1-164:14. https://doi.org/10.1145/
2508363.2508411

Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon. 2022. Neural James-Stein
combiner for unbiased and biased renderings. ACM Transactions on Graphics 41, 6
(December 2022), 262:1-262:14. https://doi.org/10.1145/3550454.3555496

Baining Guo. 1998. Progressive radiance evaluation using directional coherence maps.
In SIGGRAPH 98. ACM, 255-266. https://doi.org/10.1145/280814.280888

Toshiya Hachisuka, Wojciech Jarosz, and Henrik Wann Jensen. 2010. A progressive
error estimation framework for photon density estimation. ACM Transactions on

https://www.openimagedenoise.org/
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3528233.3530730
https://doi.org/10.1145/3610548.3618177
http://jmlr.org/papers/v18/17-468.html
http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1145/280814.280924
https://doi.org/10.3390/e23010075
https://doi.org/10.1109/ICMLA52953.2021.00018
https://doi.org/10.1561/0600000073
https://doi.org/10.1109/IJCNN.2016.7727861
https://doi.org/10.1109/IJCNN.2016.7727861
https://doi.org/10.1145/325334.325182
https://doi.org/10.1145/325334.325182
https://doi.org/10.48550/arXiv.1906.00124
https://doi.org/10.48550/arXiv.1906.00124
https://doi.org/10.1111/cgf.14454
https://doi.org/10.1145/3588432.3591537
https://doi.org/10.1145/2508363.2508411
https://doi.org/10.1145/2508363.2508411
https://doi.org/10.1145/3550454.3555496
https://doi.org/10.1145/280814.280888

Practical Error Estimation for Denoised Monte Carlo Image Synthesis

Graphics 29, 6 (2010), 144:1-144:12. https://doi.org/10.1145/1882261.1866170

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.
2022. Mitsuba 3 Renderer. https://mitsuba-renderer.org

James T. Kajiya. 1986. The rendering equation. Computer Graphics (SSGGRAPH °86) 20,
4 (August 1986), 143-150. https://doi.org/10.1145/15922.15902

Nima Khademi Kalantari and Pradeep Sen. 2013. Removing the noise in Monte Carlo
rendering with general image denoising algorithms. 32, 2pt1 (2013), 93-102. https:
//doi.org/10.1111/cgf.12029

Malvin H. Kalos. 1963. On the estimation of flux at a point by Monte Carlo. Nuclear
science and engineering 16, 1 (1963), 111-117.

Alexander Keller, Luca Fascione, Marcos Fajardo, Iliyan Georgiev, Per Christensen,
Johannes Hanika, Christian Eisenacher, and Gregory Nichols. 2015. The path
tracing revolution in the movie industry. In SIGGRAPH 2015 Courses. ACM. https:
//doi.org/10.1145/2776880.2792699

Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. 1985. Statistically optimized
sampling for distributed ray tracing. Computer Graphics (SSGGRAPH ’85) 19, 3 (July
1985), 61-68. https://doi.org/10.1145/325334.325179

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization
for adaptive sampling and reconstruction. ACM Transactions on Graphics 31, 6
(November 2012), 194:1-194:9. https://doi.org/10.1145/2366145.2366213

Jun S Liu. 1994. Siegel’s formula via Stein’s identities. Statistics & Probability Letters
21,3 (1994), 247-251. https://doi.org/10.1016/0167-7152(94)90121-X

Don P. Mitchell. 1987. Generating antialiased images at low sampling densities. Com-
puter Graphics (SIGGRAPH ’87) 21, 4 (July 1987), 65-72. https://doi.org/10.1145/
37401.37410

Bochang Moon, Jong Yun Jun, JongHyeob Lee, Kunho Kim, Toshiya Hachisuka, and
Sung-Eui Yoon. 2013. Robust image denoising using a virtual flash image for
Monte Carlo ray tracing. Computer Graphics Forum 32, 1 (2013), 139-151. https:
//doi.org/10.1111/cgf.12004

Robb J. Muirhead. 2009. Aspects of multivariate statistical theory. John Wiley & Sons.

Karol Myszkowski. 2002. Perception-driven global illumination and rendering com-
putation. In Advanced Computer Systems (ACS 2001). Springer, 267-288. https:
//doi.org/10.1007/978- 1-4419-8530-9_22

Ryan S. Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet
rendering. ACM Transactions on Graphics 28, 5 (2009), 140:1-140:12. https://doi.
org/10.1145/1618452.1618486

James Painter and Kenneth Sloan. 1989. Antialiased ray tracing by adaptive progressive
refinement. Computer Graphics (SSGGRAPH °89) 23, 3 (July 1989), 281-288. https:
//doi.org/10.1145/74333.74362

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas K6pf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: an imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems (NeurIPS 2019, Vol. 32).

Matt Pharr. 2018. Guest editor’s introduction: special issue on production rendering.
ACM Transactions on Graphics 37, 3 (2018), 28:1-28:4. https://doi.org/10.1145/
3212511

Werner Purgathofer. 1987. A statistical method for adaptive stochastic sampling.
Computers & Graphics 11, 2 (1987), 157-162. https://doi.org/10.1016/0097-8493(87)
90029-X

Sathish Ramani, Thierry Blu, and Michael Unser. 2008. Monte-Carlo SURE: a black-
box optimization of regularization parameters for general denoising algorithms.
IEEE Transactions on Image Processing 17, 9 (September 2008), 1540-1554. https:
//doi.org/10.1109/TIP.2008.2001404

Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. 1999. A
perceptually based physical error metric for realistic image synthesis. In SSGGRAPH
’99. ACM, 73-82. https://doi.org/10.1145/311535.311543

Jaume Rigau, Miquel Feixas, and Mateu Sbert. 2003a. Entropy-based adaptive sam-
pling. In Graphics Interface (GI 2003). Canadian Human-Computer Communications
Society and A K Peters, 149-158. https://doi.org/10.20380/GI12003.18

Jaume Rigau, Miquel Feixas, and Mateu Sbert. 2003b. Refinement criteria based on
f-divergences. In Rendering Techniques (EGWR 2003). Eurographics Association,
260-269. https://doi.org/10.2312/EGWR/EGWRO03/260-269

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering
with non-local means filtering. ACM Transactions on Graphics 31, 6 (November
2012), 195:1-195:11. https://doi.org/10.1145/2366145.2366214

Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using
feature and color information. Computer Graphics Forum 32, 7 (2013), 121-130.
https://doi.org/10.1111/cgf.12219

Farnood Salehi, Marco Manzi, Gerhard Roethlin, Romann Weber, Christopher Schroers,
and Marios Papas. 2022. Deep adaptive sampling and reconstruction using analytic
distributions. ACM Transactions on Graphics 41, 6 (2022), 259:1-259:16. https:
//doi.org/10.1145/3550454.3555515

Charles M. Stein. 1981. Estimation of the mean of a multivariate normal distribution.
The Annals of Statistics 9, 6 (November 1981), 1135-1151.

SIGGRAPH Conference Papers "24, July 27-August 01, 2024, Denver, CO, USA

Nawel Takouachet, Samuel Delepoulle, Christophe Renaud, Nesrine Zoghlami, and
Jodo Manuel R. S. Tavares. 2017. Perception of noise and global illumination: toward
an automatic stopping criterion based on SVM. Computers & Graphics 69 (2017),
49-58. https://doi.org/10.1016/j.cag.2017.09.008

Rasmus Tamstorf and Henrik Wann Jensen. 1997. Adaptive sampling and bias esti-
mation in path tracing. In Rendering Techniques *97 (EGWR). Springer, 285-295.
https://doi.org/10.1007/978-3-7091-6858-5_26

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Réthlin, Alex Harvill,
David Adler, Mark Meyer, and Jan Novak. 2018. Denoising with kernel prediction
and asymmetric loss functions. ACM Transactions on Graphics 37, 4 (August 2018),
124:1-124:15. https://doi.org/10.1145/3197517.3201388

Qing Xu, Mateu Sbert, Miquel Feixas, and Jizhou Sun. 2007. A new adaptive sampling
technique for Monte Carlo global illumination. In Computer-Aided Design and
Computer Graphics (CAD/Graphics). IEEE, 191-196. https://doi.org/10.1109/CADCG.
2007.4407879

Qing Xu, Lianping Xing, Wei Wang, and Mateu Sbert. 2006. Adaptive sampling based
on fuzzy inference. In GRAPHITE 2006. ACM, 311-317. https://doi.org/10.1145/
1174429.1174482

Tobias Zirr, Johannes Hanika, and Carsten Dachsbacher. 2018. Re-weighting firefly
samples for improved finite-sample Monte Carlo estimates. Computer Graphics
Forum 37, 6 (2018), 410-421. https://doi.org/10.1111/cgf.13335

https://doi.org/10.1145/1882261.1866170
https://mitsuba-renderer.org
https://doi.org/10.1145/15922.15902
https://doi.org/10.1111/cgf.12029
https://doi.org/10.1111/cgf.12029
https://doi.org/10.1145/2776880.2792699
https://doi.org/10.1145/2776880.2792699
https://doi.org/10.1145/325334.325179
https://doi.org/10.1145/2366145.2366213
https://doi.org/10.1016/0167-7152(94)90121-X
https://doi.org/10.1145/37401.37410
https://doi.org/10.1145/37401.37410
https://doi.org/10.1111/cgf.12004
https://doi.org/10.1111/cgf.12004
https://doi.org/10.1007/978-1-4419-8530-9_22
https://doi.org/10.1007/978-1-4419-8530-9_22
https://doi.org/10.1145/1618452.1618486
https://doi.org/10.1145/1618452.1618486
https://doi.org/10.1145/74333.74362
https://doi.org/10.1145/74333.74362
https://doi.org/10.1145/3212511
https://doi.org/10.1145/3212511
https://doi.org/10.1016/0097-8493(87)90029-X
https://doi.org/10.1016/0097-8493(87)90029-X
https://doi.org/10.1109/TIP.2008.2001404
https://doi.org/10.1109/TIP.2008.2001404
https://doi.org/10.1145/311535.311543
https://doi.org/10.20380/GI2003.18
https://doi.org/10.2312/EGWR/EGWR03/260-269
https://doi.org/10.1145/2366145.2366214
https://doi.org/10.1111/cgf.12219
https://doi.org/10.1145/3550454.3555515
https://doi.org/10.1145/3550454.3555515
https://doi.org/10.1016/j.cag.2017.09.008
https://doi.org/10.1007/978-3-7091-6858-5_26
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1109/CADCG.2007.4407879
https://doi.org/10.1109/CADCG.2007.4407879
https://doi.org/10.1145/1174429.1174482
https://doi.org/10.1145/1174429.1174482
https://doi.org/10.1111/cgf.13335

SIGGRAPH Conference Papers 24, July 27-August 01, 2024, Denver, CO, USA

7=0.010p

192spp

Firmino, A. et al.

Reference

Figure 8: Comparing terminal images for different error thresholds, we note their general differences in terms of perceived
quality. Differences are notable, for example in the blurring of foliage details (top row), between the 0.010,; and 0.010 error
thresholds, the former’s metric incorporating spatial contrast sensitivity while the latter does not. While this blurring is
noted in close ups of the image denoised to the lowest of the perceptual thresholds, this is expected as those details are not
easily perceived under regular viewing conditions of the whole image, and therefore not as penalized by the metric. Scenes are
LIVING-ROOM and BEDROOM for the top and bottom rows respectively.

BEDROOM, 128 & 1024spp ~ STAIRCASE2, 128 & 1024spp
5 5

Q Q

x]

D o)

n 0n

m 1m

X X

. o
—— RelSEy, —— RelSEy| T

-= stia e —= Sstxia

/ . SiZX% 1 - SiZX% -SI
50 90 99 999 50 90 99 999

Figure 9: We compare our SURE-based error estimation
against an error estimate that ignores the denoiser’s bias, re-
lying solely on estimates of its variance [Firmino et al. 2023].
We do this as though its squared error were chi-squared
distributed (sl.Z)(f), rather than according to the noncentral
chi-squared distribution (sl.2)(i /L-) for which our SURE-based
framework estimates the noncentrality parameter A;. The
method based on previous work, shown in red in the above
percentile error plots, clearly underestimates the error, in-
dicating that an error estimation framework for denoised
images should account for bias.

r | Orig. Mod.
e 32 1
ey h 0.050 (32)
= :)
\ ﬁ 0020 | g9y (g %
| e
89 160
0-010 | 4288) (224 .
dified 24 32
R h 0019 | 736) (64)
: 0.005 1 (1295562) (Zi) %
| Py
640 128
0-003M | 4544y (125) R

Figure 10: Examining one of the failure cases, LIVING-ROOM-3,
we found excessive sample variance arising from volumetric
scattering within the red vases, leading to inaccurate error
estimates and early stopping. Replacing the culpable geome-
try’s material with an opaque material leads to significantly
better results. The table and scale follow the same definitions
as for Table 1.

	Abstract
	1 Introduction
	2 Related Work
	3 Error Estimation Framework
	3.1 Theory
	3.2 Error Estimation using SURE
	3.3 Computing SURE
	3.4 Block Averaging of SURE
	3.5 Estimating Error Distribution Parameters
	3.6 SURE-Based Stopping Criterion

	4 Implementation
	5 Results and Discussion
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

