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Abstract: Researchers have long observed that the “small-world” prop-
erty, which combines the concepts of high transitivity or clustering with a
low average path length, is ubiquitous for networks obtained from a variety
of disciplines, including social sciences, biology, neuroscience, and ecology.
However, we find several shortcomings of the currently prevalent definition
and detection methods rendering the concept less powerful. First, the widely
used small world coefficient metric combines high transitivity with a low
average path length in a single measure that confounds the two separate
aspects. We find that the value of the metric is dominated by transitivity,
and in several cases, networks get flagged as “small world” solely because
of their high transitivity. Second, the detection methods lack a formal sta-
tistical inference. Third, the comparison is typically performed against sim-
plistic random graph models as the baseline, ignoring well-known network
characteristics and risks confounding the small world property with other
network properties. We decouple the properties of high transitivity and
low average path length as separate events to test for. Then we define the
property as a statistical test between a suitable null hypothesis and a su-
perimposed alternative hypothesis. We propose a parametric bootstrap test
with several null hypothesis models to allow a wide range of background
structures in the network. In addition to the bootstrap tests, we also pro-
pose an asymptotic test under the Erdös-Renýi null model for which we
provide theoretical guarantees on the asymptotic level and power. Our the-
oretical results include asymptotic distributions of clustering coefficient for
various asymptotic growth rates on the probability of an edge. Applying
the proposed methods to a large number of network datasets, we uncover
new insights about their small-world property.

Keywords and phrases: Network, small-world property, testing, depen-
dent data.
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1. Introduction

The “small-world property” is one of the most widely observed properties of com-
plex networks encountered in applications across a range of disciplines (Watts
and Strogatz, 1998; Amaral et al., 2000; Humphries and Gurney, 2008; Bas-
sett and Bullmore, 2006). The idea of a “small-world” in networks was first
conceived and experimentally validated in the context of social networks by
Milgram (1967) and was formulated in its currently used form in the seminal
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work by Watts and Strogatz (1998). Roughly, the small-world property consists
of “segregation” of vertices into small tightly knit groups that leads to high
local clustering in an otherwise sparse network, while at the same time the net-
work has a small average path length that “integrates” the network. Over the
last two decades, “small-world” networks have been observed in anatomical and
functional brain networks (Bassett and Bullmore, 2006; Bullmore and Sporns,
2009; Rubinov and Sporns, 2010; Bassett and Bullmore, 2017), metabolic net-
works (Jeong et al., 2000; Wagner and Fell, 2001), protein-protein interaction
networks (Jeong et al., 2001), gene co-expression network (Van Noort et al.,
2004), the internet (Albert and Barabási, 2002), ecological networks and food
webs Montoya and Solé (2002); Sole and Montoya (2001), scientific collabora-
tion networks Newman (2001), and air transportation networks Guimera et al.
(2005). Some authors have also wondered if the small-world property is “ubiq-
uitous” (Telesford et al., 2011) or even “nearly-universal” for networks Bassett
and Bullmore (2017).

The term “small-world” is traditionally used to mean the average distance
between pairs of vertices, L, is small (typically O(log n) or less as n increases).
Therefore, even for large networks, the average number of hops needed to reach
one vertex from another is quite small. The authors in Watts and Strogatz (1998)
showed that a large number of real-life networks have small L (comparable
to a random graph) but at the same time high global clustering coefficient C
(comparable to a ring lattice). In the modern use of the term small world, the
term refers to both of these properties simultaneously holding (See definition and
discussions in Amaral et al. (2000); Humphries and Gurney (2008); Humphries
et al. (2005); Telesford et al. (2011); Bassett and Bullmore (2006)). A popular
tool for detecting the small-world property is through the small-world coefficient

defined as, σ = Ĉ/CR

L̂/LR
, where Ĉ and L̂ are observed global clustering coefficient

and average path length respectively, while CR and LR are the expected values of
the same quantities in a Erdös-Renýi random graph (ER) of equivalent density
(Humphries et al., 2005; Humphries and Gurney, 2008; Bassett et al., 2008;
Bullmore and Sporns, 2009; Guye et al., 2010).

Despite decades of empirical and methodological work on the property, sev-
eral aspects of the measure and the methods popularly used to detect small-
world property have been criticized in the literature (Papo et al., 2016; Bialonski
et al., 2010; Hlinka et al., 2017; Muldoon et al., 2016). For example, it is rather
surprising that little work exists on the quantification of uncertainty and statis-
tical significance of the measure. The small-world coefficient in Humphries and
Gurney (2008) can be thought of as measuring the ratio of C/L between the
observed network against what one would expect from an Erdös-Renýi baseline
model. However, the methods lack the statistical theory of a formal test and
usually do not come with a p-value to quantify the significance of the ratio.
Therefore, it is not clear that what value of the coefficient should be considered
high enough to call a network small world (Telesford et al., 2011; Hilgetag and
Goulas, 2016). The coefficient further suffers from an issue of linear scaling,
whereby larger networks are more likely to have a higher small-world coefficient
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than smaller networks purely due to their size (Humphries and Gurney, 2008;
Telesford et al., 2011). In addition, we find in our analysis in this paper that
the small world coefficient measure is heavily influenced by the clustering coeffi-
cient. In most cases, using this measure leads to the same decision as just using
the clustering coefficient.

In an attempt to remedy the shortcomings of the coefficient, two alternative
formulations of the small world coefficient have also been considered in the
literature that compares L̂ with L expected from a random graph and Ĉ with C
obtained from (deterministic) ring lattice (Telesford et al., 2011; Muldoon et al.,
2016). The paper Muldoon et al. (2016) defines a “small-world propensity” as

1 −
√

∆2
C+∆2

L

2 . Here ∆C is the ratio of the difference between Ĉ and C of ring
lattice and the difference between C of ring lattice and expected C of ER graph.
Similarly, ∆L represents the ratio of the difference between L̂ and L of ER model
and the difference between L of the ring lattice and expected L of ER model.

The paper Telesford et al. (2011) defines a metric ω = LR

L̂
− Ĉ

Clattice
. Therefore,

L̂ is compared to expected L from the ER model, and Ĉ is compared to the C
of ring lattice, and the difference between the ratios makes the metric. However,
neither approach includes a test of statistical significance of observed values of
the new small-world metrics.

The use of ER random graph model and the regular ring lattice model as
two “extremes” can be justified by comparing their properties in terms of L
and C values from Propositions 3.1 and 3.2. Briefly, for ring lattice, C is 3/4
(deterministic). For the ER random graph model with n vertices and probability
of an edge p = δ

n , expected C grows asymptotically as p, i.e., the average density
of the graph. For sparse graphs, therefore, expected C goes to 0. Hence, in terms
of C, typically, the ring lattice has high values of C while the ER random graph
has a low value of C. On the other hand, for L, the ring lattice on n vertices
with δ degrees has a deterministic L = n

2δ , which is quite high in sparse graphs
since δ typically grows much slower than n. For the ER model, the expected L
is log n

log(δ) , which only grows as log n and hence is small. Therefore, in terms of L,

ER random graph is characterized by small L, while the regular ring lattice has
a high L.

Both the classical procedure and the modifications proposed in the literature
ignore the presence of community structure and presence of hub structure due
to degree heterogeneity, both of which are capable of generating networks with
substantial small-world properties. It has been shown that highly modular net-
works are segregated and tends to produce a high clustering coefficient (Pan
and Sinha, 2009; Meunier et al., 2010). On the other hand, networks with high-
degree hub nodes facilitate communication between modules leading to a short
average path length. Yet, the small-world property is not just the presence of a
modular organization. Highly modular networks usually do not have small path
lengths Gallos et al. (2012). Therefore, the popular small-world coefficient met-
ric might incorrectly determine them as small-world due to the high influence
of the clustering coefficient on the metric. Hence it seems relevant for scientific
discovery, link prediction, and estimating effects of treatment interventions to
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understand if the small-world property is a manifestation beyond the simul-
taneous presence of community and hub structure. For example, if a network
is small-world, then a network model that fits the small-world property better
might be preferred for more accurate link prediction due to its ability to better
predict transitivity. Similarly, a network that exhibits significant small-world
property will likely have a higher network interference or spillover of treatments
due to units being relatively well connected due to small path length. After
accounting for the additional variations, perhaps the near universality will give
away to the specialty of small-world networks, making the small-world property
more useful. Finally, in studies of small-world property, the alternative model
is rarely fully specified, and consequently, the statistical powers of small-world
detection procedures are unknown.

In view of these serious limitations of the classical definition of small-world
coefficient and the procedure of estimating it, we propose a different strategy.
The key components of our approach are as follows.

1. We replace the quantitative measure small world coefficient with an in-
tersection criteria as a mechanism for determining if a given network is
a small world network. The intersection criteria decouples high cluster-
ing coefficient and low average path length into two separate criteria that
can be tested separately. Accordingly we implement the intersection test
as a combination of two tests whose simultaneous rejection determines if
an observed network is significantly more small world than a posed null
model. We will show that this approach avoids the undesirable weight of
the clustering coefficient in determining small-worldness using the small
world coefficient and is, in spirit, closer to the small world property de-
fined in the works of Watts and Strogatz (1998) and Newman and Watts
(1999).

2. The proposed intersection test involves testing if the expected C and L
for the population from which the given graph is drawn is respectively
greater and not appreciably smaller than expected from a reference (null)
population. We propose to use a number of different random graph models
as null models and define a class of alternative superimposed small world
models. The expansion of null models include the Chung-Lu random graph
model, the stochastic block model and the degree corrected stochastic
block model. Together these models explain a variety of observed network
characteristics including degree heterogeneity, modular organization, and
hub structure.

3. We develop an asymptotic test with Erdös-Renýi random graph being the
null model and theoretically study the asymptotic level and power of the
resulting test. This is the first detection method for small world property
that does not require comparison with simulated networks from a bench-
mark model and hence is computationally efficient for large networks. Our
asymptotic framework considers a wide range of rates at which the prob-
ability of an edge p converges to 0 as number of vertices n increases. As a
byproduct of our analysis we also characterize the asymptotic distribution
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of clustering coefficient in Erdös-Renýi random graph for various growth
rates on p.

A key shortcoming of the existing small-world toolbox is that networks are
compared with the simplistic Erdös-Renýi model. It is well-known that, in con-
trast to the Erdös-Renýi model, real-world networks exhibit a range of properties
such as degree heterogeneity, preferential attachment, and community structure
(Aiello et al., 2000; Vázquez, 2003; Bickel and Chen, 2009; Fortunato, 2010;
Sengupta and Chen, 2018; Girvan and Newman, 2002). Crucially, some of these
properties can be confounded with the small-world property when compared
to the Erdös-Renýi model. For example, a network with community structure
is likely to exhibit significantly higher clustering than Erdös-Renýi graphs. We
seek to avoid this confounding of network properties by testing networks against
more general null models which account for such properties.

In terms of statistical principle, this approach is similar to any other statisti-
cal hypothesis test. We want to test the population quantities E[C] is larger than
a certain user-provided value (say C0) and E[L] is smaller than a certain user-
provided value (say L0). However, it is not obvious what those user-provided
values should be to declare a network as a small world. Hence we resort to
the null models to obtain those user-provided values. The varied choices of the
null models provide meaning to the small-world property as a phenomenon be-
yond what could be explained by other well-known graph properties, including
degree-heterogeneity and community structure.

The above formulation is somewhat changing the meaning normally attached
to a network being “small-world”. In particular, we are interpreting the property
not in isolation, but in relation to other salient properties of networks. Indeed,
our intention is to view small-world property as something beyond degree het-
erogeneity and community structure. It is certainly possible (and expected, as
we show through simulation in Figure 3) that community structure increases the
clustering coefficient and does not increase the average path length - the core
definition of small-world property. Our tests will determine a network to be
small-world in comparison to what would be predicted from certain reasonable
models of networks that otherwise account for well-known network properties.
Such relative characterization is relevant in applications to predict the behavior
of the network under interventions or to predict connections with a new ver-
tex. Elsewhere in the network science literature, such an approach of testing
against various null hypothesis models is taken when testing for the presence of
community structure (Bickel and Sarkar, 2016; Gao and Lafferty, 2017a).

When the null hypothesis model is the Erdös-Renýi model, we develop an
asymptotic test, as discussed earlier. For the null hypothesis models more general
than Erdös-Renýi model, we further develop a bootstrap test. Our bootstrap
detection method involves computing a p-value for the statistical significance of
the observed deviation of C and L from a suitable random graph model denoting
the null hypothesis. For four different null network models described previously,
we derive procedures to compute p-values of the test statistic using parametric
bootstrap. The methods have been implemented in the software R and the
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package is available to download freely from the Github repository https://

github.com/KartikSL/SWTest. The code to reproduce simulations and results
on real-world data is available on https://github.com/KartikSL/SWsims.

2. The null and the alternative hypotheses and superimposed

Newman-Watts type models

To formalize the notion of small-worldness in terms of a statistical hypothe-
sis, we consider the Newman-Watts (NW) small-world model (Newman and
Watts, 1999). The Newman-Watts model is a modification of the original Watts-
Strogatz model of Watts and Strogatz (1998), and is also based on an interpo-
lation between (or mixture of) a regular ring lattice and an Erdös-Renýi (ER)
random graph. The Newman-Watts model fixes problems in the Watts-Strogatz
model related to having a finite probability of the lattice becoming detached
and non-uniformity of the distribution of the shortcuts, and makes the model
suitable for an analytic treatment (Newman and Watts, 1999). The particular
variation of the model that we consider in this paper is parameterized by three
quantities — the number of vertices n, the expected degree 2δ, and the mixing
proportion β ∈ [0, 1]. A network from this model is generated as follows:

1. Construct a �2δβ�-regular ring lattice of n nodes, where �·� denotes the
ceiling function. To do this, first construct a cycle of n nodes, which is a
2-regular ring lattice. Then, connect each node to its neighbors that are
two hops away, thereby forming a 4-regular ring lattice, and continue until
�δβ� hops.

2. Next, for each of the
(

n
2

)

node pairs, randomly add an edge connecting

them with probability p = 2δ−�2δβ�
n−1 , where �·� denotes the floor function.

We assume δ → ∞, as n → ∞ and β is a constant not dependent on n. Clearly
for β = 1, the random graph portion of the mixture is an empty graph and this
model yields a �2δ� regular ring lattice with high global clustering coefficient and
high average path length. On the other hand, for β = 0, the ring lattice portion
of the mixture is an empty graph, and this model yields a pure Erdös-Renýi
random graph with n nodes and p = 2δ

n−1 . For 0 < β < 1, this model yields
small-world networks with high global clustering coefficient and low average
path length.

Under this model, we define the detection of small world property as the test
of a statistical hypothesis. The null hypothesis asserts that expected C and L of
the graph is same as expected C and L for ER random graph with parameters
(n, 2δ

n−1 ) or pure ring lattice graph with parameters (n, 2δ). That is, the null
hypothesis is given by H0 : β ∈ {0, 1}. The alternative hypothesis states that
expected C is higher than expected under the null hypothesis and the expected
L is similar to that expected under the null hypothesis, i.e., H1 : 0 < β < 1. In
Section 3.2 we show that the E[C] and E[L] under the NW-ER (n, 2δ, β) model
with mixing parameter 0 < β < 1 have the required properties of the alternative
hypothesis. Therefore NW-ER (n, 2δ, β) model with mixing parameter 0 < β < 1
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can be thought of as an alternative hypothesis model.
The model can be viewed as a mixture or superimposed model similar to the

superimposed stochastic block model proposed in (Paul et al., 2023). We note
that the model will produce some multi-edges, however, the number of such
multi-edges is small compared to total number of edges. Also, when considering
higher order structures, e.g., connected triples or triangles, which are required
to define small-world property, the edges from the two components of the mix-
ture will interact with each other to produce certain “incidental” higher order
structures in addition to model component generated structures (Paul et al.,
2023).

2.1. Extension to SBM, CL and DCSBM null models

The above superimposed alternative model framework can be extended to in-
clude other null models we might be interested in. We consider three such
models, namely the Degree Corrected Stochastic Block Model (DCSBM), the
Stochastic Blockmodel (SBM), and the Chung-Lu (CL) model, all part of the
larger family of inhomogeneous random graph models.

The SBM exhibits community structure, the CL model exhibits degree het-
erogeneity, and the DCSBM exhibits both degree heterogeneity and commu-
nity structure. Therefore, by using the DCSBM as the null model, we can test
whether a network has small-world property after accounting for both proper-
ties. Similarly, by using the SBM as the null model, we can test for small-world
property after accounting for community structure only, and by using the CL
model as the null model, we can test for small-world property after accounting
for degree heterogeneity only.

Let us consider the case of Degree Corrected Stochastic Block Model (DCSBM)
since the other two are special cases of this model. The alternative model can
be described as follows:

1. Fix, the following quantities. (a) The number of communities k and n
dimensional community assignment vector z. (b) The n dimensional vector
of degree parameters θ, such that

∑

i:zi=q θi = 1, (c) a k × k matrix of
parameters B such that

∑

q,l Bql = 1. (d) A constant 0 ≤ β ≤ 1.
2. Construct a �2δβ�-regular ring lattice of n nodes as before.
3. Next, for each of the

(

n
2

)

node pairs, add an edge connecting them ac-
cording to the outcome of the Bernoulli trial: Aij ∼ Bernoulli(n(2δ −
�2δβ�)θiθjBzizj ).

Note θ, z, B are not dependent on β. Essentially, for this alternative model, as
we decrease the value of β away from 1, three key properties of the DCSBM null
model, namely, average density, degree heterogeneity and community member-
ships are approximately being preserved. The only quantity that changes with
β is how much information is available regarding the DCSBM portion of the
model. For β = 1, the DCSBM portion of the mixture yields an empty graph
and this model yields a 2δ regular ring lattice, while for β = 0, the ring lattice
is an empty graph, and this model yields a graph from DCSBM model.
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The hypothesis that we will test is as before. The null hypothesis now asserts
that the expected C and L of the graph is same as expected C and L for
DCSBM random graph with parameters (n, 2δ, θ) or pure ring lattice graph with
parameters (n, 2δ). The alternative hypothesis states that expected C is higher
than expected under the null and the expected L is similar to that expected
under the null, or, equivalently as those expected from a NW-DCBM (n, 2δ, θ, β)
model with mixing parameter 0 < β < 1.

Remark: mixed membership models. We want to emphasize that the
above superimposed framework is general and can accommodate many other
random graph models as well. These include the mixed-membership stochastic
block model (MMSBM) and its degree-corrected version (DCMMSBM), as well
as the random dot product graph (RDPG) model. While we do not formally
include these models in our simulation and real data results, the framework can
be similarly extended to these models. The mixed membership models can be
thought of as a flexible way of modeling the community structure (by allowing
a vertex to be simultaneously member of multiple communities).

3. The intersection criteria and testing procedure

Define Eij , Vijk, Tijk as the indicator variables denoting an edge between node
pair i, j, the number of open triples or V structures (2 of the 3 possible edges
exist and the third one does not exist, also called 2-armed stars) among the
node triple i, j, k, and the number of closed triples or triangle structures among
the node triple i, j, k respectively. Then,

Vijk = EijEik(1 − Ejk) + EikEjk(1 − Eij) + EijEjk(1 − Eik),

and
Tijk = EijEikEkj .

Let Sijk = 3Ti,j,k + Vi,j,k. Further, define

E =
∑

1≤i<j≤n

Eij/

(

n

2

)

,

V =
∑

1≤i<j<k≤n

Vijk/

(

n

3

)

,

T =
∑

1≤i<j<k≤n

Tijk/

(

n

3

)

,

and

S = 3T + V =
∑

1≤i<j<k≤n

(EijEik + EikEjk + EijEjk)/

(

n

3

)

.

With these notations, we define C = 3T
3T +V = 3T

S as the clustering coefficient or
transitivity of the graph.
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Table 1

Heuristics of the Intersection Test.

Network Model SW C > K1 L < K2 Intersection Test

Pure Erdös-Renýi (β = 0) No No Yes Not rejected
Newman-Watts (0 < β < 1) Yes Yes Yes Rejected

Pure Ring Lattice (β = 1) No Yes No Not rejected

Further, consider any pair of nodes (i, j), and denote Lij as the length of the
shortest path length between them. Then

L =
1
(

n

2

)

∑

1≤i<j≤n

Lij

is the average shortest path length of the graph.
We propose a multiple testing procedure with two test statistics [C, L], which

we call the intersection test. In particular we reject the null hypothesis if,

{C > K1} ∩ {L < K2}, (1)

for suitable choices of K1 and K2. The cutoff K1 is chosen to be a high quantile
of the null hypothesis sampling distribution, while K2 is set to a value that is
high in comparison to the null hypothesis sampling distribution.

To provide an intuition for the test consider the case when the null model
is the ER model. Therefore the quantities K1 and K2 are chosen according to
the distribution of C and L under the ER model. When the observed network
is actually generated from the ER model, the first event is low-probability, and
the second event is high-probability, which means the intersection event is low-
probability. Therefore we fail to reject. On the other hand, when the observed
network is generated from the Newman-Watts model with mixing parameter β �=
{0, 1}, the first event is high-probability (since clustering is greater), the second
event is high-probability (distances are still small), which means the intersection
event is high-probability and therefore we reject. Finally, when the observed
network is generated from a pure lattice, the first event is high-probability (since
clustering is greater), the second event is low-probability (distances are much
higher than ER), which means the intersection event is low-probability and
therefore we fail to reject. Thus the intersection test ensures we have the correct
decision under all three scenarios (Table 1).

3.1. Relating the test, the small-world property, and the

superimposed small-world models as alternative hypotheses

An important question is how the small-world property relates to the test, the
models, and the null hypotheses described above. First, the test closely mimics
the definition of the property since we call a network small-world if observed
C is higher than some reference value K1 and observed L is not greater than
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another reference value K2. The various null models are used to determine these
reference values and serve as null hypotheses. However, it is not immediately
clear how the alternative hypothesis is related to the superimposed small-world
models posed or how the test statistic can distinguish between the null and the
alternative hypotheses. We provide some results and discussions below. First,
we show that the population quantity E[C] is an order of magnitude higher for
any 0 < β < 1 compared to at β = 0 for all models under mild conditions. More
specifically, the ratio of E[C] between 0 < β < 1 to β = 0 goes to ∞ as n → ∞.

We first consider the superimposition of the ER and the ring lattice model as
described earlier (NW-ER model). We assume δ → ∞ while δ

n → 0 as n → ∞,
and β is a constant not dependent on n. We first determine the asymptotic limit
of E[3T ] and E[S] as n → ∞ under the model. The calculations are similar to
Barrat and Weigt (2000), however, the result we present is under the Newman-
Watts superimposed model while the result in Barrat and Weigt (2000) was
under the Watts-Strogatz model and hence the result is slightly different. For
two functions f(n) and g(n), we use the notation f(n) 
 g(n) to mean that the
functions are asymptotically equivalent, i.e., there exists constants c1, c2 and a
number n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n > n0. In the same vein
we will use the notation f(n) r g(n) to mean that there exists a constant c3

and a number n1 such that f(n) ≤ c3g(n) for all n > n1. We will further use

the notations f(n) >> g(n) to mean limn→∞
f(n)
g(n) = ∞, and f(n) << g(n) to

mean limn→∞
f(n)
g(n) = 0.

Proposition 3.1. Consider the superimposed NW-ER model with mixing pro-
portion β ∈ [0, 1]. Assume δ → ∞ while δ

n → 0 as n → ∞. Then as n → ∞ we
have the following results:

1. For β = 0, E[C] 
 2δ
n−1 → 0.

2. For β = 1, C = 3
4 (deterministic).

3. For 0 < β < 1,

(

n

3

)

E[T ] 
 nδ2β2

2 + 8δ3(1−β)3

6 +4δ3β2(1−β)+8δ3β(1−β)2,
(

n

3

)

E[S] 
 2nδ2, and consequently, E [C] → 3
4 β2.

From this proposition we can see the ratio of E[C] for any β �= 0 to that for
β = 0 converges to ∞. Note while this conclusion holds for any constant β, it

also holds when β is dependent on n as long as β >>
√

δ
n . The proof of this

proposition along with the proofs of other propositions, lemmas, and theorems
are given in the Appendix.

Next, we generalize the above calculations to inhomogeneous random graphs
to show that the expected global clustering coefficient C is asymptotically an
order higher for the superimposed models than the corresponding null models
SBM, CL, and DCSBM under certain conditions. Consider the inhomogeneous
random graph model that independently generates an edge between a pair of
nodes (i, j) with probability pij . The CL, SBM, and DCSBM are special cases
of this model. Let pmax = maxi,j pij and pmin = mini,j pij be the maximum and
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minimum probability of an edge. Let δmax = (n−1)
2 pmax and δmin = (n−1)

2 pmin,

and p̄ =
∑

1≤i<j≤n pij/

(

n

2

)

. Therefore note that p̄ = 2δ
n−1 .

Proposition 3.2. Consider a NW superimposed inhomogeneous random graph
on n nodes, mixing proportion β ∈ [0, 1] and overall expected degree 2δ.

1. At β = 0, when the graph is a purely inhomogeneous random graph,

E[3T ] ≤ 3p̄p2
max, and E[S] ≥ 3p̄pmin, and consequently E[C] r

(

δmax

δmin

)

2δmax

n
as n → ∞.

2. At β = 1, C = 3
4 .

3. For 0 < β < 1, we have,

(

n

3

)

E[3T ] s 3nδδminβ2

2 and

(

n

3

)

E[S] r 2nδδmax

and consequently, E[C] s 3
4

(

δmin

δmax

)

β2 as n → ∞.

We note that the ratio of E[C] for 0 < β < 1 to E[C] for β = 0 goes to ∞
for all constant β, as long as n

δ2
min

δ3
max

→ ∞. Therefore we make an assumption

that n
δ2

min

δ3
max

→ ∞, as n → ∞. This assumption holds true for a wide range

of parameter values for sparse graphs in SBM, DCSBM and CL, and is only
likely to be violated under either severe degree heterogeneity in DCSBM and
CL models, or very tightly bound community structure in SBM and DCSBM
models. For example, this condition holds if δmin 
 δmax 
 δ and if δ

n → 0 at any
rate. However, it is possible to have a severe degree heterogeneity in DCSBM
graphs. For example, Jin et al. (2021) considered the case when δmin

δmax
→ 0 in

DCSBM graphs in the context of community detection. In that case, the above

condition will require δmin

δmax
>>

√

δmax

n . As Jin et al. (2021) discusses in the most

interesting regimes, δmax is asymptotically between log n and
√

n. Therefore
the requirement is satisfied even in some cases of severe degree heterogeneity.
Therefore, the expected global clustering coefficient C is an order of magnitude
higher under the alternative hypothesis than under the null hypothesis for all
the null models. While this proposition is an asymptotic result, we present a
simulation in the Appendix B to study the finite sample behavior of the observed
mean of C in comparison to these bounds.

On the other hand, for average path length (APL), we make the following
argument. Let A be a graph generated from the NW-ER (n, 2δ, β) model and AE

be the random graph component, obtained by removing the ring lattice edges
from the graph. Clearly, the expected APL of A is smaller than the expected
APL of AE since the additional ring lattice edges can only decrease the path
lengths and never increase them. However, note that AE is generated from the

ER model with parameters
(

n, 2δ(1−β)
n−1

)

. The expected APL of AE is then given

by O( log n
log 2δ(1−β) ). This does not change appreciably from the APL for β = 0

until β becomes very close to 1. On the other hand, for β = 1, the value of L
is the same as that of the ring lattice, which is deterministically n

4δ . Therefore
L for β = 1 is much higher than for other β values. These calculations are
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formalized in Theorems 3.4 and 3.5 with probability concentration inequalities
to obtain asymptotic level and power of the asymptotic test.

However, the asymptotic expectation calculations do not give us an idea of
the changes in the distribution of C and L as β moves away from 0. Therefore
as a second piece of evidence, we present a simulation study in Figure 3 in
Section 4.3 (Simulation) that shows how the distribution of C and L changes
with increasing β for different null models. We end this section with a table
summarizing the various notations we use in this paper (Table 2).

Table 2

Table of Notations.

Notation Meaning

2δ average expected degree of graph

p probability of connection in ER model p = 2δ

(n−1)
.

β mixture proportion of ring lattice and random graph
p̄, pmax, pmin average, maximum, and minimum probability of edge in inhomogeneous random graph
2δmax, 2δmin In inhomogeneous random graph (n − 1)pmax and (n − 1)pmin respectively.

3.2. Asymptotic test with ER null model

We propose an asymptotic test with the test statistic in Equation 1 and ER
as null model. We estimate the parameter p = 2δ

n−1 in the ER model with

the observed network density, p̂ =
2
∑

i<j Aij

n(n−1) . We first define the following two

“population centered” sub-graph statistics

R2 =
1
(

n

3

)

∑

1≤i<j<k≤n

[(Eij − p)(Eik − p)+(Eik − p)(Ejk − p)+(Eij − p)(Ejk − p)]

R3 =
∑

1≤i<j<k≤n

(Eij − p)(Eik − p)(Ekj − p)/

(

n

3

)

Assume np → ∞ and (1 − p)−1 = O(1). From Theorem 6.1 of Gao and
Lafferty (2017a) we have

√

(

n

3

)(

R2/
√

3p2(1 − p)2

R3/
√

p3(1 − p)3

)

D→ MVN 2

((

0
0

)

,

(

1 0
0 1

))

.

We will compute the representations of T − E[T ] and S − E[S] in terms of
R2 and R3. First, note that E[T ] = p3, and E[S] = 3p2. Then we have,

R2 =
∑

1≤i<j<k≤n

{(EijEik + EikEjk + EijEjk) − 2p(Eij + Eik + Ejk) + 3p2}/

(

n

3

)

= S − 6pp̂ + 3p2.

Rearranging we have
S − 3p2 = R2 + 6p(p̂ − p). (2)
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Moreover, we have

R3 =
1
(

n

3

)

∑

1≤i<j<k≤n

{(EijEikEjk − p(EijEik + EikEjk + EijEjk))

+ p2(Eij + Eik + Ejk) − p3}
= T − pR2 − 3p2p̂ + 2p3.

Then

T − p3 = R3 + pR2 + 3p2(p̂ − p). (3)

Note, we always assume p >> 1/n. However, we note that for different regimes
of growth rates on p, different terms in T − p3 dominates. For this purpose, we
define the two stochastic-o notations as follows. The notation Xn = op(an), or
equivalently Xn/an = op(1), is used to mean that the sequence Xn/an → 0 in
probability as n → ∞. The notation Xn = Op(an) is used to mean that the
sequence Xn/an is bounded by a finite M with high probability as n → ∞. In
particular, from the result on the joint asymptotic distribution of R2 and R3

stated above, we note

R3 = Op

(

p1.5

n1.5

)

, pR2 = Op

(

p2

n1.5

)

,

and from the central limit theorem,

3p2(p̂ − p) = Op

(

p2.5

n

)

.

When 1/n << p << 1/
√

n, then R3 + pR2 dominates, while when p >> 1/
√

n,
the other term 3p2(p̂ − p) dominates.

On the other hand for S − 3p2, we note that

R2 = Op

( p

n1.5

)

, 6p(p̂ − p) = Op

(

p1.5

n

)

,

and consequently, the term 6p(p̂ − p) always dominates for any p >> 1/n.
With these, the following theorem characterizes the asymptotic normality of
the clustering coefficient for various regimes of growth rates on p.

Theorem 3.3. Assume p >> 1
n and (1 − p)−1 = O(1). Under the hypothesis

of β = 0 in NW-ER model (i.e., under pure ER model), we have the following
asymptotic distribution for C.

1. For 1
n << p << 1√

n
, we have

√

n3p

6(1 + 2p)(1 − p)2
(C − p)

D→ N(0, 1).
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2. For 1√
n

<< p and for constant p,

√

n(n − 1)

2p(1 − p)
(C − p)

D→ N (0, 1) .

The proof of this and the following theorems can be found in the Appendix A.
Therefore, in the regime, 1

n << p << 1√
n

, the clustering coefficient C is

Op( 1
√

n3p
), which is between Op( 1√

n(2+ε)
) and Op( 1√

n(2.5−ε)
), for some small ε > 0,

depending upon the growth rate on p. On the other hand, for p >> 1√
n

, the

clustering coefficient is Op(
√

p

n ), which is between Op( 1√
n(2.5−ε)

) and Op( 1
n ) de-

pending upon the growth rate of p.

For fixed p, the following covariance matrix for the joint asymptotic distribu-
tion of T, S that also contains terms of O( 1

n ) may provide better approximation
Reinert and Röllin (2010):

ΣT,S =

(

1 + 1+p−2p2

3p2(n−2) 1 + 1−p
2p(n−2)

1 + 1−p
2p(n−2) 1 + 1−p

4p(n−2)

)

. (4)

Let Σij denote the (i, j)th element of the ΣT,S matrix. Define,

ΣC = 9Σ11 − 12Σ12 + 4Σ22.

Then

√

n(n − 1)

2p(1 − p)ΣC
(C − p)

D→ N (0, 1) .

We find in our empirical simulations that in finite samples, the above scaling
on C acts almost as an interpolation between the two scaling on C that are
valid for different regimes of growth on p, and provides a better approximation
for most situations.

We propose to use the following rejection cutoffs for the test with level at
most α.

1. For a pre-specified desired asymptotic level α, the cutoff K1,α(p̂) is given
as

K1,α(p̂) =

⎧

⎪

«

⎪

¬

(

p̂ + Zα

√

2p̂(1−p̂)
n(n−1)

)

p >> 1√
n

,
(

p̂ + Zα

√

6(1+2p̂)(1−p̂2)
n3p̂

)

1
n << p << 1√

n
.

(5)

where Zα is the 100 ∗ (1 − α)th upper quantile of the standard normal
distribution (a constant as a function of n).

2. K2 is (2+ε) log(n)
log(np̂) for any ε > 0. We use ε = 0.0001 in our simulations and

real data analysis.
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The next two results characterize the asymptotic level and power of the test
on C and L whose proofs are based on concentration inequalities. We use the
notation NW (n, p, β) to mean the NW-ER model with n nodes, β as mixing
proportion, and degree 2δ = (n − 1)p.

Theorem 3.4. Assume np
log n → ∞, i.e., p >> log n

n , and pCn → 0, where Cn is

a sequence such that Cn → ∞ at any rate as n → ∞. Let K1,α(p̂) be the cutoff
as defined in Equation 5. Then

1. P (C > K1,α(p̂)) → α, when A ∼ ER(n, p), and
2. P (C > K1,α(p̂)) → 1, when A ∼ NW (n, p, β), as n → ∞.

The above theorem shows that the asymptotic level of the test is α, and the
asymptotic power converges to 1 under the alternative model NW (n, p, β). Note
that from Theorem 3.3 we already have P (CA > K1,α(p0)) → α. In the proof
of this theorem, we show that K1,α(p̂) = K1,α(p0) + op(1), which then leads to
the result on asymptotic level. For the result on asymptotic power, we further
show that K1,α(p̂) does not deviate much from p0, and in particular, K1,α(p̂) =
p0 + op(p0). Then we show that CA when A comes from the alternative model
NW (n, p, β) is higher than a constant multiple of p0Cn with high probability
where Cn converges to ∞ at any rate.

Theorem 3.5. Suppose np
log(n) → ∞ as n → ∞, and p < 1/4. Then, in this

range of p, using K2 = (2+ε) log(n)
log(np̂) , we have

1. P [L > K2] → 0 when β = 0, i.e., A ∼ ER(n, p),
2. P [L > K2] → 0 when A ∼ NW (n, p, β) for some 0 < β < 1, and
3. P [L > K2] → 1 when β = 1, i.e., A is a ring lattice, as n → ∞.

In the above two theorems, we have assumed the mixing proportion β is
constant as a function of n. In the next result, we study a specific type of
alternative hypothesis and associated power by making β a function of n. We
now add the subscript n to β and call it βn to emphasize the dependence of β
on n. In particular we study power for alternatives of the form βn = h

nl and

βn = 1 − h
nl , for constants h, l > 0. This result studies the “local” power of the

test as βn is slightly bigger than 0 and slightly smaller than 1.

Theorem 3.6. As βn approaches 0 and A ∼ NW (n, p, β), we have P (C >
K1,α(p̂)) → 1, as long as βn ≥ 1

n1/2−ε . As βn approaches 1 and A ∼ NW (n, p, βn),

we have P [L > K2] → 0 as long as βn ≤ 1 − 1
nl where l = ε

12
log(np)

log n .

Remark: We conclude this subsection by synthesizing the theoretical results in
the context of the intersection test. Recall, from (1), that the null hypothesis
is rejected if the intersection criterion {C > K1,α} ∩ {L < K2} is satisfied.
Note that the probability of the intersection event is bounded above by the the
probability of either event, i.e.,

P [{C > K1,α} ∩ {L < K2}] ≤ min (P [C > K1,α], P [L < K2]) .

Now consider the following three cases (also see Table 1 for a heuristic version):
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1. When β = 0, the network is generated purely from the ER model, and the
correct decision is to not reject. Theorems 3.3 and 3.4 ensure that P [C >
K1,α] converges to α asymptotically, which means that the probability of
rejection (type-I error) is asymptotically bounded above by α, the nominal
significance level.

2. When β = 1, the network is a pure ring lattice, and once again the correct
decision is to not reject. Theorem 3.5 ensures that P [L < K2] converges to
zero asymptotically, which means that the probability of rejection (type-I
error) goes to zero.

3. When 0 < β < 1, the network is generated from the small-world model,
and the correct decision is to reject. Theorem 3.4 ensures that P [C < K1,α]
converges to zero asymptotically and Theorem 3.5 ensures that P [L > K2]
converges to zero asymptotically. Therefore, the probability of the union
event, {C > K1,α} ∪ {L < K2}, goes to zero, which means that the
probability of rejection (power) goes to one.
Furthermore, letting βn depend on n, we have, when βn approaches 0
from above, Theorem 3.5 ensures that P [L > K2] converges to zero and
Theorem 3.6 ensures that P [C < K1,α] converges to zero as long as βn ≥

1
n1/2−ε . Therefore, the power of the test goes to one as long as βn ≥ 1

n1/2−ε .
Finally, when βn approaches 1 from below, Theorem 3.4 ensures that
P [C < K1,α] converges to zero asymptotically, and Theorem 3.6 ensures

that P [L > K2] converges to zero s long as βn ≤ 1− 1
nl where l = ε

12
log(np)

log n .

Therefore, the power of the test goes to one as long as βn ≤ 1 − 1
nl .

3.3. Bootstrap test

In the Bootstrap version of the test, we determine the cutoffs through a para-
metric bootstrap procedure which involves fitting the respective null models to
the observed data to estimate the parameters of the null models. An adequate
number (B) of graphs are sampled from the fitted null distribution parameters.
We define the test by letting K1 be the 95th percentile of the distribution of C
and K2 to be a very high percentile (e.g., the 99th percentile) of the distribution
of L. Therefore a network will be called “small-world” if the observed C is higher
than the 95th percentile of the reference bootstrap distribution for C and the
observed L is lower than 99th percentile of the reference bootstrap distribution
for L. For fitting SBM and DCSBM to the observed networks, we estimate the
community assignments with a spectral clustering procedure that involves the
following steps: (i) eigendecomposition of the adjacency matrix and creation of
the matrix of k eigenvectors Un×k that correspond to the k largest eigenvalues
in absolute value, (ii) projection of rows of U to the unit circle and (iii) k-means
clustering of the rows of the matrix U . Finally, the model parameters are es-
timated using method of moments. The spectral clustering method is known
to be consistent for the problem of estimating community structure from SBM
and DCSBM when the number of communities are known Gao et al. (2017); Lei
and Rinaldo (2015). In practice, for our real data results we pick the number
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of communities k through a heuristic method called Louvain modularity opti-
mization method Blondel et al. (2008). One can also use alternative methods
for detecting communities from DCSBM graphs, e.g., using the SCORE method
in Jin et al. (2021, 2022). While we have used the spectral method described
above for our empirical results, we find that the results on the real data do not
differ much if we use the SCORE method instead (Figure 12 in the Appendix).

3.4. Remark: test for C in inhomogeneous random graphs

Our asymptotic test and the associated theoretical results on asymptotic distri-
bution of C, and power of the test are focused on homogeneous random graphs
(ER random graphs). In this section, we consider an inhomogeneous random
graph where edges Aij between pairs of vertices (i, j) are generated indepen-
dently from Bernoulli distributions with probabilities θij . The CL, SBM and
DCSBM with non-random community labels and degree parameters are sub-
models of this model. We describe the asymptotic limiting distribution of C
under this model and prove the asymptotic level and power of a testing pro-
cedure to detect β > 0. The average path length L is a difficult quantity to
probabilistically characterize under the inhomogeneous random graph model
and hence we do not study it here. Let θmax = maxij θij , θmin = minij θij , and

θ̃ =
∑

1≤i<j≤n θij/

(

n

2

)

. The statistics S, T, C are all defined as before since

those are model-agnostic definitions. Define the following quantities including
expectations of S and T under this model.

s(θ) = E[S] =
1
(

n

3

)

∑

1≤i<j<k≤n

(θijθik + θijθjk + θjkθik)

t(θ) = E[T ] =
1
(

n

3

)

∑

1≤i<j<k≤n

(θijθikθjk)

ΘT =
1
(

n

3

)

∑

1≤i<j<k≤n

(θijθikθjk)(1 − θij)(1 − θik)(1 − θjk).

These quantities can be efficiently computed from the matrix of probabilities
Θ Gao and Lafferty (2017b). We have the following result on the asymptotic
limiting distribution of C.

Theorem 3.7. Assume 1
n << θmin 
 θ̃ 
 θmax << 1√

n
. Then for the in-

homogeneous random graph model described above the limiting distribution of
clustering coefficient as n → ∞ is

√

√

√

√

√

(

n

3

)

s(θ)2

9ΘT

(

C − 3t(θ)

s(θ)

)

D→ N(0, 1).
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Therefore we propose an asymptotic test for C with the following cutoff. Let
K1,α(θ) be the 100 ∗ (1 − α)% quantile of this asymptotic distribution, i.e.,

K1,α(θ) =
3t(θ)

s(θ)
+ Zα

√

√

√

√

√

9ΘT
(

n

3

)

s(θ)2

.

It is easy to see that t(θ)
s(θ) = O(θ̃), and

√

√

√

√

9ΘT
(

n

3

)

s(θ)2

= O(
√

θ̃
n3 ). Therefore

K1,α(θ) = O(θ̃).

We assume that we have a good enough estimator for the probabilities θ̂,
such that the following two assumptions hold.

A.1 t(θ̂)

s(θ̂)
= t(θ)

s(θ) + op(θ̃)

A.2 K1,α(θ̂) = K1,α(θ) + op(1).

The above two assumptions enable us to obtain K1,α(θ̂) = 3 t(θ)
s(θ) + op(1). Con-

sequently, we have the following result.

Theorem 3.8. Consider the NW superimposed inhomogeneous random graph

model with β ∈ [0, 1]. Assume log n
n << θmin 
 θ̃ 
 θmax << 1√

n
, and t(θ)

s(θ) Cn →
0, for a sequence Cn → ∞ at any rate. Further assume we have an estimator of
the parameters θ that satisfies the properties in assumptions A.1 and A.2. Then
as n → ∞,

1. P (C > Kα(θ̂)) → α, when β = 0, and

2. P (C > Kα(θ̂)) → 1, when β > 0.

4. Simulation

4.1. Finite sample behavior of the distribution of C in Theorem 3.3

We study the finite sample approximation provided by the asymptotic distribu-
tion of C under the ER model derived in Theorem 3.3 through two simulations.

In the first simulation, we fix n = 1000 and vary p from 0.004 to 0.20 in
order to investigate the transition in the asymptotic normality result observed
in Theorem 3.3. We generate 10000 graphs from these ER models and compute
the clustering coefficient C in each case. Then we transform these empirical
values of C using the two scalings predicted by Theorem 3.3. We then plot the
observed histograms of scaled values of (C − p) of these values and compare it
with the density function of the standard normal distribution evaluated between
(−3.5, 3.5). In Figure 1 we compare 3 scaling factors on C − p, namely, the one
given in part (1) of Theorem 3.3 (scaling 2), the one given in part (2) of Theorem
3.3 (scaling 1), and the one which include ΣC with the scaling in part (2), that
we call “interpolating” scaling. We see that as Theorem 3.3 predicted, for small
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values of p, the scaling given in part (1) of the theorem provides accurate ap-
proximation, and as p increases, this approximation starts performing worse and
the approximation with scaling in part (2) starts getting better, until for larger
values of p when the scaling in part (2) provides an accurate approximation.
Perhaps somewhat surprisingly, we see that the interpolation scaling performs
very well for all ranges of values of p. Overall, we can see the transition in the
asymptotic normality result from Theorem 3.3 for different growth rates on p
in our finite sample simulation as well.

Fig 1: Comparison of various scaling factors in Theorem 3.3 with 10000 sim-
ulations from the ER model compared with the density function of standard
normal distribution. We fix n = 1000 and vary p from 0.004 to 0.20.

In order investigate the interpolating scaling
√

n(n−1)
2p(1−p)ΣC

(C − p) further em-

pirically we conduct another simulation. We generate 10000 random graphs
for each of the 9 ER models resulting from varying n = (500, 1000, 2000) and



1472 K. Lovekar et al.

Fig 2: The observed distribution of C appropriately scaled as per the interpo-
lating scaling with 10000 simulations from the ER model compared with the
density function of standard normal distribution .

p = (0.05, 0.1, 0.2) and compute the empirical clustering coefficient (C) in each
case. Then we transform these empirical values of C according to the specified
scaling, plot the empirical density of these values, and compare it with the den-
sity function of the standard normal distribution evaluated between (−3.5, 3.5)
in Figure 2. The theoretical asymptotic distribution matches the simulated one
closely for all values of n and p indicating that the distribution is a good fit.

4.2. Distribution of C and L under the superimposed model in

simulation

To understand the changes in the distribution of C and L as β is varied we
perform a simulation study. We generate data from the superimposed Newman
Watts models with ER, CL, SBM and DCSBM null models by varying β. We
keep n = 500 and 2δ = 40 and generate 150 networks for each β value. Figure
3(a) and (b) presents the median along with 1% and 99% quantiles of the ob-
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Fig 3: Median along with 1% and 99% quantiles for observed distribution of C
and L with increasing β for ER, CL, SBM, and DCSBM.

served values of C and L over these 150 networks respectively. Figure 3(c) is the
same figure as Figure 3(b), but without β = 1 to better observe the differences
for smaller β values. We make a number of observations from these figures. First,
as β increases both the 1% and 99% quantiles of C values steadily increases for
all null models and the 1% quantiles for β > 0 quickly become larger than the
99% quantiles of β = 0. On the other hand for L the increase in the 1% and
99% quantiles is slower with increasing β, and in fact the 1% quantiles for β > 0
remain smaller than the 99% quantiles for β = 0 for many values of β until
eventually at β = 1, the values increase rapidly. This gives credence to the fact
that there is a range of β values where C is large compared to β = 0 while L
is comparable to β = 0. Second, we find differences in behavior of the different
null models. Both C and L are highly concentrated around their median for the
NW-ER model for all values of β. However, for NW models which also account
for degree heterogeneity, i.e., NW-CL and NW-DCSBM, the intervals between
1% and 99% quantiles are quite large. This is especially the case for L. There-
fore for NW-CL model, we note that there is a large range of β values for which
1% quantile of C is larger than 99% quantile of β = 0, while the 1% quan-
tile of L is smaller than the 99% quantile of β = 0. Finally, comparing among
the null models, it appears that NW-SBM generally produces higher median C
and L values compared to NW-ER for almost all β values. The NW-CL and
NW-DCBM models also produce higher median C and L values compared to
NW-ER, however, the range of values between 1% and 99% quantiles is very
wide.

We perform another simulation to assess the impact of severe degree het-
erogeneity. To generate the DCSBM part of the superimposed networks with
severe degree heterogeneity, we use the setup in Jin et al. (2022) and generate
1/θi ∼ U(1, 8), where θi is the degree heterogeneity parameter for node i. We
obtain quantiles by generating 150 networks with n = 500 and 2δ = 40 over
different values of β. The results are presented in Figure 4, where the blue curve
represents the case with severe degree heterogeneity. We note that as β increases,
both 1% and 99% quantiles of C for networks with severe degree heterogeneity
increase at a faster rate compared to networks with low degree heterogeneity. On
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Fig 4: Median along with 1% and 99% quantiles for observed distribution of C
and L with increasing β for DCSBM with low (orange) and high (blue) degree
heterogeneity.

the other hand, both quantiles for L first reduce up to β ≈ 0.5 before increasing
again in the severe degree heterogeneity case.

4.3. Power of the asymptotic test

Next, we verify the power of the asymptotic test described through Theorems
3.4 and 3.5 in two sets of simulations. First, we fix n = 1000 and vary the average
degree (which is 2δ) as 10, 20, 30, 40, 50. Then we fix average degree at 100 and
vary n as 1000, 1500, 2000, 2500. The power curves against changing β using the
asymptotic test are shown in Figure 5. From the figure we note that both at
β = 0 and β = 1, the rejection rate of the test is close to 0. The rejection rate
curve (power curve) sharply increases to 1 after sufficiently large β and stays
close to 1 until β = 1. As the average degree increases, the sharp increase in the
power curve starts for β closer to 0, and at 2δ = 50, the power curve is close
to 1 for almost all value of β in between 0 and 1. Comparing the left and right
sides of the power curve, we see that the power goes to 1 slowly as β goes away
from 0, while it goes to 1 relatively faster as β goes away from 1. We need a
higher average degree or density of the graph for the power to go to 1 on the
left-hand side of the power graph as opposed to on the right-hand side of the
power graph.

An intriguing observation from Figure 5 is that there is an asymmetric be-
havior of the rejection rate on the left and right ends of the parameter space
of β. To investigate this further we conduct another simulation of the empirical
power of the asymptotic test focusing on β close to 0, namely, β ∈ (0, 0.12) and
β close to 1, namely, β ∈ (0.98, 1) in Figure 6. We see that when the average
degree is 10, empirical power is slow to pick up and reaches 1 only when β is
around 0.10, while the power is already close to 1 when β is around 0.98. As the
average degree increases, performance of the test in terms of empirical power
improves on both sides of the power curve for β close to 0 and 1. However, the
performance in the side β close to 1 is always better than in the side β close
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Fig 5: Power curves for the asymptotic test. The X-axis represents values of β.
In the first 4 figures, we fix n at 1000, and vary average degree from 10 to 50, and
in the last 4 figures, we fix average degree at 100 and vary n from 1000 to 2500.
The red curve represents the observed rate of rejection of the clustering rule,
i.e., fraction of simulated networks with C > Kα, the blue curve represents the
fraction of simulated networks with L < K2, while the black curve represents
the empirical power of the intersection test, i.e., [C > Kα, L < K2].



1476 K. Lovekar et al.

Fig 6: Power curves for the asymptotic test with n = 1000 and varying average
degree 10, 20, 40, 50 for values of β close to either 0 (the first 4 figures) or 1
(the last 4 figures. The red curve represents the observed rate of rejection of the
clustering rule, i.e., fraction of simulated networks with C > Kα, the blue curve
represents the fraction of simulated networks with L < K2, while the black curve
represents the empirical power of the intersection test, i.e., [C > Kα, L < K2].
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to 0 highlighting the asymmetry in the power curves. For example when aver-
age degree is 50, we see the power reaches 1 around β = 0.04, while it already
reaches 1 when β = 0.995, i.e., only 0.005 away from β = 1.

When β = 0, the network is a pure ER model and we know from Theorem
3.3 that C ≤ K1,α with probability (1 − α). As β increases from zero, ER edges
are gradually replaced by ring lattice edges, thereby increasing the clustering in
the network. This drives C higher until C crosses the threshold K1,α with a high
probability and the null hypothesis is rejected. As we observe from Figure 5, this
effect of the ring lattice takes time to build up, especially for smaller values of n.
On the other hand, when β = 1, the network is a pure ring lattice and we know
from Theorem 3.5 that L > K2 with probability going to one. As β decreases
from 1, ring lattice edges are being progressively replaced by random edges from
the ER model. Even a small number of such random edges can cause a drastic
reduction in path lengths, since the addition of an edge can affect path lengths
across the network. This drives the rejection rate to to sharply increase to 1 in
the right ends in Figure 5. This asymmetry also shows up quite prominently in
Figure 3, where we see a gradual increase in C (left panel) but a sharp increase
in L (middle panel) as β increases.

4.4. Finite sample behavior of distribution of C for inhomogeneous

models

In this section we assess the finite sample approximation provided by the asymp-
totic normality result in Theorem 3.7 for SBM and DCSBM graphs. We generate
SBM and DCSBM graphs from the fastRG R package Rohe et al. (2018). The
block matrix parameters are generated randomly once from U(0, 1) distribution
and fixed for the 1000 replications. For DCSBM model, the degree parameters
are also generated once from lognormal distribution with logmean 1 and logSD
0.5. Therefore, the probabilities of edges are fixed for the 1000 replications as
per the settings of Theorem 3.7. For both SBM and DCSBM, we consider three
expected densities: 0.004, 0.006, and 0.008, and fix n = 1000. The histogram
of observed values of C with appropriate transformation as suggested by Theo-
rem 3.7 is compared with the standard normal density in Figure 7. We see the
approximation predicted by the theorem works well for this finite sample exam-
ple for both SBM and DCSBM. However, the approximation deteriorates when
conditions differ from the settings of the theorem, i.e., the expected density θ̃ is
higher, or heterogeneity among the probabilities is higher.

5. Results on real networks

We apply the bootstrap detection method for small world property to several
real-world networks using the above-mentioned four null models, namely ER,
SBM, DCSBM, and CL. For each null model, we generate 500 networks to
derive empirical distributions of C and L using parameters learned from a given
real-world network. We present these empirical distributions for 10 real network
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Fig 7: Distribution of scaled clustering coefficient for inhomogeneous random
graph generated from (top row) SBM and (bottom row) DCSBM. We fix
n = 1000 and the expected density (indicated as p) is varied from, from 0.004
to 0.008. The block matrix parameters are generated randomly from U(0, 1)
distribution and in the case of DCSBM the degree parameters are generated
from LogNormal(1, 0.5) distribution.

datasets in the right columns of Figures 8 and 9. The observed values of C and
L are indicated in the Figures with a red colored vertical line. In Table 3, we
further present p-values associated with the two components of our intersection
test statistic in Equation 1, as well as the overall decision from our test. In
the table 3, the column for C depicts pC, which is the proportion of simulated
networks which have a higher clustering coefficient, and the column for L depicts
pL, which is the proportion of simulated networks which have a lower average
path length. The Decision column presents the verdict from the intersection test,
which rejects the null hypothesis to conclude that a given network is small-world,
if the null hypothesis for both C and L are rejected. The test for C rejects the
null if pC < 0.05, indicating that the given network has a significantly higher
clustering coefficient compared to the null model. The test for L rejects the null
if pL < 0.99, indicating the given network has a comparable path length to the
null model. Therefore the test for L fails to reject if almost all the simulated
networks have lower L compared to the one observed. Finally, the left columns
of Figure 8 and 9 further depicts the empirical distribution of the test statistic
C/L along with its observed value.
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Fig 8: Bootstrap tests on real-world networks. The first figure in each
row is the empirical distributions of the small-world coefficient, second shows
empirical distributions for the clustering coefficient and the average path length.
500 simulations were used to generate the distributions for ER, SBM, DCSBM
and CL null models. The red line in both figures is the observed test-statistic.
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Fig 9: Bootstrap tests on real-world networks continued.
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Table 3

Results of the bootstrap intersection test on real world networks.

(a) C Elegans

Null C L Decision

ER 0 0.99 Reject
SBM 0 0.016 Reject

DCSBM 0 0 Reject
CL 0 0.06 Reject

(b) Dolphins

Null C L Decision

ER 0 1 Fail to reject
SBM 0 0.932 Reject

DCSBM 0 0.854 Reject
CL 0 0.968 Reject

(c) Football

Null C L Decision

ER 0 1 Fail to reject
SBM 0.002 0.668 Reject

DCSBM 0 0 Reject
CL 0 1 Fail to reject

(d) Karate

Null C L Decision

ER 0 0.536 Reject
SBM 0.376 0.058 Fail to reject

DCSBM 0.012 0.018 Reject
CL 0.652 0.164 Fail to reject

(e) Les Miserables

Null C L Decision

ER 0 0.982 Reject
SBM 0 0.006 Reject

DCSBM 0 0.006 Reject
CL 0 0.028 Reject

(f) Macaque Cortex

Null C L Decision

ER 0 1 Fail to reject
SBM 0 1 Fail to reject

DCSBM 0 0.9 Reject
CL 0 1 Fail to reject

(g) Political Blogs

Null C L Decision

ER 0 1 Fail to reject
SBM 0 0 Reject

DCSBM 0 0.036 Reject
CL 0 0 Reject

(h) Political Books

Null C L Decision

ER 0 1 Fail to reject
SBM 0 1 Fail to reject

DCSBM 0 0.99 Reject
CL 0 1 Fail to reject

(i) Power Grid

Null C L Decision

ER 0 1 Fail to reject
SBM 0 0.672 Reject

DCSBM 0 0.986 Reject
CL 0 1 Fail to reject

(j) Word Adjacencies

Null C L Decision

ER 0 0.508 Reject
SBM 0 0.22 Reject

DCSBM 0 0.032 Reject
CL 0.972 0.012 Fail to reject

Several interesting features emerge from our results. From Figure 8, the C-
elegans and Les Miserables networks are small world under all four null models.
The Karate club network is not a small world under SBM and CL null models
because the clustering coefficient C is not significantly higher than what the
two null models predict, despite L being within the distribution of L from all
the null models. Therefore, the Karate club network’s high clustering coefficient
can be well explained by either community structure or degree heterogeneity.
On the other hand, the Football network is not a small world under ER and CL
null models, and the Dolphin network is not a small world under the ER model
because the average path length L is not within the distribution of L from the
null model. In both networks, the clustering coefficient C is higher than what
any of the null models would predict. For both networks the average path length
is high enough that a ER random graph model cannot explain it. However, such
an average path length can be well predicted by models that include community
structure and/or degree heterogeneity.

In Figure 9, none of the 5 networks is small world under all four null models.
The Macaque Cortex and Political books networks are small world only under
DCSBM null model. For the other three null models, the distribution of L values
is completely in the left hand side of the observed L value. The power grid,
political blogs, and political books networks have very high observed values of
C which is higher than what any of the null models would predict. Therefore, in
terms of clustering, the networks cannot be well approximated by any of the null
models and require models with additional features. However, L is comparable
to only SBM and DCSBM null models for power grid network, SBM, DCSBM
and CL null models for political blogs and DCSBM for political books networks.
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The word adjacencies network has a C which is lower than the distribution of
C from the CL model and therefore it is not small world under the CL model.
The network is small world under all other null models. Only the CL model can
explain both the high clustering coefficient and the low average path length for
this network.

Overall it appears that many networks are able to “pass” (i.e., reject) the
clustering coefficient test for most of the null models, but “fail” (i.e., fail to
reject) the average path length rest for some null models. Clearly the more
complex null models, namely, CL and DCSBM consistently predicts higher av-
erage path length than the ER random graph model and are able to model the
observed path lengths in many cases. Therefore many networks are small world
only under those models and not under the SBM and ER models. This is an
useful finding in terms of modeling choice for real-world network data.

Further, as the left columns of the Figures 8 and 9 show, the results with the
traditional small world coefficient is identical to the result one would obtain from
the clustering coefficient test alone. Consequently, using the traditional coeffi-
cient fails to take into account the average path length of the observed networks.
This is contradictory to the philosophical spirit of the small world phenomenon
- clustering structure despite a small average path length. Consequently, with
ER null model, the traditional small world coefficient declares all networks un-
der test as small world. With SBM, the metric only detects the Karate Club
network as not being a small world; with CL it detects Karate and word adja-
cencies as not small world, while with DCSBM it again detects all networks as
small world. In comparison, results with our proposed methodology bring out
the consequences of various modeling choices and help distinguish small-world
property from community structure and degree heterogeneity. The results from
the asymptotic test on these datasets are presented in the Appendix B.

6. Limitations and conclusions

We have developed a hypothesis testing framework for detecting the small world
property of a network by defining suitable null and alternative families of mod-
els and hypotheses. The test is an intersection of two tests on average path
length and clustering coefficient, which is rejected (network is designated small-
world) if both the tests are rejected simultaneously. Our empirical results on
several real networks bring out nuances associated with the small-world prop-
erty. Separately testing for average path length and clustering coefficient has two
advantages over the existing small-world coefficient. First, it removes the undue
influence of clustering on the small-world coefficient and distinguishes the prop-
erty from the coefficient. Second, the analyst is able to ascertain which of the two
requirements a network does not satisfy. The superimposed Newman-Watts type
small-world models have been proposed as plausible models of small-world prop-
erty generalizing the Newman-Watts and Watts-Strogatz models. Using these
new tools we are able to analyze the properties of real networks in greater detail.

In this paper, we have proposed and empirically studied a parametric boot-
strap strategy without a formal proof of its validity. Recent years have seen
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substantial growth in theoretical results for bootstrapping network data, with
notable contributions from Bhattacharyya and Bickel (2015), Green and Shal-
izi (2022), Lunde and Sarkar (2022), and Levin and Levina (2019). However,
none of these existing works on network bootstrapping include the average path
length, which makes it challenging to prove theoretical results for our method.
Even for ER graphs, while several results are known for concentration and dis-
tribution of subgraph counts, much fewer results are available for average path
length Fronczak et al. (2004); Katzav et al. (2015). We consider it an impor-
tant direction for future work to develop a theory for the proposed parametric
bootstrap method.

As with many bootstrap methods, the accuracy of the proposed paramet-
ric bootstrap procedure can be affected by the sample size. In small-sample
scenarios, the parameter estimates used to generate bootstrap samples may be
imprecise, thus affecting the overall reliability of the testing procedure. Addi-
tionally, the accuracy also depends on the number of bootstrap replicates; a
larger number of replicates ensures that the empirical cumulative distribution
function more closely approximates its population counterpart, i.e., the null
sampling distribution of the test statistic. Finally, the success of the paramet-
ric bootstrap procedure hinges on the smoothness of the test functionals with
respect to the underlying parameters. Since this smoothness can vary across
different models, the accuracy of the bootstrap procedure may also vary accord-
ingly. While a complete and formal analysis of these issues is beyond the scope
of the current work, we regard them as important avenues for future research.

Appendix A: Proofs

A.1. Proof of Proposition 3.1

The calculations for the ER null and superimposed models are similar to those
in Barrat and Weigt (2000) (see also Newman (2018)). Note, for β = 0, E[3T ] =

3( 2δ
n−1 )3. Next, for β = 1, we have 3T = 3n

(

δ
2

)

/

(

n

3

)

(deterministically). Now for

a β �= {0, 1}, we need to consider triangles from 3 sources: (a) the random graph
component, (b) the ring lattice component, and (c) the incidental triangles. The
incidental triangles are generated in two ways - (i) one edge from the random
graph and 2 edges from the ring lattice, and (ii) 1 edge from the lattice and 2
edges from the random graph. Throughout the analysis we are assuming that
if there are multiple triangles (T ) or connected triples (S) among a set of 3
vertices, then we will count them multiple times in our global counts of T and
S structures. The ring lattice component (b) generates n

(

δβ
2

)

triangles. The

random graph component is expected to (a) generate
(

n
3

)

( 2δ(1−β)
n−1 )3 triangles.

Finally the expected incidental triangles can be enumerated as follows. The

expected number of incidental triangles of type (i) is n
(

2δβ
2

) 2δ(1−β)
n−1 , while the

expected number of incidental triangles of type (ii) is n.2δβ(n − 2)(2δ(1−β)
n−1 )2.

Note that while counting triangles, we count a triple having 2 triangles if the
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triple has a triangle and at least one of the edges is a multi-edge. Combining the
above expected values and multiplying by 3, we get E[3T ]. Further, as n → ∞,
the expression for T is asymptotically equivalent to

(

n

3

)

E[T ] 
 nδ2β2

2
+

8δ3(1 − β)3

6
+ 4δ3β2(1 − β) + 8δ3β(1 − β)2.

We can similarly compute the expected number of connected triples that goes
in the denominator. Once again, for β = 0, we have E[S] = 3( 2δ

n−1 )2, and for

β = 1, we have S = n

(

2δ

2

)

/

(

n

3

)

(deterministically). For 0 < β < 1, we have 3

sources for connected triples (S): The random graph component (a) is expected

to generate 3

(

n

3

)

(2δ(1−β)
n−1 )2 connected triples. The ring lattice component (b)

generates n

(

2δβ

2

)

connected triples. Finally the number of incidental connected

triples (c) are expected to be 2nδβ(n − 2)2δ(1−β)
n−1 . This is because for each of

the nδβ edges in the ring lattice, an edge from the random graph can connect
one of the ends of the edge to any of the n − 2 remaining nodes. Note that we
count a triple to have 2 S structures if there is an S structure and at least one
of the edges is a multi-edge. Combining the above we arrive at an expression for
E[S]. As n → ∞, then we have

(

n

3

)

E[S] 
 2nδ2β2 + 2nδ2(1 − β)2 + 4nδ2β(1 − β) 
 2nδ2.

Now, we note from second-order bivariate Taylor series expansion that

E[C] =
E[3T ]

E[S]
− Cov(3T, S)

(E[S])2
+

V ar(S)E[3T ]

E[S]3
+ E[R].

For β = 0, approximating E[C] 
 E[3T ]
E[S] , we have E[C] 
 2δ

(n−1) → 0, as

n → ∞. This approximation is valid, since for n → ∞, we have Cov(3T, S) =
O(δ4/n6), E(S) = O(δ2/n2), E[3T ] = O(δ3/n3), and V ar[S] = O(δ3/n5), and

consequently, the second order terms Cov(3T,S)
(E[S])2 = O( 1

n2 ), and V ar(S)E[3T ]
E[S]3 =

O( 1
n2 ). One can repeat this calculation to see expectation of the remainder

term E[R] is of even smaller asymptotic order. For β = 1, we have E[C] =
3δ(δ−1)

2δ(2δ−1) → 3
4 as n → ∞. Finally, for 0 < β < 1 we note that whenever β > 0,

the expression for

(

n

3

)

E[3T ] is dominated by nδ2β2

2 , since δ = o(n) implies that

δ3 = o(nδ2). Therefore, as n → ∞, we have

E[
3T

S
] 
 E[3T ]

E[S]

 3nδ2β2

4nδ2
→ 3

4
β2.
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A.2. Proof of Proposition 3.2

Recall we have defined p̄ =
∑

1≤i<j≤n pij/

(

n

2

)

. We note that when β = 0,

E[3T ] for a graph from inhomogeneous random graph model can be written as

E[3T ] =
∑

i

∑

j �=i

∑

k �=(i,j)

pijpjkpik/

(

n

3

)

≤ 1

2

∑

i

∑

j �=i

pij(n − 2)p2
max/

(

n

3

)

=
6n(n − 1)(n − 2)

2n(n − 1)(n − 2)
p̄p2

max = 3p̄p2
max.

On the other hand, a lower bound on E[S] can be found as follows

E[S] =
∑

i

∑

j �=i

pij(
∑

k �=(i,j)

pjk +
∑

k �=(i,j)

pik)/

(

n

3

)

≥ 6n(n − 1)(n − 2)

2n(n − 1)(n − 2)
p̄pmin = 3p̄pmin

Then as n → ∞, the ratio, C is asymptotically upper bounded by
p2

max

pmin



2δ2
max

δminn .
For 0 < β < 1, the random variable 3T is lower bounded by three times the

number of triangles in the (deterministic) ring lattice component of the graph.

Further note that, δmax ≥ δ ≥ δmin. Therefore

(

n

3

)

E[3T ] is lower bounded

by 3nδ2β2

2 ≥ 3nδδminβ2

2 . Therefore, following the calculation for

(

n

3

)

E[S] as de-

scribed in the proof of Proposition 3.1, we note that the components are asymp-
totically upper bounded by 2nδδmaxβ2, 2nδδmax(1 − β)2, and 4nδδmaxβ(1 − β)

respectively. Hence combining the three, we have

(

n

3

)

E[S] r 2nδδmax. Taking

the ratio of the two expectations and first-order Taylor series expansion leads
to the proof of the proposition.

A.3. Proof of Theorem 3.3

From the asymptotic order of various terms of T and S, we have, in the regime
1/n << p << 1/

√
n, the dominant term in T − p3 is R3 + pR2. Consequently,

√

(

n

3

)

(T − p3)
√

p3(1 − p)3 + 3p4(1 − p)2

D→ N(0, 1),

and
S

3p2
= 1 + Op(

1

n
√

p
) = 1 + op(1).
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Then we have by Slutsky’s theorem

√

n3

6p3(1 + 2p)(1 − p)2
p3 (T/p3 − 1)

S/3p2

D→ N(0, 1).

Next we note that

√

n3

6p3(1 + 2p)(1 − p)2
p3(

1

S/3p2
− 1) = Op(

√

n3p3.
1

n
√

p
) = Op(

√

np2) = op(1),

by the condition on the growth rate of p. This implies

√

n3p

6(1 + 2p)(1 − p)2
(C − p)

D→ N(0, 1).

This completes the proof for part (1) of the theorem.

Next in the regime p >> 1/
√

n, we compute the joint asymptotic distribution
as follows. Note from central limit theorem,

√

n(n − 1)(p̂ − p)
D→ N(0, 2p(1 − p)).

Then we have the following joint asymptotic normality

√

n(n − 1)

2p(1 − p)

(

T/(3p2) − p/3
S/(6p) − p/2

)

=

√

n(n − 1)

2p(1 − p)

(

1
1

)

(p̂ − p)

D→ MVN 2

((

0
0

)

,

(

1 1
1 1

))

.

We note that for fixed p, the limiting covariance matrix becomes

√

n(n − 1)

(

T − p3

S − 3p2

)

D→ MVN 2(

(

0
0

)

, 18p(1 − p)

(

p4 2p3

2p3 4p2

)

.

It is well-known the limiting covariance matrix of joint subgraph statistics for
T and S is a rank 1 matrix Reinert and Röllin (2010). For fixed p, the above
result was obtained by Nowicki (1989).

Consider the function for the random variables [X1, X2]T = [T/(3p2), S/(6p)]T ,

g([X1, X2]T ) =
3p

2

(

X1

X2

)

.

Clearly this is a continuous function at μ = [p/3, p/2]T . We note the function
g(μ) is R2 → R, and is given by

g(μ) = p.
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Then from the multivariate delta method, we have

√

n(n − 1)

2p(1 − p)

(

g(T/(3p2), S/(6p)) − g(p/3, p/2)
)

=

√

n(n − 1)

2p(1 − p)
[D(g(μ))]

(

T/(3p2) − p/3
S/(6p) − p/2

)

+ op(1)

→ N2

(

0, [D(g(μ))]

(

1 1
1 1

)

)[D(g(μ))]T
)

,

where D(g(μ)) is the gradient of g(X) evaluated at μ.
Therefore,

[D(g(μ))] =
3p

2

(

1
X2−X1

X2
2

)

|μ =
3p

2

(

2/p
−4/(3p)

)

=

(

3
−2

)

.

and consequently,

[D(g(μ))]Σ1[D(g(μ))]T

= [3, −2]

(

1 1
1 1

)(

3
−2

)

= 1.

Therefore,

√

n(n − 1)

2p(1 − p)
(C − p)

D→ N (0, 1)

This completes the proof for the second part of the theorem.

A.4. Proof of Theorem 3.4

We first consider β = 0. Let p0 denotes the true population parameter for
the ER model, i.e., A ∼ ER(n, p0). Let CA denote the observed clustering
coefficient of the graph A. Define K1,α(p) as the 100 ∗ (1 − α)th upper quantile
of the distribution of C under the ER model with parameter p. First consider
p >> 1√

n
. Then,

K1,α(p) =

(

p + Zα

√

2p(1 − p)

n(n − 1)

)

, (6)

where Zα is the 100∗(1−α)th upper quantile of the standard normal distribution
(a constant as a function of n). Let K1,α(p̂) be the corresponding 100∗ (1−α)th
upper quantile that we calculate by replacing p with the estimated value p̂ in
K1,α(p). By part (2) of Theorem 3.3,

P (CA > K1,α(p0)) → α.
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Moreover, from central limit theorem p̂ − p0 = Op(
√

p0

n ). We further note that

K1,α(p̂) − K1,α(p0) = (p̂ − p0) + Zα

(
√

2p̂(1 − p̂)

n(n − 1)
−
√

2p0(1 − p0)

n(n − 1)

)

.

From Taylor series expansion, it is clear that

(
√

2p̂(1 − p̂)

n(n − 1)
−
√

2p0(1 − p0)

n(n − 1)

)

=
(1 − 2p0)(p̂ − p0)

√

2n(n − 1)p0(1 − p0)
+ Op

(

1

n3√
p

)

= Op

(

1

n2

)

+ Op

(

1

n3√
p

)

= Op

(

1

n2

)

.

Therefore,

K1,α(p̂) − K1,α(p0) = Op

(√
p0

n

)

= op(1).

Similarly, for 1
n << p << 1√

n
,

K1,α(p) =

(

p + Zα

√

6(1 + 2p)(1 − p2)

n3p

)

. (7)

As in the previous case, part (1) of Theorem 3.3 guarantees that

P (CA > K1,α(p0)) → α.

We can also verify from Taylor expansion that,

√

6(1 + 2p̂)(1 − p̂2)

n3p̂
−
√

6(1 + 2p0)(1 − p2
0)

n3p0
= Op

(

1
√

p3
0n3

)

Op

(√
p0

n

)

,

and p̂ − p0 = Op(
√

p0

n ), as stated before. Then,

K1,α(p̂) − K1,α(p0) = Op

(√
p0

n

)

+ Op

(

1
√

p3
0n3

)

Op

(√
p0

n

)

= op(1).

Therefore, combining, for any p >> 1
n ,

P (CA > K1,α(p̂)) → α, when A ∼ ER(n, p),

as n → ∞. This completes the proof of the first part of the theorem.
Next we need to show that

P (CA > K1,α(p̂)) → 1, when A ∼ NW (n, p, β) and n → ∞.

We start proving this by defining the following two graphs. Let AR be the
ring lattice component of the graph, i.e, obtained by removing the ER edges
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from the graph. In our notation, AR ∼ RL(n, 2βδ) for some 0 < β < 1, however
this is a deterministic graph not a probabilistic one.
Let AE be the Erdos Renyi component of the graph, i.e, obtained by removing

the Ring lattice edges from the graph. In our notation, AE ∼ ER(n, (1−β)2δ
n−1 )

for some 0 < β < 1.
Now since the number of triangles in A must be higher than just the ring

lattice portion of the graph AR, we can say

CA =
TA

SA
≥ TAR

SA
.

Next we further note that,

K1,α(p0) = p0 + o(p0).

This holds since in the case of p0 >> 1√
n

, we have,

K1,α(p0) = p0 + O

(√
p0

n

)

= p0 + o(p0),

and in the case of 1
n << p0 << 1√

n
, we have

K1,α(p0) = p0 + O

(

1
√

n3p0

)

= p0 + o(p0),

Therefore combining the two,

K1,α(p̂) = K1,α(p0) + op(1) = (1 + o(1))p0 + op(1),

for any p0 >> 1√
n

.

Therefore, the desired result follows if we can prove that

P

(

TAR

SA
≥ Cn

2δ

n

)

→ 1, (8)

for a sequence Cn → ∞ at any rate. We note that the quantity TAR
is deter-

ministic and calculate
(

n

3

)

TAR
= n

(

δβ

2

)


 nδ2β2.

Then the result in 8 is equivalent to

P

((

n

3

)

SA ≤ c2
n2δβ2

Cn

)

→ 1, (9)

where c2 is a constant not dependent n.
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We note SA consists of three parts:

(

n

3

)

SA =
∑

i,j,k

{(SAE
)ijk + (SAR

)ijk + (EAE
)ij(EAR

)jk}.

The middle term is a deterministic quantity and is upper bounded by

∑

i,j,k

(SAR
)ijk =

n.2δβ(2δβ − 1)

2
≤ c4nδ2β2.

By assumption of 2δCn

n → 0, (i.e., the graph is not too dense), we have

∑

i,j,k

(SAR
)ijk < c2

n2δβ2

Cn
.

Next we derive an upper bound for the first term which holds with high proba-
bility. For notational convenience, define SAE

=
∑

i,j,k(SAE
)ijk. Then note the

expectation and variance of SAE
is Janson et al. (2011),

E[SAE
] =

n(n − 1)(n − 2)

2

4δ2(1 − β)2

(n − 1)2

 2nδ2(1 − β)2

V [SAE
] 
 nδ3(1 − β)3.

Then from Chebyshev’s inequality

P (|SAE
− E[SAE

]| ≥ E[SAE
]) ≤ V [SAE

]

(E[SAE
])2

≤ c5nδ3(1 − β)3

n2δ4(1 − β)4
=

c5

nδ(1 − β)
,

for some constant c5. Therefore,

P (SAE
≤ c6nδ2(1 − β)2) ≥ 1 − c5

nδ(1 − β)
,

where c5, c6 are constants independent of n. By our assumption of δCn

n → 0,

c6nδ2(1 − β)2) < c7
n2δβ2

Cn
.

Finally, we tackle the third term. Note that the quantities (EAR
)jk are de-

terministic and we precisely know there are nδβ such edges. These incidental
structures are formed if there is an ER edge in either end of the RL edge. Let
(dE)i denote the degree of ith node in the graph AE and dmax = maxi(dE)i

is the maximum degree of a node in AE . Since (dE)i is sum of i.i.d. Bernoulli
random variables, from Bernstein inequality we get

P

(

(dE)i ≥ (1 + c8)2δ(1 − β)

)
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≤ exp

(

−
1
2 c2

84δ2(1 − β)2

(n − 1) 2δ(1−β)
n−1 (1 − 2δ(1−β)

n−1 ) + 1
3 c82δ(1 − β)

)

.

Taking an union bound over all n vertices, we have

P (dmax ≥ (1 + c8)2δ(1 − β)) ≤ exp(−c9(δ(1 − β) − log n)) → 0,

by the assumption that δ >> log n. Again for notational convenience, define
SAER

=
∑

ijk(EAE
)ij(EAR

)jk. Therefore we can bound the total number of
incidental “V” shaped structures as

P

(

SAER
≥ nδβ(n − 2)

2δ(1 − β)

n − 1

)

≤ P (dmax ≥ (1 + c8)δ(1 − β))

and using the bound for the right hand side above we have

P

(

SAER
≤ 2nδβ(n − 2)

δ(1 − β)

n − 1

)

≥ 1 − o(1).

Next, combining the three results we have

P

((

n

3

)

SA ≤ c2
n2δβ2

Cn

)

≥ 1 − o(1) → 1. (10)

A.5. Proof of Theorem 3.5

We start with some definitions. For any pair of nodes (u, v), let d(u, v) be the
geodesic distance between u and v. Γi(v) is defined as the set of vertices at
distance i from vertex v, that is, Γi(v) = {u : d(u, v) = i}, and |Γi(v)| is the
number of vertices in the set Γi(v).

Proof of Part 1: When A ∼ ER(n, p), our proof strategy is to collect the
union of the events where L > K2 can happen, and show that the sum of their
probabilities go to zero. Define the following events:

E1: The graph G is not connected.
It is well-known that P [E1] → 0 when np

log(n) → ∞, which is our assump-

tion. This result established by Erdös et al. (1959) is one of the most
celebrated results in random graph theory. We skip the proof in the inter-
est of space.

E2: {p̂ > p(1 + 1
√

n log(n)
)}.

We know that, for any ε ∈ (0, 1), by Chernoff’s inequality,

P [p̂ ≥ (1 + ε)p] ≤ exp

(

−ε2
(

n
2

)

p

3

)

.

Put ε = 1
√

n log(n)
. Then, since ε2

(

n
2

)

p = (n−1)p
2 log(n) → ∞ by assumption, the

probability on the right hand side goes to zero, which implies P [E2] → 0.
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(Note that we do not have to consider the case p̂ < p, since that makes K2

larger than its population version, and therefore the right-tail probability
is even lower.)

E3: There is at least one vertex v and some i ∈ (1, 2 log(n)
3 log(np) ) such that |Γi(v)| ≤

1
2 (np)i.
Here we apply Lemma 8 of Chung and Lu (2001), which states that: when

p ≥ c log(n)
n for some c > 2, then for any fixed vertex v, any fixed i ∈

(1, 2 log(n)
3 log(np) ), and any ε > 0,

P [|Γi(v)| ≤ (1 −
√

2/c − ε)(np)i] = o

(

1

n

)

.

Fix any ε > 0. Since np
log(n) → ∞, we can use c = 2

ε2 , which implies that

P [|Γi(v)| ≤ (1 − 2ε)(np)i] = o

(

1

n

)

.

Taking union over v,

P

[

∪v∈(1,...,n)

{

|Γi(v)| ≤ 1

2
(np)i

}]

= o(1).

Therefore, P [E3] → 0.
E4: There exists a pair of vertices (u, v), integers k1, k2 such that

|Γk1(u)||Γk1(v)|p > (2 + ε) log(n)

for some ε > 0, but d(u, v) > k1 + k2 + 1.
Suppose such a pair exists. There can be two cases.
Case 1: Γk1(u) ∩ Γk2(v) is not null. Then, there is a path of length less
than or equal to k1 + k2 from u to v, which means d(u, v) ≤ k1 + k2.
Case 2: Γk1(u) ∩ Γk2(v) is null. Let’s compute the probability that there
is no edge between Γk1(u) and Γk2(u). This probability is given by

(1 − p)|Γk1 (u)||Γk1 (v)|.

Note that e−p ≥ (1 − p). Therefore,

(1 − p)|Γk1 (u)||Γk1 (v)| ≤ exp(−p|Γk1(u)||Γk1(v)|)

≤ exp(−(2 + ε) log(n)) =
1

n2+ε
.

Therefore,

P [∪uv{ No edge between Γk1(u) and Γk1(u)}] ≤ 1

nε
→ 0.

Therefore, P [E4] ≤ 1
nε → 0.



Testing small-world 1493

Now, armed with the fact that P [E1 ∪ E2 ∪ E3 ∪ E4] = 0, we proceed to
complete the proof. Fix any ε > 0, and choose

k1 =

⌈

log(
√

2(1 + ε)n log(n)/(1 − 2ε))

log(np)

⌉

,

k2 =

⌈

log(2(1 + ε)n log(n)/(1 − 2ε)2)

log(np)
− k1 − 1

⌉

.

Then k1, k2 ∈ (1, 2 log(n)
3 log(np) ), 1 and therefore,

|Γk1(u)||Γk2(v)| ≥ (1 − 2ε)(np)k1 × (1 − 2ε)(np)k2 ≥ 2(1 + ε) log(n)

with probability greater than 1 − P [E3]. Therefore, from the result on E4, we
can say that with probability 1 − P [E3 ∪ E4], the path length between any two
vertices is less than or equal to k1 + k2 + 1. This implies that with probability
1 − P [E3 ∪ E4], the average path length is less than or equal to k1 + k2 + 1.
Thus, we obtain

P

[

L ≤
⌈

log(2(1 + ε)n log(n)/(1 − 2ε)2)

log(np)

⌉]

→ 1.

We can now conclude that, for any ε′ > 0,

P

[

L >

⌈

log(2(1 + ε′)n log(n))

log(np)

⌉]

→ 0. (11)

However, �x� could be anything from x to x + 1. Therefore, to be abundantly
conservative, we use

⌈

log(2(1 + ε′)n log(n))

log(np)

⌉

≤ log(2(1 + ε′)n log(n))

log(np)
+ 1

=
log(2(1 + ε′)n2p log(n))

log(np)
≤ (2 + δ) log(n)

log(np)

for any δ > 0. Finally, we have to adjust for the fact that p̂ ≤ p(1 + 1
√

n log(n)
),

where we use the Taylor series approximation log(1+x) ≈ x for the denominator.
This gives us the final bound,

K2 =
(2 + ε) log(n)

log(np̂)
,

for any ε > 0.
Proof of Part 2:

When A ∼ NW (n, p, β), consider the network A′ obtained by removing the ring

1See the proof of Theorem 2 of Chung and Lu (2001) for details.
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lattice edges. Note that A′ ∼ ER(n, (1 − β)p), so it follows from Equation (11)
that

P

[

L(A′) >
(2 + ε′) log(n)

log((1 − β)np)

]

→ 0

for any ε′ > 0. Next, we prove that

P

[

K2 >
(2 + ε′) log(n)

log((1 − β)np)

]

→ 1

as n → ∞. To see this, fix some ε ∈ (0, 1), and let K2 = (2+ε) log(n)
log(np̂) . Let ε′ = ε/2,

and let K ′
2 = (2+ε′) log(n)

log((1−β)np) . Then,

K2

K ′
2

=
(2 + ε) log((1 − β)np)

(2 + ε/2) log(np̂)
=

(2 + ε)

(2 + ε/2)

log(np) + log(1 − β)

log(np) + log(p̂/p)
.

Therefore, from the result on E2 from Part 1,

K2

K ′
2

=
(2 + ε)

(2 + ε/2)

log(np) + log(1 − β)

log(np) + log(1 + 1
√

n log(n)
)

≥
(

1 +
ε

6

) log(np) + log(1 − β)

log(np) + log(1 + 1
√

n log(n)
)

with probability 1 − P [E2]. In the final expression, the first part is greater than
1, and the second part converges to 1 as n → ∞, so we can choose ε to ensure
that the product is greater than 1. Thus,

P [L(A′) > K2] ≤ P [L(A′) > K ′
2] + P [K2 < K ′

2] → 0.

Clearly, L(A) ≤ L(A′), since A has more edges than A′, and every additional
edge has a non-decreasing effect on the average path length. Therefore, we have
proved part 2.

Proof of Part 3: For a ring lattice, we have

L ≈ n

2np̂
≈ 1

2p
, and K2 ≈ (2 + ε) log(n)

log(np)

for large enough n and small ε > 0. Therefore, it suffices to prove that for some
ε > 0,

1

2p
>

(2 + ε) log(n)

log(np)

⇔ log(n) + log(p) > 2(2 + ε)p log(n)

⇔ log(n)(1 − 2(2 + ε)p) + log(p) > 0,

which is true since p < 1/4 and for large enough n.
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A.6. Proof of Theorem 3.6

Power analysis as βn approaches 0:

We let βn be a function of n, say, βn = h
nl , for some h, l > 0. Note that cut-

off for rejecting the clustering coefficient does not change with βn, as should be

expected for a test. Therefore we need to prove that

(

n

3

)

SA is upper bounded by

c2
n2δβ2

Cn
for some constant c2 with high probability. The deterministic quantity

SAR
is still upper bounded by this quantity for any value of βn > 0. For SAE

, the
random variable is upper bounded by a constant times the expectation happens
with high probability for any βn that is small. However, in order for the upper

bound to be smaller than c2
n2δβ2

Cn
, we get a restriction that

nδ2 ≤ c8
n2δβ2

n

Cn
⇒ βn > c9

√

δCn

n
.

If we assume p 
 nε

n , then we obtain βn s n−1/2+ε, for some ε > 0.

By comparing the upper bound for SAER
with C2

n2δβ2
n

log n , we get another re-
striction on the growth rate of βn, namely,

βn s
δ log n

n
.

Similarly, if we assume p 
 log n
n , then we obtain βn s n−1+ε, for some ε > 0.

Therefore we can let βn = O( 1
n1/2−ε ), and still have power tend to 1.

Power analysis as βn approaches 1: Suppose 1 − βn ≥ 1
nl where l =

ε
12

log(np)
log n . We retrace the steps from the proof of part 3 until the definition of

K ′
2. Next, note that

K2

K ′
2

=
(2 + ε) log((1 − βn)np)

(2 + ε/2) log(np̂)

≥
(

1 +
ε

6

) log(np) + log(1 − βn)

log(np) + log(1 + 1
√

n log(n)
)

≥
(

1 +
ε

6

)(

1 − ε

12

) log(np)

log(np) + log(1 + 1
√

n log(n)
)
.

As before, note that
(

1 + ε
6

) (

1 − ε
12

)

≥ 1, and log(np)

log(np)+log(1+ 1
√

n log(n)
)

converges

to 1 as n → ∞, so we can choose ε to ensure that the product is greater than
1. The remaining steps follow from the proof of part 2.

A.7. Proof of Theorem 3.7

We first obtain asymptotic order of the term S − E[S] following ideas in Gao
and Lafferty (2017b). We note

E[(S − E[S])2] = O

(

θ3
max

n2

)

.
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Since convergence in MSE implies convergence in probability,

S = E[S] + Op

(

θ1.5
max

n

)

,

Since E[S] 
 3θ2
max, this implies

S

E[S]
= 1 + Op

(

1

nθ
1/2
max

)

= op(1).

A modification of the limit result in Gao and Lafferty (2017b) also yields

√

(

n

3

)

(T − E[T ])

√
ΘT

D→ N(0, 1).

Applying Slutsky’s theorem we have

√

(

n

3

)

E[T ](T/E[T ] − 1)

√
ΘT S/E[S]

D→ N(0, 1).

Now we note that the deterministic quantities, E[T ] = O(θ3
max), and ΘT =

Ω(θ3
min), such that 1√

ΘT
= O( 1

θ1.5
min

). Then we have

√

(

n

3

)

E[T ](E[S]/S − 1)

√
ΘT

= O(n1.5)O(θ3
max)O(

1

θ1.5
min

)Op(
1

nθ
1/2
min

)

= Op(
√

n
θ3

max

θ2
min

) = op(1),

due to our assumption that θmax 
 θmin << 1√
n

.

Therefore, we obtain the desired result.

A.8. Proof of Theorem 3.8

We follow the structure of the proof of Theorem 3.4. Note when β = 0, the
asymptotic normality result in Theorem 3.7 implies that P (C > K1,α(θ)) → α

and assumption A.2, states that K1,α(θ̂) = K1,α(θ) + op(1). Combining these
two results we have the asymptotic level

P (C > K1,α(θ̂)) → α.

When β > 0, similarly to the proof of Theorem 3.4, we define two auxiliary
graphs from the observed graph A. The graph AR as before is obtained by
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removing the inhomogeneous random graph edges from the superimposed model.
Then AR is a deterministic ring lattice with n vertices and degree 2βδ. The
graph AE denotes the inhomogeneous random graph component obtained by
removing the ring lattices edges from the graph, with n vertices and expected

density θ̃ = (1−β)2δ
n−1 .

Since our assumptions imply Kα(θ̂) = (1 + op(1)) t(θ)
s(θ) , then to show asymp-

totic power converges to 1, we need to prove that

P

(

TAR

SA
≥ Cn

t(θ)

s(θ)

)

→ 1, (12)

for a sequence Cn → ∞ at any rate. Following the same argument in the proof
of Theorem 3.4, this is equivalent to,

P

⎛

¿

(

n

3

)

SA ≤ c2
nδ2β2

Cn
t(θ)
s(θ)

À

⎠→ 1. (13)

Using similar notations as in the proof of Theorem 3.4, We note SA consists of
three parts, namely, S structures from ring lattice, S structures from inhomo-
geneous random graph component and incidental structures formed when there
is an inhomogeneous random graph edge attached to either side of a ring lattice
edge.

(

n

3

)

SA =
∑

i,j,k

{(SAE
)ijk + (SAR

)ijk + (EAE
)ij(EAR

)jk}.

The middle term is upper bounded by
∑

i,j,k(SAR
)ijk ≤ c4nδ2β2 < c2

nδ2β2

Cn
t(θ)
s(θ)

,

by assumption of Cn
t(θ)
s(θ) → 0,

As before, defining SAE
=
∑

i,j,k(SAE
)ijk the expectation and variance of

SAE
is,

E[SAE
] s n3θ2

min(1 − β)2, and E[SAE
] r n3θ2

max(1 − β)2

V [SAE
] r n4θ3

max(1 − β)3.

Then from Chebyshev’s inequality

P (|SAE
−E[SAE

]| ≥ E[SAE
]) ≤ V [SAE

]

(E[SAE
])2

≤ c5n4θ3
max(1 − β)3

n6θ4
min(1 − β)4

=
c5

n2 θ4
min

θ3
max

(1 − β)
,

for some constant c5. Since θmin 
 θmax >> 1
n ,

P (SAE
≤ c6n3θ2

max(1 − β)2) ≥ 1 − o(1).

By our assumption of Cn
t(θ)
s(θ) → 0, and the fact that n2θ2

max 
 δ2,

c6n3θ2
max(1 − β)2 < c7

nδ2β2

Cn
t(θ)
s(θ)

.
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For the third term, we proceed as follows. Recall, (dE)i denotes the degree
of ith node in the graph AE and dmax = maxi(dE)i is the maximum degree of
a node in AE . From Corollary A.1.10 of Alon and Spencer (2004), we have the
following proposition,

Proposition A.1. For independent Bernoulli random variables Xu ∼ Bern(pu),
u = 1, . . . , n and p = 1

n

∑

u pu, we have

P (
∑

u

(Xu − pu) ≥ a) ≤ exp(a − (a + pn) log(1 + a/pn)).

Applying this to the sum (dE)i, we note that

P ((dE)i − 2δ ≥ c82δ) ≤ exp(c82δ − (c82δ + 2δ) log(1 + c8)).

Taking an union bound over all n vertices, we have

P (dmax ≥ (1 + c8)2δ(1 − β)) ≤ exp(−c9(2δ + log n)) → 0,

as long as δ >> log n. We use the notation SAER
=
∑

ijk(EAE
)ij(EAR

)jk and
bound the total number of incidental “V” shaped structures as

P

(

SAER
≥ 2nδβ(n − 2)

δ(1 − β)

n − 1

)

≤ P (dmax ≥ (1 + c8)2δ(1 − β)) = o(1).

We note nδβ(n−2) δ(1−β)
n−1 < c2

nδ2β2

Cn
t(θ)
s(θ)

, by our assumptions. Then combining the

three results we have

P

⎛

¿

(

n

3

)

SA ≤ c2
nδ2β2

Cn
t(θ)
s(θ)

À

⎠ ≥ 1 − o(1) → 1. (14)

Appendix B: Additional simulations and results

B.1. Simulation for finite sample behavior of results in

Propositions 3.1 and 3.2

We perform a simulation to verify the asymptotic expression for the expected
value of C in NW-ER superimposed model given in Proposition 3.1. We consider
two scenarios, one with n = 5000 and δ = 30 and another with n = 10000, and
δ = 75 and generate 100 networks from the NW-ER superimposed model with
increasing β (Figure 10). We note that for n = 10000 and δ = 75, such that the
conditions of the proposition are reasonably satisfied, the theoretical result is
very close to the sample average of C over the 100 networks.

To empirically verify the bounds in the proposition 3.2, we conduct a simu-
lation with n = 1000 and average degree δ = 20. Figure 11 presents the results
with 50 simulated networks. In Figure 11 (a), we simulate networks from the
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Fig 10: Theoretical asymptotic expectation and observed sample mean of C over
100 networks.

Fig 11: (a) Comparison of observed mean of C and theoretical upper bound from
Proposition 3.2 for inhomogeneous random graph with increasing ratio of pmin

and pmax, (b), (c), (d) Comparison of observed mean of C and theoretical lower
bound from Proposition 3.2 for superimposed inhomogeneous random graph
model with increasing β for 3 different cases of the ratio of pmin and pmax. In
each case the observed mean of C is computed over 50 simulated networks.

inhomogeneous random graph model (therefore β = 0) with different values of
the ratio of pmin and pmax. Clearly the theoretical upper bound computed in
part (a) of the proposition is above the actual average of the C values in this
case, with the difference decreasing as the ratio of pmin to pmax increases. In
Figure 11 (b), (c), and (d), we present results of the observed average of C
from the NW superimposed inhomogeneous random graph model with varying
ratio of pmin and pmax and mixing proportion β. In each case, we observe the
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theoretically computed lower bound is below the observed average, with the gap
decreasing as the ratio of pmin to pmax increases.

B.2. Comparing community detection methods on real datasets

We perform a simulation to compare the effect of using different community
detection methods on the bootstrap test under a DCSBM null. In figure 12 we
generate 500 networks to obtain the sampling distributions for both C and L for
five real world networks using SCORE Jin et al. (2022) and spectral methods
for community detection. We find that the sampling distributions appear to be
similar, indicating the choice of community detection method does not have a
large impact on the test.

B.3. Results from the asymptotic test on real datasets

Finally, we present the results from the asymptotic test with ER null model in
Table 4. In each case we present the cutoff values for rejection for KC and KL.
We will call a network small world if the observed value of C is greater than the
cutoff KC and the observed value of L is less than the cutoff KL. The cutoff KC

is the theoretical 95th quantile of the asymptotic distribution of C derived in
Theorem 3.4, while the cutoff KL is the value K2 defined in Theorem 3.5. We
note that for all the networks (except for the Power grid network, the observed
value of L is less than the small-world cutoff of twice the average expected path
length The observed value of C is universally higher than the cutoff.

An interesting point we note is that while many networks are not deemed to
be small-world in Table for bootstrap tests because their observed average path
lengths are higher than even the high quantiles of the distribution of average
path length, they are deemed small-world in Table 4. This is because their
observed path lengths are roughly within twice the expected average path length
under the ER model, which is effectively the cutoff the asymptotic test uses.
This observation is in line with our observation in the simulation showing the
distribution of L is highly concentrated around its mean.

Table 4

Results from the asymptotic small world test for the ER null mode. A network is small

world if the observed C is greater than KC and the observed L is less than KL.

Network C KC L Kl Decision
C Elegans 0.132 0.039 2.455 4.255 Reject
Dolphin 0.225 0.034 3.357 4.99 Reject
Football 0.314 0.012 2.508 3.995 Reject
Karate 0.117 0.068 2.408 4.541 Reject

Les Miserables 0.414 0.024 2.641 4.573 Reject
Macaque Cortex 0.266 0.019 2.245 3.374 Reject
Political Blogs 0.211 0.0006 2.737 4.696 Reject
Political Books 0.267 0.015 3.079 4.354 Reject

Power Grid 0.103 0.0008 18.989 17.324 Fail to Reject
Word Adjacencies 0.089 0.015 2.536 4.636 Reject
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Fig 12: Comparison of community detection methods.
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