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ABSTRACT While Convolutional Neural Networks (CNNs) excel at learning complex latent-space
representations, their over-parameterization can lead to overfitting and reduced performance, particularly
with limited data. This, alongside their high computational and memory demands, limits the applicability
of CNNs for edge deployment and applications where computational resources are constrained. Low-rank
matrix approximation has emerged as a promising approach to reduce CNN parameters, but existing methods
often require pre-determined ranks or involve complex post-training adjustments, leading to challenges
in rank selection, performance loss, and limited practicality in resource-constrained environments. This
underscores the need for an adaptive compression method that integrates into the training process,
dynamically adjusting model complexity based on data and task requirements. To address this, we propose
an efficient training method for CNN compression via dynamic parameter rank pruning. Our approach
integrates efficient matrix factorization and novel regularization techniques, forming a robust framework
for dynamic rank pruning and model compression. By using Singular Value Decomposition (SVD) to
model low-rank convolutional filters and dense weight matrices, and training the SVD factors with
back-propagation in an end-to-end manner, we achieve model compression. We evaluate our method on
modern CNNs, including ResNet-18, ResNet-20, and ResNet-32, using datasets like CIFAR-10, CIFAR-100,
and ImageNet (2012). Our experiments demonstrate that the proposed method can reduce model parameters
by up to 50% and improve classification accuracy by up to 2% over baseline models, making CNNs more
feasible for practical applications.

INDEX TERMS Convolutional neural network, dynamic rank selection, image classification, low-rank
factorization, model compression, model pruning.

I. INTRODUCTION
The versatility of deep Convolutional Neural Networks
(CNNs) is well-documented, finding applications in various
areas, such as computer vision [1], [2], [3], remote sens-
ing [4], [5], [6], [7], medical diagnosis [8], and autonomous
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driving [9], among others. CNNs are favored due to their
ability to automatically extract features, promote sparsity
and weight sharing, and for their end-to-end trainability.
However, as CNNs are increasingly utilized to tackle complex
problems, their underlyingmodels have becomemore sophis-
ticated, employing a large number of trainable parameters in
the form of convolutional filters and fully-connected weight
matrices [2]. While these large-scale models are viable
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in computer vision applications with abundant training data
and computational resources, they pose challenges in envi-
ronments with limited training examples or computational
resources, such as remote sensing and edge computing [10].
Furthermore, traditional CNN architectures are static and
cannot adapt their complexity during training to match the
intricacies of the data, leading to potential overfitting on
simple tasks, which not only results in inefficient learning
but also hinders their deployment in scenarios where resource
efficiency is paramount.

Several model compression techniques have been pro-
posed to address this issue, including knowledge distilla-
tion [11], [12], [13], [14], [15], quantization [16], [17],
[18], [19], [20], pruning [17], [21], [22], and special con-
volution operations [23], [24], [25]. However, the majority
of these methods target pretrained models and do not
integrate compression into the training process, which
prevents the exploitation of potential efficiencies during
learning. This lack of integration can lead to performance
degradation after compression and typically necessitates
retraining. Consequently, methods that can adaptively com-
press models during training are highly desirable, reducing
redundancy without compromising performance or requiring
extensive post-training modifications. In contrast, low-rank
factorization methods offer a promising model compres-
sion approach [6], [26], [27] as they approximate weight
matrices/convolutional filters with low-rank matrix/tensor
factors, yielding efficient model compression [10], [28],
[29], [30], [31]. Nonetheless, the successful deployment of
such a low-rank factorized model necessitates meticulous
rank selection tailored to the baseline model architecture
and the complexity of the data or task at hand, a process
that is often challenging and infeasible before training.
Our motivation stems from these challenges; we aim to
develop a dynamic compression method that eliminates
the need for predetermined ranks and post-training inter-
ventions. By enabling adaptive rank determination during
training, we strive to make CNNs more efficient and
practical for deployment in diverse, resource-constrained
environments.

Low-rank matrix factorization approaches can, in general,
be divided into three categories: (i) post-training low-rank
factorization followed by pruning and fine-tuning [28], [29],
[30], [31]; (ii) low-rank factorization prior to training with
a fixed architecture [6], [32]; and (iii) models factorized
prior to training with an adaptable architecture approach [33],
[34], [35], [36]. The third category has recently attracted
interest due to its ability to leverage redundancies in train-
able parameters during training, thus saving computational
resources. However, methods in this category often have
limited applicability in terms of the type of layer they
act on, require post-training interventions and fine-tuning
or retraining, and can lead to improper convergence and
performance deterioration.

To address the above, our research introduces the following
key contributions to the field of CNN compression:

1) Dynamic Parameter Rank Pruning (DPRP): We intro-
duce DPRP, a novel training method that integrates
compression directly into the CNN training pipeline.
It dynamically adapts the rank of parameter layers over
the course of training based on data and task complex-
ity, leveraging Singular Value Decomposition (SVD)
with innovative parameter matrix reshaping to model
the convolutional filters and dense weight matrices.
Unlike traditional methods, DPRP does not require
pre-determined ranks or post-training adjustments,
allowing for adaptive and real-time compression during
the training process.

2) Innovative Regularization Techniques: We have devel-
oped a framework that combines efficient matrix
factorization with novel regularization techniques.
These regularizations enforce SVD conditions during
training, promoting orthogonality, hierarchical sorting
of singular values, and sparsity in minor singular
values. This combination of techniques is designed to
enhance the efficiency of rank pruning, resulting in
effective model compression while preserving or even
enhancing performance.

3) Efficiency Across Various Datasets and Models: Our
method demonstrates significant effectiveness in com-
pressing various baseline models across a range of
training datasets. It maintains or even enhances model
performance, showcasing its adaptability and utility in
diverse application scenarios.

The remainder of this paper is organized as follows.
Section II offers a comprehensive literature review on
network compression. Our proposed method is presented
in Section III, followed by extensive experimental studies
in Section IV. Subsequent Sections V and VI present
discussions and concluding remarks, respectively.

II. RELATED WORK
A. KNOWLEDGE DISTILLATION
In the literature, numerous techniques have been proposed
to address the model compression. A prominent approach
is knowledge distillation, where a large, accurate model
(the teacher) guides a smaller model (the student) by
an appropriate transfer of knowledge [11]. Although this
technique improves the efficiency of the student model by
leveraging the rich representations learned by the teacher
model, most current methods focus on distilling knowledge
after the teacher model has been trained [12], [13], [14], [15],
potentially missing opportunities for compression during the
training process itself.

B. QUANTIZATION
Quantization, another model compression technique, reduces
the precision of network parameters and activations to
decrease memory footprint and accelerate computations [16],
[17], [18]. However, these techniques struggle to bal-
ance quantization-induced loss while maintaining sufficient
model capacity; and most methods focus on post-training
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quantization [19], [20], leaving the potential for exploring
in-training quantization that allows for simultaneous com-
pression. Recent advancements have addressed this issue
through quantization-aware training (QAT) and dynamic
precision quantization. References [37] and [38] propose
frameworks for QAT, preserving model accuracy while
improving computational efficiency. Additionally, mixed-
precision QAT has been explored to enhance computational
efficiency and reduce energy consumption in photonic neural
networks [39].

C. PRUNING
Pruning techniques have also been employed for model
compression by identifying and removing redundant or
less important parameters [17]. However, these techniques
usually involve an iterative process of pruning and subsequent
fine-tuning, which can be computationally expensive [40],
[41], [42]. Despite the majority of pruning methods being
implemented post-training [21], [22], [43], some recent
approaches have considered pruning during the training
phase, predominantly concentrating on enforcing sparsity or
binary weights [44], [45].

D. EFFICIENT CONVOLUTIONAL LAYERS
There has been interest in specially designed convolutional
layers [46], such as depth-wise separable convolutions, for
their potential to reduce model complexity. These layers aim
to factorize standard convolutions into separate depth-wise
and point-wise convolutions, decreasing the number of
parameters and operations. However, current studies primar-
ily focus on replacing standard convolutions in predefined
architectures [23], [24], [25], leaving unexplored research
space for adaptive and dynamic integration of such layers
during training.

E. LOW-RANK METHODS
Low-rank factorization approaches play a vital role in model
compression by reducing the architecture and size of the
factorized model [47], [48], [49], [50]. Depending on the
operational characteristics of low-rank matrix factorization,
these methods can, in general, be divided into three
categories.

1) COMPRESSION POST-TRAINING
The first category involves post-training low-rank factoriza-
tion followed by pruning and fine-tuning [28], [29], [30],
[31], [51]. Similar to other model compression techniques,
these methods do not prioritize model compression during
training, leading to a performance decline after pruning.
Extensive retraining is required to restore model perfor-
mance.

2) COMPRESSION PRIOR-TRAINING
The second category is defined by low-rank factoriza-
tion before training with a fixed architecture [6], [32].

In this approach, the low-rank factors are trained during
the training phase, making these methods more resilient to
performance degradation after pruning, and thus requiring
less retraining for fine-tuning. However, determining the
appropriate ranks for factorization in both these methods
requires considerable effort/time and multiple iterations.
Moreover, enforcing a uniform compression rate across
all network layers is inefficient, as different layers exhibit
varying degrees of redundancies and susceptibility to com-
pression. This uniform low-rank strategy often leads to
deteriorated performance. There are methods that emerge
as a mixture of the above two approaches, [52], utilizing
training with full-rank decomposition while maintaining
SVD conditions in the process followed by post-training
singular values pruning and fine-tuning to recover the
degraded performance.

3) COMPRESSION WHILE-TRAINING
Recently, attention has shifted towards the third category
of low-rank factorization, which involve factorizing models
before training with an adaptable architecture approach [33],
[34], [35], [36]. In this approach, models are generally
factorized initially with full rank. During the training
process, the factors are gradually transformed into low-
rank structures. These methods exploit redundancies in
trainable parameters during training, eliminating the need
for post-training fine-tuning thereby saving effort, time,
and computational resources. To this effect, one study [33]
applied this approach to speech recognition, wherein only
the fully-connected layers were factorized with actual model
compression conducted post-training.

Within image classification, [53] suggested the use of
rank-adaptive evolution on a low-rank manifold for training
and compression of networks. This approach, interestingly,
avoids the need for full weight representation but it was
limited to matrix-valued layers only. In another attempt,
Tucker-2 decomposition was used to factorize convolutional
layers with regularization gates and funnel function to
determine suitable ranks [35]. However, model compression
was implemented post-training followed by a fine-tuning
stage that incorporated the evaluation of computational costs
relative to the original baseline model, layer swapping, and
training of the resultant network from scratch. Another study
proposed a budget-aware Tucker-2 compression approach
taking model size constraints into account [36]. Imposing
stringent constraints on model capacity during the training
phase showed an improper convergence in the rank and
accordingly in the number of trainable parameters over the
course of training across different layers. With a new training
strategy that alternates between low-rank approximation
and standard training after a set number of optimization
iterations, Tensor Rank Pruning (TRP) [34] exploits both
space-wise [54] and channel-wise [55] correlations to
decompose convolutional filters. Unlike the approach of
training from scratch, this method is employed during
training.
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However, these investigations highlight a need for a truly
dynamic model compression method that trains from scratch
and adaptively determines rank based on data and task com-
plexity, without post-training fine-tuning or interventions.
While the aforementioned approaches emphasize adaptivity
and efficiency, recent methods have also begun to explore
complementary objectives like adversarial robustness. For
example, a robust low-rank training algorithm [56] enforces
approximate orthonormal constraints on factorized weight
matrices in fully-connected layers, preserving adversar-
ial robustness and accuracy. While this robust approach
focuses on stability and resilience, our method prioritizes
dynamic rank adaptation across both fully-connected and
convolutional layers, eliminating the need for post-training
interventions. By integrating compression into the learning
pipeline and adjusting ranks on-the-fly, we directly address
the gap identified in prior works, ensuring both efficiency and
performance.

In doing so, our approach directly addresses this gap,
operating from scratch and adaptively adjusting ranks for
both fully-connected and convolutional layers, thus fully inte-
grating compression into the training pipeline and ensuring
both efficiency and performance.

Furthermore, based on the type of factorization, low-rank
factorization methods, in general, can be categorized into
matrix and tensor methods [33], [35], [36], [57]. While
some tensor-based low-rank factorization methods provide a
wider scope for compression [30], [58], [59], [60], they often
require the determination of multiple ranks per layer in the
network, making their appropriate selection a tedious task.
Therefore, our proposed approach utilizes the SVD matrix
factorization method.

III. PROPOSED METHOD
CNNs primarily consist of convolutional and fully-connected
layers. In a convolutional layer, as shown in Fig. 1, trainable
parameters reside in the convolutional filter. In a fully-
connected layer, as shown in Fig. 2, trainable parameters are
arranged in dense weight matrix. In this work, we demon-
strate how SVD matrix factorization, coupled with proposed
regularizations, can effectively model these elements of
deep CNNs for dynamic compression via parameter rank
updates during training. This, in turn, reduces redundancy
and enhances performance, even when applied to optimized,
efficient, standard and state-of-the-art deep CNNs.

A. NOTATION AND SVD PRELIMINARIES
Throughout this paper, we adhere to the following notation:
scalar variables are represented by lowercase letters (e.g., x),
vectors are indicated by boldface lowercase letters (e.g., x),
matrices are denoted by boldface uppercase letters (e.g., X),
and tensors are signified by underscored boldface uppercase
letters (e.g.,

¯
X). The identity matrix is symbolized by I, and

real numbers are signified by R. To represent the entries of
a vector, matrix, or tensor, we use the notation [·]i, where i
denotes a set of indexes. XT denotes the transpose of X.

FIGURE 1. A typical convolutional layer.

We use |x| to denote the absolute value of a scalar x. The
ℓ1 norm of a vector x is ||x||1 =

∑
i |[x]i|, i.e., the sum of the

absolute values of its elements. For a matrix X, the ℓ1 norm
is the sum of absolute values of all its elements: ||X||1 =∑

i,j |[X]i,j|. The Frobenius norm of a matrix X is given by

||X||F =

√∑
i,j[X]

2
i,j, and the ℓ2 norm (Euclidean norm)

of a vector x is ||x||2 =

√∑
i[x]

2
i . Throughout this paper,

these norms are used to quantify magnitudes and constraints
on vectors and matrices in our low-rank factorization and
compression framework.

Compact SVD, also referred to as SVD in this paper,
is a powerful mathematical technique extensively utilized
across various domains, including dimensionality reduction,
data compression, and collaborative filtering [33], [61].
It decomposes a matrix into: the left singular vectors U, the
singular values (σ) in diagonal matrix 6, and the transposed
right singular vectors VT . In mathematical terms, given A ∈

Rm×n of rank r , the SVD factorization is expressed as A =

U6VT , where U ∈ Rm×r , 6 ∈ Rr×r , and VT
∈ Rr×n.

SVD features several crucial properties such as orthogonality,
whereby U and V are orthogonal matrices, i.e., UTU = I
and VTV = I, meaning their columns form an orthonormal
basis. Moreover, σ are non-negative and are arranged in
descending order, thereby enabling the identification of the
most significant components in the matrix. The rank of the
matrix can be discerned by examining the number of non-zero
singular values, offering insights into the inherent structure
and dimensionality of the original matrix.

B. FACTORIZED CONVOLUTIONAL AND
FULLY-CONNECTED LAYER
1) CONVOLUTIONAL LAYER
Consider convolutional filter

¯
K ∈ RS×C×L2×L1 . It is a 4-way

tensor comprising S 3-way kernels of pixel width L1, pixel
height L2, and channel depth C . Each kernel convolves with
an input image

¯
X ∈ RC×H×W , which is again a 3-way tensor

of pixel width W , pixel height H , and channel depth C . The
convolution is performed with padding parameters (p1, s1)
and (p2, s1), controlling padding and stride along the width
and height of

¯
X, respectively. The result of the convolution

is a 3-way output tensor
¯
Y =

¯
X ∗

¯
K ∈ RS×H ′

×W ′

, where
W ′

= (W−L1+2p1)/s1+1 andH ′
= (H−L2+2p2)/s2+1,

as shown in Fig. 1. In the case of symmetric convolution,
which is typically the case, L1 = L2 = L, p1 = p2 = p,
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FIGURE 2. A typical fully-connected layer.

and s1 = s2 = s. The number of trainable parameters
contained in a standard convolutional filter is Pc = SCL1L2.

To factorize a convolutional layer, we first consider
reshaping of tensor

¯
K into matrixM ∈ RSC×L1L2 so that

[
¯
K]s,c,l2,l1 = [M]i,j, (1)

where i = (s − 1)C + c and j = (l2 − 1)L1 + l1 with
s = 1, 2, . . . , S, c = 1, 2, . . . ,C , l2 = 1, 2, . . . ,L2,
and l1 = 1, 2, . . . ,L1. Next, we consider that M is of
rank r ≤ min{SC,L1L2}, attaining SVD M = U6VT ,
so that [M]i,j =

∑r
g=1[U]i,g[6]g,g[V]j,g, where i = 1,

2, . . . , SC and j = 1, 2, . . . ,L1L2. Thus, effectively, through
the low-rank structure of M, convolutional filter K is
factorized as

[
¯
K]s,c,l2,l1 =

r∑
g=1

[U](s−1)C+c,g[6]g,g[V](l2−1)L1+l1,g (2)

for every s = 1, 2, . . . , S, c = 1, 2, . . . ,C , l2 = 1, 2, . . . ,L2,
and l1 = 1, 2, . . . ,L1. The particular reshaping/matricization
of

¯
K to M was selected in order to reduce the number of

trainable parameters and computational overhead. Instead of
training the entries of

¯
K, we train the entries of its factors

in U ∈ RSC×r , V ∈ RL1L2×r , and 6 ∈ Rr×r . Thus, the
number of trainable parameters in a factorized convolutional
layer is given by Pfc = r(SC + L1L2 + 1). Accordingly,
the proposed factorization constitutes parameter compression
when Pfc ≤ Pc or, equivalently,

r ≤
SCL1L2

SC + L1L2 + 1
. (3)

The corresponding compression rate, as a function of r , is

Rfc(r) = 1−
Pfc
Pc

= 1−
r(SC + L1L2 + 1)

SCL1L2
. (4)

2) FULLY-CONNECTED LAYER
In the case of a fully-connected layer, a dense weight matrix
W ∈ RD2×D1 is multipliedwith input x ∈ RD1 resulting in the
output y = Wx ∈ RD2 . The number of trainable parameters
in a standard fully-connected layer is given by Pf = D1D2.
For a factorized fully-connected layer,W is considered to be
of low rank r ≤ min{D1,D2}, admitting SVD W = U6VT ,
so that

[W]d2,d1 =
r∑

g=1

[U]d2,g[6]g,g[V]d1,g, (5)

FIGURE 3. The variation in factor sizes, represented by the initial rank θ

and the final rank φ.

for d2 = 1, 2, . . . ,D2 and d1 = 1, 2, . . . ,D1. That
is, instead of learning W, the proposed method learns
the SVD factors in U ∈ RD2×r , V ∈ RD1×r , and
6 ∈ Rr×r . Accordingly, the number of trainable parameters
in a factorized fully-connected layer is given by Pff = r(D1+

D2 + 1). For the factorization to accomplish compression we
need Pff ≤ Pf or, equivalently,

r ≤
D1D2

D1 + D2 + 1
. (6)

The attained compression rate, as a function of r , is

Rff(r) = 1−
Pff
Pf

= 1−
r(D1 + D2 + 1)

D1D2
. (7)

C. FACTOR INITIALIZATION AND TRAINING
Below we present the proposed training of the parameter
factors of a layer, whether convolutional or fully-connected.
For ease in notation, we denote (h = SC,w = L1L2) if
the layer is convolutional or (h = D2,w = D1) if the
layer is fully-connected. We begin the model training with
SVD-factorized convolutional and fully-connected layers of
full-rank θ = min{h,w} with objective to reduce redundancy
and converge to final rank φ, as illustrated in the Fig. 3. Using
SVD-factorized weights as initialization for these layers
avoids SVD convergence related issues. Further, starting with
a full-rank initialization ensures that the model is similar to
baseline in terms of number of trainable parameters and has
sufficient capacity to learn the features in accordance with
data complexity and task from the beginning.

The SVD structure (orthonormality of singular-vectors
and sortment singular values) and preferred low rank are
determined implicitly throughout training via intelligently
designed loss functions. Accordingly, the total loss function
considered for training is

Ltotal = Lapp + λstrLstr + λcompLcomp, (8)
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where λstr and λcomp are loss-weighing hyper-parameters.
Lapp is the loss function pertinent to the application at hand
(e.g., image classification, object detection, segmentation).
Lstr is the loss responsible for maintaining the SVD structure
of the parameter factorizations across the layers. Finally,
Lcomp is the function responsible for promoting parameter
rank pruning and, thus, model compression. The significance
of Ltotal lies in its ability to balance these three aspects—
performance, structure, and compression—within a single
optimization framework. By carefully selecting the hyper-
parameters λstr and λcomp as discussed in Section IV-B,
we can control the trade-offs between maintaining high task
performance, enforcing the desired mathematical properties
of the factorization, and achieving model compression. Next,
we present the three proposed losses in detail.

1) APPLICATION LOSS
This loss is pertinent to the application at hand and can
vary across CNN deployments. For the sake of numerical
experimentation, in this paper we consider an entropy-based
classification loss

Lapp = −
1
nc

nc∑
n=1

yn ln (ŷn), (9)

where nc denotes the number of classes in the classification
task, yn indicates the ground-truth, and ŷn represents the
prediction. It is worth noting that this loss term strives
to improve classification performance on the training data,
regardless of factor structure and compression, which will
have to be regulated by the two loss terms presented below.

2) STRUCTURE LOSS
Next, we create a loss term that promotes SVD structure and,
thus, facilitates adaptive rank and parameter compression.
We recognize that there are two main components in the
SVD structure: (i) orthonormality of the singular vectors and
(ii) sortment of the singular values. Accordingly, we analyze
Lstr in two corresponding sub-terms: Lstr = µorthLorth +

µsortLsort, where µorth and µsort are hyper-parameter weights.
Denoting by {Ul, 6l,Vl} and rl the SVD-factors and
SVD-rank for layer l, respectively, we define

Lorth =
1
L

L∑
l=1

1

r2l

(
∥UT

l Ul − I∥F + ∥VT
l Vl − I∥F

)
, (10)

where L is the total number of factorized layers in the
network. This loss term promotes orthogonality to the left-
and right-hand singular matrices, across all layers, with an
emphasis normalized by each layer’s rank.

Next, we design a loss term that promotes sortment of the
singular values in {6l}

L
l=1 so that dynamic truncation could

result to optimal low-rank approximation, in accordance with
the SVD principles. Specifically, Lsort strives to accomplish
[σl]j ≥ [σl]j+1 ≥ 0 ∀ j ∈ [1, rl) and ∀ l ∈ {1, 2, . . . ,L}.
Let the set Il contain the indices of all singular values of
layer l that are out of desired order; that is, Il = {j ∈

{2, . . . , rl} : [σl]j > [σl]j−1}. Accordingly, define the
cardinality (number of entries) of Il as γl = |Il |. Also, let
ηl denote the number of negative entries in σl . Moreover,
define function χ : N → R+

0 such that, for every a ∈ N,
χ (a) = 1/a, if a > 0, andχ (a) = 0, if a = 0. Then, we define
the sorting loss term as

Lsort =
1
L

L∑
l=1

χ (γl)
rl−1∑
j=1

max{0, [σl]j+1 − [σl]j}

+ χ (ηl)
rl−1∑
j=1

max{0,−[σl]j}. (11)

The scaling terms χ (γl) and χ (ηl) are used so as to prevent
layers with large γl and ηl , respectively, from dominating the
loss. Overall, Lsort promotes that, across l, the entries of σl
are non-negative and arranged in descending order.

3) COMPRESSION LOSS AND PRUNING STRATEGY
To facilitate dynamic compression we perform dynamic rank
pruning. We denote by τl the reduced rank of layer l as the
highest value of i for which |[σl]i+1| > ϵ|[σl]i| ∀ i ∈

[1, rl), for some pruning threshold ϵ ∈ (0, 1) (hyper-
parameter). Then, we perform rank pruning by removing all
singular values {[σl]j}j>τl (see Section III-D below). To make
sure that this pruning comes with minimum approximation
loss, we promote sparsity in {[σl]j}j>τl by means of the
compression loss term:

Lcomp =
1
L

L∑
l=1

1
(rl − τl)||σl ||2

rl∑
i=τl

|[σl]i|. (12)

In Lcomp, we divide by ||σl ||2 in order to prevent layers
with relatively larger minimal singular values across layers
to dominate the regularization term. Also, we divide by
rl − τl in order to avoid domination by layers with a
relatively large number of singular values to be reduced.
This arrangement promotes pruning of the minimal singular
values, facilitating model compression through dynamic rank
pruning in training.

D. MODEL COMPRESSION
While training, our DPRP method operates by contin-
uously monitoring the singular values in each layer’s
factorized parameters. For a given layer l, we dynamically
reduce the value of rl to τl by removing [σl]

rl
i=τl+1.

Accordingly, the corresponding trainable parameters are
removed from Ul and VT

l . Since the removed singular values
have been reduced throughout training, their influence on the
final convolution filter is minimal. Thus, their removal does
not significantly affect performance. If τl = rl , no trainable
parameters are removed and the network continues training
with the same number of trainable parameters as before.
At the end of training τl = φl , resulting in a compact model,
as illustrated in the bottom-half of Fig. 3.

To summarize, the key characteristics of our dynamic rank
pruning are as follows:
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• Adaptivity: The pruning process is not static; it adapts
during training based on the evolution of the singular
values, allowing the network to adjust its complexity in
response to the data and network architecture.

• Layer-wise Flexibility: Each layer can have a different
rank reduction, reflecting the varying degrees of redun-
dancy and importance across different layers.

• Integrated into Training: Unlike methods that apply
pruning post-training, our approach integrates rank
pruning into the training process, eliminating the need
for separate pruning and fine-tuning stages.

• Minimal Performance Impact: By focusing on sin-
gular values that have been reduced during training,
we ensure that pruning has minimal impact on the net-
work’s performance, as these singular values contribute
less to the overall function of the layer.

E. COMPARISON WITH EXISTING FRAMEWORKS
Several low-rank factorization and compression strategies
have been previously proposed, including post-training fac-
torization [28], [29], [30], tensor-based decompositions [30],
[36], [58], and methods that rely on a fixed or manually
selected rank prior to training [6], [32]. A key theoretical
distinction of our approach lies in the dynamic selection
of rank factors during training, grounded in the properties
of SVD. Unlike methods that predetermine the rank and
then project weights onto a low-dimensional subspace, our
approach leverages an adaptive pruning threshold based on
the singular values’ relative magnitudes. This ensures that
the retained subspace is continuously updated in response
to the evolving training dynamics, potentially leading to a
closer approximation of the optimal low-rank subspace at
convergence.

From a complexity standpoint, methods that compress
models post-training often incur additional computational
overhead due to multiple approximation and fine-tuning
steps. In contrast, our framework integrates compression
into the training process itself, theoretically reducing the
need for costly post-processing. Moreover, while some
factorization-based methods assume static architectures or
fixed ranks that may not align well with data complexity,
our dynamic approach imposes fewer structural assumptions.
Instead, it uses the descending order of singular values
as a natural mechanism to identify and prune redundant
parameters. This theoretically positions our method to
generalize across a wide range of architectures and training
conditions. The flexibility afforded by rank adaptation
during training may lead to improved parameter efficiency,
particularly when compared to frameworks that operate under
fixed low-rank constraints.

In summary, the theoretical novelty of our approach
rests on integrating adaptive rank selection seamlessly with
ongoing optimization. By doing so, we exploit the structure
of SVD and the hierarchical ordering of singular values to
maintain a compact and expressive model representation.
This contrasts with existing methods, which often treat

compression as a separate, post-hoc procedure or rely on
static assumptions that may not reflect the underlying data
or task complexity.

IV. EXPERIMENTATION
In this section, we detail the experimental datasets, baseline
models, evaluation metrics, experimental configurations, and
results obtained for the proposed method in comparison to
baselines and other comparative approaches for the image
classification applications.

A. DATASETS, BASELINE MODELS, AND EVALUATION
METRICS
Our image classification experiments utilize three com-
mon computer vision datasets: CIFAR-10 [62], CIFAR-
100 [62], and ImageNet (2012) [63], consisting of 10, 100,
and 1000 classes, respectively. CIFAR-10 and CIFAR-100
datasets both contain 50K training and 10K testing images of
32× 32 resolution. For both datasets, samples are uniformly
distributed across classes in the train and test sets. The
ImageNet dataset, on the other hand, contains approximately
1.2M training images, 50K validation images, and 150K
testing images with an average resolution of 469 × 387.
Due to the absence of ground-truth for the test set, the
validation set is utilized for testing. Standard transformations
and augmentations techniques are employed to increase data
variation in an online manner and provide a larger diverse
dataset while training [2], [64].

Baseline models for the CIFAR-10 and CIFAR-100
datasets utilize ResNet-20 and ResNet-32 networks,
respectively. On the contrary, the ImageNet dataset employs
ResNet-18 network as its baseline models [2]. ResNet-20
and ResNet-32 are generally considered smaller networks
suitable for CIFAR-10 and CIFAR-100 datasets.

We employ Top-1 and Top-5 accuracies as our primary
evaluation metrics for classification performance. Top-1
accuracy is the percentage of times the model correctly
predicts the highest ranked class, whereas Top-5 accuracy
is the percentage of times the top 5 predictions of the
model include the correct class. In addition, MMAC (Mega
Multiply-Accumulate operations per second) and GMAC
(Giga Multiply-Accumulate operations per second) are used
to gauge a model computational complexity, with smaller
MMAC/GMAC values denoting faster models.

For comparative methods, in case of code unavailability,
results are directly sourced from the corresponding pub-
lications. Since we train our baseline model from scratch
similar to methods [34], [35], [65], so, our baseline accuracy
differs from the comparative method that utilize Torchvi-
sion pre-trained weights [36], [59] for baseline accuracy.
Thus, for a fair comparison, if the baseline accuracy in
the source, A′source, differs from our calculated baseline
accuracy, A′ours, resulting from use of pre-trained weights
or the randomness in model initialization and other non-
deterministic uncertainties, we adopt a scaling method as
done in [35] to adjust the comparative accuracy Asource,
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TABLE 1. Values of hyper-parameters λ and ϵ for best performance using
different datasets and baseline models.

resulting in the scaled accuracy

Ascaled =
A′ours
A′source

Asource. (13)

B. EXPERIMENTAL CONFIGURATION
We undergo training for ResNet-20, ResNet-32 and
ResNet-18 until convergence is observed in the train-test
losses. This was accomplished with over 300 epochs for
ResNet-20 and ResNet-18, and 150 epochs for ResNet-18.
Each network is trained with a batch size of 256 images.
The training follows the method detailed in [2] which utilizes
the stochastic gradient descent optimizer with a momentum
of 0.9, a weight decay of 1e − 4, and an initial learning rate
of 0.1. We incorporate a commonly used reduce-on-plateau
strategy applied to the classification loss. This strategy
involves reducing the learning rate by a factor of 0.1 when the
loss does not decrease within a patience interval of 10 epochs,
allowing the training to continue with the reduced learning
rate.

In factorized models, we employ two distinct sets
of hyper-parameters: i) fixed and ii) tunable. The fixed
hyper-parameter set {λstr, µorth, µsort}, remains constant
across different baseline models and experimental datasets.
In contrast, the tunable hyper-parameters vary to adjust model
complexity depending on the baseline model and dataset.
The fixed hyper-parameters, used for relative scaling of Lstr
and other loss components, enforce SVD conditions such
as orthogonality, as discussed in Section III-A. These were
empirically set to λstr = 1, µorth = 1000, and µsort = 1.
The high value of µorth prioritizes the minimization of
Lorth among other loss terms during training. Additionally,
the values of tunable hyper-parameters λcomp and ϵ are
determined empirically, based on the specific dataset and
baseline model, as shown in Table 1. Hyper-parameter
λcomp enforces sparsity in the least singular values and
ϵ controls the relative threshold value for pruning the least
singular values. Thus, higher values of λcomp accelerate
the process of sparsity enforcement in the least singular
values, leading to faster compression. Similarly, higher values
of ϵ lower the threshold for the difference between the
least singular value and the second least singular value,
which makes the pruning process more aggressive. This
means that the rate of compression is directly influenced
by these parameters. Specifically, higher λcomp and ϵ values
generally result in a higher compression rate. However,
this must be balanced against potential impacts on model
accuracy, which necessitates empirical tuning based on the

TABLE 2. Comparison of methods on ResNet-20 and ResNet-32 using
CIFAR-10, showing Top-1 accuracy and parameter compression. Best
results for each evaluation metric are highlighted in bold text.

dataset and baseline model. For example, in the case of
the CIFAR-10 dataset with the ResNet-20 model, we set
λcomp = 0.1 and ϵ = 0.1 to achieve a balance between
effective compression and maintaining high accuracy. These
values were found to provide substantial compressionwithout
significant degradation in performance. Similarly, for the
CIFAR-100 dataset with the ResNet-32 model, we increased
λcomp = 1.0 and set ϵ = 0.001 to account for the
increased complexity of the dataset and the deeper network
architecture. This adjustment ensures sufficient compression
while preserving the model’s ability to learn the more
complex features required for the CIFAR-100 dataset. We
acknowledge that the expected compression rate may also
depend on the size of the kernels. Larger kernels typically
have more parameters and can offer greater opportunities
for compression. This is because larger kernels have more
singular values that can be pruned without significantly
affectingmodel performance. Our results, as shown in Table 2
and Table 3, demonstrate that our method achieves significant
compression while maintaining or even improving accuracy,
indicating the effectiveness of our approach across different
kernel sizes.

C. RESULTS
1) PERFORMANCE ANALYSIS ON CIFAR-10 DATASET
We compare our proposed method with a baseline and several
contemporary methods using the CIFAR-10 dataset on
ResNet-20 and ResNet-32 networks. The results are tabulated
in Table 2, focusing on Top-1 classification accuracy and the
degree of compression in the number of trainable parameters.
We do not include FLOPs comparison in the table due to
lack of FLOPs information for the comparative method. Two
different λcomp and ϵ configurations of the proposed method
are presented, namely, proposed 1 and proposed 2. For the
ResNet-20 based models, we use λcomp = 0.5 and ϵ = 0.01
for proposed 1, and proposed 2 uses λcomp and ϵ values
listed in Table 1. For the ResNet-32 based models, we use
λcomp = 1 and ϵ = 0.001 for proposed 1, and again
proposed 2 uses the values from Table 1.

Our observations reveal that both configurations of the
proposed method provide the highest Top-1 accuracy for
ResNet-20 and ResNet-32 at 90.99% and 92.16%, and
at 92.25% and 93.03% respectively, while simultaneously
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TABLE 3. Comparison of methods on ResNet-20 and ResNet-32 using
CIFAR-100, showing Top-1 accuracy and parameter compression. Best
results for each evaluation metric are highlighted in bold text.

reducing the number of trainable parameters by 30.66%
and 5.79% for ResNet-20, and by 52.78% and 24.96%
for ResNet-32, in comparison to the baseline. This indi-
cates that our proposed method configurations are more
parameter-efficient relative to the baseline ResNet-20 and
ResNet-32 models, even if there is a slight degradation
in performance for the proposed 1 configurations. One
important observation to note is that unlike other comparative
methods, these efficiencies are achievedwithout the necessity
for post-training fine-tuning/retraining, which significantly
reduces post-training processing time and effort. Even though
methods such as Std. Tucker [30], [36], PSTR-M [59],
and BATUDE [36] display higher parameter compression
rates, they come at the expense of lower accuracy scores.
This implies a trade-off between model efficiency and
performance. The specific compression and accuracy values
of the proposed methods suggest a more balanced approach
in dealing with this trade-off.

2) PERFORMANCE ANALYSIS ON CIFAR-100 DATASET
Next, we extend our experimental results to the CIFAR-100
dataset, as depicted in Table 3. The CIFAR-100 dataset,
in contrast to CIFAR-10, offers fewer images per class,
thus presenting a scenario for image classification in a
resource-constrained environment. We do not include FLOPs
comparison in the table due to lack of FLOPs information for
the comparative method.

Again, two distinct configurations of our proposedmethod,
denoted as proposed 1 and proposed 2, are presented for com-
parison. For the ResNet-20 models, we use λcomp = 0.5 and
ϵ = 0.01 for proposed 1, whereas proposed 2 employs λcomp
and ϵ values specified in Table 1. For the ResNet-32-based
models, we adopt λcomp = 1 and ϵ = 0.1 for proposed 1, and
again, proposed 2 uses the values from Table 1.

The results demonstrate that both proposed 1 and pro-
posed 2 configurations yield the highest Top-1 accuracy for
ResNet-20, at 65.66% and 67.36%, respectively, while simul-
taneously achieving a parameter compression of 21.55%
and 5.66%, respectively, compared to the baseline. For
ResNet-32, the proposed 2 configuration gives the highest
Top-1 accuracy at 69.96% while achieving a parameter com-
pression of 35.70% in comparison to the baseline. Proposed 1

FIGURE 4. The variation in the number of trainable parameters and FLOPS
across epochs for the ResNet-20 proposed model using CIFAR-10 dataset.

FIGURE 5. The evolution of the Top-1 accuracy on test set with training
epochs for the ResNet-20 proposed model using CIFAR-10 dataset.

configuration outperforms the baseline and most of the
comparative methods (with the exception of BATUDE [36])
in Top-1 accuracy at 68.75% while simultaneously reducing
the number of trainable parameters by 42.11%.

Although the compression rates of the proposed configura-
tions on CIFAR-100 are lower than some of the comparative
methods, such as PSTR-M [59], its higher accuracy highlights
an important trade-off between compression rates and clas-
sification performance. A higher compression rate does not
always equate to better classification performance. Notably,
the proposed 1 configuration achieves an improvement
of 1.90% over the baseline on ResNet-20 and 1.84% on
ResNet-32, while significantly reducing the number of
trainable parameters (by 5.66% and 35.70% respectively
compared to the baseline). Similarly to CIFAR-10, these
improvements are achieved without the need for post-training
fine-tuning or retraining, thus saving significant post-training
processing time and effort. These results confirm the
effectiveness of the proposed method for image classification
tasks, especially in resource-constrained environments.

3) REDUNDANCY ANALYSIS
Fig. 4 illustrates the variations in the number of trainable
parameters and MMAC over the course of training epochs
for the ResNet-20 network, utilizing our proposed method
on the CIFAR-10 dataset. The plot reveals an initial linear
and monotonic decrease in both the number of trainable
parameters and MMAC, persisting until approximately the
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FIGURE 6. Training and validation loss curves for the proposed method
and the baseline model for the ResNet-20 network using CIFAR-10
dataset. Both approaches show stable convergence without significant
overfitting.

100th epoch. Subsequently, a plateau is observed, indicating
convergence. This pattern suggests that the original network
possessed redundant parameters that were effectively pruned
by our proposed method during training. Consequently,
a more efficient model was created, improving upon the
original architecture, and adapting to the complexity of the
data and the task at hand.

The rank reduction process varies across different layers,
with each layer potentially undergoing rank reduction at
different stages of training. This heterogeneity makes it chal-
lenging to directly compare accuracy against rank reduction
throughout the training process. However, we provide an
analysis of accuracy trends in relation to the training epochs,
as shown in Fig. 5. This figure demonstrates that, despite
the dynamic rank pruning process, the model’s accuracy
steadily improves, achieving a high level of performance
early in the training process and maintaining it throughout.
The combination of Fig. 4 and Fig. 5 illustrates how the
dynamic rank pruning method impacts accuracy indirectly
by compressing model without compromising performance,
highlighting the model’s ability to adapt effectively to the
data and task at hand. To further ensure that these observed
performance gains are not a byproduct of overfitting,
we examined the training dynamics by comparing the training
and validation losses over time.

In Fig. 6, we present the training and validation loss
curves for both the proposed method and the baseline
model. Although the proposed method initially displays a
higher variance in the validation loss, it steadily converges,
maintaining a close match between training and validation
performance as the epochs progress. The baseline model
similarly shows alignment between training and validation
losses after the initial training phase. These observations
suggest that neither approach suffers from significant over-
fitting, further reaffirming the robustness and generalization
capability of our compression strategy. Having established
that the model’s compression-driven improvements do not
lead to overfitting, we now turn our attention to understanding
how these gains manifest at a more granular, layer-wise
level. Specifically, we investigate the rank redundancy across

FIGURE 7. Initial and final rank comparison for the ResNet-20 proposed
model using the CIFAR-10 dataset. A smaller rank indicates a more
compact layer with relatively fewer trainable parameters.

TABLE 4. Comparison between regularizations using ResNet-20 baseline
network on CIFAR-10 dataset. Best results for each evaluation metric are
highlighted in bold text.

different layers to gain insights into where and how the
compression most effectively takes place.

To gauge the degree of rank redundancy across layers
in the baseline network, we juxtapose (see Fig. 7) the
initial and final ranks of the ResNet-20 network using our
proposed method on the CIFAR-10 training dataset. The
initial rank determines the learning capacity of a factorized
layer. If the data and task at hand are relatively simple,
a higher initial rank for a layer may lead to overfitting,
indicating existing redundancy and potential for compression
in the layer. Our observations uncover varying degrees of
redundancy, most notably in the early to intermediate layers
of the network, which generally are responsible for learning
low- to intermediate-level features. For such layers, starting
with a low initial rank does not deteriorate the performance
and leads to a more compressed network. However, this is
not true for other layers in the network that utilize full rank
for feature learning.

The proposed method inherently considers the synergis-
tic effects of compression among layers. As each layer
undergoes rank reduction dynamically during training, the
interdependencies between layers are implicitly accounted
for. This dynamic adjustment ensures that the overall net-
work architecture adapts cohesively, maintaining a balance
between compression and performance. By allowing different
layers to adjust their ranks at different stages, the method
ensures that the compression in one layer synergistically
complements the compression in other layers. This results
in a globally optimized network that leverages layer-wise
redundancy without compromising the overall learning
capacity and accuracy of the model.
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FIGURE 8. Comparison of rank variation (x-axis) across training epochs (primary y-axis) with a color bar (secondary y-axis) representing the values of
singular terms examined at three distinct layers of a ResNet-20 network (from left to right: the initial (#1) layer, the intermediate (#10) layer, and the
final (#20) layer) trained on the CIFAR-10 dataset under diverse regularization conditions (from top to bottom: no regularization, L1, L2, funnel, and our
proposed regularization).

These insights pave the way for the design of compara-
tively leaner networks with fewer trainable parameters per
layer.

4) ABLATION STUDY WITH DIFFERENT REGULARIZATIONS
Within this factorization framework, various regularization
techniques, such as L1, L2, and funnel [35], can be employed
for network compression in place of the proposed losses.
Similar to (8), the general expression for the total loss is of
the form

Ltotal = Lapp + λregLreg, (14)

where λreg is the regularization hyper-parameter. For L1
regularization,

Lreg =
1
L

L∑
l=1

1
rl
||σl ||1. (15)

For L2 regularization,

Lreg =
1
L

L∑
l=1

1
rl
||σl ||2. (16)

For funnel regularization,

Lreg =
1
L

L∑
l=1

1
rl

rl∑
i=1

|[σl]i|
|[σl]i| + δ

, (17)

for some low positive value for δ. Table 4 summarizes
the outcomes of an ablation study that explores the use of
different regularization methods as mentioned in (15), (16),
(17) to dynamically facilitate model compression during the
training process. The CIFAR-10 dataset on the ResNet-20
baseline network serves as the foundation for this analysis,
and each method is evaluated in terms of Top-1 classification

accuracy, compression (i.e. reduction in the number of
trainable parameters), and MMAC. While L1, L2, and funnel
regularizations have been employed in prior research for
model compression during the post-training phases [35],
we have instead incorporated them into our proposed
dynamic compression framework during the training process
for a more equitable comparison using λreg = 0.1 and
ϵ = 0.001 as was done in [35]. The factorized method
without any regularization is our full-rank factorized baseline
model.

Our observations indicate that the factorized model, when
combined with the proposed regularization, achieves an
accuracy of 92.16%. This exceeds the baseline and all
other regularization methods except the factorized method
without any regularization. The latter, while yielding the
highest accuracy of 92.32% (0.16% higher than our pro-
posed method), does so at the expense of an increase in
trainable parameters. These results suggest that our proposed
regularization technique provides a competitive performance,
delivering near-optimal accuracy whilst promoting model
compression.

5) VISUALIZATION OF RANK VARIATION WITH DIFFERENT
REGULARIZATIONS
Fig. 8 provides additional evidence substantiating our
findings. This figure contrasts the rank variation (x-axis)
across training epochs (primary y-axis) with a color bar (sec-
ondary y-axis) representing the intensity of singular values.
We examine this at three distinct layers of the ResNet-20 net-
work: the initial (#1) layer, the intermediate (#10) layer, and
the final (#20) layer. We also study the network performance
under diverse regularization conditions: no regularization,
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TABLE 5. Comparison of Top-1 accuracy, Top-5 accuracy, and GMAC
across different methods using a ResNet-18 network and the ImageNet
dataset. Best results for each evaluation metric are highlighted in bold
text. Unavailable accuracy scores are indicated by ‘-’.

L1, L2, funnel, and our proposed regularization. All tests
are conducted on the CIFAR-10 dataset, with configurations
initialized by SVD at epoch 0.

The first row illustrates a factorized model without any
regularization, which departs from the SVD condition during
training and exhibits random value fluctuations across all
three layers. In contrast, models implementing L1 and
L2 regularizations adhere to a more rigorous protocol,
suppressing all values during each parameter update in
a manner that could be described as ‘greedy’. Yet, both
regularizations lack a focused suppression scheme beneficial
for pruning.

The L1 regularization, the most stringent of all, can
lead to over-pruning of trainable parameters and subsequent
performance degradation. Therefore, it demands cautious
selection of pruning thresholds and scalingweights. Although
L2 regularization penalizes large deviations from sparsity,
its failure to suppress values beyond the pruning threshold
undermines its suitability for the compression process.
Funnel regularization strives for rank reduction through a
steep loss slope for minimal values. However, it presumptu-
ously anticipates the presence of small singular values across
all layers, thus hindering its effectiveness.

It should be noted that the unregularized factorized method
as well as all the above regularizations deviate from the
SVD condition, inducing the learning of correlated features
and sub-optimal exploration of redundancies in trainable
parameters. In contrast, our proposed regularization method
actively encourages adherence to the SVD condition through-
out training, exhibiting well-managed rank variations. This
method concentrates these variations, prompting sparsity in
the least-valued rightmost values, which are dynamically
removed during the training phase itself. The focus on SVD
conditions during training fosters the learning of uncorrelated
parameters, which in turn allows for an optimal exploration of
redundancies in trainable parameters. Notably, our proposed
regularization deviates from other methods by employing
a pruning threshold in relative terms rather than absolute
ones. This approach promotes the removal of less significant

parameters based on the relative values of singular values
sorted in descending order. Consequently, pruning of such
less important parameters results in little to no deterioration
in performance.

6) PERFORMANCE ANALYSIS ON IMAGENET DATASET
In Table 5, we compare the proposed method with the
baseline and various other methods, using the ResNet-18
network and ImageNet dataset. We specifically evaluate
the Top-1 and Top-5 accuracy, and GMAC. Although our
proposed method achieves compression for the ResNet-18
model, it is not presented in the table due to the lack
of comparative data from other methods. Notably, our
proposed method achieves the highest Top-1 and Top-5
accuracy of 70.08% and 89.62%, respectively, making it
the only method to exceed the baseline performance in
terms of Top-1 accuracy. Although our method does not
achieve the lowest GMAC, it remains computationally similar
to the baseline with a GMAC of 1.85. This indicates a
strategic balance between maintaining high accuracy and
managing computational complexity, a critical consideration
in scenarios where accuracy cannot be compromised for
computational efficiency. Our method’s unique ability to
dynamically determine the factorization rank per layer in an
end-to-end trainable manner, based on the training dataset,
significantly contributes to this balance. This feature, absent
in other comparative methods, facilitates a more adaptable
and efficient learning process, enhancing accuracy without
excessively increasing computational demands. The GMAC
value for our method is slightly higher than the baseline
due to the additional operations needed to convert SVD
factors to convolutional filters and dense matrix weights.
However, our approach accomplishes model compression
during training, thereby eliminating the need for post-training
operations required by other comparative methods. This
feature results in significant savings in post-training rank
determination and processing times, enhancing the overall
efficiency of our method despite the slight computational
overhead. Additionally, a closer analysis of the table reveals
the delicate balance between GMAC and Top-1 accuracy.
Methods with lower GMAC, such as BATUDE [36] and
funnel [35], do not necessarily guarantee superior Top-1
or Top-5 accuracy. This result highlights the effectiveness
of our proposed method, which provides the highest Top-1
accuracy while maintaining a computational GMAC nearly
identical to the baseline. The proposedmethod’s performance
underscores the advantage of its novel, end-to-end trainable
approach and the benefits of dynamic compression during the
training phase.

Our experiments on the ImageNet dataset utilized the
ResNet-18 network due to computational constraints. Despite
being a moderately sized network with approximately
11M trainable parameters, ResNet-18 presents a signifi-
cant increase in complexity compared to ResNet-20 and
ResNet-32 with approximately 270K and 460K trainable
parameters, respectively. The successful application of our
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method to ResNet-18 demonstrates its scalability and stabil-
ity in deeper architectures. The consistent improvements in
accuracy and parameter reduction across different network
sizes suggest that our method is not only effective for small
models but also holds promise for larger networks like
ResNet-201. We anticipate that the dynamic parameter rank
pruning and regularization techniques would further exploit
the redundancies inherent in larger models, potentially
leading to even greater compression rates without sacrificing
performance.

7) MEMORY USAGE ANALYSIS
Memory usage is a critical factor when deploying deep
learning models, especially in resource-constrained envi-
ronments. We measured the GPU memory consumption of
our proposed method during both training and inference
and compared it to the baseline models. For the ResNet-20
and ResNet-32 models on the CIFAR-10 and CIFAR-100
datasets, we observed that the proposed method requires
slightly more GPU memory during training compared to
the baseline models. Specifically, the peak memory usage
increased by approximately 8% to 12%. This increase is
due to the additional storage needed for the SVD factors
and the computations associated with our regularization
techniques. However, during inference, the memory usage
of the proposed method is comparable to or slightly
less than that of the baseline models. The dynamic rank
pruning reduces the number of parameters, leading to a
smaller model size. As shown in Tables 2 and 3, our
method achieves up to 52% reduction in model parameters,
which translates to decreased memory requirements during
inference. For the ResNet-18 experiments on the ImageNet
dataset, we observed a similar trend. The training phase
showed an increase in memory usage of about 10%, while
the inference phase exhibited a slight decrease in memory
consumption compared to the baseline model. Overall, while
our method introduces a modest increase in memory usage
during training due to the overhead of factorization and
regularization, it offers memory savings during inference as
a result of model compression. This trade-off is acceptable,
especially considering the significant reduction in model size
and the improvements in accuracy.

V. DISCUSSION
Our study presents a novel dynamic CNN compression
training approach, factorization reshaping, and regularization
techniques that have demonstrated exceptional performance
in terms of Top-1 accuracy, Top-5 accuracy, model com-
pression, and computational complexity (MMAC, GMAC).
The primary focus of the proposed regularizations is to pro-
mote SVD condition during training that ensures the learning
of uncorrelated parameters. Consequently, it encourages
optimal exploration of redundancies in trainable parameters
and fosters better generalization. By concentrating rank
variations and promoting focused sparsity, our method allows
for dynamic pruning of less significant parameters during

the training phase. It is distinct from traditional pruning
techniques in that it uses a relative threshold based on the
sorted singular values instead of an absolute threshold.

Interestingly, this approach results in minimal performance
degradation, if any. An essential element of our proposed
method is its ability to dynamically determine the factoriza-
tion rank per layer in an end-to-end trainable manner. This
ability is novel compared to other techniques and contributes
to significant savings in post-training rank determination
and processing times. The contrast between our method
and others in terms of computational complexity provides
valuable insights into the trade-off between model efficiency
and accuracy. Despite not achieving the lowest compu-
tational complexity, our method ensured a near-baseline
computational complexity while posting the highest Top-1
accuracy. This delicate balance is a critical factor for practical
deployments where computational resources may be limited,
but high accuracy is necessary.

However, we recognize the potential trade-offs in our
study. The formation of factorized convolutional filters from
SVD factors is the main source of additional computational
complexity. This aspect warrants further investigation and
exploration to reduce computational overhead.

Further, the effectiveness of our method is influenced by
the choice of hyper-parameters such as λcomp and ϵ. Finding
these optimal set of hyper-parameters requires empirical
tuning, which can be dataset and architecture specific.
Developing adaptive strategies for hyper-parameter selection
during training could further enhance the robustness and
applicability of our method.

While our study focuses on 2D image classification, the
proposed method can be extended to 3D image classification
tasks without significant modification. In 3D CNNs, convo-
lutional filters are 5D tensors that capture spatial features
across three dimensions (depth, height, width) along with
input and output channels. However, these filters can be
reshaped into 2D matrices similarly to our approach for 2D
filters. By flattening the spatial dimensions and rearranging
the tensor into a matrix of size (Cout ×Cin) by (D×H ×W ),
where Cout and Cin are the output and input channels,
and D,H ,W are the depth, height, and width of the filter,
we can apply SVD for factorization. Using our DPRP and
regularization techniques, we can dynamically adjust the
rank of these reshaped matrices during training, effectively
compressing the model while maintaining performance. This
approach allows us to apply our method directly to 3D CNNs
used in tasks such as volumetric medical image analysis and
video classification, without the need for higher-order tensor
decompositions.

VI. CONCLUSION
In this paper, we introduced a novel training method
that compresses a CNN via DPRP, utilizing an innovative
reshaping technique for SVD factorization alongside our
proposed regularization techniques. Our method demon-
strated superior performance across several key measures
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such as Top-1 accuracy, Top-5 accuracy, and model com-
pression with competitive computational complexity. The
regularization techniques presented a compelling approach to
model compression during training via dynamic rank pruning
while maintaining high performance in classification tasks.
The success of the proposed approach lies in its focus on pro-
moting the SVD condition during training, which facilitates
the learning of uncorrelated parameters and dynamic pruning
of less significant parameters. Our findings underscore the
importance of carefully balancing model accuracy, network
compression, and computational complexity. Even though
achieving the lowest computational complexity is a common
objective, our research highlighted the crucial nature of
preserving or even improvingmodel accuracy amidst network
compression for real-world applications.

Looking forward, there are several avenues to expand our
research. Exploring the applicability and performance of our
method with different types of neural network architectures,
such as transformers or recurrent networks, as well as
tasks beyond image classification, like object detection
and image segmentation, is a promising direction. Further
investigation into determining different hyper-parameters
dynamically during training could potentially enhance our
technique accuracy and compression further. These exciting
prospects suggest that our work lays a firm foundation for
future research on model compression via dynamic rank
determination.
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