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Abstract—This paper enhances the detection of small and
slow-moving objects in satellite video imagery by integrating
classical signal processing techniques, such as Accumulative Mul-
tiframe Differencing (AMFD) and Low-Rank Matrix Completion
(LRMC), with deep learning models. We conduct experiments
on the Video Satellite Objects (VISO) dataset using YOLOVS,
YOLOvVS, and YOLOvV10 models. Notably, AMFD outperformed
LRMC and a pre-trained YOLOVS5, achieving a precision of
0.540, recall of 0.210, and F1-score of 0.300. Furthermore,
a YOLOvV10 model trained from scratch on VISO for 250
epochs demonstrated superior performance, with a precision of
0.766, recall of 0.334, and Fl-score of 0.465. Low-resolution
images (220x286 pixels) achieved the highest precision (0.990)
and F1-score (0.427). This study underscores the challenges in
satellite imagery object detection, particularly regarding domain
adaptation and resolution impacts, and paves the way for more
effective object tracking.

Index Terms—Computer vision, YOLO, remote sensing im-
agery, activity-based intelligence, domain adaptation

I. INTRODUCTION

Activity-Based Intelligence (ABI) leverages large-scale re-
mote sensing data to detect, analyze, and understand patterns
of human activity in complex environments. Advancements
in very high-resolution (VHR) satellite imagery, with spatial
resolutions of 1 meter or less, have significantly improved the
ability to detect small objects in satellite videos, a critical first
step toward accurate object tracking [1]. Along with spatial
improvements, the frame rate for sequential VHR imagery has
increased to 10 frames per second, providing the necessary
temporal resolution to support the detection and eventual
tracking of moving objects in dynamic environments [2].
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Detection is an integral component of the universal tracking
system, serving as the foundation for identifying objects before
tracking their movements over time. Accurate detection is
especially important in remote sensing, where small objects
like vehicles may appear as only a few pixels and exhibit
irregular shapes. Moreover, satellite imagery often suffer from
variability in resolution, elevation, and sensor quality, adding
to the complexity of detection. Current state-of-the-art mod-
els, such as YOLOVS, offer fast and lightweight detection
capabilities but face limitations in the remote sensing domain,
especially in handling dense scenes where resizing images can
degrade detection accuracy [3].

Improving detection in satellite imagery is therefore a key
step towards overcoming challenges in object tracking. Effec-
tive detection ensures that objects are consistently identified
across frames, enabling better tracking performance by algo-
rithms such as BotSort[4] and ByteTrack [5] by minimizing
issues such as object occlusion, scene clutter, and misiden-
tification caused by resolution changes. Prior approaches to
remote sensing detection, including both mathematical meth-
ods [2], [6], [7], [8] and deep learning models [3][9], have
shown potential but often struggle with the unpredictability of
object appearance, occlusions, and environmental factors [2].

This paper focuses on improving object detection in satel-
lite videos with the ultimate goal of paving the way for
superior tracking performance. We propose a novel detection
architecture which attains enhanced detection of small and
slow-moving objects. Accumulative Multiframe Differencing
(AMFD) and Low-Rank Matrix Completion (LRMC) [2] are
used to address key challenges, such as varying resolution and
occlusions. Our method attains superior detection accuracy,
laying the groundwork for more effective tracking systems in
future applications.

II. PROPOSED METHOD

Our method integrates classical signal processing techniques
with deep learning to detect moving objects in video frames.
Specifically, our approach utilizes AMFD [2] and LRMC [10]
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Fig. 1: Proposed object detection framework.

to generate masks with moving objects from the collection
of consecutive frames within a one-second time interval as
a preprocessing and feature extraction stage. Then extracted
feature masks are concatenated with a central image from
an original set of frames into a multi-channel input. These
features are fed into a modified YOLO network that performs
object detection and classification (see Figure 1). Incorporating
mathematical methods in the preprocessing stage increases
robustness and domain adaptability.

A. Accumulative Multi-Frame Differencing

AMFD is employed to detect moving objects in satellite
video sequences. For each frame I;, a sub-group of three
neighboring frames (I;_1, Iy, I;+1) is considered. Three dif-
ference masks (Ds,, D, Dy,) are computed between these
frames and then accumulated and normalized to create an
accumulative response image Ip. This image is then binarized
using a threshold 7, calculated as (u + 40), where p and
o are the mean and standard deviation of Ip, respectively.
Morphological operations are then applied to the binary image.
False alarms are removed by retaining only connected areas
with sizes between 4 and 100 pixels and aspect ratios between
0.25 and 6.0. This process is repeated for all frames in the
sequence, resulting in a set of candidate-moving pixels.

B. Low-Rank Matrix Completion

LRMC is based on fast robust matrix completion (FRMC)
and models video frames as low-rank matrices with perturba-
tions to detect moving objects. FRMC employs the in-face
extended Frank-Wolfe algorithm to solve this optimization
problem. First, the number of observation matrices N =
M/(L * f) is calculated, where M is the total number of
frames, f is the frame frequency, and L is the number of
frames required to model the background (set to 4 in this
implementation). For each group of L frames, an observation
matrix V is constructed, where each column represents a video
frame. The problem is then formulated as:

min rank(B) st. V=B +F (1)

where B is the background matrix, and F represents the
foreground perturbation (moving objects). This optimization
problem is relaxed into a nuclear-norm minimization (the
convex envelope of the rank function) and solved using

the computationally efficient Frank-Wolfe iterative algorithm,
which estimates the background and extracts the foreground
[11]. The resulting foreground image is binarized and morpho-
logical operations are applied to refine the detection results.
This process is repeated for all frames in the video sequence,
producing preliminary areas with moving targets.

III. EXPERIMENTAL DESIGN

This study uses the Video Satellite Objects (VISO) dataset
[2], which consists of 47 videos (15455 total images) and
1,646,038 labeled instances across 4 classes: cars, airplanes,
trains, and ships. The dataset offers various scenes and reso-
lutions. The training-test split is 80:20.

The dataset includes a range of image resolutions, which
were divided into high-, medium-, and low-resolution images
with a width/height in range [1024,1348], [451,512], and
[220, 286], respectively, to evaluate the impact of resolution
on the model performance. Experiments were conducted with
different mathematical algorithms and YOLO architectures:

e YOLOVS pre-trained on DOTA.

e YOLOvV5x pre-trained and fine-tuned for VISO dataset.
e YOLOvVS8x pre-trained and fine-tuned for VISO dataset.
e YOLOVI1O0 pre-trained and fine-tuned for VISO dataset.
¢ YOLOVIO from scratch trained on VISO dataset.

IV. PRELIMINARY RESULTS

AMFD shows a smaller yet more precise number of detec-
tions, while LRMC has multiple false detections (see Figure
2). In addition, Figure 2(c) shows that due to jitter many
buildings are optimized as moving objects by LRMC.

Table I shows the evaluation results for preprocessing.
AMEFD achieves higher precision, recall, and Fl-score than
LRMC and YOLOVS which was trained on an out of distri-
bution dataset (DOTA [12]). Hence, the deep-learning model
YOLOVS that was trained on out-of-distribution remote sens-
ing imagery generalizes worse than one of the mathematical
models, leading to the expectation that incorporating features
extracted by AMFD can permit a better domain adaptation.

We ran a few experiments on YOLO backbone architectures
YOLOVS and YOLOV10, their performance is provided in
Table II. The best F1-score of 0.465 is achieved on YOLOv10
which was fully trained on VISO for 250 epochs. At the same
time, precision is the highest in YOLOv8 which was fine-tuned
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Fig. 2: Preliminary results for all elements utilized in the
preprocessing stage. (a) Original image; (b) Mask of moving
objects created with AMFD method; (c) Mask of moving ob-
jects created with LRMC method; (d) Photo with ground truth,
AMFD, LRMC, and proposed method detections (green, blue,
yellow, and purple-colored bounding boxes, respectfully).

Metric AMFD | LRMC YOLOV5S
(trained on DOTA)
Precision | 0.540 0.006 0.330
Recall 0.210 0.252 0.039
Fl-score | 0.300 0.012 0.078

TABLE I: Results on preprocessing methods.

for 50 epochs. Interestingly, the trade-off between precision
and recall is observed while increasing the number of epochs
for fine-tuning YOLOV10.

The same experiments were run to test the performance of
the models with grayscale images; see Table II. The results
show that the performance of the proposed model with masks
stays within the precision of the mathematical model, while
all other models perform significantly worse.

The last experiment (see Table III evaluated the impact
of image resolution (low, medium, and high) on YOLOV10.
The Low resolution imagery demonstrates the highest pre-
cision (0.990) and Fl-score (0.427). In contrast, the high-
resolution imagery exhibits the lowest precision (0.482) and
recall (0.150), suggesting challenges in identifying relevant
instances in complex scenarios.

V. DISCUSSION

Detection of objects in aerial imagery presents unique chal-
lenges, including small-scale objects, occlusions, extremely
complex scenes, and VHR. LRMC works well in scenarios

Model

| Precision | Recall [ Fl-score | mAP50 |

RGB input
YOLOv5 0.751 0.347 0.475 0.487
YOLOv10 0.537 0.307 0.391 0.319
YOLOv10* 0.632 0.13 0.216 0.151
YOLOv10+masks 0.766 0.334 0.465 0.343
Grayscale input

YOLOv5 0.217 0.058 0.092 0.032
YOLOvV10 0.239 0.11 0.151 0.089
YOLOv10* 0.208 0.032 0.055 0.022
YOLOvV10+masks 0.549 0.301 0.389 0.226

TABLE II: Results on YOLOVS pre-trained on ImageNet and
fine-tuned on VISO, YOLOV10 trained from scratch on VISO,
YOLOV10* trained from scratch on VISO in grayscale, and
proposed method YOLOv10 with masks AMFD and LRMC
trained from scratch for 250 epochs. Includes results on YOLO
models with grayscale input.

Resolution | Precision | Recall | Fl-score | mAP50
Low 0.990 0.272 0.427 0.237
Medium 0.850 0.134 0.232 0.069
High 0.482 0.150 0.229 0.038
All 0.766 0.334 0.465 0.220

TABLE III: Performance metrics by resolution.

that contain relatively large moving objects. However, in the
case of satellite imagery, small targets typically occupy area
of 4 — 50 pixels and the change in the movement is relatively
minor, so often the targets are modelled as the background
yielding a reduction in performance.

LRMC requires calculating the number of observation ma-
trices that are based on the total number of frames captured
in the video [10]. Such an approach limits the utilization of
the algorithm to be applied to pre-captured videos unless the
number of frames required is known a-priori, which is not
always satisfied. In addition, background subtraction relies on
a few frames being processed through an extensive number of
matrix calculations, which increases inference time. In the case
of satellite imagery, the jitter from satellite movement requires
the LRMC algorithm to run at a predetermined frequency.

Deploying a model in the real world often involves varying
degrees of domain shift. In remote sensing, the complexity
and variability of aerial imagery datasets can lead to signif-
icant differences in feature distributions, challenging model
consistency and performance. In the case of YOLOVS trained
on DOTA, we observe that there are issues with the perception
of the model (the bounding boxes are too large for the
observations). Although the locations of the bounding boxes
are mostly correct, their amount and sizes are inaccurate (see
Figure 3). These observations demonstrate the heightened need
for domain adaptation approaches in satellite imagery.

YOLOVS5 trained on out-of-distribution satellite data (trained
on DOTA and tested on the VISO dataset), detects a few
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Fig. 3: Object detection results (human labels in green;
YOLOVS5 trained on DOTA in red; AMFD in blue). Yellow
bounding box demonstrates domain shift issue of the model
trained on DOTA and deployed on VISO.

densely situated vehicles as one instance in certain cases, while
our model detects closely nested objects as separate objects.
Due to the difference in altitude of the satellites, the objects
may appear bigger or smaller in photos from different datasets.
Hence, a model trained only on data from the satellite with
one altitude is prone to being biased towards a certain size
of the vehicles. As a result, vehicles situated closely to each
other are often predicted as one instance if the model is trained
on a different dataset. Moreover, the lack of adaptation to the
size of the object can be considered a challenge unique to
satellite imagery. Photos taken on the ground naturally include
perspective, and the same object can appear in different sizes,
allowing the model to more properly generalize. In the case of
satellite imagery, all objects appear mostly flat, as the distance
in Earth elevation in the vast majority of instances is neglectful
compared to the distance from the ground to the satellite.

Satellite-based observations inherently do not have a per-
spective available to ground-based observations because one
satellite captures all objects at a fixed elevation level while
ground cameras capture the same object in different sizes
relative to the size of the image as it approaches the camera.
For that reason, we observe a scale-related domain shift.

The main purpose of improving moving object detection is
to enhance tracking accuracy. The misregistration phenomenon
manifests as different tracking ids are assigned to the same
object that temporarily disappeared from detections but not
from the scene. As a result, instead of one continuous track
for the object, there are multiple disconnected tracklets be-
longing to the same object. Misregistration can be mitigated
by employing bounding box fusion techniques to smooth over
abrupt transitions or displacements by considering the most
likely path for an object.

VI. CONCLUSION

In this paper, we propose a novel architecture that inte-
grates temporal elements into YOLO to enhance the detection
of small and slow-moving objects in satellite imagery. The
proposed method combines AMFD and LRMC preprocessing,
enhancing adaptability, robustness, and detection accuracy
in satellite video frames with small, slow-moving objects.
Preliminary results on the VISO dataset show that AMFD
outperforms both LRMC and a pre-trained YOLOvS model
on the DOTA dataset. YOLO models, fine-tuned on VISO
dataset, provide better performance. Furthermore, YOLOvV10
trained from scratch achieved the best F1 score, while fine-
tuned YOLOv8 had the highest precision. Results highlight
the effects of resolution on model performance, demonstrating
the deficiency of model predictions on high resolution images.
Future work involves incorporating a ConvLSTM layer or
preprocessing module to leverage temporal information.
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