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The strongly driven Fermi polaron
 

Franklin J. Vivanco1,6, Alexander Schuckert    2,6  , Songtao Huang    1,6  , 
Grant L. Schumacher    1, Gabriel G. T. Assumpção1, Yunpeng Ji1, Jianyi Chen1, 
Michael Knap    3,4 & Nir Navon    1,5

Quasiparticles are emergent excitations of matter that underlie much 
of our understanding of quantum many-body systems. Therefore, the 
prospect of controlling their properties has both fundamental and practical 
implications. However, in solid-state materials, it is often challenging to 
understand how quasiparticles are modified by external fields due to their 
complex interplay with other collective excitations. Here we demonstrate 
the manipulation of Fermi polarons—quasiparticles formed by impurities 
interacting with a Fermi gas—in a homogeneous atomic gas using fast 
radio-frequency control. Exploiting two internal states of the impurity 
species, we develop a steady-state spectroscopy, from which we extract 
the energy of the driven polaron. By varying the drive Rabi frequency, 
we measure the decay rate and the quasiparticle residue of the polaron 
in the weak-drive limit. At large Rabi frequencies, we observe signs that 
the drive causes a hybridization of the driven polaron with an incoherent 
background, leading to the breakdown of a description in terms of textbook 
quasiparticles. Our experiment establishes the driven Fermi polaron as a 
promising platform for studying controllable quasiparticles in strongly 
driven quantum matter and calls for a controlled theoretical framework to 
describe the dynamics of this strongly interacting quantum system.

The low-energy physics of quantum many-body systems can often be 
understood in terms of quasiparticle excitations. This description has 
been successful in explaining the thermodynamic and near-equilibrium 
transport properties of a wide range of materials1. Methods to modify, 
and even controllably destroy, these quasiparticles have long been 
sought after2–4. Such tuning capability could allow modifying the ther-
modynamics of a system, and potentially offer a route towards realizing 
strongly correlated systems without well-defined quasiparticles5,6.

Fermi polarons—impurities that interact with a non-interacting 
Fermi gas—have attracted considerable interest because they consti-
tute one of the simplest quantum many-body settings for studying 
both in-equilibrium and out-of-equilibrium properties in correlated 
systems7–13. Both attractive and repulsive Fermi polarons have been 

experimentally realized with ultracold atoms9,10,14–19 and with semicon-
ductor heterostructures20. Furthermore, Rabi oscillations of impurities 
with internal states that interact differently with the bath have been 
used to probe the properties of these polarons, though the interpreta-
tion of these experiments remains challenging10,17,21–24. Harnessing the 
non-equilibrium dynamics of driven Fermi polarons to manipulate 
their quasiparticle properties has, thus, remained a major challenge 
to both experiment and theory.

Here we investigate Fermi impurities embedded in a homogene-
ous atomic Fermi gas and driven with an external radio-frequency (rf) 
field as a platform for realizing quasiparticles with tunable properties 
(Fig. 1a). The impurities have two internal states: one of them essen-
tially does not interact with the Fermi gas, whereas the other interacts 
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times. At short times, we see a sharp peak with a broad shoulder remi-
niscent of the linear-response spectrum at unitarity10,12,17(our measure-
ment would be equivalent to the linear-response injection spectroscopy 
if performed in the regime of weak drive (ℏΩ0/EF ≪ 1) and short times 
(for which M ≈ −1)). However, at longer times, we find a strong devia-
tion from linear-response-type behaviour; in fact, M  converges to  
a monotonously increasing function of Δ in the steady state (Fig. 1c, 
black dashed lines). The steady-state magnetization spectrum M(Δ) 
vanishes at detuning Δ0, the zero crossing.

We now study how M(Δ)  varies with the drive strength ℏΩ0/EF.  
In Fig. 2a, we show the steady-state spectra for ℏΩ0/EF = 1.1 and 9.2. 
Although the zero crossing and the typical width of the spectra  
depend on ℏΩ0/EF, Fig. 2a (inset) shows that the spectra collapse onto 
a universal curve when the detuning is rescaled to (Δ – Δ0)/Ω0, where 
Δ0 depends on Ω0.

A first description of this behaviour is provided by the ground 
state of an effective spin 1/2 coupled to a field of Rabi frequency Ω̃   
and detuning  from its resonance (Supplementary Section I):

Our measured magnetization is indeed well described by this model 
when setting  and Ω̃ = Ω0 (Fig. 2a, black dashed line). This 
model captures the rescaling of the spectrum, with   
and f(x) = x/√1 + x2 .

This universality suggests that our protocol realizes a novel 
steady-state spectroscopy, that is, the response of the many-body 

unitarily with it. We drive the impurity by coupling the two internal 
states with the rf field and probe the impurities dressed by both their 
interactions with the bath and their coupling to the rf field; we measure 
their quasiparticle properties—energy, decay rate and residue—as a 
function of the drive strength.

Our experiment begins with a spatially uniform quantum gas of 
6Li atoms confined in an optical box25,26 (Fig. 1a). The gas is in a highly 
imbalanced mixture of the internal states |↓〉 and |B〉, where |↓〉 is one 
of the two internal states of the impurity and |B〉 is the bath state that 
forms the Fermi gas. The bath has a Fermi energy EF/ℏ ≈ 2π × 6 kHz and a 
temperature T = 0.25(2)TF, where TF is the Fermi temperature of the bath 
and ℏ is the reduced Planck constant (Methods and Supplementary 
Sections II and III). The magnetic field is set to the Feshbach resonance 
B0 of the |↑〉–|B〉 mixture, whereas |↓〉 and |B〉 are weakly interacting; 
that is, 1/kFa↑B = 0 and kFa↓B ≈ 0.16; |↑〉 is the second internal state of 
the impurity, kF is the Fermi wavevector of the bath and a↑B (a↓B) is the 
s-wave scattering length between states |↑〉 (|↓〉) and |B〉. An in situ 
optical density image of the impurity species |↓〉 is shown in Fig. 1a, 
along with two central cuts.

After initialization, an rf field of Rabi frequency Ω0 and detuning 
Δ (relative to the bare |↓〉–|↑〉 transition) is turned on for a duration t. 
We then measure the magnetization of the impurities M ≡ (N↑ – N↓)/ 
(N↑ + N↓) as a function of t, where N↑ (N↓) is the population of the impuri-
ties in state |↑〉 (|↓〉). In Fig. 1b, we show typical measurements of  
the dynamics of the magnetization for different detunings. For all  
the detunings, we observe damped Rabi oscillations, which reach a 
detuning-dependent steady-state value at long times. The dependence 
of the magnetization on the detuning is visualized in Fig. 1c, where we 
show the magnetization as a function of detuning for various evolution 
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Fig. 1 | The strongly driven Fermi impurity. a, A uniform Fermi gas of 6Li atoms is 
trapped in a cylindrical optical box. The red (blue) dots inside the box are bath 
(impurity) atoms. The image is a typical in situ optical density (OD) image of the 
impurity species (averaged over 14 realizations). The bottom insets show the 
central cuts of the OD image. The black dashed lines are fits to the density 
profiles. The top inset shows a cartoon of a typical Rabi oscillation experiment 
and subsequent dressing of the Fermi impurity by both its interactions with the 
bath and its coupling to the rf field, that is, the drive-dressed polaron. The 
impurity is initialized in state |↓〉, which interacts weakly with |B〉. After a 
half-cycle, it is predominantly in |↑〉, interacting strongly with |B〉. At long times,  
it reaches a steady state that is a mixture of states |↑〉 and |↓〉 (see the main text). 

b, Rabi oscillations of the magnetization M for three detunings Δ from the bare 
transition between |↓〉 and |↑〉 (full blue circles, left vertical axis), Δ/Δ0 = −0.3, 1, 
2.4 (from top to bottom); ℏ/EF ≈ 25 μs. The pink circles (diamonds) are the total 
impurity (bath) atom numbers N = N↑ + N↓ (N = NB), normalized by the atom 
number averaged over the whole time series N̄  (right vertical axis). The vertical 
error bars are the standard error of the mean (s.e.m.), which is smaller than the 
marker size; the horizontal error bars correspond to the standard deviation of 
EFt/ℏ in each time bin. c, Magnetization as a function of detuning with pulse time t 
increasing from top to bottom. In b and c, the Rabi frequency is Ω0/(2π) ≈ 8 kHz, 
and the black dashed lines are guides to the eye.
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system is captured by a small number of (drive-dependent) parameters 
(in this case, Δ0 and the response’s typical width). Interestingly, Δ0  
shifts closer to zero with increasing drive strength (Fig. 2a, vertical 
colour bands). To quantify this effect, we show the extracted Δ0  
value over nearly two orders of magnitude of the drive strength in 
Fig. 2b. We also extract the typical width of the spectrum (Fig. 2b,  
inset), which we characterize by the on-resonance susceptibility 
χ ≡ (∂M/∂Δ)|Δ=Δ0 . The behaviour of χ(Ω0) is well explained with the 
finite-temperature generalization of the model equation (1) (Supple-
mentary Section I): for such a system, the T > 0 magnetization is given  

by . A fit of the measured  

χ to this model yields a spin (that is, the internal-state) temperature  
for the impurity of Tspin = 0.24(1)TF (Fig. 2b (inset), black dashed line). 
Because the finite-temperature correction becomes negligible when 
ℏΩ0 ≳ 2kBTspin, the impurity is effectively in its internal ground state  
for ℏΩ0 ≳ EF (Fig. 2b (inset), black dashed line and red solid line).

The fact that the spin temperature Tspin matches the bath tem-
perature T indicates that the internal degrees of freedom of the driven 
polaron have thermalized with the fermionic bath. Two additional 
observations support the fact that our system consisting of the impuri-
ties plus the bath obeys closed-system dynamics. First, the coherence 
time of the Rabi oscillations in the absence of the bath exceeds—by 
about two orders of magnitude—the typical duration of our experi-
ments in the presence of the bath. Thus, the decay is not due to dephas-
ing caused by, for instance, magnetic-field noise or inhomogeneity 
(Supplementary Section IV). Second, the impurity and bath atom 
numbers are constant during the dynamics (Fig. 1b, pink symbols).

A non-trivial shift in the zero crossing, Δ0 ≠ 0, is a prime indica-
tion of interactions between the impurity and the Fermi gas. To gain 
insight into Δ0, we measure the rf linear-response injection spectrum, 
that is, the fraction of impurities transferred from |↓〉 into |↑〉 using 
a weak rf pulse (ℏΩ0 ≪ EF). A typical measurement is shown in Fig. 2c 
(green diamonds). We find that Δ0 matches the location of the peak Ep 
of the linear-response spectrum (that is, the energy of the attractive 
polaron18), even for a steady-state spectrum taken at a moderate rf 

power ℏΩ0 ≈ EF (Fig. 2c, red points). We thus conclude that the plateau 
at low ℏΩ0/EF (Fig. 2b) matches the linear-response peak position. 
However, with increasing drive strength ℏΩ0/EF ≳ 1, the zero crossing 
smoothly departs from its low-Ω0 plateau, towards zero.

We compare our measurements with the predictions of a diagram-
matic theory based on the non-self-consistent T matrix (Methods and 
Supplementary Section I). We directly include the drive in the T matrix23 
to describe the drive-induced changes in the scattering properties of 
the impurities. We also include corrections due to the non-zero a↓B 
(Methods). In Fig. 2b, the black line shows the theoretical prediction 
for Δ0(Ω0), calculated from the spectral functions (Methods and Sup-
plementary Section I); the theoretical Δ0 is normalized to its weak-drive 
limit Δref

0 ≡ Δ0(Ω0 → 0). We find a behaviour that qualitatively repro-
duces the experimental data. Furthermore, we find that the polaron 
energy, defined as the solution of Ep = ReΣ(Ep) (where Σ is the zero- 
momentum self-energy of the impurity evaluated at the Rabi frequency 
Ω0 and detuning Δ0), matches the theoretical ℏΔ0 in the limit  
ℏΩ0/EF→0 (ref. 27), reproducing the experimental finding shown in 
Fig. 2c. Interestingly, Ep is in remarkable agreement with the experi-
mental data, when normalized to the weak-drive limit Δref

0  (Fig. 2b, 
green solid line). This observation suggests that Δ0 may be the dressed 
polaron energy at all drive strengths, and motivates the development 
of more refined methods to calculate Δ0.

We now study the pre-steady-state dynamics, focusing on the 
resonant case Δ = Δ0. The magnetization undergoes damped oscilla-
tions towards M = 0  (Fig. 1b, middle). We find that the data are  
well fitted by M(t) = − cos(ΩRt) exp(−Γt/2), from which we extract a  
renormalized Rabi frequency ΩR and a decay rate Γ (Methods).

These quantities have been connected to the equilibrium proper-
ties of the polaron10,17,22. By assuming that the bath is not perturbed by 
the impurities (and that ℏΩ0 ≪ EF, such that the Rabi oscillations are 
underdamped), the dynamics of the Rabi oscillations at early times can 
be approximately captured by an equilibrium correlation function that 
is given at low temperature by the impurity’s zero-momentum spectral 
function in the presence of the drive (Supplementary Section I). This 
approach leads to the following expressions for the zero-momentum 
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Fig. 2 | Many-body steady-state spectroscopy. a, Steady-state spectra measured 
for two Rabi frequencies. The black dashed lines are fits to equation (1). The red 
and orange vertical bands mark the zero crossing Δ0 including the fitting 
uncertainty. The inset shows the scaling collapse of the steady-state spectra. The 
black solid line corresponds to equation (1). b, Normalized zero crossing versus 
drive strength. The blue, red and orange points are the experimental data for Δ0 
(Methods); the red and orange points correspond to the spectra shown in a. The 
error bars are the uncertainties of the fits. The black (green) solid line is the 
theoretical prediction for Δ0 (drive-dependent polaron energy Ep), including the 
effect of finite temperature and corrections due to the non-zero kFa↓B (the main 
text discusses the difference between Ep and Δ0). The normalization is chosen to 
be the weak-drive limit ℏΔref

0 /EF = −0.78 (–0.73) for the experimental data 

(theory). The data normalized to EF are shown in Supplementary Fig. 8. The inset 
shows the susceptibility χ versus drive strength. The red solid line is the 
susceptibility of the ground state (equation (1)). The black dashed line is  
a fit to the T > 0 generalization of the model in equation (1) (see the main text).  
c, Comparison of the linear-response injection spectroscopy (green diamonds) 
and steady-state spectroscopy (red circles). The black dashed lines are a fit of  
the steady-state spectrum (a linear-response spectrum) to equation (1)  
(a Lorentzian function). The red dashed line (green dash–dotted line) is the  
fitted zero crossing (linear-response peak position); the bands are the 
corresponding fitting uncertainties. The error bars in a and c are the s.e.m.  
values of three measurements and are smaller than the marker size.
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quasiparticle decay rate Γ and the renormalized Rabi frequency ΩR in 
terms of the impurity self-energy Σ (refs. 22,23): ℏΓ = –2Z ImΣ(E = Ep)  

and ΩR = √ZΩ0  (ref. 10), where Z = 1/ (1 − ∂(ReΣ)
∂E

|
E=Ep

)  is the quasi

particle residue, which is the overlap between the Fermi polaron wave-
function and the non-interacting impurity wavefunction.

In Fig. 3a, we show Γ as a function of the drive strength, along  
with the T-matrix predictions. At our weakest drives, the decay rate 
appears to slowly level off. Note that a previous measurement at a 
given Ω0 is in good agreement with our data (Fig. 3, red square17). For 
stronger drives, that is, ℏΩ0 ≳ EF, Γ shows an unexpected non-monotonic 
behaviour. First, it increases by over an order of magnitude between 
our lowest Ω0 and a maximum located at around ℏΩ0/EF ≈ 3; it then 
decreases as a power law of the drive strength.

We use the T-matrix approach to calculate Γ (Fig. 3a, black solid 
line). It is in qualitative agreement with the data but is quantitatively 
imprecise for all but the largest drives. The power law at large drive 
strengths originates from the properties of the two-body scattering: 

scattered particles have an energy ∝ℏΩ0 and the T matrix is dominated 
by the two-body contribution, so that it is proportional to the inverse 
square root of Ω0 (ref. 28). Our data are in good agreement with the  
corresponding analytical prediction ℏΓ/EF ≈ 16/ (3π√ℏΩ0/EF)   
(Fig. 3a, grey line). Motivated by this observation, we introduce a 
two-body T-matrix approximation that neglects in-medium scatter
ing effects but still takes into account the presence of the Fermi sea in  
the self-energy (Fig. 3a, black dotted line). Surprisingly, this approxi
mation captures the data remarkably well for all drive strengths.

The linear-response spectrum provides another measure for the 
quasiparticle decay rate. From our injection spectroscopy measure-
ments (Fig. 2c, green points), we extract a width Γlin = 0.13(2)EF/ℏ, which 
is close to the width measured by ejection spectroscopy18. This width 
is a little larger than our weakest-drive Γ = 0.072(5)EF/ℏ (Fig. 3a). It is 
possible that a finite impurity concentration could have a different 
effect on the Rabi dynamics and the linear-response spectroscopy23. 
Their respective relationship to the linear-response properties in the 
impurity limit is not straightforward and remains to be clarified10,22.

The normalized (dynamical) Rabi frequency ΩR/Ω0 extracted from 
the damped oscillations also depends on the bare Rabi frequency Ω0. 
In Fig. 3b, we show ΩR/Ω0 versus ℏΩ0/EF. At ℏΩ0/EF ≈ 2, ΩR/Ω0 abruptly 
increases, reaches a maximum exceeding the one at around ℏΩ0/EF ≈ 5 
and then decreases towards one. In the regime of strong drives, we find 
ΩR > Ω0. An explanation for this effect could have been that the mini-
mum of ΩR is not reached at the detuning Δ = Δ0. However, we measure 
ΩR as a function of the detuning (Fig. 3b, top inset) and find that ΩR is 
consistently larger than Ω0; its minimum is reached at Δ = 1.03(5)Δ0.

To settle the range of ℏΩ0/EF over which our Rabi oscillation spec-
troscopy is valid, we show the quality factor of the Rabi oscillations 
ΩR/Γ in Fig. 3b (bottom inset). At weak drives, ΩR/Γ roughly plateaus; 
at even weaker drives (ℏΩ0 ≲ 0.4EF), the ratio decreases further and 
oscillations ultimately become overdamped (Supplementary Section 
V shows a set of measurements across the critical damping threshold).

The observation that ΩR can exceed Ω0 is at odds with the expec
tation that (ΩR/Ω0)2 is the quasiparticle residue. Indeed, the residue Z, 
defined as the area under the quasiparticle peak in the spectral  
function, must always be ≤1. We can formally define a pseudo- 

residue Z̄ ≡ 1/ (1 − ∂(ReΣ)
∂E

|
E=Ep

) , which coincides with Z for textbook  

quasiparticles29 (and is often used as a definition for the residue30).  
We find that both two-body and in-medium T-matrix approxima
tions predict that Z̄  follows a similar behaviour to (ΩR/Ω0)2 (Fig. 3b, 
dotted and solid black lines, respectively), suggesting the intriguing  
generalization (ΩR/Ω0)

2 ≈ Z̄ . In particular, we analytically calculate  

Z̄ ≈ 1 + 16/(6π(ℏΩ0/EF)
3/2) > 1 in the limit ℏΩ0/EF ≫ 1 (Supplementary 

Section I). This prediction (Fig. 3b, grey line) is in very good agreement  
with our measurements. The fact that Z̄ > 1 indicates that the standard 
description of a (Lorentzian-shaped) quasiparticle breaks down. This 
is another interesting illustration of a textbook quasiparticle break-
down that is not signalled by the usual criterion Z̄ → 0 (as in the case 
of immobile Fermi impurity31,32); see, for example, a recent condensed- 
matter experiment in which a quasiparticle disappearance, accompa-
nied by an increase in Z, was caused by a widening of the quasiparticle 
into an incoherent background30.

This finding motivates us to examine the quasiparticle quality 
factor Q, defined as the ratio of the quasiparticle energy and its decay 
rate. Using the zero crossing as a proxy for the drive-dressed polaron 
energy, we define Q ≡ Δ0/Γ. In Q versus ℏΩ0/EF (Fig. 4a), we find that 
Q ≫ 1 for low Ω0, indicating a well-defined polaron. However, the quality 
factor decreases by over an order of magnitude to a minimum of ≈ 0.9 
at ℏΩ0/EF ≈ 4, indicating that the polaron is no longer well defined, 
specifically, it is close to the critical damping threshold Q = 1/2.

The fact that Q ≈ 1 in conjunction with (ΩR/Ω0)2 > 1 at ℏΩ0/EF ≈ 4 
further substantiates the failure of the textbook quasiparticle picture 
in that regime. We have seen earlier that the pseudo-residue Z̄  defined 
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through the Taylor expansion of the self-energy around the polaron 
energy Ep yields non-physical values for the quasiparticle residue. We 
indeed find that within the T-matrix calculations, Z̄  depends on the 
energy at which it is evaluated, even within the spectral width Γ;  
this goes beyond the usual quasiparticle paradigm (Supplementary 
Section I). Nevertheless, it is intriguing that even though Z̄  (>1) is no 
longer the quasiparticle residue in the strong-drive regime, its formal 
expression is in good agreement with the measured (ΩR/Ω0)2.

Putting all this together, we can now interpret the different regimes 
of the driven polaron. As shown in the energy diagram (Fig. 4b; built 
from the theoretical spectral function), there are three distinct regimes. 
In the first weak-drive regime ℏΩ0/EF ≪ 1 (labelled A), there are three 
spectral features. The attractive polaron is split into two rf-dressed 
states |±⟩ = (|↑〉±|↓〉) /√2 (red and blue boxes), whose energy separa-
tion is roughly ∝ℏΩ0. The third feature is the remnant of the unstable 
repulsive polaron, seen as the broad continuum at high energies; it is 
basically unaffected by the rf. In the strong-drive regime 1 ≲ ℏΩ0/EF ≲ 10 
(labelled B), the dressed state |+〉 is pushed into the continuum and 
hybridization leads to the disintegration of the quasiparticle for 
ℏΩ0/EF ≈ 3. For ultrastrong drives ℏΩ0/EF ≳ 10 (labelled C), which we do 
not reach experimentally, many-body effects (dominated by two-body 
scattering) are a perturbation to the large rf splitting and the driven 
impurity essentially behaves as a dressed two-level system. In the 
experiment, we are probing the transient (Rabi) dynamics of the system 
towards thermalization after a rapid quench into a superposition of 
those dressed states; the hybridization manifests itself as the 
non-monotonic evolution of Γ and ΩR around ℏΩ0/EF ≈ 3 (Supplemen-
tary Section I). This interpretation, although based on the standard 
but unsettled connection between the Rabi oscillations and the equi-
librium spectral function, is supported by the good agreement between 
our experimental observation and our calculations.

In conclusion, we have shown that the driven impurity in a Fermi 
gas is a powerful platform for studying non-equilibrium quantum 
dynamics. In the future, our many-body steady-state spectroscopy 
could be used to study many-body systems without well-defined qua-
siparticles, such as the spin-balanced unitary Fermi gas in the normal 
phase33, or the heavy impurity system34,35. It would also be interesting 

to study how polaron–polaron interactions could be modified by the 
drive, as well as observe the dressed-state polarons with a second-
ary (probing) field. Furthermore, in the 1/kFa↑B > 0 regime, one could 
observe richer steady-state magnetization spectra for pre-thermal 
states containing both stable attractive and repulsive polarons34. Theo-
retically, it is imperative to establish a systematic theoretical framework 
to elucidate the connection between the impurity’s equilibrium spec-
tral properties and the Rabi oscillations, since the reasonable agree-
ment of the measurements of both ΩR and Γ with our (state-of-the-art 
yet uncontrolled) T-matrix calculations is rather surprising. This could 
be done, for example, by using the Keldysh approach24.
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maries, source data, extended data, supplementary information, 
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Methods
Preparation of a highly imbalanced uniform Fermi gas
We prepare an incoherent mixture of the first and third lowest Zeeman 
sub-levels (denoted as |↑〉 and |B〉) of 6Li atoms in a red-detuned optical  
dipole trap. The internal states of the impurity species are |↑〉 ≡ | 1

2
, + 1

2
⟩  

and |↓〉 ≡ | 1
2
, − 1

2
⟩  and the bath internal state is |B⟩ ≡ | 3

2
, − 3

2
⟩ , in the  

|F, mF〉 basis at a low magnetic field (F and mF are the total spin and its  
projection along the magnetic-field axis, respectively). We evapo
ratively cool this mixture at a magnetic field of B ≈ 284 G, where the 
s-wave scattering length between |↑〉 and |B〉 is a↑B ≈ –900a0. The atoms  
in state |↑〉 are then transferred into state |↓〉 with a 5-ms Landau–Zener 
rf sweep. After a 100-ms hold, we adiabatically ramp the field to 
B ≈ 583 G in 500 ms, where a↓B ≈ 0, and then load the atoms into a 
blue-detuned optical box trap, formed by the intersection of two beams 
(wavelength, 639 nm) shaped by digital micromirror devices. The radius 
and length of the cylindrical box are R = 63(1) μm and L = 121(1) μm, 
respectively. We adjust the concentration x ≡ N↓/NB (where NB is the 
bath atom number) to be typically 0.17(2), by optically blasting atoms 
in |↓〉 with a 12-μs light pulse of controllable intensity (Supplementary 
Section III). Finally, we ramp the field to B0 ≈ 690 G and hold it for 
400 ms for equilibration. Typically, we have NB ≈ 5 × 105 atoms in the 
bath state, and the bath temperature is T = 0.25(2)TF (measured  
by time-of-flight expansion of the weakly interacting mixture |↓〉–|B〉). 
To estimate the uncertainty due to the interaction between the impurity 
and the bath, we ramp the field back to 583 G to measure the tempera-
ture, which is within the error bar of the one extracted at 690 G.

Extracting the renormalized Rabi frequency and decay rate
To extract ΩR and Γ on resonance, we fit the time evolution of mag
netization with M(t) = − cos(ΩRt) exp(−Γ t/2) . The off-resonant Rabi 
oscillation (Fig. 1b) is fitted with a phenomenological model M(t) =

,  w h e r e  
 is the asymptotic magnetization and Γ and Γ′ are the decay rates.

Model Hamiltonian of the system
As the largest detuning used in the experiment (≲100 kHz) is much 
smaller than the transition frequency between the |↑〉 and |↓〉 states 
(≈ 76.0 MHz), we can use the rotating-wave approximation. Within  
this approximation, the energy is conserved in the frame rotating  
with the drive. The Hamiltonian in that frame is

H = ℏΩ0

2
∑
k
(c†k↓ck↑ + h.c. ) +∑

k
(ϵk + ℏΔ)c†k↓ck↓ +∑

k
ϵkc†k↑ck↑

+∑
k
(ϵk − μ)d†kdk +

1
𝒱𝒱

∑
α=↑,↓

gα ∑
k,k′ ,q

c†k′+qαck′αd
†
k−qdk,

(2)

where ϵk = ℏ2k2/(2m); m is the atom’s mass; μ is the chemical potential  
of the gas of |B〉 atoms; 𝒱𝒱 is the volume of the system; c†kα (ckα) is the crea
tion (annihilation) operator for an impurity particle in state α ∈ {↑, ↓} 
with momentum ℏk; and d†k and dk are the creation and annihilation 
operators for a particle in the bath |B〉 with momentum ℏk, respectively. 
The coupling constants gα are connected to the s-wave scattering 
lengths aαB by the Lippmann–Schwinger equation in the infinite- 
volume limit (Supplementary Section I). In the single-impurity limit, 
we can neglect interactions between atoms in the states |↑〉 and |↓〉.

Extracting the zero crossing
The zero crossing is extracted without a priori knowledge of the func-
tional form of M  using a linear fit in the range M ∈ [−0.3,0.3]  in the 
vicinity of M = 0. Additionally, the data are fitted with the T > 0 exten-
sion of model equation (1), using the bath temperature T (≈Tspin) as  
an input parameter. These two methods have been checked to be  
consistent. We perform at least three repetitions for each data point 
for the steady-state spectrum around the zero crossing.

Zero crossing from spectral functions
The magnetization can be calculated using the exact relation 
Nα = ∫ dω(∑qAαα(q,ω))/(eβ(ℏω−μimp) + 1)  between the populations Nα 
(where α ∈ {↑, ↓}) and the equilibrium spectral functions Aαα(q, ω) in 
the presence of the drive; μimp is the impurity chemical potential; and 
β−1 = kBT. In the single-impurity limit, μimp→–∞, and it thus drops out of 
the expression for M. The resulting expression is evaluated using the 
equilibrium spectral functions from the T-matrix approximation.  
In practice, we also calculate M(Δ) using the impurity free energy27 as 
the numerical convergence of the integrals is improved. The zero cross-
ing is then extracted as in the experiment, from a linear fit to M(Δ).

To get a qualitative understanding of the T-matrix results, we compare 
them with the zero crossings obtained using a generic quasiparticle ansatz 
for the spectral functions22 (Supplementary Section I). In this case, we find  
that M = ((Δ − Ep

ℏ
) tanh ( βΩR

2
) + Z−1

Z+1
ΩR) / (ΩR +

Z−1
Z+1

(Δ − Ep
ℏ
) tanh ( βΩR

2
)),  

where ΩR ≈√ZΩ2
0 + (Δ − Ep

ℏ
)
2

. This reduces to the T > 0 generalization  

of equation (1) with Z = 1. We obtain an analytical expression for the 
zero crossing in the weak- and strong-drive limits:

ℏΔ0 = {
Ep −

1
2
ℏΩ0(Z − 1) ℏΩ0 ≫ EF

Ep + 2kBT arctanh ( 1−Z
Z+1

) ℏΩ0 ≪ EF.
(3)

In particular, for ℏΩ0 ≪ EF, we find ℏΔ0 = Ep at T = 0. However, away from 
this limit, the zero crossing is shifted away from the polaron energy.

Effect of non-zero kFa↓B

In our T-matrix approximation, we take into account the effect of a 
non-zero kFa↓B. In our experiment, kFa↓B is small and positive, leading to 
the existence of a repulsive polaron in the |↓〉 state. The dominant effect 
on Δ0 is a shift in the polaron energy by the (|↓〉 state) repulsive polaron 
energy18 (Supplementary Section I). The effect of non-zero kFa↓B on Γ 
and the renormalized Rabi frequency ΩR (Fig. 3) is visible in the large 
ℏΩ0/EF limit in the difference between the black lines and the grey 
lines (where we set kFa↓B = 0.16 and kFa↓B = 0, respectively). Note that 
the finite-temperature effect can be neglected in the limit ℏΩ0/EF ≫ 1.
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