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Abstract. Effective water resource management in the western United States (WUS)
is possible only with accurate monitoring and forecasting of seasonal snowpacks.
Seasonal snowpack, a major water source for the WUS, is declining due to
anthropogenic climate change. Overprinted on this trend is year-to-year variance
in snowpack extent and mass due to influences from teleconnections related to the
El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).
Recently in the 2015 and 2016 winters, extreme droughts in the coastal WUS, mainly
the Pacific Northwest (PNW) states of Washington and Oregon were linked with
anomalously warm sea surface temperatures (SST) in northeastern Pacific Ocean.
Here, we use convergent cross maps (CCMs) to analyze time series of SSTs and snow
water equivalent (SWE) in the PNW. For some ecoregions, we show that extratropical
SSTs may have a stronger influence on snowfall and snow accumulation in the PNW
compared to tropical indices of climatic variability. Cold (warm) SST's in the northeast
Pacific lead to high (low) snow years. CCMs also performed better in recreating SWE
anomalies compared to linear regressions with lagged predictor variables. Accounting
for the influence of SSTs may help water resource managers to better predict and
prepare for extreme snow events in the future.
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1. Introduction

Snow is a major water source globally and in the western United States (WUS). Snow
in montane and alpine regions act as natural water towers and feeds the water needs
of over 60 million people [1,2]. The resulting snowmelt accounts for over 70% of the
total runoff in the mountainous regions of the WUS (e.g., Sierra Nevada, Cascades,
and Rockies) [3]. Anthropogenic climate change has reduced both the extent and
duration of the seasonal snowpack [4]. Increased winter temperature has decreased
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the percent of winter precipitation falling as snow and has led to earlier peak snowmelt
[4,5], producing a mismatch between water demand and supply. Compounding these
challenges, snowpack deficits or snow droughts have increased in frequency in the past
30 years in the Pacific Northwest (PNW) [6].

Predicting the amount of snow and timing of snowmelt is critical for effective water
resource management. Snow has a wide variety of uses that ranges from recreation
to climate regulation [7]. The water from snowmelt provides water for ecosystems,
urban centers, agricultural production, and hydroelectric power generation [3,8]. Snow
forecasting is also needed for managing growing natural hazards. Damages from some
major floods resulted partly from underpredictions of snow resources [9], and the
frequency of rain-on-snow events, where flooding occurs due to melting of snow from
warmer rain events, is expected to increase as the climate continues to warm [10, 11].
Despite the need for accurate snowpack monitoring, current estimates of the water stored
as seasonal snow, or snow water equivalent (SWE), is highly uncertain [12]. Seasonal
snow is spatially variable at multiple scales and there are current limitations to SWE
data collection and satellite retrievals [12].

The challenges of snow monitoring are compounded by the year-to-year variability
in seasonal snowpacks. Atmospheric adjustments from the teleconnections of interannual
(e.g., El Nino Southern Oscillation (ENSO)) and interdecadal (e.g., Pacific Decadal
Oscillation (PDO)) climatic variability contribute to seasonal snowpack variability [13].
Remote teleconnections amplify wet and dry years, leading to uncertainties in yearly
precipitation and snowpack levels. In the past decade, snowpack in California varied
from extreme highs in 2023 [14] to extreme lows between 2011 to 2016. Similar
droughts also affected other WUS states including the PNW states of Washington and
Oregon, with record low snowpack levels in the 2014 and 2015 winters [15]. Although
the interannual and interdecadal variability in seasonal snowpack is well-documented
[13,14,16-18], it is difficult to pinpoint the causal drivers of this variability since several
modes of climate variability are all interconnected.

Recent events have shown that sea surface temperatures (SSTs) may also play a
role in amplifying wet and dry years. Anomalously warm ”blobs” of SSTs across the
northeast Pacific contributed to wide-scale drought across the WUS. Seager et al (2015)
noted that the 2011-2014 historical California drought was first onset by a La Nina event
but increases in SST off of the coast of California exacerbated drought-like conditions
into a multi-year drought [19]. The warming of SST off the coastal WUS caused a
ridge pattern (anomalously high pressures) to build, which inhibited moisture fluxes
and precipitation formation [15,19-21]. These studies suggests that SSTs may play a
large role in affecting winter precipitation patterns, in addition to the modes of climatic
variability. To what extent and where has not been fully examined.

Here, we use Convergent Cross Mapping (CCM) [22], a causal inference method,
to examine whether SSTs in the eastern Pacific Ocean are causally related to snowpack
levels in PNW mountain ranges. We identify regions where extratropical SSTs are
affecting WUS snowpack levels through atmospheric adjustments and teleconnections.
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We also show whether CCMs can make better reconstructions of PNW SWE using the
prior SST dynamics of the northeast Pacific Ocean.

In the next sections, we describe the data used in this analysis and detail the CCM
algorithm (section 2). The CCM results are presented and discussed in section 3.

2. Data and Methods

2.1. Snow Data

The target variable of our analysis is SWE in the WUS and Canada from the dataset
compiled by Musselman (2021) [23]. Western North America (WUS and Canada)
has one of the most extensive networks of automated snow observations in the world,
with low biases compared to co-located ground observations [24,25]. SWE at these
stations are measured daily through a snow pillow that weighs the amount of snow
fallen on the ground with a pressure transducer and converts the weight to its water
equivalent [25,26]. Quality controlled daily SWE measurements are available from Oct.
1, 1960 until September 1, 2019 (a period of 59 years) from snow stations managed
by various agencies including the Natural Resources Conservation Service (NRCS), the
California Department of Water Resources (DWR), Alberta Environment (AB), the
British Columbia Ministry of Environment (BC), and the Yukon Government Water
Resources Branch (YK) [25].

Snow in the WUS is not monolithic, its accumulation and melt dynamics can
vary according to different snow and climate regimes [27]. Snow can also vary with
ocean-atmosphere teleconnections such as ENSO [13,28]. As a result, we subset the
SWE data using the Level III Ecoregions in the WUS and Canada defined by the
United States Environmental Protection Agency [29]. For this study, we limited our
analysis to four PNW ecoregions: the North Cascades, the Cascades, the Eastern
Cascades Slopes and Foothills, and the Columbia Mountains/Northern Rockies. Table 1
summarizes the PNW ecoregions used in this analysis including when the first snow
station measurements were made and how many snow stations are located within each
ecoregion. Of the 1,065 snow stations in the dataset, 182 stations are located within
our ecoregions of focus. All stations that were located within the boundaries of an
ecoregion were grouped together, and averaged into a single SWE time series. To do
this, daily SWE measurements for each snow station were aggregated to a monthly
timestep. Then, the climatological monthly means were removed to obtain monthly
SWE anomalies. Each snow station may experience different snowpack magnitude and
timing due to site-specific conditions (e.g., altitude, aspect). Therefore, we normalized
the SWE anomalies by the climatological monthly standard deviations across all years to
reduce the potential bias during averaging. The number and location of snow monitoring
stations was variable throughout the time range of our data (see table 1 and table S1).
For each ecoregion, we reduced all data into a single SWE anomaly time series by taking
the average of all stations. The results of the other 11 WUS ecoregions are included in



Improving SWE with CCM 4

Table 1. Description statistics of Pacific Northwest ecoregions used in this analysis
including the number of stations within the ecoregion, the start date of measurements,
the length of the time series in number of months, and which agency manages the
stations within the ecoregion.

Ecoregion Num. of Stations Start Date  Length Sources
Columbia Mountains/Northern Rockies 59 1 Oct. 1966 636 BC, NRCS
North Cascades 32 1 Oct. 1973 531 BC, NRCS
Cascades 66 1 Oct. 1978 492 DWR, NRCS
Eastern Cascades Slopes and Foothills 25 1 Oct. 1978 478 DWR, NRCS

the Supplementary material (Figures S1 to S3).

2.2. SST Data

For the SST data, we used National Oceanic and Atmospheric Administrations’ (NOAA)
Extended Reconstructed Sea Surface Temperature, version 5 (ERSST) with a spatial
resolution of 2° x 2° [30]. The current version of the ERSST uses data from the
International Comprehensive Ocean-Atmosphere Dataset Release 3.0, Argo floats, and
Hadley Centre Ice-SST version 2. We bounded the ERSST into distinct regions within
Pacific Basin (20°S to 60°N and 180° to 80°W) and temporally between 1960 to 2019,
to align with SWE measurements. SST anomalies were calculated by removing the
climatological monthly means for each grid cell.

2.53. CCM

We use convergent cross mapping (CCM) to quantify the causal relationship between
time series of SST and SWE anomalies. CCM infers causality of two variables, X
and Y, within a nonlinear dynamical system by evaluating the degree to which two
variables behave consistently when revisiting similar states [22,31]. Specifically, CCM
tests whether X causes Y if the causal variable, X, imprints an information signature
on the affected variable, Y [29]. We find these imprints by taking cross-maps of X from
the shadow manifold of Y, M,, or the set of all lagged or historical values of Y. The
number of lags used to construct the shadow manifold is F, the embedded dimension.
For each time step, £/ 4 1 nearest neighbors are identified in M, using the Euclidean
distances of Y within a subset length of the shadow manifold that constrains where
nearest neighbors can be identified [31]. The time indices of these nearest neighbors
are used to map points in X. The forecast variable X* is computed by averaging the
nearest neighbors in X by the Euclidean distances in M,. The strength of causality
or CCM cross-map skill (shortened to CCM skill) is the Pearson’s correlation between
the observed X and the forecasted X*. These steps are repeated using an increasingly
larger fraction of time series length or library size. We conclude X causes Y with a high
CCM skill that converges with increasing library size. CCM can detect non-linear state
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dependent relationships and also accounts for directional couplings of variables (e.g.,
X may causally influence Y but not vice-versa) [32]. CCM has been used in a wide
variety of studies to infer the causality between anchovy populations and North Pacific
SSTs [22], soil moisture and precipitation [33], atmospheric blocking events [34], and
groundwater and streamflow [31]. We used the freely available python package pyEDM
(https://github.com/Sugiharalab/pyEDM), a python version of the rEDM package [35],
to run the CCM analysis.

We performed CCM analyses for each grid cell of our SST data against a time
series of SWE anomalies for each PNW ecoregion of focus. Before the CCM analyses,
we calculated SST and SWE anomalies (see sections 2.1 and 2.2 for details) and the
optimal Embedding Dimension, E. We used the built-in function EmbedDimension()
in pyEDM to obtain the maximum F that returns the highest prediction skill between
1 and 10. Figure 1 summarizes the process described above for performing a CCM
analysis. A time series of normalized SST anomalies (figure 1(c)) for a grid cell (black
box, figure 1(a)) are compared against a time series of SWE anomalies (figure 1(b)).
The Cascades ecoregion is highlighted in orange on figure 1(a). The CCM analysis was
conducted for three different lag periods: 1 month, 3 months, and 6 months, for each of
the four PNW ecoregions to test for seasonal or sub-seasonal relationships. While CCMs
can identify bidirectional couplings, this analysis focuses on how SST's are driving SWE,
since we expect SSTs drive large-scale atmospheric conditions that influence SWE.

For this analysis, CCM skills are statistically significant if it exceeded the skill of a
CCM analysis that used surrogate data, thus showing a causal relationship between SST's
and SWE. We used surrogate data that retained the seasonal trends but incorporated
randomness that erased any sub-seasonal causal links between SSTs and SWE, following
a methodology similar to Cenci and Saavedra (2019) [36]. We generated surrogate data
of 200 randomly sampled SST grids within the eastern Pacific Ocean for six WUS
ecoregions (three in the PNW and three other ecoregions outside the PNW). We used
the SurrogateData() function in the pyEDM package using the seasonal method and
ran CCM analyses to establish our baseline. The upper limits of these analysis at
95% confidence showed CCM skills at least 0.14, 0.21, and 0.25 for lags 1, 3, and 6,
respectively, would be statistically significant. Any CCM skill values for SST anomlaies
above 0.3 is considered to be statistically significant.

3. Results and Discussion

Figure 2 shows the CCM skill for each grid cell of the SST data against the PNW
coastal ecoregions for a lag of one month, three months, and six months, respectively.
SSTs near the northeast (NE) Pacific have a strong causal relationship with SWE
values with particularly strong relationships in the North Cascades and the Cascades
ecoregions (figure 2(a)-(c) and 2(d)-(f), respectively) across all lags. We define an
area of interest in the NE Pacific Ocean (hereafter the "NE Pacific”) between 40°N
to 50°N and 140°W to 130°W (black boxes in figure 2), southeast of the Gulf of Alaska
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Figure 1. (a) Map of the study area of sea surface temperature (SST) anomalies
of the eastern Pacific Ocean (20°S to 60°N and 180° to 80°W) on 3 March 2014
and the 4 EPA Level IIT ecoregions on the Pacific Northwest: Cascades (orange),
North Cascades (green), Eastern Cascades Slopes and Foothills (blue), and Columbia
Mountains/Northern Rockies (pink). A flowchart of our analysis is shown. (b) The
raw SST and SWE data are processed and transformed. The raw data is aggregated
and normalized following the steps outlined in sections 2.1 and 2.2 to calculate a SWE
and SST anomalies, respectively. (¢) We conducted a CCM analysis between the SST
and SWE anomalies. CCMs compares the observed X to the forecasted X* which
is given as an estimate of X given the nearest neighbor historical values of Y (or the
shadow manifold, M, ). The CCM analysis can be generalized for any sample nonlinear
system where X is explicitly defined to influence Y by a factor of 8 and constants r,, ry
controls how chaotic the system is [22]. The CCM skill is the Pearson’s correlation
between X and X* for increasing fractions of the library size. While CCMs can also
interpret directionality of causality, we are only focused on how SSTs affect SWE (blue
line in box ¢).

where the Pacific Current bifurcates into the Alaska and California Currents. For the
Eastern Cascades Slopes and Foothills (hereafter Eastern Cascades) and the Columbia
Mountains/Northern Rockies (hereafter Columbia Mountains) ecoregions, we observe
weaker causal relationships between SST's in the NE Pacific and SWE compared to the
Cascades and North Cascades. The weakest relationship is found with the Columbia
Mountains, which does not meet our threshold of statistical significance at all lags.
Increasing the lag from one to three and six, increases the CCM skill to where SSTs are
causally linked with Eastern Cascades SWE.

To assess whether the predictability of snow resources can be improved by
incorporating extratropical SSTs into forecasts, we performed additional CCMs using
NE Pacific SST anomalies against PNW SWE. NE Pacific SSTs were averaged and
anomalies were calculated as described in section 2.2. Figure 3 shows the CCM skill of
how SWE is influenced by NE Pacific SSTs compared against ENSO and PDO indices.
We used monthly Nino3.4 and PDO indices from NOAA’s Climate Prediction Center and
Physical Sciences Laboratory, respectively (see section S2 in Supplementary Materials).
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Figure 2. Cross-mapped skill of the SST influence on SWE for each grid cell in
the research domain for the (a)-(c) North Cascades, (d)-(f) Cascades, (g)-(i) Eastern
Cascades Slopes and Foothills, and (j)-(1) Columbia Mountains/Northern Rockies
ecoregions with lags of 1 month (left column), 3 months (center column) and 6 months
(right column). All statistically signficant grid cells with CCM skills greater than 0.3
are stippled. The boundary of the NE Pacific is shown (black box on (a)-(1)).
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For all of the PNW ecoregions except for the Columbia Mountains, NE Pacific SST's
had greater CCM skills compared to either ENSO or PDO across all lags. In the
North Cascades, Eastern Cascades, and the Columbia Mountains, PDO tended to have
a stronger causal relationship on SWE compared to ENSO. Figure 3 shows that our
index focused on extratropical SST variability has a larger influence snowpack levels
than tropical/subtropical indices such as ENSO and PDO. Other research has noted
the sensitivity of Cascades snowpack to North Pacific sea level pressure and circulation
patterns from annual to interdecadal time scales [37].

Figures 4 to 6 compare the observed SWE anomalies (black dotted lines) with the
CCMs predictions based on NE Pacific SSTs (blue lines) for three out of the four PNW
ecoregions (Cascades, North Cascades, and Columbia Mountains). For the Cascades
ecoregion on figure 4, we observe Pearson’s correlation of 0.38 and 0.36 between the
observed SWE anomalies and the CCM reconstructions from lags 1 and 6, respectively.
Correlations were slightly lower at lag 3 for the Cascades with a value of 0.33. For the
North Cascades ecoregion (figure 5), we observe that CCMs can better predict SWE as
we increase the lag from 1 month to 6 months (0.33 to 0.60). The Columbia Mountains
ecoregions (figure 6) have the worst performance of the 3 coastal ecoregions, with a
maximum correlation metric 0.31 at lag 6. However, CCM reconstructions are more
correlated with observations in the Columbia Mountains as the lag increases from 1
month to 3 months to 6 months (0.21 to 0.30 to 0.31, respectively).

To show CCMs provide better predictions than commonly used methods, we also
generated SWE predictions from lagged linear regression models (orange lines on figures
4 to 6). The lagged linear regression used NE Pacific SSTs to predict SWE in the future
one, three, or six months ahead, with observed SST as the dependent variable. For
example, a lag 3 linear regression predicts SWE 3 months in the future from current
SST values. In all three of the ecoregions compared, the Pearson’s correlations for the
linear regressions decreases as the lag increased when compared to the observations. In
the Cascades (figure 4), the correlation was 0.41 at lag 1 and dropped to 0.29 at lag 6.
Similarly to the Cascades, the linear regression for the North Cascades (figure 5) and the
Columbia Mountains (figure 6) follows a similar pattern. Correlations decreases from
0.39 to 0.23 in the North Cascades and decreases from 0.323 to 0.199 in the Columbia
Mountains/North Rockies.

As lags increase, the linear regression time series of SWE also appears to be
smoothed compared to the CCM predictions in figures 4 to 6. Figure 7 shows how the
lagged linear regression SWE predictions compare against both SWE observations and
CCM predictions in the North Cascades for 4 recent high and low snow years. Similar
graphs for the other ecoregions are provided in the supplemental materials. A perfect
prediction of SWE anomalies would fall on the 1:1 line (black dashed line) on figure 7(a).
The slope of the predictions from the linear regressions were 0.04 compared to the CCM
slope of 0.48. Additionally, the slope of the linear regression is not statistically different
from 0 at a significant level of 0.05%. This is further shown comparing the mean absolute
error (MAE) of predicted SWE anomalies. Figure 7(b) shows the MAE for the linear
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Figure 3. Cross-mapped skill of the NE Pacific SST (blue line), ENSO (orange
lines), and PDO (green line) influence on SWE in the (a)-(c) North Cascades, (d)-
(f) Cascades, (g)-(i) Eastern Cascades Slopes and Foothills, and (j)-(1) Columbia
Mountains/Northern Rockies ecoregions with lags of 1 month (left column), 3 months
(center column) and 6 months (right column) for each grid cell for SST anomalies.
The dashed blue line is the limit to which the SST CCM analysis are statistically
significant. The dashed grey line is the limit of the ENSO and PDO CCM analyses

are statistically significant.
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Figure 4. Comparisons between SWE anomalies from observations (grey dotted line)
against CCM (blue line) and a lagged linear correlation (orange line) for lags of (a) 1
month, (b) 3 months, and (c) 6 months for the Cascades ecoregion. The CCM and
linear regressions were calculated using SST anomalies from the NE Pacific. (d) A
map of the ecoregion is provided for context.

regression predictions are larger for all water years except for one, showing the linear
regressions are not predicting SWE anomalies as well as the CCMs, especially at a lag of
6 months. A linear regression will simply predict the state of a dependent variable (i.e.,
SWE) from the state of an independent variable (i.e., SSTs). The nature of the CCM
analysis comparing similar dynamical histories through the simplex projection [38,39]
provides better predictability at higher lags, accounting for SST changes that are linked
with different climatic modes of variability.

The CCM results further show that snowpack levels in the PNW are sensitive to
the different modes of climatic variability. For example, CCM reconstructions in the
Cascades (figure 4) improve after 1999, indicated by the Pearson’s correlations (0.15 and
0.47 from the lag 1 results, for pre-1999 and post-1999, respectively). These patterns
were also found in the lags 3 and 6 CCMs for the Cascades. We hypothesize this change
in predictability is due to a shift in the PDO around 1998/1999 (see figure S5(b)). This
possibly suggests the atmospheric responses are amplified depending on the temperature
difference between the eastern Pacific PDO pattern and our NE Pacific SST. Previous
research has shown in the Cascades Mountains snow decreased by 48% between 1950 to
1997 and increased by 19% from 1976 to 2007 [37]. This phenomena was only observed
in the Cascades ecoregion in this analysis.
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Figure 7. (a) Comparisons of predicted vs observed SWE anomalies for the 4 highest
and 4 lowest snow years for the North Cascades ecoregion. Lag 6 linear regression
(LLR, orange dots) failed to predict SWE anomalies compared to the lag 6 CCMs
(blue dots), especially compared to the 1:1 line (dashed black line). (b) Comparisons
of the mean absolute error (MAE) of the predicted SWE anomaly compared to the
observed. Larger errors denote worse predictions for the highest (blue) and lowest (red)
snow years. In general, linear regressions did worse in predicting the SWE anomaly
compared to the CCM.

While we demonstrate that CCMs can predict SWE using SST dynamics, CCMs
do not reveal the direction of causality between SST dynamics and SWE. To understand
how SSTs affect SWE in their respective PNW ecoregions, we plotted composites of the
average NE Pacific SST anomalies during all high and low snow years for the Cascades,
North Cascades, and Columbia Mountains (figure 8). Our definitions of high and low
snow years are listed in section S1 of the supplementary materials. Figure 8 shows that
low snow years are generally related to positive SST anomalies (warmer SSTs) in the
NE Pacific. High snow years are related to negative SST anomalies (colder SSTs) in
the NE Pacific. There is more variability in the high snow years compared to the low
snow years, but most of the variability occurs at or after the peak SWE and into the
following summer. The low snow years were generally the same for the three ecoregions
shown.

To assess prior hypotheses that atmospheric adjustments due to SSTs can affect
snowfall in the PNW, we plotted the monthly mean sea level pressure (SLP) for high
and low snow years using the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis v5 (ERAD) for the entire northern Pacific basin (figure 9). Our
reference for the lags is 1 April, near to the mean annual date of maximum SWE.
For the high and low snow years, we observe differing Rossby wave trains that affect
precipitation along the PNW. The mean SLP configuration for a high (low) snow year
has high (low) pressures over the Central North Pacific Ocean, especially during lag 3
(figure 9(b)) and lag 1 (figure 9(c)). Additionally, these Rossby wave trains resemble
atmospheric pressure configurations for La Nina in high snow years and El Nino in low
snow years. We also observe some ridging or a build-up of high pressures either near or
above the PNW ecoregions used in this study. The anomalous circulations created by
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Figure 8. Average SST anomaly composites for all high snow years (blue lines) and
all low snow years (red lines) for the Cascades (solid lines), North Cascades (dashed
lines), and Columbia Mountains/Northern Rockies (chained lines) ecoregion, averaged
over the NE Pacific. High (low) snow years are associated with negative (positive) SST
anomalies.

the high pressure centers during high snow years would direct storms towards the PNW
ecoregions, while low pressure in low snow years would direct storms away. During high
snow years, the low pressure center would bring onshore flow or westerly winds towards
the PNW ecoregions. The pressure centers during low snow years bring offshore flow or
easterly winds, which would be dryer and inhibit precipitation formation. Our results
are similarly supported in the literature, where temperature and onshore flow largely
controlled the precipitation and snowpack levels of the Cascades Mountains [37].

Figure 10 shows a similar plot for SSTs during high and low snow years at lags 1,
3, and 6 before April. For both high and low snow years, we observe strong, seasonally
persistent SST signals in the NE Pacific. We contrast these to SST anomalies near
the equator, which show changes in the central Pacific consistent with shifts in ENSO
phase. For instance, high snow years show cool La Nina-like anomalies in the Central
Pacific, while low snow years show slightly warm El Nino-like anomalies. This suggests
that the dynamics responsible for snow variability are not unrelated to ENSO, but that
extratropical SSTs offer an improved ability to predict high/low snow years over and
above the predictability provided by ENSO indices.

The strong persistent nature of SSTs in the NE Pacific, especially in low snow
years, is likely the cause of the higher CCM skill. While the ENSO will largely set
up atmospheric patterns that are preferential to snowfall, extratropical teleconnections
and the atmospheric adjustments from warm SSTs can have an amplifying effect on
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Figure 9. Mean sea level pressure anomalies at lags of (a) 6 months, (b) 3 months,
and (c) 1 month prior to April, when maximum SWE is generally achieved, for all high
snow years in the Cascades ecoregion. Mean sea level pressure anomalies are plotted
for lags of (d) 6 months, (¢) 3 months, and (f) 1 month for all low snow years for the
Cascades ecoregion.

these ENSO teleconnections [40]. Other studies have also noted the interplays of the
North Pacific Oscillation (NPO) with wind-evaporation-SST feedbacks [41-43]. Notably,
Baxter and Nigam (2015) noted that North American winter climate anomalies in
2013/14 were due to the NPO-West Pacific teleconnection and do not need to originate in
the tropics [43]. This study focused on the entire United States, but are generally aligned
with our findings in the PNW. Other studies have mentioned that the North Pacific
Meridional Mode from the spring can lead ENSO signals in the following winter [44,45].

Many studies agree that Pacific SST anomalies can modify the intensity and
position of the midlatitude storm tracks; several studies propose the coupling between
SST anomalies in the North Pacific and changing baroclinicity [46,47]. Gan et al (2013)
showed that storm tracks were coupled with SST's on seasonal timescales, with warm SST
anomalies in the North Pacific leading to reduced storm track activity through changes in
the tropospheric baroclinicity [47]. Anomalously warm SSTs in the west-central Pacific
also diverted storm tracks poleward [47]. However, other research has suggested that
precipitation can be altered by dynamic atmospheric adjustments from perturbations
in SSTs. Beaudin et al (2023) recently modeled the effects of extratropical Pacific
SSTs with PDO-like patterns and found precipitation was altered through changes to
water vapor fluxes driven towards California during the winter [40]. These water vapor
fluxes were largely caused by changes to synoptic scale winds due to the atmospheric
adjustments to SST anomalies in the NE Pacific [40]. Composites of SSTs and SLPs
for high and low snow years suggests that the atmospheric adjustments are dynamic



Improving SWE with CCM

, High Snow Years

ERSST

15

ERSST

(a) Lag: -6, High Snow Years

ERSST (b) Lag: -3

(c) Lag: -1, High Snow Years

s /% — /‘?} RN /y
— . A — . .
-2 -1 0 1 2 -2 -1 6 1 2 -2 -1 0 1 2

SST [°C]
(d) Lag: -6, Low Snow Years

SST [°C]
ERSST

(f) Lag: -1, Low Snow Years

SST [°C] SST[°C] SST [°C]

Figure 10. Similar to figure 9 but for SST anomalies.

rather than thermodynamic, since warm NE Pacific SSTs appear to favor low snow
years anomalies.

4. Conclusions

We present one of the first applications of convergent cross mapping to snow prediction.
Specifically, we use SST's of the northeastern Pacific Ocean with nearly 60 years of snow
measurements across the western United States and Canada. We have demonstrated
that CCMs and causal statistics can provide useful information about snow dynamics in
the Western United States and can potentially improve future projections of snowpack
levels by including ocean temperatures off the coast for multiple ecoregions. We present
convergent cross maps of SST's of the central /eastern Pacific Ocean with nearly 60 years
of snow measurements across the western United States and Canada. CCMs identified
that NE Pacific SST's can drive snowpack levels in the mountainous regions of the Pacific
Northwest, like the Cascades Range, with lags of up to 6 months. Warm (cool) SSTs in
the NE Pacific are associated with low (high) snow levels in the Pacific Northwest. The
CCM results also suggests that the causal influence of SSTs and extratropical modes of
climatic variability may play a larger role in changing winter snowpack levels compared
to tropical modes such as ENSO. CCMs also seem to be sensitive to notable shifts in
climate variability with increased predictability after 1999, likely due to the change from
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the warm to cold phase of the PDO

CCM reconstructions of SWE from NE Pacific SSTs can predict high and low snow
years with higher fidelity than lagged linear regression methods for the Pacific Northwest,
especially at longer lags. CCMs may open the door for future SWE projections at
longer timescales than is currently possible, allowing for efficient and effective water
management solutions for the PNW. With projected increases in global ambient and
ocean temperatures, considering ocean temperatures may be crucial in determining how
to manage a diminishing snow water resources in this region. CCM may be a useful tool
in the analysis of complex dynamical networks and helpful for generating hypothesis
that be tested further via dynamical modeling.
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