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Abstract. Effective water resource management in the western United States (WUS)

is possible only with accurate monitoring and forecasting of seasonal snowpacks.

Seasonal snowpack, a major water source for the WUS, is declining due to

anthropogenic climate change. Overprinted on this trend is year-to-year variance

in snowpack extent and mass due to influences from teleconnections related to the

El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).

Recently in the 2015 and 2016 winters, extreme droughts in the coastal WUS, mainly

the Pacific Northwest (PNW) states of Washington and Oregon were linked with

anomalously warm sea surface temperatures (SST) in northeastern Pacific Ocean.

Here, we use convergent cross maps (CCMs) to analyze time series of SSTs and snow

water equivalent (SWE) in the PNW. For some ecoregions, we show that extratropical

SSTs may have a stronger influence on snowfall and snow accumulation in the PNW

compared to tropical indices of climatic variability. Cold (warm) SSTs in the northeast

Pacific lead to high (low) snow years. CCMs also performed better in recreating SWE

anomalies compared to linear regressions with lagged predictor variables. Accounting

for the influence of SSTs may help water resource managers to better predict and

prepare for extreme snow events in the future.
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1. Introduction

Snow is a major water source globally and in the western United States (WUS). Snow

in montane and alpine regions act as natural water towers and feeds the water needs

of over 60 million people [1, 2]. The resulting snowmelt accounts for over 70% of the

total runoff in the mountainous regions of the WUS (e.g., Sierra Nevada, Cascades,

and Rockies) [3]. Anthropogenic climate change has reduced both the extent and

duration of the seasonal snowpack [4]. Increased winter temperature has decreased
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the percent of winter precipitation falling as snow and has led to earlier peak snowmelt

[4, 5], producing a mismatch between water demand and supply. Compounding these

challenges, snowpack deficits or snow droughts have increased in frequency in the past

30 years in the Pacific Northwest (PNW) [6].

Predicting the amount of snow and timing of snowmelt is critical for effective water

resource management. Snow has a wide variety of uses that ranges from recreation

to climate regulation [7]. The water from snowmelt provides water for ecosystems,

urban centers, agricultural production, and hydroelectric power generation [3, 8]. Snow

forecasting is also needed for managing growing natural hazards. Damages from some

major floods resulted partly from underpredictions of snow resources [9], and the

frequency of rain-on-snow events, where flooding occurs due to melting of snow from

warmer rain events, is expected to increase as the climate continues to warm [10, 11].

Despite the need for accurate snowpack monitoring, current estimates of the water stored

as seasonal snow, or snow water equivalent (SWE), is highly uncertain [12]. Seasonal

snow is spatially variable at multiple scales and there are current limitations to SWE

data collection and satellite retrievals [12].

The challenges of snow monitoring are compounded by the year-to-year variability

in seasonal snowpacks. Atmospheric adjustments from the teleconnections of interannual

(e.g., El Niño Southern Oscillation (ENSO)) and interdecadal (e.g., Pacific Decadal

Oscillation (PDO)) climatic variability contribute to seasonal snowpack variability [13].

Remote teleconnections amplify wet and dry years, leading to uncertainties in yearly

precipitation and snowpack levels. In the past decade, snowpack in California varied

from extreme highs in 2023 [14] to extreme lows between 2011 to 2016. Similar

droughts also affected other WUS states including the PNW states of Washington and

Oregon, with record low snowpack levels in the 2014 and 2015 winters [15]. Although

the interannual and interdecadal variability in seasonal snowpack is well-documented

[13,14,16–18], it is difficult to pinpoint the causal drivers of this variability since several

modes of climate variability are all interconnected.

Recent events have shown that sea surface temperatures (SSTs) may also play a

role in amplifying wet and dry years. Anomalously warm ”blobs” of SSTs across the

northeast Pacific contributed to wide-scale drought across the WUS. Seager et al (2015)

noted that the 2011-2014 historical California drought was first onset by a La Niña event

but increases in SST off of the coast of California exacerbated drought-like conditions

into a multi-year drought [19]. The warming of SST off the coastal WUS caused a

ridge pattern (anomalously high pressures) to build, which inhibited moisture fluxes

and precipitation formation [15, 19–21]. These studies suggests that SSTs may play a

large role in affecting winter precipitation patterns, in addition to the modes of climatic

variability. To what extent and where has not been fully examined.

Here, we use Convergent Cross Mapping (CCM) [22], a causal inference method,

to examine whether SSTs in the eastern Pacific Ocean are causally related to snowpack

levels in PNW mountain ranges. We identify regions where extratropical SSTs are

affecting WUS snowpack levels through atmospheric adjustments and teleconnections.



Improving SWE with CCM 3

We also show whether CCMs can make better reconstructions of PNW SWE using the

prior SST dynamics of the northeast Pacific Ocean.

In the next sections, we describe the data used in this analysis and detail the CCM

algorithm (section 2). The CCM results are presented and discussed in section 3.

2. Data and Methods

2.1. Snow Data

The target variable of our analysis is SWE in the WUS and Canada from the dataset

compiled by Musselman (2021) [23]. Western North America (WUS and Canada)

has one of the most extensive networks of automated snow observations in the world,

with low biases compared to co-located ground observations [24, 25]. SWE at these

stations are measured daily through a snow pillow that weighs the amount of snow

fallen on the ground with a pressure transducer and converts the weight to its water

equivalent [25,26]. Quality controlled daily SWE measurements are available from Oct.

1, 1960 until September 1, 2019 (a period of 59 years) from snow stations managed

by various agencies including the Natural Resources Conservation Service (NRCS), the

California Department of Water Resources (DWR), Alberta Environment (AB), the

British Columbia Ministry of Environment (BC), and the Yukon Government Water

Resources Branch (YK) [25].

Snow in the WUS is not monolithic, its accumulation and melt dynamics can

vary according to different snow and climate regimes [27]. Snow can also vary with

ocean-atmosphere teleconnections such as ENSO [13, 28]. As a result, we subset the

SWE data using the Level III Ecoregions in the WUS and Canada defined by the

United States Environmental Protection Agency [29]. For this study, we limited our

analysis to four PNW ecoregions: the North Cascades, the Cascades, the Eastern

Cascades Slopes and Foothills, and the Columbia Mountains/Northern Rockies. Table 1

summarizes the PNW ecoregions used in this analysis including when the first snow

station measurements were made and how many snow stations are located within each

ecoregion. Of the 1,065 snow stations in the dataset, 182 stations are located within

our ecoregions of focus. All stations that were located within the boundaries of an

ecoregion were grouped together, and averaged into a single SWE time series. To do

this, daily SWE measurements for each snow station were aggregated to a monthly

timestep. Then, the climatological monthly means were removed to obtain monthly

SWE anomalies. Each snow station may experience different snowpack magnitude and

timing due to site-specific conditions (e.g., altitude, aspect). Therefore, we normalized

the SWE anomalies by the climatological monthly standard deviations across all years to

reduce the potential bias during averaging. The number and location of snow monitoring

stations was variable throughout the time range of our data (see table 1 and table S1).

For each ecoregion, we reduced all data into a single SWE anomaly time series by taking

the average of all stations. The results of the other 11 WUS ecoregions are included in
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Table 1. Description statistics of Pacific Northwest ecoregions used in this analysis

including the number of stations within the ecoregion, the start date of measurements,

the length of the time series in number of months, and which agency manages the

stations within the ecoregion.

Ecoregion Num. of Stations Start Date Length Sources

Columbia Mountains/Northern Rockies 59 1 Oct. 1966 636 BC, NRCS

North Cascades 32 1 Oct. 1973 531 BC, NRCS

Cascades 66 1 Oct. 1978 492 DWR, NRCS

Eastern Cascades Slopes and Foothills 25 1 Oct. 1978 478 DWR, NRCS

the Supplementary material (Figures S1 to S3).

2.2. SST Data

For the SST data, we used National Oceanic and Atmospheric Administrations’ (NOAA)

Extended Reconstructed Sea Surface Temperature, version 5 (ERSST) with a spatial

resolution of 2◦ x 2◦ [30]. The current version of the ERSST uses data from the

International Comprehensive Ocean-Atmosphere Dataset Release 3.0, Argo floats, and

Hadley Centre Ice-SST version 2. We bounded the ERSST into distinct regions within

Pacific Basin (20◦S to 60◦N and 180◦ to 80◦W) and temporally between 1960 to 2019,

to align with SWE measurements. SST anomalies were calculated by removing the

climatological monthly means for each grid cell.

2.3. CCM

We use convergent cross mapping (CCM) to quantify the causal relationship between

time series of SST and SWE anomalies. CCM infers causality of two variables, X

and Y , within a nonlinear dynamical system by evaluating the degree to which two

variables behave consistently when revisiting similar states [22, 31]. Specifically, CCM

tests whether X causes Y if the causal variable, X, imprints an information signature

on the affected variable, Y [29]. We find these imprints by taking cross-maps of X from

the shadow manifold of Y , My, or the set of all lagged or historical values of Y . The

number of lags used to construct the shadow manifold is E, the embedded dimension.

For each time step, E + 1 nearest neighbors are identified in My using the Euclidean

distances of Y within a subset length of the shadow manifold that constrains where

nearest neighbors can be identified [31]. The time indices of these nearest neighbors

are used to map points in X. The forecast variable X∗ is computed by averaging the

nearest neighbors in X by the Euclidean distances in My. The strength of causality

or CCM cross-map skill (shortened to CCM skill) is the Pearson’s correlation between

the observed X and the forecasted X∗. These steps are repeated using an increasingly

larger fraction of time series length or library size. We conclude X causes Y with a high

CCM skill that converges with increasing library size. CCM can detect non-linear state
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dependent relationships and also accounts for directional couplings of variables (e.g.,

X may causally influence Y but not vice-versa) [32]. CCM has been used in a wide

variety of studies to infer the causality between anchovy populations and North Pacific

SSTs [22], soil moisture and precipitation [33], atmospheric blocking events [34], and

groundwater and streamflow [31]. We used the freely available python package pyEDM

(https://github.com/SugiharaLab/pyEDM), a python version of the rEDM package [35],

to run the CCM analysis.

We performed CCM analyses for each grid cell of our SST data against a time

series of SWE anomalies for each PNW ecoregion of focus. Before the CCM analyses,

we calculated SST and SWE anomalies (see sections 2.1 and 2.2 for details) and the

optimal Embedding Dimension, E. We used the built-in function EmbedDimension()

in pyEDM to obtain the maximum E that returns the highest prediction skill between

1 and 10. Figure 1 summarizes the process described above for performing a CCM

analysis. A time series of normalized SST anomalies (figure 1(c)) for a grid cell (black

box, figure 1(a)) are compared against a time series of SWE anomalies (figure 1(b)).

The Cascades ecoregion is highlighted in orange on figure 1(a). The CCM analysis was

conducted for three different lag periods: 1 month, 3 months, and 6 months, for each of

the four PNW ecoregions to test for seasonal or sub-seasonal relationships. While CCMs

can identify bidirectional couplings, this analysis focuses on how SSTs are driving SWE,

since we expect SSTs drive large-scale atmospheric conditions that influence SWE.

For this analysis, CCM skills are statistically significant if it exceeded the skill of a

CCM analysis that used surrogate data, thus showing a causal relationship between SSTs

and SWE. We used surrogate data that retained the seasonal trends but incorporated

randomness that erased any sub-seasonal causal links between SSTs and SWE, following

a methodology similar to Cenci and Saavedra (2019) [36]. We generated surrogate data

of 200 randomly sampled SST grids within the eastern Pacific Ocean for six WUS

ecoregions (three in the PNW and three other ecoregions outside the PNW). We used

the SurrogateData() function in the pyEDM package using the seasonal method and

ran CCM analyses to establish our baseline. The upper limits of these analysis at

95% confidence showed CCM skills at least 0.14, 0.21, and 0.25 for lags 1, 3, and 6,

respectively, would be statistically significant. Any CCM skill values for SST anomlaies

above 0.3 is considered to be statistically significant.

3. Results and Discussion

Figure 2 shows the CCM skill for each grid cell of the SST data against the PNW

coastal ecoregions for a lag of one month, three months, and six months, respectively.

SSTs near the northeast (NE) Pacific have a strong causal relationship with SWE

values with particularly strong relationships in the North Cascades and the Cascades

ecoregions (figure 2(a)-(c) and 2(d)-(f), respectively) across all lags. We define an

area of interest in the NE Pacific Ocean (hereafter the ”NE Pacific”) between 40◦N

to 50◦N and 140◦W to 130◦W (black boxes in figure 2), southeast of the Gulf of Alaska
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Figure 1. (a) Map of the study area of sea surface temperature (SST) anomalies

of the eastern Pacific Ocean (20◦S to 60◦N and 180◦ to 80◦W) on 3 March 2014

and the 4 EPA Level III ecoregions on the Pacific Northwest: Cascades (orange),

North Cascades (green), Eastern Cascades Slopes and Foothills (blue), and Columbia

Mountains/Northern Rockies (pink). A flowchart of our analysis is shown. (b) The

raw SST and SWE data are processed and transformed. The raw data is aggregated

and normalized following the steps outlined in sections 2.1 and 2.2 to calculate a SWE

and SST anomalies, respectively. (c) We conducted a CCM analysis between the SST

and SWE anomalies. CCMs compares the observed X to the forecasted X∗ which

is given as an estimate of X given the nearest neighbor historical values of Y (or the

shadow manifold, My). The CCM analysis can be generalized for any sample nonlinear

system where X is explicitly defined to influence Y by a factor of β and constants rx, ry
controls how chaotic the system is [22]. The CCM skill is the Pearson’s correlation

between X and X∗ for increasing fractions of the library size. While CCMs can also

interpret directionality of causality, we are only focused on how SSTs affect SWE (blue

line in box c).

where the Pacific Current bifurcates into the Alaska and California Currents. For the

Eastern Cascades Slopes and Foothills (hereafter Eastern Cascades) and the Columbia

Mountains/Northern Rockies (hereafter Columbia Mountains) ecoregions, we observe

weaker causal relationships between SSTs in the NE Pacific and SWE compared to the

Cascades and North Cascades. The weakest relationship is found with the Columbia

Mountains, which does not meet our threshold of statistical significance at all lags.

Increasing the lag from one to three and six, increases the CCM skill to where SSTs are

causally linked with Eastern Cascades SWE.

To assess whether the predictability of snow resources can be improved by

incorporating extratropical SSTs into forecasts, we performed additional CCMs using

NE Pacific SST anomalies against PNW SWE. NE Pacific SSTs were averaged and

anomalies were calculated as described in section 2.2. Figure 3 shows the CCM skill of

how SWE is influenced by NE Pacific SSTs compared against ENSO and PDO indices.

We used monthly Niño3.4 and PDO indices from NOAA’s Climate Prediction Center and

Physical Sciences Laboratory, respectively (see section S2 in Supplementary Materials).
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(j) Columbia Mou tai s/North Lag 1
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(b) North Cascades Lag 3

−0.5 0.0 0.5
CCM Skill

(e) Cascades Lag 3

−0.5 0.0 0.5
CCM Skill

(h) Easter  Cascades Slopes Lag 3

−0.5 0.0 0.5
CCM Skill

(k) Columbia Mou tai s/North Lag 3

−0.5 0.0 0.5
CCM Skill

(c) North Cascades Lag 6
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(f) Cascades Lag 6
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−0.5 0.0 0.5
CCM Skill

(l) Columbia Mou tai s/North Lag 6

−0.5 0.0 0.5
CCM Skill

Figure 2. Cross-mapped skill of the SST influence on SWE for each grid cell in

the research domain for the (a)-(c) North Cascades, (d)-(f) Cascades, (g)-(i) Eastern

Cascades Slopes and Foothills, and (j)-(l) Columbia Mountains/Northern Rockies

ecoregions with lags of 1 month (left column), 3 months (center column) and 6 months

(right column). All statistically signficant grid cells with CCM skills greater than 0.3

are stippled. The boundary of the NE Pacific is shown (black box on (a)-(l)).
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For all of the PNW ecoregions except for the Columbia Mountains, NE Pacific SSTs

had greater CCM skills compared to either ENSO or PDO across all lags. In the

North Cascades, Eastern Cascades, and the Columbia Mountains, PDO tended to have

a stronger causal relationship on SWE compared to ENSO. Figure 3 shows that our

index focused on extratropical SST variability has a larger influence snowpack levels

than tropical/subtropical indices such as ENSO and PDO. Other research has noted

the sensitivity of Cascades snowpack to North Pacific sea level pressure and circulation

patterns from annual to interdecadal time scales [37].

Figures 4 to 6 compare the observed SWE anomalies (black dotted lines) with the

CCMs predictions based on NE Pacific SSTs (blue lines) for three out of the four PNW

ecoregions (Cascades, North Cascades, and Columbia Mountains). For the Cascades

ecoregion on figure 4, we observe Pearson’s correlation of 0.38 and 0.36 between the

observed SWE anomalies and the CCM reconstructions from lags 1 and 6, respectively.

Correlations were slightly lower at lag 3 for the Cascades with a value of 0.33. For the

North Cascades ecoregion (figure 5), we observe that CCMs can better predict SWE as

we increase the lag from 1 month to 6 months (0.33 to 0.60). The Columbia Mountains

ecoregions (figure 6) have the worst performance of the 3 coastal ecoregions, with a

maximum correlation metric 0.31 at lag 6. However, CCM reconstructions are more

correlated with observations in the Columbia Mountains as the lag increases from 1

month to 3 months to 6 months (0.21 to 0.30 to 0.31, respectively).

To show CCMs provide better predictions than commonly used methods, we also

generated SWE predictions from lagged linear regression models (orange lines on figures

4 to 6). The lagged linear regression used NE Pacific SSTs to predict SWE in the future

one, three, or six months ahead, with observed SST as the dependent variable. For

example, a lag 3 linear regression predicts SWE 3 months in the future from current

SST values. In all three of the ecoregions compared, the Pearson’s correlations for the

linear regressions decreases as the lag increased when compared to the observations. In

the Cascades (figure 4), the correlation was 0.41 at lag 1 and dropped to 0.29 at lag 6.

Similarly to the Cascades, the linear regression for the North Cascades (figure 5) and the

Columbia Mountains (figure 6) follows a similar pattern. Correlations decreases from

0.39 to 0.23 in the North Cascades and decreases from 0.323 to 0.199 in the Columbia

Mountains/North Rockies.

As lags increase, the linear regression time series of SWE also appears to be

smoothed compared to the CCM predictions in figures 4 to 6. Figure 7 shows how the

lagged linear regression SWE predictions compare against both SWE observations and

CCM predictions in the North Cascades for 4 recent high and low snow years. Similar

graphs for the other ecoregions are provided in the supplemental materials. A perfect

prediction of SWE anomalies would fall on the 1:1 line (black dashed line) on figure 7(a).

The slope of the predictions from the linear regressions were 0.04 compared to the CCM

slope of 0.48. Additionally, the slope of the linear regression is not statistically different

from 0 at a significant level of 0.05%. This is further shown comparing the mean absolute

error (MAE) of predicted SWE anomalies. Figure 7(b) shows the MAE for the linear
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Figure 3. Cross-mapped skill of the NE Pacific SST (blue line), ENSO (orange

lines), and PDO (green line) influence on SWE in the (a)-(c) North Cascades, (d)-

(f) Cascades, (g)-(i) Eastern Cascades Slopes and Foothills, and (j)-(l) Columbia

Mountains/Northern Rockies ecoregions with lags of 1 month (left column), 3 months

(center column) and 6 months (right column) for each grid cell for SST anomalies.

The dashed blue line is the limit to which the SST CCM analysis are statistically

significant. The dashed grey line is the limit of the ENSO and PDO CCM analyses

are statistically significant.
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Figure 4. Comparisons between SWE anomalies from observations (grey dotted line)

against CCM (blue line) and a lagged linear correlation (orange line) for lags of (a) 1

month, (b) 3 months, and (c) 6 months for the Cascades ecoregion. The CCM and

linear regressions were calculated using SST anomalies from the NE Pacific. (d) A

map of the ecoregion is provided for context.

regression predictions are larger for all water years except for one, showing the linear

regressions are not predicting SWE anomalies as well as the CCMs, especially at a lag of

6 months. A linear regression will simply predict the state of a dependent variable (i.e.,

SWE) from the state of an independent variable (i.e., SSTs). The nature of the CCM

analysis comparing similar dynamical histories through the simplex projection [38, 39]

provides better predictability at higher lags, accounting for SST changes that are linked

with different climatic modes of variability.

The CCM results further show that snowpack levels in the PNW are sensitive to

the different modes of climatic variability. For example, CCM reconstructions in the

Cascades (figure 4) improve after 1999, indicated by the Pearson’s correlations (0.15 and

0.47 from the lag 1 results, for pre-1999 and post-1999, respectively). These patterns

were also found in the lags 3 and 6 CCMs for the Cascades. We hypothesize this change

in predictability is due to a shift in the PDO around 1998/1999 (see figure S5(b)). This

possibly suggests the atmospheric responses are amplified depending on the temperature

difference between the eastern Pacific PDO pattern and our NE Pacific SST. Previous

research has shown in the Cascades Mountains snow decreased by 48% between 1950 to

1997 and increased by 19% from 1976 to 2007 [37]. This phenomena was only observed

in the Cascades ecoregion in this analysis.
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Figure 5. Same as figure 4 but for the North Cascades ecoregion.
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Figure 6. Same as figure 4 but for the Columbia Mountains/Northern Rockies

ecoregion.
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Figure 7. (a) Comparisons of predicted vs observed SWE anomalies for the 4 highest

and 4 lowest snow years for the North Cascades ecoregion. Lag 6 linear regression

(LLR, orange dots) failed to predict SWE anomalies compared to the lag 6 CCMs

(blue dots), especially compared to the 1:1 line (dashed black line). (b) Comparisons

of the mean absolute error (MAE) of the predicted SWE anomaly compared to the

observed. Larger errors denote worse predictions for the highest (blue) and lowest (red)

snow years. In general, linear regressions did worse in predicting the SWE anomaly

compared to the CCM.

While we demonstrate that CCMs can predict SWE using SST dynamics, CCMs

do not reveal the direction of causality between SST dynamics and SWE. To understand

how SSTs affect SWE in their respective PNW ecoregions, we plotted composites of the

average NE Pacific SST anomalies during all high and low snow years for the Cascades,

North Cascades, and Columbia Mountains (figure 8). Our definitions of high and low

snow years are listed in section S1 of the supplementary materials. Figure 8 shows that

low snow years are generally related to positive SST anomalies (warmer SSTs) in the

NE Pacific. High snow years are related to negative SST anomalies (colder SSTs) in

the NE Pacific. There is more variability in the high snow years compared to the low

snow years, but most of the variability occurs at or after the peak SWE and into the

following summer. The low snow years were generally the same for the three ecoregions

shown.

To assess prior hypotheses that atmospheric adjustments due to SSTs can affect

snowfall in the PNW, we plotted the monthly mean sea level pressure (SLP) for high

and low snow years using the European Centre for Medium-Range Weather Forecasts

(ECMWF) Reanalysis v5 (ERA5) for the entire northern Pacific basin (figure 9). Our

reference for the lags is 1 April, near to the mean annual date of maximum SWE.

For the high and low snow years, we observe differing Rossby wave trains that affect

precipitation along the PNW. The mean SLP configuration for a high (low) snow year

has high (low) pressures over the Central North Pacific Ocean, especially during lag 3

(figure 9(b)) and lag 1 (figure 9(c)). Additionally, these Rossby wave trains resemble

atmospheric pressure configurations for La Niña in high snow years and El Niño in low

snow years. We also observe some ridging or a build-up of high pressures either near or

above the PNW ecoregions used in this study. The anomalous circulations created by
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Figure 8. Average SST anomaly composites for all high snow years (blue lines) and

all low snow years (red lines) for the Cascades (solid lines), North Cascades (dashed

lines), and Columbia Mountains/Northern Rockies (chained lines) ecoregion, averaged

over the NE Pacific. High (low) snow years are associated with negative (positive) SST

anomalies.

the high pressure centers during high snow years would direct storms towards the PNW

ecoregions, while low pressure in low snow years would direct storms away. During high

snow years, the low pressure center would bring onshore flow or westerly winds towards

the PNW ecoregions. The pressure centers during low snow years bring offshore flow or

easterly winds, which would be dryer and inhibit precipitation formation. Our results

are similarly supported in the literature, where temperature and onshore flow largely

controlled the precipitation and snowpack levels of the Cascades Mountains [37].

Figure 10 shows a similar plot for SSTs during high and low snow years at lags 1,

3, and 6 before April. For both high and low snow years, we observe strong, seasonally

persistent SST signals in the NE Pacific. We contrast these to SST anomalies near

the equator, which show changes in the central Pacific consistent with shifts in ENSO

phase. For instance, high snow years show cool La Niña-like anomalies in the Central

Pacific, while low snow years show slightly warm El Niño-like anomalies. This suggests

that the dynamics responsible for snow variability are not unrelated to ENSO, but that

extratropical SSTs offer an improved ability to predict high/low snow years over and

above the predictability provided by ENSO indices.

The strong persistent nature of SSTs in the NE Pacific, especially in low snow

years, is likely the cause of the higher CCM skill. While the ENSO will largely set

up atmospheric patterns that are preferential to snowfall, extratropical teleconnections

and the atmospheric adjustments from warm SSTs can have an amplifying effect on
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Figure 9. Mean sea level pressure anomalies at lags of (a) 6 months, (b) 3 months,

and (c) 1 month prior to April, when maximum SWE is generally achieved, for all high

snow years in the Cascades ecoregion. Mean sea level pressure anomalies are plotted

for lags of (d) 6 months, (e) 3 months, and (f) 1 month for all low snow years for the

Cascades ecoregion.

these ENSO teleconnections [40]. Other studies have also noted the interplays of the

North Pacific Oscillation (NPO) with wind-evaporation-SST feedbacks [41–43]. Notably,

Baxter and Nigam (2015) noted that North American winter climate anomalies in

2013/14 were due to the NPO-West Pacific teleconnection and do not need to originate in

the tropics [43]. This study focused on the entire United States, but are generally aligned

with our findings in the PNW. Other studies have mentioned that the North Pacific

Meridional Mode from the spring can lead ENSO signals in the following winter [44,45].

Many studies agree that Pacific SST anomalies can modify the intensity and

position of the midlatitude storm tracks; several studies propose the coupling between

SST anomalies in the North Pacific and changing baroclinicity [46,47]. Gan et al (2013)

showed that storm tracks were coupled with SSTs on seasonal timescales, with warm SST

anomalies in the North Pacific leading to reduced storm track activity through changes in

the tropospheric baroclinicity [47]. Anomalously warm SSTs in the west-central Pacific

also diverted storm tracks poleward [47]. However, other research has suggested that

precipitation can be altered by dynamic atmospheric adjustments from perturbations

in SSTs. Beaudin et al (2023) recently modeled the effects of extratropical Pacific

SSTs with PDO-like patterns and found precipitation was altered through changes to

water vapor fluxes driven towards California during the winter [40]. These water vapor

fluxes were largely caused by changes to synoptic scale winds due to the atmospheric

adjustments to SST anomalies in the NE Pacific [40]. Composites of SSTs and SLPs

for high and low snow years suggests that the atmospheric adjustments are dynamic
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Figure 10. Similar to figure 9 but for SST anomalies.

rather than thermodynamic, since warm NE Pacific SSTs appear to favor low snow

years anomalies.

4. Conclusions

We present one of the first applications of convergent cross mapping to snow prediction.

Specifically, we use SSTs of the northeastern Pacific Ocean with nearly 60 years of snow

measurements across the western United States and Canada. We have demonstrated

that CCMs and causal statistics can provide useful information about snow dynamics in

the Western United States and can potentially improve future projections of snowpack

levels by including ocean temperatures off the coast for multiple ecoregions. We present

convergent cross maps of SSTs of the central/eastern Pacific Ocean with nearly 60 years

of snow measurements across the western United States and Canada. CCMs identified

that NE Pacific SSTs can drive snowpack levels in the mountainous regions of the Pacific

Northwest, like the Cascades Range, with lags of up to 6 months. Warm (cool) SSTs in

the NE Pacific are associated with low (high) snow levels in the Pacific Northwest. The

CCM results also suggests that the causal influence of SSTs and extratropical modes of

climatic variability may play a larger role in changing winter snowpack levels compared

to tropical modes such as ENSO. CCMs also seem to be sensitive to notable shifts in

climate variability with increased predictability after 1999, likely due to the change from
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the warm to cold phase of the PDO

CCM reconstructions of SWE from NE Pacific SSTs can predict high and low snow

years with higher fidelity than lagged linear regression methods for the Pacific Northwest,

especially at longer lags. CCMs may open the door for future SWE projections at

longer timescales than is currently possible, allowing for efficient and effective water

management solutions for the PNW. With projected increases in global ambient and

ocean temperatures, considering ocean temperatures may be crucial in determining how

to manage a diminishing snow water resources in this region. CCM may be a useful tool

in the analysis of complex dynamical networks and helpful for generating hypothesis

that be tested further via dynamical modeling.
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