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Abstract—This paper demonstrates the prospects of using a 

Modified 3D Spherical Luneburg lens antenna for imaging.  The 

proposed imaging experimental setup comprises the lens fed by a 

rectangular waveguide to shine directive beams on the targets of 

different shapes placed in the path of the beams. The 60 mm 

diameter lens with a maximum directivity of 17 dBi is enclosed in 

a 160 mm diameter spherical Perfectly Matched Layer. Single-

frequency monostatic full-wave simulations were performed at 18 

GHz. The scattering parameters and the simulated far-field data 

are fed to the imaging algorithm based on truncated singular value 

decomposition, and the reconstructed images show the imaging 

capabilities of a Quasi-Conformal Transformed Luneburg lens. 

I. INTRODUCTION 

A Luneburg lens is a highly directive spherical dielectric 
GRadient INdex (GRIN) lens with a high radiation efficiency 
and a symmetrically varying relative permittivity which 
decreases radially from the center to the outside surface of the 
lens[1]. Luneburg lens antennas are an important type of ultra-
wideband (UWB) antennas at microwave and millimeter wave 
frequencies. In the existing literature, unlike most of its UWB 
antenna counterparts such as Vivaldi and bow-tie antennas used 
for high-resolution imaging, Luneburg lens mostly finds 
applications in wireless communications and acoustic systems. 
Exploring the Luneburg lens’ imaging capabilities could open 
new doors for its applications in microwave imaging which 
would in turn make the lens useful for short-range imaging 
applications such as biomedical imaging, through-the-wall 
imaging, concealed weapon detection, and long-range imaging 
applications such as radar, remote sensing, and underground 
surveillance. 

Transformation Optics (TO) theory allows us to modify the 
geometry of a Luneburg lens while still retaining the 
electromagnetic properties of the default spherical Luneburg 
lens. Flattening one side of the lens using TO theory makes it 
easier to incorporate planar waveguides/array of feeds for low-
cost beamforming[2]. Microwave imaging techniques leverage 
these beamforming devices to shine highly directive beams upon 
targets. The image of the target objects can be reconstructed 
based on scattered waves received by the imaging devices after 
being processed by an imaging algorithm. 

In this paper, we present a modified Luneburg lens imaging 
system, an advancement on our prior work reported in [3]. 
Image reconstruction is achieved by using an imaging algorithm 
based on truncated singular value decomposition. 

II. IMAGING SYSTEM SETUPS 

 The imaging system consists of two simulation setups; the 
setup with targets (shown in Fig. 1.) and the setup without 
targets; both of the same system size, lens and waveguide size, 
and position. The targets are dielectric materials of higher 
relative permittivity values when compared with the permittivity 
of the surrounding environment. The targets are placed in the 
path of the beams, achieved by placing the rectangular 
waveguide feeds at different locations on the flat side of the 
Luneburg lens to form an array-like feed position map. 

 The parameters of the Luneburg lens used in the system are 
described comprehensively in [3]. The imaging system’s 
geometric entity and material properties assignment were done 
putting in mind the possibilities of physical realization with 3D 
printing technology. We carried out a full-wave simulation using 
a frequency domain EM solver at 18 GHz. Antenna beam 
steering was achieved by parameterizing the rectangular 
waveguide positions making it possible to scan the targets from 
different waveguide locations. The scattering parameters at the 
81 waveguide positions and the far-field radiation pattern data 
are saved for target image reconstruction. 

 

Figure 1. The QCTO Modified Spherical Luneburg Lens imaging 
system with spherical targets 

III. FORMULATION OF THE IMAGING ALGORITHM 

Under the Born Approximation, the scattered electric field at 
the waveguide positions can be expressed as 

𝐸𝑠(𝑟, 𝑘) =  𝑘2 ∫ 𝐺(𝑟, 𝑟′, 𝑘)𝐸𝑖𝑛𝑐(𝑟′, 𝑘)𝜒(𝑟′) 𝑑𝑟′
𝑣

          (1) 

where 𝑟 is the waveguide position, 𝑟′ is the target position, 𝑘 is 
the wavenumber in free space. 𝐺(𝑟, 𝑟′, 𝑘) is the Green’s 
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function, 𝐸𝑖𝑛𝑐(𝑟′, 𝑘) is the incident field at the target position 
and 𝜒(𝑟′) is the contrast function[4]. 

 Applying the reciprocity principle to equation (1), Green’s 
function is equal to the incident field[4]. Therefore,  

𝐸𝑠(𝑟, 𝑘) =  ∫ 𝐸𝑖𝑛𝑐
2(𝑟′, 𝑘)[𝑘𝑡

2(𝑟′) − 𝑘0
2] 𝑑𝑟′

𝑣
         (2) 

where 𝑘0 is the wave number of the background medium and 𝑘𝑡 
is the wave number of the targets. 

 For image reconstruction, the scattered field at the 
waveguide positions can be simplified in relation to our imaging 
setups with and without targets. Considering the waveguide 
open end for both setups, the scattered field at the waveguide 
positions can be related to the scattering parameters at all feed 
positions. 

𝐸𝑠(𝑟,𝑘)

𝐸0
 ≡  𝑆11

𝑤 − 𝑆11
𝑤/𝑜

≡ ∆𝑆11                  (3) 

where 𝐸0 is the incident field at the open end of the waveguide 
and is assumed to be 1, 𝑆11

𝑤  is the measured Scattering 

parameters for the setup with the targets, and where 𝑆11
𝑤/𝑜

 is the 

measured Scattering parameters for the setup without the targets. 
 Therefore, equation (2) becomes: 

∆𝑆11 =  ∫ 𝐸𝑖𝑛𝑐
2(𝑟′, 𝑘)[𝑘𝑡

2(𝑟′) − 𝑘0
2] 𝑑𝑟′

𝑣
           (4) 

 The volume integral in equation (4) can be approximated to 
summations, and the square of the incident field (which is also 
proportional to 𝐸0) is the radiation power pattern of the antenna. 

∆𝑆11 =  ∑ ∑ ∑ 𝑃(𝜃, ∅) exp(−𝑗2𝑘𝑟) [𝑘𝑡
2(𝑟′) − 𝑘0

2]𝑁
𝑛=1

𝑀
𝑚=1

𝑃
𝑝=1    (5) 

where (𝑟, 𝜃, ∅) is the spherical coordinates of the target 
positions. 𝑃(𝜃, ∅) is the radiation power pattern, p is the number 
of waveguide positions, m is the number of elevation angles 𝜃 
and n is the number of azimuth angles ∅ specified in the 
radiation pattern measurement. 

The ∆𝑆11and radiation pattern matrices are obtained from the 
simulation or measurements, equation (5) can be expressed in 
the matrix form as: 

𝑆 = 𝐻𝑔                             (6) 

where 𝑆 is the vector of the scattering parameters difference, 𝐻 
is the system response matrix represented by the radiation 
pattern matrix, and 𝑔 is the vector of reflectivity coefficients of 
the targets. 

Equation (6) is an underdetermined linear system equation, and 
there are various methods to solve it. In this work, we used the 
truncated singular value decomposition method to solve it for 
image reconstruction. 

IV. RESULTS 

We carried out the imaging experiment using two sets of 
targets. Experiment A consists of four spherical targets of 5 mm 
radius located at (±25, ±25). Experiment B consists of two 50 
mm long rectangular bars located at (0, ±25). Fig. 2 shows the 
2D ground truth of the targets in both experiments. 

A total of 9×9 feed positions were reshaped to give an 81×1 
S vector. The number of elevation angles θ and azimuth angles 

∅ used in the full-wave simulation are 30 and 120 respectively 
resulting in a 81×3630 system response matrix. 

Fig. 3 shows the imaging result of the two experiments using 
the proposed Luneburg lens imaging system and the truncated 
singular value decomposition algorithm. The reconstructed 
images show the exact locations of the targets. While the image 
reconstruction is not flawless, it is still possible to identify and 
differentiate between the targets. This illustration demonstrates 
the viability of the imaging system. 

             (a)                                                      (b) 

Figure 2. The 2D Ground truth of (a) 4 spherical targets and (b) two 
rectangular bar targets. 

  
          (a)                                                (b) 

Figure 3. The 2D reconstructed image of (a) 4 spherical targets and (b) 
two rectangular bar targets. 

V. CONCLUSION 

 This paper investigates a Modified Luneburg Lens imaging 
system and the imaging algorithm based on truncated singular 
value decomposition. The imaging results prove the viability of 
using a modified Luneburg lens for imaging applications. 
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