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Abstract—This paper demonstrates the prospects of using a
Modified 3D Spherical Luneburg lens antenna for imaging. The
proposed imaging experimental setup comprises the lens fed by a
rectangular waveguide to shine directive beams on the targets of
different shapes placed in the path of the beams. The 60 mm
diameter lens with a maximum directivity of 17 dBi is enclosed in
a 160 mm diameter spherical Perfectly Matched Layer. Single-
frequency monostatic full-wave simulations were performed at 18
GHz. The scattering parameters and the simulated far-field data
are fed to the imaging algorithm based on truncated singular value
decomposition, and the reconstructed images show the imaging
capabilities of a Quasi-Conformal Transformed Luneburg lens.

I. INTRODUCTION

A Luneburg lens is a highly directive spherical dielectric
GRadient INdex (GRIN) lens with a high radiation efficiency
and a symmetrically varying relative permittivity which
decreases radially from the center to the outside surface of the
lens[1]. Luneburg lens antennas are an important type of ultra-
wideband (UWB) antennas at microwave and millimeter wave
frequencies. In the existing literature, unlike most of its UWB
antenna counterparts such as Vivaldi and bow-tie antennas used
for high-resolution imaging, Luneburg lens mostly finds
applications in wireless communications and acoustic systems.
Exploring the Luneburg lens’ imaging capabilities could open
new doors for its applications in microwave imaging which
would in turn make the lens useful for short-range imaging
applications such as biomedical imaging, through-the-wall
imaging, concealed weapon detection, and long-range imaging
applications such as radar, remote sensing, and underground
surveillance.

Transformation Optics (TO) theory allows us to modify the
geometry of a Luneburg lens while still retaining the
electromagnetic properties of the default spherical Luneburg
lens. Flattening one side of the lens using TO theory makes it
easier to incorporate planar waveguides/array of feeds for low-
cost beamforming[2]. Microwave imaging techniques leverage
these beamforming devices to shine highly directive beams upon
targets. The image of the target objects can be reconstructed
based on scattered waves received by the imaging devices after
being processed by an imaging algorithm.

In this paper, we present a modified Luneburg lens imaging
system, an advancement on our prior work reported in [3].
Image reconstruction is achieved by using an imaging algorithm
based on truncated singular value decomposition.
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II. IMAGING SYSTEM SETUPS

The imaging system consists of two simulation setups; the
setup with targets (shown in Fig. 1.) and the setup without
targets; both of the same system size, lens and waveguide size,
and position. The targets are dielectric materials of higher
relative permittivity values when compared with the permittivity
of the surrounding environment. The targets are placed in the
path of the beams, achieved by placing the rectangular
waveguide feeds at different locations on the flat side of the
Luneburg lens to form an array-like feed position map.

The parameters of the Luneburg lens used in the system are
described comprehensively in [3]. The imaging system’s
geometric entity and material properties assignment were done
putting in mind the possibilities of physical realization with 3D
printing technology. We carried out a full-wave simulation using
a frequency domain EM solver at 18 GHz. Antenna beam
steering was achieved by parameterizing the rectangular
waveguide positions making it possible to scan the targets from
different waveguide locations. The scattering parameters at the
81 waveguide positions and the far-field radiation pattern data
are saved for target image reconstruction.
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Figure 1. The QCTO Modified Spherical Luneburg Lens imaging
system with spherical targets

[II. FORMULATION OF THE IMAGING ALGORITHM

Under the Born Approximation, the scattered electric field at
the waveguide positions can be expressed as

(1)

where 7 is the waveguide position, r' is the target position, k is
the wavenumber in free space. G(r,r’, k) is the Green’s

Es(rik) = k? [ G(r,7", k)Ep (r', ) x(r') dr’
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function, E;,.(r', k) is the incident field at the target position
and y (") is the contrast function[4].

Applying the reciprocity principle to equation (1), Green’s
function is equal to the incident field[4]. Therefore,

)

where k,, is the wave number of the background medium and k,
is the wave number of the targets.

Es(r,k) = [, Emc’ (', O)[KE(r") — kil dr’

For image reconstruction, the scattered field at the
waveguide positions can be simplified in relation to our imaging
setups with and without targets. Considering the waveguide
open end for both setups, the scattered field at the waveguide
positions can be related to the scattering parameters at all feed
positions.

S — St = AS;, 3)

where E| is the incident field at the open end of the waveguide
and is assumed to be 1, Sy is the measured Scattering

parameters for the setup with the targets, and where SIM;/ ? is the
measured Scattering parameters for the setup without the targets.
Therefore, equation (2) becomes:

AS1y = [ Enc(r', K)[KE(r') — k3] dr' 4)

The volume integral in equation (4) can be approximated to
summations, and the square of the incident field (which is also
proportional to Ej) is the radiation power pattern of the antenna.

ASy; = 25:1 Ym=12n=1P(6,8) exp(—j2kr) [kF(r') — k§] (5)

where (r,0,0) is the spherical coordinates of the target
positions. P(0, ®) is the radiation power pattern, p is the number
of waveguide positions, m is the number of elevation angles 6
and n is the number of azimuth angles @ specified in the
radiation pattern measurement.

The AS;;and radiation pattern matrices are obtained from the
simulation or measurements, equation (5) can be expressed in
the matrix form as:

S=Hg (6)

where S is the vector of the scattering parameters difference, H
is the system response matrix represented by the radiation
pattern matrix, and g is the vector of reflectivity coefficients of
the targets.

Equation (6) is an underdetermined linear system equation, and
there are various methods to solve it. In this work, we used the
truncated singular value decomposition method to solve it for
image reconstruction.

IV. RESULTS

We carried out the imaging experiment using two sets of
targets. Experiment A consists of four spherical targets of 5 mm
radius located at (£25, £25). Experiment B consists of two 50
mm long rectangular bars located at (0, +25). Fig. 2 shows the
2D ground truth of the targets in both experiments.

A total of 9x9 feed positions were reshaped to give an 81x1
S vector. The number of elevation angles 6 and azimuth angles
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@ used in the full-wave simulation are 30 and 120 respectively
resulting in a 81x3630 system response matrix.

Fig. 3 shows the imaging result of the two experiments using
the proposed Luneburg lens imaging system and the truncated
singular value decomposition algorithm. The reconstructed
images show the exact locations of the targets. While the image
reconstruction is not flawless, it is still possible to identify and
differentiate between the targets. This illustration demonstrates
the viability of the imaging system.
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(a) (b)
Figure 2. The 2D Ground truth of (a) 4 spherical targets and (b) two

rectangular bar targets.
(b)

(a)
Figure 3. The 2D reconstructed image of (a) 4 spherical targets and (b)
two rectangular bar targets.

V. CONCLUSION

This paper investigates a Modified Luneburg Lens imaging
system and the imaging algorithm based on truncated singular
value decomposition. The imaging results prove the viability of
using a modified Luneburg lens for imaging applications.
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