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Enhanced nitrous oxide emission factors due to climate change increase the mitigation
challenge in the agricultural sector
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Abstract

Effective nitrogen fertilizatien—fertilizer management is crucial for reducing nitrous oxide (N20)
emissions while ensuring food security within planetary boundaries. However, climate change might
also interact with management practices to alter N2O emission and emission factors (EF), whick
brings-additienaladding further uncertainties to estimating mitigation potentials. Here, we developed
a new hybrid modeling framework that integrates a machine-learning model with an ensemble of
eight process-based models to project EFs under different climate and nitrogen policy scenarios. Our
findings reveal that EFs are dynamically modulated by environmental changes, including climate,
soil properties, and nitrogen management practices. Under low-ambition nitrogen regulation policies,
EF would increase from 1.18-1.22% in 2010 to 1.27-1.34% by 2050, representing a relative increase
of 4.4-11.4% and exceeding the IPCC tier-1 EF of 1%. This trend is particularly pronounced in
tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14-0.35%
(relative increase of 11.9-17%). In contrast, high-ambition policies have the potential to mitigate the
increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore,
our results demonstrate that global EFs are expected to continue rising due to warming and regional
drying-wetting cycles, even in the absence of changes in nitrogen management practices. This
asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the
urgent need for immediate N2O emission reductions and further assessments of mitigation potentials.
We believe this hybrid modeling framework offers a computationally efficient approach to projecting
future N>O emissions across various climate, soil, and nitrogen management scenarios, facilitating
socio-economic assessments and policy-making efforts.

1. Introduction

Nitrous oxide (N20) is one of the powerful and long-lived greenhouse gases (GHG). Its
atmospheric concentration has increased by approximately 24.8% from pre-industrial levels to 2023
(Lan et al., 2024). Among all known N>O surface emission sources, agricultural soil accounts for
around 50% of the anthropogenic N>O emissions (Shcherbak et al., 2014; Tian et al., 2020).
Emissions of N>O from soil have been rising, particularly in recent decades, largely due to increased
nitrogen (N) inputs from fertilizers (Lu et al., 2022; Thompson et al., 2019). Although sufficient N
fertilizer application is essential for food supply (Ahvo et al., 2023), overfertilization gives rise to N
pollution leading to annual global economic costs of around 200 - 2000 billion US$ (Kanter et al.,
2020b; Sutton et al., 2013), especially for the financial expenses associated with mitigating N2O
emissions (Feng and Li, 2023). Furthermore, a wide variety of studies argue that the effectiveness of
GHG mitigation is likely to decrease due to global warming (Koberle et al., 2021; Shaaban, 2024; Xu
et al., 2022; Yao et al., 2024), suggesting an urgency of early mitigation (Peng and Guan, 2021).
Many studies seek to develop mitigation strategies that balance crop yields with reduced GHG
emissions without compromising crop productivity in specific regions (Burney et al., 2010; Lamb et
al., 2016; Lugato et al., 2018). Several mitigation pathways have been developed (Gu et al., 2023;
Kanter et al., 2020a; Sutton et al., 2021), which provide general insights into how current N policies
impact future environmental scenarios and targeted interventions for N pollution reduction. However,
the applicability of these regionally specific hypotheses has not been fully tested on global scales,
which limits our understanding of hotspot areas for N2O emission mitigation. More importantly, how
effective different N regulating policies will be under the future climate has not been systematically
investigated. This knowledge gap may lead to missing key timing for actions to effectively reduce
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N2O emissions, that is relevant for simultaneously achieving both Goal 2 (Zero Hunger) and Goal 13
(Climate Action) of the United Nations Sustainable Development Goals (United Nation, 2015).

The N2O emission factor (EF) is a widely used bottom-up approach for estimating anthropogenic
soil N2O emissions from N fertilizer input. The recent report by the Intergovernmental Panel on
Climate Change (IPCC) suggests a default EF (tier-1) (Hergoualc'h et al., 2019; Klein, 2006) and
more detailed country-specific EFs (tier-2) to guide the NoO emission assessment. Despite being easy
to use, this approach overlooks the large variance and long-term dynamics of EF due to different
environmental conditions such as climate, soil, and management (Lesschen et al., 2011; Shcherbak
et al.,, 2014; Wang et al., 2020a). EF change is mainly attributed to factors like environmental
conditions, N fertilizer input rate, soil properties, or carbon substrates (Hu et al., 2016; Nelson et al.,
2016; Shcherbak et al., 2014; Venkiteswaran et al., 2014). However, these attribution analyses are
often based on short-term field observations that may not fully represent the long-term impacts of
climate change (Harris et al., 2022) and evolving nitrogen management practices on EF dynamics.
Although evaluating the spatial patterns of EF based on statistical models and field observations could
provide insights into mitigation potentials and N>O emission projections (Cui et al., 2021; Harris et
al., 2022), EF dynamics under climate change are not adequately addressed in the existing EF maps.
This oversight may result in biases in EF-based estimates of N>O emissions and lead to a failure in
identifying the optimal timing for implementing effective mitigation strategies (Harris et al., 2022).
Such a lapse not only impedes the accuracy of global N>O estimations but also hampers policymakers
from developing more effective mitigation strategies over both short- and long-term periods.

Process-based models represent another bottom-up approach to dynamically project N input-
induced N2>O emissions by simulating biological and biogeochemical processes in croplands and
pasture lands, where N fertilizer is a primary input source, under climate change and different
management practices (Del Grosso et al., 2022; Tian et al., 2018; Tian et al., 2019). These models
provide dynamic predictions of N2O emissions driven by climate and environmental data. However,
their application is limited by the requirement for input data preparation, extensive model calibration
and validation (Ouatahar et al., 2021; Sandor et al., 2018), process representation, and substantial
computational resources, particularly when various N management scenarios and future climate
scenarios are assessed for NoO emission projection (Perlman et al., 2014; Tian et al., 2018). In the era
of big data, artificial intelligence has become increasingly influential in fields based on large datasets
(Delavaux et al., 2023; Ham et al., 2019; Reichstein et al., 2019; Wang et al., 2023; Xu et al., 2024).
However, these approaches (e.g., machine learning and deep learning) can mainly provide references
for responses under current conditions (Franke et al., 2020), and projects integrating different
potential future N management and climate scenarios are challenging. Furthermore, statistical models
can be misleading due to the lack of detailed understanding of processes and causal relationships
(Feng et al., 2019). Thus, it may be of interest to develop a hybrid approach that combines the
advancement of process-based models and machine learning to emulate the process-based model
behaviors (Xiao et al., 2024). Such statistical emulations could offer an efficient and timely approach
to estimating the efficacy of mitigation strategies under different climate scenarios.

Here, we develop a modeling framework that employs machine learning to emulate the behavior
of eight state-of-the-art process-based terrestrial biosphere model ensembles from the global
Nitrogen/N>O Model Inter-comparison Project phase 2 (NMIP2) (Tian et al., 2024). This approach
can dynamically evaluate global EF for N fertilizer input-induced N>O emission projections with
improved accuracy, effectively combining the two bottom-up methods. We then perform an
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attribution analysis of EF change based on our dynamic EF (Dym-EF) model. Finally, we estimate
the potential change of EF based on seven N management scenarios from 2010 to 2050, each N
management scenario with a corresponding climate scenario based on 37 global climate models
(GCMs) (Figure 1). The objectives of this study are to (1) explore the key factors influencing EFs
and their potential changes over time; (2) reveal the nonlinear relationships between EFs and
environmental factors; (3) dynamically project EF under various nitrogen mitigation strategies and
climate scenarios; (4) identify the opportunities and hotspots with high EF reduction potentials from
seven nitrogen regulation policies at three ambition levels that have been developed under the
International Nitrogen Management System (INMS) project (Kanter et al., 2020b). The INMS
scenarios combine specific policies to reduce nitrogen pollution with the Shared Socioeconomic
Pathways (SSP: Riahi et al. (2017)) and the Representative Concentration Pathways (RCP: Van
Vuuren et al. (2011)) developed under the IPCC. This study can improve our understanding of
balancing policies, N>O emission, and food production under future climate scenarios, which is
crucial for developing effective mitigation strategies. Moreover, this Dym-EF modeling framework
offers flexibility and can easily extend to other different nitrogen management scenarios, providing a
broader and timely evaluation of global GHG mitigation potentials.

Dominant factors in influencing EF
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Figure 1 Modeling framework integrating machine learning and process-based model
ensembles (NMIP2) for assessing global nitrogen fertilizer input-induced nitrous
oxide (N20) emission factors (EF) and projecting EF Change under various climate
and N management scenarios. The NMIP2 was performed under 0.5°<0.5° resolution.
This modeling framework was used to emulate the NMIP2 ensemble behaviors rather
than individual NMIP2 models. RF, Random Forest model; 7 scenarios including INMSI1,
Business as usual; INMS2, Low N regulation (Low ambition); INMS3, Medium N
regulation (Moderate ambition); INMS4, High N regulation (High ambition); INMSS,
Best-case (High ambition); INMS6, Best-case plus (High ambition); INMS7, Bioenergy
(High ambition); NMIP, Global N>O model intercomparison project. Dym-EF, Dynamic
EF.
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2. Data and Methods

2.1 Estimating the N20 emission factor (EF) by learning the non-linear EF dynamics from the
NMIP2 model ensemble

In this study, we estimate the N>O emission factors (EF) based on eight process-based Terrestrial
Biosphere models that participate in NoO Model Intercomparison Project phase 2 (NMIP2) (Tian et
al., 2024; Tian et al., 2018), including CLASSIC, DLEM, ELM, ISAM, LPX-Bern, OCN,
ORCHIDEE, and VISIT. These models integrate the impacts of atmospheric N deposition, biological
N fixation, manure N application, and N fertilizer use on the nitrogen cycle processes related to N>O
emissions (Tian et al., 2020; Tian et al., 2019). Each of the models use a "Demand and Supply-driven"
approach for plant N uptake. Differences in how models represent nitrification and denitrification
processes and their contributions to N2O emissions with the modification of climate and agricultural
management practices are a main source of uncertainty in our estimates. For a detailed description of
the process associated with N>O emission approaches of each model in Tian et al. (2024). A set of
factorial simulations was performed to disentangle the respective contribution of drivers to the N>O
emissions. Among these simulations, the SH1 aims to estimate the dynamics of N2O emission in
response to changes in Climate + CO; + Land cover + Irrigation + N deposition + N Fertilizer +
Manure N; while the SH3 yields the estimates of N2O emissions without considering N fertilizer input,
that is estimations driven by changes in Climate + CO; + Land cover + Irrigation + N deposition +
Manure N. To estimate the EF, we first obtain the N2O emissions directly resulting from N fertilizer
inputs that were calculated using SH1 - SH3 (i.e., simulations with vs without N fertilizer input). We
estimate the annual EF from 1961-2020 allowing us to assess how changes in warming trends and
nitrogen application rates have influenced the variation in EFs. The NMIP2 models were driven by
consistent input datasets, including nitrogen inputs, atmospheric CO> concentrations, daily climate
variables, irrigation, and land cover changes, ensuring a standardized basis for comparison and
analysis of global N>O estimation. Most models output monthly N>O estimates (Tian et al., 2024).
The complete list of abbreviations is shown in Table S1.

2.2 N regulation scenarios

Optimizing management practices can improve N use efficiency (NUE) and reduce N20
emissions (Winiwarter et al., 2018). This N policy data has been used to estimate the N pollution
globally (Cui et al., 2024; Kanter et al., 2020a). Thus, understanding the potential changes in N>O
emissions from food production under future land management scenarios (based on current and
potential technological advancements) is essential for developing more comprehensive and cohesive
nitrogen strategies; while additionally reducing the conflicts in food production and its environmental
impacts (Gu et al., 2023; Kanter et al., 2020a). They have been formalized by Kanter et al. (2020b),
who developed seven scenarios within the SSP/RCP framework that include three different levels of
policy ambition to tackle nitrogen pollution in general (low, moderate, and high ambitions to remove
nitrogen pollution, See Table 1), as part of the project Towards an International Nitrogen
Management System (INMS: see https://www.inms.international). In this paper, we use projections

of synthetic N fertilizer consumption as implemented in the GAINS model (Amann et al., 2011;
Winiwarter et al., 2018) and in accordance to these seven scenarios.

High ambition N regulation scenarios: The high-ambition scenarios align with the Sustainable
Development Goals, which extend to 2030. These ambition levels include four distinct approaches:
high N regulation (INMS4, under RCP4.5 and SSP2), the “best case” (INMSS5, under RCP4.5 and

SSP1), the “best-case plus” (INMS6, under RCP4.5 and SSP1), and bioenergy (INMS7, under
5
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RCP2.6 and SSP1). The high ambition N regulation level represents technological advancements
within the period of the Sustainable Development Goals until 2030. The "best case" scenario
envisages ambitious climate action combined with a strong commitment to sustainable agriculture
and low-meat diets in line with the expectations under SSP1. The best-case "plus" scenario extends
this ambition further, incorporating significant dietary changes and reducing food loss. As for the
bioenergy scenario, improving bioenergy production is likely crucial for achieving the targets of a
1.5 °C and 2 °C world. From a N perspective, the RCP 4.5 scenario appears to be more favorable than
RCP 2.6, unless substantial efforts are undertaken to improve NUE in bioenergy production in RCP
2.6. Generally, the high nitrogen policy ambition is expected to achieve the target NUE by 2030 and
maintain it through to 2100 (Kanter et al., 2020b).

Moderate ambition N regulation scenario: The moderate ambition (Medium N regulation,
INMS3, under RCP4.5 and SSP2) scenario aims to achieve the same goals but over a longer period,
either by 2050 or 2070. It expects countries to continue their current high-input, low-efficiency N
fertilizer for 30 years before making improvements.

Low ambition N regulation scenarios: The low ambition scenarios indicate no significant
improvement and a stagnant NUE. The INMSI1 scenario assumes a continuation of past trends
(RCP8.5 and SSP5) while INMS2 considers climate policy (RCP4.5 and SSP2) but little policy
attention to N pollution.

To integrate the seven scenarios, we employed the relative change metrics, comparing the future
period (2011-2050) against a baseline period (1990-2010). This approach was used to align with the
NMIP2 nitrogen (N) input data, which includes synthetic N fertilizer. Since the NMIP-derived EFs
used to train our Dym-EF model were based on specific NMIP N fertilizer data, the nitrogen
regulation pathways from INMS1-7 could not be directly applied as inputs to project future EFs.
Consequently, we adapted the seven scenarios to align with the NMIP inputs as follows:

NFers nmip=NFery_nmip+RNXNFery_nmie (1)
RN = (-INMS—His INMS) @)
His_INMS

where the NFers nmip represents the synthetic fertilizer N input for the seven NMIP-compatible
scenarios (2011-2050), NFery nmip is the historical NMIP synthetic fertilizer N input data (1990-
2010), RN is the relative change, S INMS represents the seven future scenarios (Table 1), and
His INMS is the historical N input data for these N regulation scenarios during 1990-2010. We
developed the N management data at gridded scales with 0.5° by 0.5° grids. Through the above
approach, we have developed a set of N input data tailored to these seven future scenarios for NMIP2.
This ensures that the scenarios are appropriately linked to the current NMIP’s N input data, thereby
facilitates the creation of a series of detailed N input scenarios. Figure S1 shows the total N inputs
under 7 scenarios during 1961-2050.
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Table 1 The seven future climate, land use, diet, and N management scenarios.

Name Scenario Climate Land . use Productivity Diet Ambition
regulation level
Business-as-
INMS1 usuus;less as RCP8.5 Medium High Meat & dairy-rich Low
L it
INMs2 OV TITOBE pep4s  Medium  Medium Medium meat & dairy ~ Low
regulation
Medium
INMS3 nitrogen RCP4.5 Medium Medium Medium meat & dairy ~ Moderate
regulation
High nitrogen . . . . .
INMS4 . RCP4.5 Medium Medium Medium meat & dairy  High
regulation
INMS5 Best-case RCP4.5  Strong High Low meat & dairy High
Ambitious diet shift and
Best-case . .
INMS6 “Plus” RCP4.5 Strong High food loss/waste High
reductions
INMS7 Bioenergy RCP2.6  Strong High Low meat & dairy diet  High

"Modified from Kanter et al. (2020b).

2.3 Climate data

We collect monthly temperature and precipitation data from 37 GCMs under SSP126 (SSP1,
RCP2.6), SSP245 (SSP2, RCP4.5), and SSP585 (SSP5, RCP8.5) of CMIP6 (Table S2). The use of
37 Global Climate Models (GCMs) allows for comprehensive coverage of the range of Equilibrium
Climate Sensitivity (ECS) and Transient Climate Response (TCR) values (Meehl et al., 2020). This
breadth is crucial for adequately representing the spectrum of potential climate change scenarios. To
match the resolution of NMIP2 input, we resample these GCMs to 0.5° by 0.5° grids. Since the
historical data from the GCMs exhibit discrepancies when compared with NMIP2 inputs, we employ
the delta approach for bias correction at grid scales:

GCMb:GCMraw+ Delta (3)

where the GCMD is the bias-corrected GCMs during 2011-2050, GCMraw is the raw GCMs climate
variable (seasonal temperature and precipitation, and annual aridity index) during 2011-2050, and
Delta is Observed Historical Data—Model Historical during 1980-2010. In a few small arid regions
where bias correction resulted in negative precipitation values, we adjusted these to zero. NMS1
corresponds to SSP5 ('Fossil-fueled Development'), INMS2-4 corresponds to SSP2 ('‘Middle of the
Road'), and INMS5-7 corresponds to SSP1 (‘Sustainability'). However, since SSP1-4.5 is not
available for all GCMs (O'Neill et al., 2016), we use climate projections from SSP2-4.5 to
approximate it and assemble the scenarios of best-case and Best-case+ (INMS5-6) as the combination
of moderate-mitigation climate, sustainable development (SSP1), and high ambition N regulation
policies. More details can be found in Kanter et al. (2020b). Figures S2 and S3 show the time series
for precipitation and temperature, and their changes over areas of nitrogen application. Generally,
there is a significant increase in temperature across various scenarios, especially under SSP585.

7
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Precipitation demonstrates a slight increase, with SSP126 marginally exceeding SSP245 and SSP585
during 2011-2050.

2.4 Developing an explainable model to project EF change

The process-based models are capable of estimating non-linear responses of N>O emissions
through various biophysical processes, such as nitrification and denitrification. These models
consider factors that potentially impact N>O emissions and EFs, such as soil properties (including soil
pH, initial soil organic carbon content, bulk density, and clay content), as well as environmental
conditions like precipitation and temperature, along with management practices. Several studies have
compared N>O models in agriculture under historical conditions (Ehrhardt et al., 2018; Fuchs et al.,
2020). However, for future projections, these models require substantial computational resources
(Franke et al., 2020) and are challenging to apply directly to a large number of GCMs for assessing
the NoO dynamics under climate change scenarios. Statistical models can capture the nonlinear
relationship between N>O emissions and environmental variables. However, these statistically-based
models do not incorporate biophysical processes, and their performance largely depends on the
quality and quantity of the available data. (Li et al., 2023). Thus, there is growing interest in
developing a hybrid model (or statistical emulation) that combines the advantages of both approaches,
providing a more efficient and flexible method for estimating N2O emissions.

In this study, we use the Random Forest (RF) model to reproduce the multi-model median of
NMIP2 EF based on the NMIP2 input data (Tian et al., 2024). The climate data includes seasonal
temperature and precipitation and yearly aridity index (AI). The soil data consisted of pH, initial soil
organic carbon content (DOM_SOC), soil bulk density (BULK DEN), percentage of sandy content
(PCT_SAND), and clay content (PCT CLAY). Management data included synthetic nitrogen
fertilizer (NFer) and irrigation (Irr). We excluded grids where both cropland and pasture cover are
less than 10%. In addition, we find the EF from the NMIP2 ensemble is highly sensitive to nitrogen
inputs when the N input was less than 0.1 kg N/ha/yr. To ensure the accuracy of the Dym-EF model,
we exclude data grids with extremely high EF caused by a lower N input, as well as those grids where
the N input was less than 0.1 kg N/ha/yr, noting that atmospheric deposition alone often exceeds this
level in many regions. Such extremely high EFs for low fertilizer inputs are likely artifacts from the
NMIP2 models. Notably, to encompass a wider range of environmental conditions, our Random
Forest (RF) model was trained on yearly data spanning 60 years (1961-2020) from NMIP2. This
training allows us to dynamically generate annual EFs at a high spatial resolution of 0.5° x 0.5°.

We performed the RF model using the “ranger” package in R 4.1.1, optimizing the two
hyperparameters (nwee and mqy) with the ‘caret’ package. The neee parameter is the number of decision
trees in the RF model, and the muy parameter determines the number of features to consider at each
split. The extensive size of our dataset, which was comprised of over one million data sets made
tuning hyperparameters with the entire dataset challenging. Therefore, we used data from the most
recent ten years (2011-2020) as a representative subset to calibrate the hyperparameters. We set the
range for 'mgy' from 1 to 9 in steps of 2, and for 'ngee’ from 100 to 900 in steps of 200 (refer to Figure
S4). We find that when mey was set as 7 and niee at 700 or 'myy' at 5 and 'neee’ at 900, the model can
achieve optimal performance with RMSE is 0.32 and the R? is 0.775. However, there is a trade-off
between model performance and computational demand. Although such hyperparameters can provide
better performance, they require significant computational resources. A setting of 'nuee' at 500 and
'mery’ at 7 offered a similar performance (RMSE of 0.32 % and R? of 0.774) but with a significantly
reduced computational load. Consequently, we selected these values (myy = 7 and ngee = 500) as the

8
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final hyperparameters for our model. To evaluate our model's performance at each grid, we conducted
a leave-ten-year-out cross-validation for each decade. Then we aggregated the results from these
periods to assess the overall performance through R? and RMSE across the 60 years (1961-2020).
Our approach showed reliable model performance with an R? higher than 0.9 and an RMSE lower
than 0.1 in most regions (Figure S5-S6). Although N fertilizer is known to significantly influence EF
(Akiyama et al., 2006; Wang et al., 2011), it casts doubt on the models’ efficacy when solely using
N fertilizer for EF estimation. Therefore, we compared the model performance of estimating EF using
only N rates with using multiple environmental variables., The results showed that the predictions
based solely on N fertilizer were not as reliable as those using multi-source environmental data
(Figure S5-S6). This indicates that EF is affected not only by N management but also significantly
by different environmental conditions. Generally, our modeling framework demonstrates reliable
performance both at the grid level and in the combined overall assessment.

2.5 Attribution analysis

To identify the dominant factors influencing the EF, the Shapley additive explanations (SHAP)
value was used to quantify the contribution of each predictor. We explain the overall impact of
different predictors of estimating the EF using the mean absolute SHAP value. For a more granular
and detailed explanation at the grid level, the SHAP values are more efficient to explain the
dominant factors influencing the EF across different time intervals. The SHAP can isolate the
impact of different variables on the EF. This approach, based on work in game theory (Lundberg
and Lee, 2017), is used to determine how each individual factor affects a team’s overall
performance. It has been extensively applied in quantifying the marginal contributions of each
predictor to the target variable (Chen et al., 2022; Chen et al., 2023b; Li et al., 2022; Wang et al.,
2023). The management and climate change significantly between different periods, especially for
N input. Thus, in our study, to effectively capture how different environmental conditions influence
the EF, we divide the study period into three time intervals: 1961-1990, 1991-2020, and 2021-2050.
The period of 2021-2050 was analyzed using multi-GCM model ensembles under various future
scenarios (INMS1-7). Since INMSS5 (best-case scenario) and INMS6 (best-case 'plus') exhibit
similar characteristics, we chose INMS6 to represent both in our analysis. We use the absolute
value of SHAP values and select the highest values as the dominant factor.

2.6 Partial dependence

We use the partial dependence plots (PDPs) to analyze the marginal effects of predictors, including
soil, climate, and management variables, on the EF. The PDP plots can effectively capture the non-
linear relationship between different environmental variables and EF. In this study, we use the ‘pdp’
package of R 4.1.1 to analyze their non-linear impact on EF (Greenwell, 2017).
3. Results and discussion
3.1 Dominant drivers in influencing EF

We developed a Dym-EF model by learning the relationship between the median ensemble
estimates of eight process-based models from NMIP2 and a time-series gridded database of key
environmental factors such as climate, soil properties, and agricultural management at a spatial
resolution of 0.5 degrees during 1961-2020. The grid-based RF model is proven to have a great
performance in reproducing NMIP2 EF estimates over space and time (see Methods and Figure S4-
5). For temporal variation, we assessed the R? and RMSE for each grid with a great performance for
most regions (Figure S6). We found that temperature in June, July, and August (T _JJA), nitrogen
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fertilizer (NFer), precipitation in June, July, and August (Pr JJA), and precipitation in September,
October, and November (Pr SON), are the most important factors influencing EF (Figure S7).
Summer temperature and summer/fall precipitations have a higher importance in determining EF
dynamics than climate variables in other seasons, possibly because the NMIP2 model ensembles do
not have information on fertilizer application timing in the input data and models assume one
application without side-dressing or equal daily distribution of fertilizer input during crop growing
season. NFer directly influences soil nitrogen content, significantly impacting EF. However, the
combined effects of various seasonal climate variables are higher than the influence of N fertilizer
alone in determining EF. The climate conditions in the northern summer months (JJA) are crucial for
the growth of summer crops like corn and soybean, which frequently undergo nitrogen management
(Lu et al., 2022; Maier et al., 2022). In addition, the warmer temperature and high soil moisture in
summer can also create a suitable environment condition for nitrification and denitrification processes
in the soil and thus increase the EF. In autumn (SON), cumulative precipitation often leads to soil
saturation throughout the year, creating anaerobic conditions, especially when combined with
residual nitrogen from fertilizers applied during the growing season, thus, increasing the
denitrification and N>O emissions (Glenn et al., 2021; Perego et al., 2016; Vinzent et al., 2018). Our
results showed that climate factors and N fertilizer are more important in altering EF than the initial
soil properties. This is probably because soil conditions and processes are cumulatively impacted by
long-term climate variables (e.g., temperature and precipitation) and management, which might
overshadow the effects of initial soil properties. More importantly, changes in climate and
management practices could further enhance their dominance in influencing the long-term trends of
EFs (Baral et al., 2022).

In this study, we found the dominant factors influencing EF are not constant but change with
different environmental conditions (e.g., climate and management) (Figure 2a), particularly in high
EF and N input regions. For instance, in Southeast Asia, the dominant drivers have shifted from spring
temperature (T_MAM) and N fertilizer to summer temperature possibly due to increased heatwaves.
The increasing temperature combined with wet conditions enhances nitrification and denitrification
rates, leads to an increase in both the abundance and activity of ammonia oxidizers and denitrifiers,
and thereby amplifies N>O emissions (Dai et al., 2020; Griffis et al., 2017). Similarly, Central Europe,
the US Corn-Belt and Rice-Belt areas, Southeast Asia, and Southwest China exhibited a shift in
dominant EF drivers from NFer to summer precipitation (T _JJA) and temperature. This change
suggests that in areas with high nitrogen input levels, EF is likely more sensitive to environmental
change due to the increased interaction of increased nitrogen input and climate change (Xu et al.,
2020b). By contrast, in South America and Africa, where N input has been historically low, we found
a significant shift from temperature being the dominant driver during 1961-1990 to the N fertilizer
use rate during 1991-2020 This indicated that enhanced N input may be more important in explaining
the EF dynamics. Moreover, increased nitrogen leads to faster soil organic matter decomposition (Li
et al., 2017), and changes in agriculture management practices with different nitrogen uptake
efficiencies (Sainju et al., 2020; Thapa et al., 2016). In several regions (e.g., BRA and SAS), climate
variables tend to become the predominant factors influencing EF when nitrogen inputs are increased.
We found that T _SON is the dominant factor influencing EFs across most regions during 1961-1990,
while summer temperatures (T JJA) emerged as the primary influence in most regions during the
period 1991-2020 (Figure 2b). This transition is likely due to global warming's intensified effects
during the summer months in recent decades (Butterbach-Bahl et al., 2013; Xu et al., 2020a), making
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summer conditions, along with heightened nitrogen inputs, more impactful on EFs compared to the
relatively cooler autumn. Similarly, the summer precipitation also increased the dominance of EF in
many regions (Figure 2b), likely because the recent increase in precipitation has raised soil moisture
levels, thereby enhancing microbial activities such as nitrification and denitrification, which in turn,
elevate N2O emissions (Yue et al., 2024). This finding is crucial in understanding the combined
effects of climate change and nitrogen management on EF, which is key to developing effective
strategies for reducing N>O emissions.
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Figure 2 The dominant driver of N20 emission factor (EF) at each pixel and the partial
dependence of EF on different variables. a, Spatial map showing the primary factors
influencing EF, with pie charts depicting the percentage area of dominant factors across
different time intervals and scenarios. b, Chord diagram to demonstrate the shift of the
dominant factor in influencing EF from T1 (1961-1990, upper half of circle) to T2 (1991-
2020, lower half of circle). Numbers represent the percentage of the area influenced by
each variable, with different colors indicating different variables. Linked variables (such
as T _SON TI1 to NFer T2) illustrate the shift in dominant factors from T1 to T2. Variables
consist of Irr (irrigation rate), NFer (nitrogen fertilizer), Pr_ MAM (total precipitation in
March, April, and May), Pr_JJA (total precipitation in June, July, and August), Pr SON
(total precipitation in September, October, and November), Pr_DJF (total precipitation in
December, January, and February), T MAM (mean temperature in March, April, and May),
T JJA (mean temperature in June, July, and August), T SON (mean temperature in
September, October, and November), T DJF (mean temperature in December, January,
and February), and Al (aridity index); DOM_SOC, soil organic carbon; BULD DEN, soil
bulk density.

3.2 Relationships between EF and multiple environmental factors

The non-linear relationships reveal the effects of various environmental variables on EF (Figure
3), which may increase and decrease by up to ten percent or even more due to a single variable.
Although the EF has a positive relationship with temperature, they have different response curves in
different seasons. In JJA and SON, EF largely increases when temperatures exceed 2-6 °C, whereas
in spring month (MAM), EF increases consistently with temperature (Figure 3). In early spring, soil
freeze-thaw cycles, particularly in the Northern Hemisphere, significantly drive NoO emissions
through different mechanisms such as enhanced biological denitrification, changes in microbial
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composition and enzyme activity, and the release of trapped N>O (Del Grosso et al., 2022; Wagner-
Riddle et al., 2017). Therefore, EF can still increase with temperature even in a cold condition.
However, it's important to note that these dynamics may not be fully captured by NMIP2 models,
unlike those that have improved processes such as Del Grosso et al. (2022). EF's response to seasonal
precipitation shows an increase up to a specific threshold, beyond which additional precipitation has
little impact on EF. This threshold varies by season, likely influenced by the soil's water-holding
capacity, different plant growth stages and their water uptake, and the seasonally varying rates of
evaporation due to temperature changes (Bell et al., 2016; Cayuela et al., 2017). The EF also increases
with NFer use level, albeit at a slower rate when annual fertilizer input is higher. Compared with
different soil properties, soil pH is the most critical factor influencing EF (Figure S7). It is possibly
because the soil PH mainly impacts EF the denitrifier community composition (Qiu et al., 2024). EF
shows a negative relationship with pH, particularly when pH is above 5-5.3 (Figure 3), similar to
previous studies (Russenes et al., 2016; Shang et al., 2024; Wang et al., 2018). In moderately acidic
soils, alterations in soil microbial communities and chemical reactions favor N>O-producing
microorganisms, potentially increasing N>O emissions (Qiu et al., 2024). Additionally, these
conditions enhance processes such as denitrification, leading to higher N2O emissions even at lower
nitrate levels (Tierling and Kuhlmann, 2018; Zhang et al., 2021). The higher presence of ammonium
(NH4") coupled with conditions conducive to denitrification can lead to elevated emissions of nitrous
oxide (N20). Consequently, soil acidification in the future may significantly increase the risk of NoO
emissions (Chen et al., 2023a).

8‘ mnlnmm — ; m”ﬂmnm.__

500 1000 1500 o 250 1000 125
Pr JJArmmW o anc \m]

ﬁ ¥, =
[ || ——

2 3 4 0 200 00 600 800
Al Pr. DJF (mm)

(i

0.5%4
0.0%- __w,mmm\llﬂ

¢ TJJA[C

15| inibdng, | Hi

ﬂfﬂﬂlnnmmm mrrlhﬂmlmﬂnnmnnmmﬂ fm
:Jt Pr. MAM(mm) ’ ( ” -VU T DJF( C) I( : ’ PH ’ " BULK DEN ¢ ®

1.204 1.184 1175 1,15
— ~ 1174 — —1.1524
£ 118+ 2 #1165 £
o] 1164 L1180 & 1148

1,164 155

1,164 e 11444
Eand £ 6 |
S 15% < |

&

::I__m,.1..11|||]H‘h‘|[|||1.._ : mu[mnﬂﬂﬂl "l”ﬂl"\ﬂ'mlm1ummnm........

R ol mﬂﬂll” ”H Hlﬂnﬂlmndln § ! _

25 50 10 20 30 4 50 25 7
DOM_SoC PCT_CLAY PCT SAND Irr (%)

SSP126 SSP245 SSP585 Cy

Figure 3 Partial dependence plots for annual EF change across different predictors (ranked by
feature importance see figure S7). The smooth black lines depict the average model's
response, alongside fitted values for the calibration data. Histograms display the probability
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distributions for the indices of SSP126, SSP245, and SSP585 scenarios in 2050. The blue
shaded area denotes calibration data ranging between the 5th and 95th percentiles.

3.3 Projecting EF under different scenarios

Our projections up to 2050, including for the SSP585, generally fall within the historical data
range, indicating the reliability of our near-future projections based on our Dym-EF model. For
historical periods, we found that the multi-model ensemble estimates of EFs in 2010 had exceeded
the IPCC's default average value of 1% in most regions. Compared to the generalized IPCC Tier-1
EF of 1%, spatially detailed EFs enable the identification of regional hotspots with significant N.O
mitigation potential. Areas with higher EFs often correspond to higher nitrogen inputs, potentially
leading to an underestimation of N2O emissions when using the uniform IPCC Tier-1 EF.
Furthermore, in humid areas, EFs are consistent with or exceed the IPCC suggested average of 1.6%
(IPCC default at humid regions) (Hergoualc'h et al., 2019), and in tropical regions like southern Asia,
eastern Asia, and Central America, EFs often surpass 2-2.5% (Figure 4). The relatively higher EF in
humid and warm areas is attributable to the climate acceleration of microbial processes like
nitrification and denitrification (Griffis et al., 2017). Higher soil moisture and temperature create
conditions conducive to denitrifying microbes. Moreover, in humid regions where anaerobic
conditions are more prevalent, denitrification becomes a dominant process and subsequently elevates
EFs (Griffis et al., 2017; Rowlings et al., 2015; Veldkamp et al., 1998).
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Figure 4 Projected N20O emission factor (EF) across various subregions in 2030 (white area) and
2050 (blue-shaded area). The spatial map indicates the median EF estimated by NMIP
ensembles in 2010. The black dashed line in each panel represents the Tier-1 EF (1%), and
the blue dashed line indicates the 2010 emission factors based on a multi-model median
(extracted from the central map). INMS1-4 represents four nitrogen management scenarios
(Table 1). Box boundaries show the 25th and 75th percentiles of EF estimates, and whiskers
below and above the box indicate the estimate range driven by climate data from 37 GCMs.
The median is indicated by the black line within each box. BRA, Brazil; CAM, Central
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America; CAN, Canada; CAS, Central Asia; CHN, China; EQAF, Equatorial Africa; EU,
Europe; KAJ, Korea and Japan; MIDE, Mideast; NAF, Northern Africa; NSA, Northern
South America; OCE, Oceania; RUS, Russia; SAF, Southern Africa; SAS, South Asia;
SEAS, Southeast Asia; SSA, Southwest South America; USA, The United States of
America.

The EFs under various scenarios over the future periods are projected to change significantly,
compared with 2010. This is mainly attributed to the changes in alternative N regulation practices
and future climatic scenarios (Figure 4 and S8). Detailed information about these different scenarios
is provided in Table 1. Under the INMS scenarios 1-3 (i.e., Business-as-usual, low, and mediate
ambition N regulation), the global average EFs by 2030 are projected to increase to 1.22-1.29%
among different GCMs (relative increase of 0.5-8.0% from 2010 levels of 1.18-1.22%), 1.22-1.28%
(relative increase of 0.03-6.3%), and 1.18-1.24% (relative increase of 0.01-2.5%), respectively,
compared with 2010. By 2050, the EF is expected to increase to 1.27-1.34% (4.4%-11.4%), 1.24-
1.31% (2.8%-9.9%), and around 1.18-1.25% (0.01-3.2%). Under the INMS4 (high ambition N
regulation) scenario, EF is projected to decrease to 1.15-1.21 (0-5%) by 2030, aligning with INMS3's
projection by 2050 (Figure S9). The EF changes under INMSS5-7 (Best-case, Best-case “plus”, and
Bioenergy) would be similar to INMS4, yet slightly lower than INMS4 due to further reduction in N
input. This raises the question here: why do high-ambition strategies with reduced N input only
slightly decrease or sometimes even increase EFs? It is likely caused by the high sensitivity of EFs
to climate (Griffis et al., 2017); as climate change intensifies (Figure S2-S3), the increases in EFs
might offset the benefits of high-ambition strategies. The INMS1 and INMS2 scenarios are
characterized by a lack of dedicated nitrogen management, which will not change Nitrogen Use
Efficiency (NUE) and, with increased production, greater nitrogen loss, thus increasing EFs (Baral et
al., 2017). The EF under INMSI is slightly higher than INMS2 perhaps because more N input and
higher temperature under SSP585 will further amplify the EF due to increased soil N mineralization
and denitrification rates (Kanter et al., 2016; Revell et al., 2015). The moderate and high-ambition
scenarios, aimed at minimizing N loss and increasing NUE, are projected to keep crop N surpluses
within planetary boundaries until 2050 (Kanter et al., 2020b; Zhang et al., 2015), which potentially
decreases EF. In addition, the high ambition scenarios (INMS4-7) also consider dietary shifts, like
reduced meat consumption and waste (Geyik et al., 2023; Revell et al., 2015). These changes could
lower the demand for N-intensive animal feed crops, reducing N use and consequently reducing N>O
emissions and EFs (Figure 4 and Figure S8).

Compared with the IPCC's default value (Hergoualc'h et al., 2019), our Dym-EF modeling
characterizes EF variability over space and time by taking into account the effects of environmental
factors, and various climate scenarios and ambition levels of N intervention over the coming decades.
This improved methodology is crucial for making informed management decisions in mitigation
strategies. Relying on a stationary EF fails to capture the various impacts of climate change, soil
properties, and management practices. For example, if the EF increased from 1% to 1.1% due to
climate warming, keeping EF unchanged could lead to a 10% underestimation of N>O emissions. The
underestimation would be more pronounced when nitrogen inputs are increased. Our results showed
that densely populated areas in developing countries typically exhibit large differences across the
three ambition level scenarios, likely due to their high food demand leading to increased N inputs
(Ramirez-Melgarejo et al., 2019; Springmann et al., 2018). For instance, in 2030, under the INMS1
and INMS4 scenarios, we find the EFs could be approximately 1.75-1.86% and 1.45-1.5% in
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515  Northern South America (NSA), 1.5-1.56% and 1.42-1.47% in Equatorial Africa (EQAF), 1.22-1.36%
516  and 0.93-1.07% in China (CHN), and 2.11-2.24% and 1.93-2.07% in Southeast Asia (SEAS). The
517  large EF difference between BAU and high ambition N regulation scenarios indicates a large potential
518 inreducing N>O emission. These areas, especially in tropical regions (e.g., NSA, EQAF, and SEAS),
519  are expected to see EF increases of around 0.17-0.28% under low ambition policies by 2050, which
520 1is equivalent to 12-17% of EF in 2010. Therefore, to meet the Goal 13 (climate action) of United
521  Nations' Sustainable Development Goal (United Nation, 2015), intensified efforts are needed in such
522  regions to reduce N2O emissions by improving NUE and reducing N loss (van Vuuren et al., 2015;
523  Zhang et al., 2015).

524 It is important to note that there is a trade-off between accessibility and accuracy in the EF
525  estimation approaches such as the IPCC Tire-1 and our Dym-EF. The IPCC Tire-1 is designed to be
526  generic and easily adopted without a need to provide any detailed local information, which is
527  accessible for a wide range of applications. As for Dym-EF, although it provides more accurate EF
528  projections and is easier to apply than process-based models, it still requires specific input data,
529  limiting its scalability and accessibility. To enhance the accessibility of our model, we have used
530  publicly available and commonly used datasets in global modeling, ensuring that input data is easily
531 accessible to potential users. However, uncertainties remain due to potential variations in datasets.
532 We suggest downscaling and bias-correcting the data to better match local information. Generally,
533  balancing accuracy with ease of use is crucial to enhance broader applicability.

534 3.4 Potential for N2O mitigation

535 The spatial maps of EF changes provide quantitative insights for pinpointing hotspots requiring
536  mitigation efforts (Figure 5). In low ambition scenarios (INMS1 to INMS2), we predict significant
537  EF increases in regions such as Northeast and North China, the Midwest US, northern South America,
538  northern Brazil, and parts of northern Africa, driven by the substantial increase in nitrogen (N) inputs
539  from population growth and escalating food demands. Targeting reduction efforts in these high-
540  emission hotspots is more effective than solely focusing on the largest country emitters (West et al.,
541  2014). The moderate ambition scenario (INMS3) demonstrates a slight decrease in EF in southeastern
542  China, RUS, part of SEAS, and the EU by 2030, with notable reductions in these areas by 2050.
543  These are hotspots characterized by high N input and high EF at the current stage (Fig 4), but they
544  are projected to have huge potential in EF reduction under moderate and high ambition N regulation
545  scenarios (INMS4 to INMS7). However, slight increases are noted in regions like Vietnam, EQAF,
546  and SEAS, even under high-ambition scenarios, attributed to increased food demands. The ‘best-case’
547  and ‘bioenergy’ scenarios (INMSS5 to INMS?7) illustrate that further reductions in EF can be achieved
548  through reduced N input by High N use efficiency, adoption of low meat diets, and food waste
549  reduction efforts (Kanter et al., 2020b). To meet the food gap and address NoO mitigation needs,
550  various studies have explored potential optimal management practices (Gerber et al., 2016; Shang et
551  al., 2024), while climate change potentially impacts the effectiveness of mitigations (Carlson et al.,
552 2016). Our study quantifies the potential of reducing global agricultural soil EF as one of nature-
553  based climate solutions, underscoring the need to consider EF changes under future climate and N
554  regulation scenarios. It is important to clarify that higher EF reduction doesn’t necessarily yield higher
555  N20 reduction and that lower EFs do not necessarily lead to lower N2O emissions, given that EF
556  change direction may not consistently align with nitrogen input changes in some cases. The actual
557  N20 emissions are the product of EF and the amount of anthropogenic nitrogen inputs. For instance,
558  regions identified as hotspots for high EF (e.g., RUS and EQAF) in our study (Figure 4) may often
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differ from the areas with the highest soil N>O emissions in the global N>O budget study (Tian et al.,
2024; Tian et al., 2019).
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AEF (%) NI -
<-0.50 0.25 0.00 0.25 >0.50

Figure 5 The projected EF changes at global and regional scales. The maps illustrate the changes
in EF in 2030 and 2050, respectively, compared to 2010 under INMS1 to INMS4.

The temporal and spatially varying EFs are important in determining the effectiveness of
mitigation efforts. We found the EFs were expected to increase under future climate change even
without increasing N fertilizer input (Figure 6a). This is because the EFs are positively correlated
with temperature and precipitation (Figure S8), which are projected to increase (Figure S2-S3),
resulting in increased EFs. Although the temperature under SSP126 does not show a substantial rise,
the increased precipitation under this scenario significantly amplifies the EFs. Consequently, the
relationship between N input and EFs is asymmetric due to the impacts of climate change. This
asymmetry leads to substantial EF increases when higher N input (INMS1-2), is combined with
climate change effects (Figure 6b). Conversely, reductions in N input alone may not fully buffer the
EF increase caused by warmer climates and changed precipitation patterns, especially in some
climate-sensitive regions. Among the four high-ambition policy scenarios, our findings indicate that,
despite INMS7 containing a best-case climate scenario (SSP126), EFs are not always projected to be
the lowest among the ‘best-case’ climate scenarios by 2030 even with similar N input to current
management? (Figure S1). This discrepancy may arise from varying temperature and precipitation
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patterns (Figure 3), which could elevate EFs by 2030 (Figures S2-S3). However, by 2050, rising
temperatures in INMS 5-6 could lead to higher EFs even in the ‘best-case’ climate scenarios (Figure
6b).
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Figure 6 Global cropland and pasture EF changes under different scenarios. This figure displays
smoothed lines reflecting changes in EF. a, the change in EF compared to the average EF
during 1990-2010, excluding nitrogen fertilizer impacts under scenarios SSP126, SSP245,
and SSP585. b, the change in EF compared to the average EF during 1990-2010 including
nitrogen fertilizer effects under scenarios INMS1 to INMS7.

Our study highlights the urgency to take relatively stringent N regulation practices as early as
possible, as delays could exacerbate the challenges of mitigating N2O emissions due to climate-
induced increases in EFs. In addition, it is important to account for the impact of future climate
changes on effective evaluations and to harness the potential for identifying easily achievable targets
(e.g., prioritized mitigation goals, specific regions, and feasible practices) across the globe. More
comprehensive strategies need to be considered, including cost-effective mitigation measures, which
are essential to reduce greenhouse gas (GHG) emissions while ensuring the stability of food
production (Gu et al., 2023; Peng and Guan, 2021; Ren et al., 2023). Furthermore, crop switching is
proposed to be an effective strategy for sustainable agriculture (Rising and Devineni, 2020; Xie et al.,
2023). This approach holds the potential for reducing N>O emissions and enhancing crop productivity
in the context of future climate change (Jagermeyr et al., 2021; Peng and Guan, 2021). However, the
impact of crop switching on dietary diversity and nutritional intake remains a critical question
(Carlson et al., 2016; West et al., 2014). Consequently, international food trade becomes crucial in
striking a balance between maintaining food diversity and adapting to climate change (Janssens et al.,
2022; Janssens et al., 2020). Generally, collective action by different organizations is critical for us
to achieve the climate mitigation goal in a race against time.

3.5 Limitations and future framework

Our study comprehensively explores N>O emission under different policy interventions and
climate scenarios, identifying the direction towards achieving Sustainable Development Goals.
However, we understand that there are several uncertainties in this study. Different process-based
models have different structures and algorithms to represent non-linear N>,O responses to key
environmental drivers. Although the cross-model divergence can be minimized by using the model
ensemble median estimates of EF as the learned variable, the uncertainties in projections derived from
model inputs and structure still persist (Tian et al., 2024). Extensive measurements of soil N2O
emissions could help improve the parameterization of individual NMIP2 models and better constrain
their estimates of EF in various climate and soil conditions. The method of emergent constraint can
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be effective in reducing uncertainties in process-based models (Wang et al., 2020b), as applied in
studies on crop yield changes (Li et al., 2023), soil carbon (Varney et al., 2020), and land
evapotranspiration based on field observed data (Lian et al., 2018). However, no such work is
available for EF.

The machine learning-based approaches have a common challenge in extrapolating, especially
beyond the training dataset. In this study, to cover the range of potential future conditions, we trained
our model on a large dataset spanning a wide range of time periods (1961-2020), covering the period
with rapid changes in climate and human activities, such as enhanced anthropogenic N input in
particular. However, the learning effort is still limited by the availability of input data and how
process-based modeling has handled them. For example, some detailed information on nitrogen
management practices, such as the seasonal application of nitrogen, the use of organic amendments,
or slow-release forms of nitrogen, are either missing at the global level or over-simplified in the N2O
modeling assessment. Incorporating a broader range of data and management practices will enhance
the robustness of this hybrid model and make it more practical for future users who have more detailed
information.

For N fertilizer input, the EFs associated with manure deposition and application were not
considered despite their significant role in N2O emissions (Charles et al., 2017; Walling and
Vaneeckhaute, 2020). The changes in synthetic fertilizer and manure application rates vary
substantially across different policy scenarios, influenced by dietary shifts, and changed NUE.
Synthetic fertilizers are widely used in crop production, enhancing crop yield efficiently but
increasing the risk of N pollution. Although changes in synthetic fertilizer composition (e.g.,
ammonium versus nitrate) might affect outcomes, this aspect was not explored in our study. Manure,
while beneficial for soil health and providing a more sustainable N source, adds challenges in
managing N>O emissions and N leaching. Selection between them should balance efficiency,
environmental impact, and soil health considerations. Since data on N2O emissions induced by
manure was not available for all the eight participant models in NMIP2, we did not include manure-
induced N>O emissions and the potential change in EFs for manure. Incorporating manure EFs into
future studies could further optimize nitrogen inputs by balancing the trade-offs between synthetic
fertilizers and manure. In addition, we mainly focus on annual EFs, derived from NMIP2 model
ensembles that handle annual fertilizer input in various ways and assumptions without knowing how
fertilizer application timings vary across the globe and over time. This may not fully capture the
interactive effects of seasonal climate variations and nitrogen application on EFs.

Considering crop-specific variations in using N and releasing N>O from soils (e.g., wheat, maize,
and rice) could provide more nuanced guidance (Cui et al., 2021; Shang et al., 2024), an aspect not
covered in our current study. Future work ought to explore how different policy ambition levels
influence N2>O emissions for different crops under future climate scenarios. This will offer targeted
recommendations, helping to bridge these knowledge gaps and enhance our comprehension and
management of N>O mitigation strategies.

4. Conclusions

In this study, we have developed a novel hybrid modeling framework that incorporates machine
learning with process-based modeling to predict the non-linear dynamics of EF under various climate,
soil, and management conditions across global agricultural lands. This approach provides new
insights into global EF changes that can improve our understanding of N>O mitigation potential under

different climate and policy scenarios. Our results provide a strong indication of a future increase in
18
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N2O EF due to climate change, independent of N management. The increase of EFs when coupled
with increased N input and climate change impacts is largely higher than the EF reductions through
decreased N input. This asymmetry between nitrogen input and EFs poses additional challenges for
N20 mitigation in the future, highlighting the urgency of nitrogen reductions as delayed actions could
increase mitigation costs. Such information might not be fully captured by studies using country-
specific EFs, which are considered appropriate for "tier 2" approaches in national inventories.
Furthermore, although the EFs are impacted by different environmental factors, optimizing N inputs
to crop needs remains the most effective mitigation option. Our finding is a critical step towards
achieving sustainable development goals, by improving the current static EF (IPCC tiers 1-2)
approach with a more precise N>O emissions estimation under global change scenarios. Future efforts
in enhancing measurement and data analysis with a uniform protocol would be helpful to reduce the
EF estimation uncertainty from process-based modeling, and to improve the database used for
dynamic EF learning and mitigation potential assessment under various management options.
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