
1 

 

Enhanced nitrous oxide emission factors due to climate change increase the mitigation 1 

challenge in the agricultural sector 2 

 3 

Linchao Li1, Chaoqun Lu1*, Wilfried Winiwarter2,3, Hanqin Tian4,5, Josep G Canadell6, Akihiko 4 

Ito7,8, Atul K. Jain9, Sian Kou-Giesbrecht10, Shufen Pan11,4, Naiqing Pan4, Hao Shi12, Qing Sun13, 5 

Nicolas Vuichard14, Shuchao Ye1, Sönke Zaehle15, Qing Zhu16 6 

 7 
1 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 8 

USA 9 

2 International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria 10 
3 Institute of Environmental Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland 11 
4 Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated 12 

Science and Society, Boston College, Chestnut Hill, MA 02467, USA 13 

5 Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, 14 

USA 15 
6 CSIRO Environment, Canberra, ACT, Australia 16 
7 Graduate School of Life and Agricultural Sciences, University of Tokyo, Tokyo 113-8657, Japan 17 

8 Earth System Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan 18 
9 Department of Atmospheric Sciences, University of Illinois, Urbana-Champaign, Urbana, 19 

IL61801, USA 20 
10 Department of Earth and Environmental Sciences, Dalhousie University, Halifax, NS, Canada 21 

B3H 4R2 22 
11 Department of Engineering and Environmental Studies Program, Boston College, Chestnut Hill, 23 

MA 02467, USA 24 
12 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 25 

100085, China 26 

13 Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change 27 

Research, University of Bern, 3012 Bern, Switzerland 28 
14 Laboratoire des Sciences du Climat et de l'Environnement, LSCE, CEA CNRS, UVSQ 29 

UPSACLAY, 91198 Gif sur Yvette, France 30 

15 Max Planck Institute for Biogeochemistry, 07701 Jena, Germany 31 
16 Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron 32 

Road, Berkeley, CA 94720, USA 33 

 34 

  35 



2 

 

Abstract 36 

Effective nitrogen fertilization fertilizer management is crucial for reducing nitrous oxide (N2O) 37 

emissions while ensuring food security within planetary boundaries. However, climate change might 38 

also interact with management practices to alter N2O emission and emission factors (EF), which 39 

brings additionaladding further uncertainties to estimating mitigation potentials. Here, we developed 40 

a new hybrid modeling framework that integrates a machine-learning model with an ensemble of 41 

eight process-based models to project EFs under different climate and nitrogen policy scenarios. Our 42 

findings reveal that EFs are dynamically modulated by environmental changes, including climate, 43 

soil properties, and nitrogen management practices. Under low-ambition nitrogen regulation policies, 44 

EF would increase from 1.18-1.22% in 2010 to 1.27-1.34% by 2050, representing a relative increase 45 

of 4.4-11.4% and exceeding the IPCC tier-1 EF of 1%. This trend is particularly pronounced in 46 

tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14-0.35% 47 

(relative increase of 11.9-17%). In contrast, high-ambition policies have the potential to mitigate the 48 

increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, 49 

our results demonstrate that global EFs are expected to continue rising due to warming and regional 50 

drying-wetting cycles, even in the absence of changes in nitrogen management practices. This 51 

asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the 52 

urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. 53 

We believe this hybrid modeling framework offers a computationally efficient approach to projecting 54 

future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating 55 

socio-economic assessments and policy-making efforts.  56 

1. Introduction 57 

Nitrous oxide (N2O) is one of the powerful and long-lived greenhouse gases (GHG). Its 58 

atmospheric concentration has increased by approximately 24.8% from pre-industrial levels to 2023 59 

(Lan et al., 2024). Among all known N2O surface emission sources, agricultural soil accounts for 60 

around 50% of the anthropogenic N2O emissions (Shcherbak et al., 2014; Tian et al., 2020). 61 

Emissions of N2O from soil have been rising, particularly in recent decades, largely due to increased 62 

nitrogen (N) inputs from fertilizers (Lu et al., 2022; Thompson et al., 2019). Although sufficient N 63 

fertilizer application is essential for food supply (Ahvo et al., 2023), overfertilization gives rise to N 64 

pollution leading to annual global economic costs of around 200 - 2000 billion US$ (Kanter et al., 65 

2020b; Sutton et al., 2013), especially for the financial expenses associated with mitigating N2O 66 

emissions (Feng and Li, 2023). Furthermore, a wide variety of studies argue that the effectiveness of 67 

GHG mitigation is likely to decrease due to global warming (Köberle et al., 2021; Shaaban, 2024; Xu 68 

et al., 2022; Yao et al., 2024), suggesting an urgency of early mitigation (Peng and Guan, 2021). 69 

Many studies seek to develop mitigation strategies that balance crop yields with reduced GHG 70 

emissions without compromising crop productivity in specific regions (Burney et al., 2010; Lamb et 71 

al., 2016; Lugato et al., 2018). Several mitigation pathways have been developed (Gu et al., 2023; 72 

Kanter et al., 2020a; Sutton et al., 2021), which provide general insights into how current N policies 73 

impact future environmental scenarios and targeted interventions for N pollution reduction. However, 74 

the applicability of these regionally specific hypotheses has not been fully tested on global scales, 75 

which limits our understanding of hotspot areas for N2O emission mitigation. More importantly, how 76 

effective different N regulating policies will be under the future climate has not been systematically 77 

investigated. This knowledge gap may lead to missing key timing for actions to effectively reduce 78 
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N2O emissions, that is relevant for simultaneously achieving both Goal 2 (Zero Hunger) and Goal 13 79 

(Climate Action) of the United Nations Sustainable Development Goals (United Nation, 2015). 80 

The N2O emission factor (EF) is a widely used bottom-up approach for estimating anthropogenic 81 

soil N2O emissions from N fertilizer input. The recent report by the Intergovernmental Panel on 82 

Climate Change (IPCC) suggests a default EF (tier-1) (Hergoualc'h et al., 2019; Klein, 2006) and 83 

more detailed country-specific EFs (tier-2) to guide the N2O emission assessment. Despite being easy 84 

to use, this approach overlooks the large variance and long-term dynamics of EF due to different 85 

environmental conditions such as climate, soil, and management (Lesschen et al., 2011; Shcherbak 86 

et al., 2014; Wang et al., 2020a). EF change is mainly attributed to factors like environmental 87 

conditions, N fertilizer input rate, soil properties, or carbon substrates (Hu et al., 2016; Nelson et al., 88 

2016; Shcherbak et al., 2014; Venkiteswaran et al., 2014). However, these attribution analyses are 89 

often based on short-term field observations that may not fully represent the long-term impacts of 90 

climate change (Harris et al., 2022) and evolving nitrogen management practices on EF dynamics. 91 

Although evaluating the spatial patterns of EF based on statistical models and field observations could 92 

provide insights into mitigation potentials and N2O emission projections (Cui et al., 2021; Harris et 93 

al., 2022), EF dynamics under climate change are not adequately addressed in the existing EF maps. 94 

This oversight may result in biases in EF-based estimates of N2O emissions and lead to a failure in 95 

identifying the optimal timing for implementing effective mitigation strategies (Harris et al., 2022). 96 

Such a lapse not only impedes the accuracy of global N2O estimations but also hampers policymakers 97 

from developing more effective mitigation strategies over both short- and long-term periods. 98 

Process-based models represent another bottom-up approach to dynamically project N input-99 

induced N2O emissions by simulating biological and biogeochemical processes in croplands and 100 

pasture lands, where N fertilizer is a primary input source, under climate change and different 101 

management practices (Del Grosso et al., 2022; Tian et al., 2018; Tian et al., 2019). These models 102 

provide dynamic predictions of N2O emissions driven by climate and environmental data. However, 103 

their application is limited by the requirement for input data preparation, extensive model calibration 104 

and validation (Ouatahar et al., 2021; Sandor et al., 2018), process representation, and substantial 105 

computational resources, particularly when various N management scenarios and future climate 106 

scenarios are assessed for N2O emission projection (Perlman et al., 2014; Tian et al., 2018). In the era 107 

of big data, artificial intelligence has become increasingly influential in fields based on large datasets 108 

(Delavaux et al., 2023; Ham et al., 2019; Reichstein et al., 2019; Wang et al., 2023; Xu et al., 2024). 109 

However, these approaches (e.g., machine learning and deep learning) can mainly provide references 110 

for responses under current conditions (Franke et al., 2020), and projects integrating different 111 

potential future N management and climate scenarios are challenging. Furthermore, statistical models 112 

can be misleading due to the lack of detailed understanding of processes and causal relationships 113 

(Feng et al., 2019). Thus, it may be of interest to develop a hybrid approach that combines the 114 

advancement of process-based models and machine learning to emulate the process-based model 115 

behaviors (Xiao et al., 2024). Such statistical emulations could offer an efficient and timely approach 116 

to estimating the efficacy of mitigation strategies under different climate scenarios. 117 

Here, we develop a modeling framework that employs machine learning to emulate the behavior 118 

of eight state-of-the-art process-based terrestrial biosphere model ensembles from the global 119 

Nitrogen/N2O Model Inter-comparison Project phase 2 (NMIP2) (Tian et al., 2024). This approach 120 

can dynamically evaluate global EF for N fertilizer input-induced N2O emission projections with 121 

improved accuracy, effectively combining the two bottom-up methods. We then perform an 122 
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attribution analysis of EF change based on our dynamic EF (Dym-EF) model. Finally, we estimate 123 

the potential change of EF based on seven N management scenarios from 2010 to 2050, each N 124 

management scenario with a corresponding climate scenario based on 37 global climate models 125 

(GCMs) (Figure 1). The objectives of this study are to (1) explore the key factors influencing EFs 126 

and their potential changes over time; (2) reveal the nonlinear relationships between EFs and 127 

environmental factors; (3) dynamically project EF under various nitrogen mitigation strategies and 128 

climate scenarios; (4) identify the opportunities and hotspots with high EF reduction potentials from 129 

seven nitrogen regulation policies at three ambition levels that have been developed under the 130 

International Nitrogen Management System (INMS) project (Kanter et al., 2020b). The INMS 131 

scenarios combine specific policies to reduce nitrogen pollution with the Shared Socioeconomic 132 

Pathways (SSP: Riahi et al. (2017)) and the Representative Concentration Pathways (RCP: Van 133 

Vuuren et al. (2011)) developed under the IPCC. This study can improve our understanding of 134 

balancing policies, N2O emission, and food production under future climate scenarios, which is 135 

crucial for developing effective mitigation strategies. Moreover, this Dym-EF modeling framework 136 

offers flexibility and can easily extend to other different nitrogen management scenarios, providing a 137 

broader and timely evaluation of global GHG mitigation potentials. 138 

 139 
Figure 1 Modeling framework integrating machine learning and process-based model 140 

ensembles (NMIP2) for assessing global nitrogen fertilizer input-induced nitrous 141 

oxide (N2O) emission factors (EF) and projecting EF Change under various climate 142 

and N management scenarios. The NMIP2 was performed under 0.5o×0.5o resolution. 143 

This modeling framework was used to emulate the NMIP2 ensemble behaviors rather 144 

than individual NMIP2 models. RF, Random Forest model; 7 scenarios including INMS1, 145 

Business as usual; INMS2, Low N regulation (Low ambition); INMS3, Medium N 146 

regulation (Moderate ambition); INMS4, High N regulation (High ambition); INMS5, 147 

Best-case (High ambition); INMS6, Best-case plus (High ambition); INMS7, Bioenergy 148 

(High ambition); NMIP, Global N2O model intercomparison project. Dym-EF, Dynamic 149 

EF. 150 



5 

 

2. Data and Methods 151 

2.1 Estimating the N2O emission factor (EF) by learning the non-linear EF dynamics from the 152 

NMIP2 model ensemble 153 

In this study, we estimate the N2O emission factors (EF) based on eight process-based Terrestrial 154 

Biosphere models that participate in N2O Model Intercomparison Project phase 2 (NMIP2) (Tian et 155 

al., 2024; Tian et al., 2018), including CLASSIC, DLEM, ELM, ISAM, LPX-Bern, OCN, 156 

ORCHIDEE, and VISIT. These models integrate the impacts of atmospheric N deposition, biological 157 

N fixation, manure N application, and N fertilizer use on the nitrogen cycle processes related to N2O 158 

emissions (Tian et al., 2020; Tian et al., 2019). Each of the models use a "Demand and Supply-driven" 159 

approach for plant N uptake. Differences in how models represent nitrification and denitrification 160 

processes and their contributions to N2O emissions with the modification of climate and agricultural 161 

management practices are a main source of uncertainty in our estimates. For a detailed description of 162 

the process associated with N2O emission approaches of each model in Tian et al. (2024). A set of 163 

factorial simulations was performed to disentangle the respective contribution of drivers to the N2O 164 

emissions. Among these simulations, the SH1 aims to estimate the dynamics of N2O emission in 165 

response to changes in Climate + CO2 + Land cover + Irrigation + N deposition + N Fertilizer + 166 

Manure N; while the SH3 yields the estimates of N2O emissions without considering N fertilizer input, 167 

that is estimations driven by changes in Climate + CO2 + Land cover + Irrigation + N deposition + 168 

Manure N. To estimate the EF, we first obtain the N2O emissions directly resulting from N fertilizer 169 

inputs that were calculated using SH1 - SH3 (i.e., simulations with vs without N fertilizer input). We 170 

estimate the annual EF from 1961-2020 allowing us to assess how changes in warming trends and 171 

nitrogen application rates have influenced the variation in EFs. The NMIP2 models were driven by 172 

consistent input datasets, including nitrogen inputs, atmospheric CO2 concentrations, daily climate 173 

variables, irrigation, and land cover changes, ensuring a standardized basis for comparison and 174 

analysis of global N2O estimation. Most models output monthly N2O estimates (Tian et al., 2024). 175 

The complete list of abbreviations is shown in Table S1. 176 

2.2 N regulation scenarios 177 

Optimizing management practices can improve N use efficiency (NUE) and reduce N2O 178 

emissions (Winiwarter et al., 2018). This N policy data has been used to estimate the N pollution 179 

globally (Cui et al., 2024; Kanter et al., 2020a). Thus, understanding the potential changes in N2O 180 

emissions from food production under future land management scenarios (based on current and 181 

potential technological advancements) is essential for developing more comprehensive and cohesive 182 

nitrogen strategies; while additionally reducing the conflicts in food production and its environmental 183 

impacts (Gu et al., 2023; Kanter et al., 2020a). They have been formalized by Kanter et al. (2020b), 184 

who developed seven scenarios within the SSP/RCP framework that include three different levels of 185 

policy ambition to tackle nitrogen pollution in general (low, moderate, and high ambitions to remove 186 

nitrogen pollution, See Table 1), as part of the project Towards an International Nitrogen 187 

Management System (INMS: see https://www.inms.international). In this paper, we use projections 188 

of synthetic N fertilizer consumption as implemented in the GAINS model (Amann et al., 2011; 189 

Winiwarter et al., 2018) and in accordance to these seven scenarios. 190 

High ambition N regulation scenarios: The high-ambition scenarios align with the Sustainable 191 

Development Goals, which extend to 2030. These ambition levels include four distinct approaches: 192 

high N regulation (INMS4, under RCP4.5 and SSP2), the “best case” (INMS5, under RCP4.5 and 193 

SSP1), the “best-case plus” (INMS6, under RCP4.5 and SSP1), and bioenergy (INMS7, under 194 

https://www.inms.international/
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RCP2.6 and SSP1). The high ambition N regulation level represents technological advancements 195 

within the period of the Sustainable Development Goals until 2030. The "best case" scenario 196 

envisages ambitious climate action combined with a strong commitment to sustainable agriculture 197 

and low-meat diets in line with the expectations under SSP1. The best-case "plus" scenario extends 198 

this ambition further, incorporating significant dietary changes and reducing food loss. As for the 199 

bioenergy scenario, improving bioenergy production is likely crucial for achieving the targets of a 200 

1.5 °C and 2 °C world. From a N perspective, the RCP 4.5 scenario appears to be more favorable than 201 

RCP 2.6, unless substantial efforts are undertaken to improve NUE in bioenergy production in RCP 202 

2.6. Generally, the high nitrogen policy ambition is expected to achieve the target NUE by 2030 and 203 

maintain it through to 2100 (Kanter et al., 2020b). 204 

Moderate ambition N regulation scenario: The moderate ambition (Medium N regulation, 205 

INMS3, under RCP4.5 and SSP2) scenario aims to achieve the same goals but over a longer period, 206 

either by 2050 or 2070. It expects countries to continue their current high-input, low-efficiency N 207 

fertilizer for 30 years before making improvements. 208 

Low ambition N regulation scenarios: The low ambition scenarios indicate no significant 209 

improvement and a stagnant NUE. The INMS1 scenario assumes a continuation of past trends 210 

(RCP8.5 and SSP5) while INMS2 considers climate policy (RCP4.5 and SSP2) but little policy 211 

attention to N pollution.  212 

To integrate the seven scenarios, we employed the relative change metrics, comparing the future 213 

period (2011-2050) against a baseline period (1990-2010). This approach was used to align with the 214 

NMIP2 nitrogen (N) input data, which includes synthetic N fertilizer. Since the NMIP-derived EFs 215 

used to train our Dym-EF model were based on specific NMIP N fertilizer data, the nitrogen 216 

regulation pathways from INMS1-7 could not be directly applied as inputs to project future EFs. 217 

Consequently, we adapted the seven scenarios to align with the NMIP inputs as follows: 218 

NFerS_NMIP=NFerH_NMIP+RN×NFerH_NMIP        (1) 219 

𝑅𝑁 =
(𝑆_𝐼𝑁𝑀𝑆−𝐻𝑖𝑠_𝐼𝑁𝑀𝑆)

𝐻𝑖𝑠_𝐼𝑁𝑀𝑆
         (2) 220 

where the NFerS_NMIP represents the synthetic fertilizer N input for the seven NMIP-compatible 221 

scenarios (2011-2050), NFerH_NMIP is the historical NMIP synthetic fertilizer N input data (1990-222 

2010), RN is the relative change, S_INMS represents the seven future scenarios (Table 1), and 223 

His_INMS is the historical N input data for these N regulation scenarios during 1990-2010. We 224 

developed the N management data at gridded scales with 0.5o by 0.5o grids. Through the above 225 

approach, we have developed a set of N input data tailored to these seven future scenarios for NMIP2. 226 

This ensures that the scenarios are appropriately linked to the current NMIP’s N input data, thereby 227 

facilitates the creation of a series of detailed N input scenarios. Figure S1 shows the total N inputs 228 

under 7 scenarios during 1961-2050.  229 

  230 
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Table 1 The seven future climate, land use, diet, and N management scenarios.  231 

Name Scenario Climate 
Land use 

regulation 
Productivity Diet 

Ambition 

level 

INMS1 
Business-as-

usual 
RCP8.5 Medium  High Meat & dairy-rich Low 

INMS2 
Low nitrogen 

regulation 
RCP4.5 Medium  Medium Medium meat & dairy Low 

INMS3 

Medium 

nitrogen 

regulation 

RCP4.5 Medium Medium Medium meat & dairy Moderate 

INMS4 
High nitrogen 

regulation 
RCP4.5 Medium  Medium Medium meat & dairy High 

INMS5 Best-case RCP4.5 Strong  High Low meat & dairy High 

INMS6 
Best-case 

“Plus” 
RCP4.5 Strong High 

Ambitious diet shift and 

food loss/waste 

reductions 

High 

INMS7 Bioenergy RCP2.6 Strong High Low meat & dairy diet High 

*Modified from Kanter et al. (2020b). 232 

 233 

2.3 Climate data 234 

We collect monthly temperature and precipitation data from 37 GCMs under SSP126 (SSP1, 235 

RCP2.6), SSP245 (SSP2, RCP4.5), and SSP585 (SSP5, RCP8.5) of CMIP6 (Table S2). The use of 236 

37 Global Climate Models (GCMs) allows for comprehensive coverage of the range of Equilibrium 237 

Climate Sensitivity (ECS) and Transient Climate Response (TCR) values (Meehl et al., 2020). This 238 

breadth is crucial for adequately representing the spectrum of potential climate change scenarios. To 239 

match the resolution of NMIP2 input, we resample these GCMs to 0.5o by 0.5o grids. Since the 240 

historical data from the GCMs exhibit discrepancies when compared with NMIP2 inputs, we employ 241 

the delta approach for bias correction at grid scales: 242 

GCMb=GCMraw+ Delta      (3) 243 

where the GCMb is the bias-corrected GCMs during 2011-2050, GCMraw is the raw GCMs climate 244 

variable (seasonal temperature and precipitation, and annual aridity index) during 2011-2050, and 245 

Delta is Observed Historical Data−Model Historical during 1980-2010. In a few small arid regions 246 

where bias correction resulted in negative precipitation values, we adjusted these to zero. NMS1 247 

corresponds to SSP5 ('Fossil-fueled Development'), INMS2-4 corresponds to SSP2 ('Middle of the 248 

Road'), and INMS5-7 corresponds to SSP1 ('Sustainability'). However, since SSP1-4.5 is not 249 

available for all GCMs (O'Neill et al., 2016), we use climate projections from SSP2-4.5 to 250 

approximate it and assemble the scenarios of best-case and Best-case+ (INMS5-6) as the combination 251 

of moderate-mitigation climate, sustainable development (SSP1), and high ambition N regulation 252 

policies. More details can be found in Kanter et al. (2020b). Figures S2 and S3 show the time series 253 

for precipitation and temperature, and their changes over areas of nitrogen application. Generally, 254 

there is a significant increase in temperature across various scenarios, especially under SSP585. 255 
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Precipitation demonstrates a slight increase, with SSP126 marginally exceeding SSP245 and SSP585 256 

during 2011-2050. 257 

2.4 Developing an explainable model to project EF change 258 

The process-based models are capable of estimating non-linear responses of N2O emissions 259 

through various biophysical processes, such as nitrification and denitrification. These models 260 

consider factors that potentially impact N2O emissions and EFs, such as soil properties (including soil 261 

pH, initial soil organic carbon content, bulk density, and clay content), as well as environmental 262 

conditions like precipitation and temperature, along with management practices. Several studies have 263 

compared N2O models in agriculture under historical conditions (Ehrhardt et al., 2018; Fuchs et al., 264 

2020). However, for future projections, these models require substantial computational resources 265 

(Franke et al., 2020) and are challenging to apply directly to a large number of GCMs for assessing 266 

the N2O dynamics under climate change scenarios. Statistical models can capture the nonlinear 267 

relationship between N2O emissions and environmental variables. However, these statistically-based 268 

models do not incorporate biophysical processes, and their performance largely depends on the 269 

quality and quantity of the available data. (Li et al., 2023). Thus, there is growing interest in 270 

developing a hybrid model (or statistical emulation) that combines the advantages of both approaches, 271 

providing a more efficient and flexible method for estimating N2O emissions. 272 

In this study, we use the Random Forest (RF) model to reproduce the multi-model median of 273 

NMIP2 EF based on the NMIP2 input data (Tian et al., 2024). The climate data includes seasonal 274 

temperature and precipitation and yearly aridity index (AI). The soil data consisted of pH, initial soil 275 

organic carbon content (DOM_SOC), soil bulk density (BULK_DEN), percentage of sandy content 276 

(PCT_SAND), and clay content (PCT_CLAY). Management data included synthetic nitrogen 277 

fertilizer (NFer) and irrigation (Irr). We excluded grids where both cropland and pasture cover are 278 

less than 10%. In addition, we find the EF from the NMIP2 ensemble is highly sensitive to nitrogen 279 

inputs when the N input was less than 0.1 kg N/ha/yr. To ensure the accuracy of the Dym-EF model, 280 

we exclude data grids with extremely high EF caused by a lower N input, as well as those grids where 281 

the N input was less than 0.1 kg N/ha/yr, noting that atmospheric deposition alone often exceeds this 282 

level in many regions. Such extremely high EFs for low fertilizer inputs are likely artifacts from the 283 

NMIP2 models. Notably, to encompass a wider range of environmental conditions, our Random 284 

Forest (RF) model was trained on yearly data spanning 60 years (1961-2020) from NMIP2. This 285 

training allows us to dynamically generate annual EFs at a high spatial resolution of 0.5° × 0.5°. 286 

We performed the RF model using the “ranger” package in R 4.1.1, optimizing the two 287 

hyperparameters (ntree and mtry) with the ‘caret’ package. The ntree parameter is the number of decision 288 

trees in the RF model, and the mtry parameter determines the number of features to consider at each 289 

split. The extensive size of our dataset, which was comprised of over one million data sets made 290 

tuning hyperparameters with the entire dataset challenging. Therefore, we used data from the most 291 

recent ten years (2011-2020) as a representative subset to calibrate the hyperparameters. We set the 292 

range for 'mtry' from 1 to 9 in steps of 2, and for 'ntree' from 100 to 900 in steps of 200 (refer to Figure 293 

S4). We find that when mtry was set as 7 and ntree at 700 or 'mtry' at 5 and 'ntree' at 900, the model can 294 

achieve optimal performance with RMSE is 0.32 and the R2 is 0.775. However, there is a trade-off 295 

between model performance and computational demand. Although such hyperparameters can provide 296 

better performance, they require significant computational resources. A setting of 'ntree' at 500 and 297 

'mtry' at 7 offered a similar performance (RMSE of 0.32 % and R2 of 0.774) but with a significantly 298 

reduced computational load. Consequently, we selected these values (mtry = 7 and ntree = 500) as the 299 
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final hyperparameters for our model. To evaluate our model's performance at each grid, we conducted 300 

a leave-ten-year-out cross-validation for each decade. Then we aggregated the results from these 301 

periods to assess the overall performance through R2 and RMSE across the 60 years (1961-2020). 302 

Our approach showed reliable model performance with an R2 higher than 0.9 and an RMSE lower 303 

than 0.1 in most regions (Figure S5-S6). Although N fertilizer is known to significantly influence EF 304 

(Akiyama et al., 2006; Wang et al., 2011), it casts doubt on the models’ efficacy when solely using 305 

N fertilizer for EF estimation. Therefore, we compared the model performance of estimating EF using 306 

only N rates with using multiple environmental variables., The results showed that the predictions 307 

based solely on N fertilizer were not as reliable as those using multi-source environmental data 308 

(Figure S5-S6). This indicates that EF is affected not only by N management but also significantly 309 

by different environmental conditions. Generally, our modeling framework demonstrates reliable 310 

performance both at the grid level and in the combined overall assessment. 311 

2.5 Attribution analysis 312 

To identify the dominant factors influencing the EF, the Shapley additive explanations (SHAP) 313 

value was used to quantify the contribution of each predictor. We explain the overall impact of 314 

different predictors of estimating the EF using the mean absolute SHAP value. For a more granular 315 

and detailed explanation at the grid level, the SHAP values are more efficient to explain the 316 

dominant factors influencing the EF across different time intervals. The SHAP can isolate the 317 

impact of different variables on the EF. This approach, based on work in game theory (Lundberg 318 

and Lee, 2017), is used to determine how each individual factor affects a team’s overall 319 

performance. It has been extensively applied in quantifying the marginal contributions of each 320 

predictor to the target variable (Chen et al., 2022; Chen et al., 2023b; Li et al., 2022; Wang et al., 321 

2023). The management and climate change significantly between different periods, especially for 322 

N input. Thus, in our study, to effectively capture how different environmental conditions influence 323 

the EF, we divide the study period into three time intervals: 1961-1990, 1991-2020, and 2021-2050. 324 

The period of 2021-2050 was analyzed using multi-GCM model ensembles under various future 325 

scenarios (INMS1-7). Since INMS5 (best-case scenario) and INMS6 (best-case 'plus') exhibit 326 

similar characteristics, we chose INMS6 to represent both in our analysis. We use the absolute 327 

value of SHAP values and select the highest values as the dominant factor. 328 

2.6 Partial dependence 329 

We use the partial dependence plots (PDPs) to analyze the marginal effects of predictors, including 330 

soil, climate, and management variables, on the EF. The PDP plots can effectively capture the non-331 

linear relationship between different environmental variables and EF. In this study, we use the ‘pdp’ 332 

package of R 4.1.1 to analyze their non-linear impact on EF (Greenwell, 2017). 333 

3. Results and discussion 334 

3.1 Dominant drivers in influencing EF 335 

We developed a Dym-EF model by learning the relationship between the median ensemble 336 

estimates of eight process-based models from NMIP2 and a time-series gridded database of key 337 

environmental factors such as climate, soil properties, and agricultural management at a spatial 338 

resolution of 0.5 degrees during 1961-2020. The grid-based RF model is proven to have a great 339 

performance in reproducing NMIP2 EF estimates over space and time (see Methods and Figure S4-340 

5). For temporal variation, we assessed the R2 and RMSE for each grid with a great performance for 341 

most regions (Figure S6). We found that temperature in June, July, and August (T_JJA), nitrogen 342 



10 

 

fertilizer (NFer), precipitation in June, July, and August (Pr_JJA), and precipitation in September, 343 

October, and November (Pr_SON), are the most important factors influencing EF (Figure S7). 344 

Summer temperature and summer/fall precipitations have a higher importance in determining EF 345 

dynamics than climate variables in other seasons, possibly because the NMIP2 model ensembles do 346 

not have information on fertilizer application timing in the input data and models assume one 347 

application without side-dressing or equal daily distribution of fertilizer input during crop growing 348 

season. NFer directly influences soil nitrogen content, significantly impacting EF. However, the 349 

combined effects of various seasonal climate variables are higher than the influence of N fertilizer 350 

alone in determining EF. The climate conditions in the northern summer months (JJA) are crucial for 351 

the growth of summer crops like corn and soybean, which frequently undergo nitrogen management 352 

(Lu et al., 2022; Maier et al., 2022). In addition, the warmer temperature and high soil moisture in 353 

summer can also create a suitable environment condition for nitrification and denitrification processes 354 

in the soil and thus increase the EF. In autumn (SON), cumulative precipitation often leads to soil 355 

saturation throughout the year, creating anaerobic conditions, especially when combined with 356 

residual nitrogen from fertilizers applied during the growing season, thus, increasing the 357 

denitrification and N2O emissions (Glenn et al., 2021; Perego et al., 2016; Vinzent et al., 2018). Our 358 

results showed that climate factors and N fertilizer are more important in altering EF than the initial 359 

soil properties. This is probably because soil conditions and processes are cumulatively impacted by 360 

long-term climate variables (e.g., temperature and precipitation) and management, which might 361 

overshadow the effects of initial soil properties. More importantly, changes in climate and 362 

management practices could further enhance their dominance in influencing the long-term trends of 363 

EFs (Baral et al., 2022).  364 

In this study, we found the dominant factors influencing EF are not constant but change with 365 

different environmental conditions (e.g., climate and management) (Figure 2a), particularly in high 366 

EF and N input regions. For instance, in Southeast Asia, the dominant drivers have shifted from spring 367 

temperature (T_MAM) and N fertilizer to summer temperature possibly due to increased heatwaves. 368 

The increasing temperature combined with wet conditions enhances nitrification and denitrification 369 

rates, leads to an increase in both the abundance and activity of ammonia oxidizers and denitrifiers, 370 

and thereby amplifies N2O emissions (Dai et al., 2020; Griffis et al., 2017). Similarly, Central Europe, 371 

the US Corn-Belt and Rice-Belt areas, Southeast Asia, and Southwest China exhibited a shift in 372 

dominant EF drivers from NFer to summer precipitation (T_JJA) and temperature. This change 373 

suggests that in areas with high nitrogen input levels, EF is likely more sensitive to environmental 374 

change due to the increased interaction of increased nitrogen input and climate change (Xu et al., 375 

2020b). By contrast, in South America and Africa, where N input has been historically low, we found 376 

a significant shift from temperature being the dominant driver during 1961-1990 to the N fertilizer 377 

use rate during 1991-2020 This indicated that enhanced N input may be more important in explaining 378 

the EF dynamics. Moreover, increased nitrogen leads to faster soil organic matter decomposition (Li 379 

et al., 2017), and changes in agriculture management practices with different nitrogen uptake 380 

efficiencies (Sainju et al., 2020; Thapa et al., 2016). In several regions (e.g., BRA and SAS), climate 381 

variables tend to become the predominant factors influencing EF when nitrogen inputs are increased. 382 

We found that T_SON is the dominant factor influencing EFs across most regions during 1961-1990, 383 

while summer temperatures (T_JJA) emerged as the primary influence in most regions during the 384 

period 1991-2020 (Figure 2b). This transition is likely due to global warming's intensified effects 385 

during the summer months in recent decades (Butterbach-Bahl et al., 2013; Xu et al., 2020a), making 386 
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summer conditions, along with heightened nitrogen inputs, more impactful on EFs compared to the 387 

relatively cooler autumn. Similarly, the summer precipitation also increased the dominance of EF in 388 

many regions (Figure 2b), likely because the recent increase in precipitation has raised soil moisture 389 

levels, thereby enhancing microbial activities such as nitrification and denitrification, which in turn, 390 

elevate N2O emissions (Yue et al., 2024). This finding is crucial in understanding the combined 391 

effects of climate change and nitrogen management on EF, which is key to developing effective 392 

strategies for reducing N2O emissions. 393 

 394 
Figure 2 The dominant driver of N2O emission factor (EF) at each pixel and the partial 395 

dependence of EF on different variables. a, Spatial map showing the primary factors 396 

influencing EF, with pie charts depicting the percentage area of dominant factors across 397 

different time intervals and scenarios. b, Chord diagram to demonstrate the shift of the 398 

dominant factor in influencing EF from T1 (1961-1990, upper half of circle) to T2 (1991-399 

2020, lower half of circle). Numbers represent the percentage of the area influenced by 400 

each variable, with different colors indicating different variables. Linked variables (such 401 

as T_SON_T1 to NFer_T2) illustrate the shift in dominant factors from T1 to T2. Variables 402 

consist of Irr (irrigation rate), NFer (nitrogen fertilizer), Pr_MAM (total precipitation in 403 

March, April, and May), Pr_JJA (total precipitation in June, July, and August), Pr_SON 404 

(total precipitation in September, October, and November), Pr_DJF (total precipitation in 405 

December, January, and February), T_MAM (mean temperature in March, April, and May), 406 

T_JJA (mean temperature in June, July, and August), T_SON (mean temperature in 407 

September, October, and November), T_DJF (mean temperature in December, January, 408 

and February), and AI (aridity index); DOM_SOC, soil organic carbon; BULD_DEN, soil 409 

bulk density. 410 

3.2 Relationships between EF and multiple environmental factors 411 

The non-linear relationships reveal the effects of various environmental variables on EF (Figure 412 

3), which may increase and decrease by up to ten percent or even more due to a single variable. 413 

Although the EF has a positive relationship with temperature, they have different response curves in 414 

different seasons. In JJA and SON, EF largely increases when temperatures exceed 2-6 °C, whereas 415 

in spring month (MAM), EF increases consistently with temperature (Figure 3). In early spring, soil 416 

freeze-thaw cycles, particularly in the Northern Hemisphere, significantly drive N2O emissions 417 

through different mechanisms such as enhanced biological denitrification, changes in microbial 418 
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composition and enzyme activity, and the release of trapped N2O (Del Grosso et al., 2022; Wagner-419 

Riddle et al., 2017). Therefore, EF can still increase with temperature even in a cold condition. 420 

However, it's important to note that these dynamics may not be fully captured by NMIP2 models, 421 

unlike those that have improved processes such as Del Grosso et al. (2022). EF's response to seasonal 422 

precipitation shows an increase up to a specific threshold, beyond which additional precipitation has 423 

little impact on EF. This threshold varies by season, likely influenced by the soil's water-holding 424 

capacity, different plant growth stages and their water uptake, and the seasonally varying rates of 425 

evaporation due to temperature changes (Bell et al., 2016; Cayuela et al., 2017). The EF also increases 426 

with NFer use level, albeit at a slower rate when annual fertilizer input is higher. Compared with 427 

different soil properties, soil pH is the most critical factor influencing EF (Figure S7). It is possibly 428 

because the soil PH mainly impacts EF the denitrifier community composition (Qiu et al., 2024). EF 429 

shows a negative relationship with pH, particularly when pH is above 5-5.3 (Figure 3), similar to 430 

previous studies (Russenes et al., 2016; Shang et al., 2024; Wang et al., 2018). In moderately acidic 431 

soils, alterations in soil microbial communities and chemical reactions favor N2O-producing 432 

microorganisms, potentially increasing N2O emissions (Qiu et al., 2024). Additionally, these 433 

conditions enhance processes such as denitrification, leading to higher N2O emissions even at lower 434 

nitrate levels (Tierling and Kuhlmann, 2018; Zhang et al., 2021). The higher presence of ammonium 435 

(NH4
+) coupled with conditions conducive to denitrification can lead to elevated emissions of nitrous 436 

oxide (N2O). Consequently, soil acidification in the future may significantly increase the risk of N2O 437 

emissions (Chen et al., 2023a). 438 

 439 
Figure 3 Partial dependence plots for annual EF change across different predictors (ranked by 440 

feature importance see figure S7). The smooth black lines depict the average model's 441 

response, alongside fitted values for the calibration data. Histograms display the probability 442 
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distributions for the indices of SSP126, SSP245, and SSP585 scenarios in 2050. The blue 443 

shaded area denotes calibration data ranging between the 5th and 95th percentiles. 444 

 445 

3.3 Projecting EF under different scenarios 446 

Our projections up to 2050, including for the SSP585, generally fall within the historical data 447 

range, indicating the reliability of our near-future projections based on our Dym-EF model. For 448 

historical periods, we found that the multi-model ensemble estimates of EFs in 2010 had exceeded 449 

the IPCC's default average value of 1% in most regions. Compared to the generalized IPCC Tier-1 450 

EF of 1%, spatially detailed EFs enable the identification of regional hotspots with significant N2O 451 

mitigation potential. Areas with higher EFs often correspond to higher nitrogen inputs, potentially 452 

leading to an underestimation of N2O emissions when using the uniform IPCC Tier-1 EF. 453 

Furthermore, in humid areas, EFs are consistent with or exceed the IPCC suggested average of 1.6% 454 

(IPCC default at humid regions) (Hergoualc'h et al., 2019),  and in tropical regions like southern Asia, 455 

eastern Asia, and Central America, EFs often surpass 2-2.5% (Figure 4). The relatively higher EF in 456 

humid and warm areas is attributable to the climate acceleration of microbial processes like 457 

nitrification and denitrification (Griffis et al., 2017). Higher soil moisture and temperature create 458 

conditions conducive to denitrifying microbes. Moreover, in humid regions where anaerobic 459 

conditions are more prevalent, denitrification becomes a dominant process and subsequently elevates 460 

EFs (Griffis et al., 2017; Rowlings et al., 2015; Veldkamp et al., 1998).   461 

 462 

Figure 4 Projected N2O emission factor (EF) across various subregions in 2030 (white area) and 463 

2050 (blue-shaded area). The spatial map indicates the median EF estimated by NMIP 464 

ensembles in 2010. The black dashed line in each panel represents the Tier-1 EF (1%), and 465 

the blue dashed line indicates the 2010 emission factors based on a multi-model median 466 

(extracted from the central map). INMS1-4 represents four nitrogen management scenarios 467 

(Table 1). Box boundaries show the 25th and 75th percentiles of EF estimates, and whiskers 468 

below and above the box indicate the estimate range driven by climate data from 37 GCMs. 469 

The median is indicated by the black line within each box. BRA, Brazil; CAM, Central 470 
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America; CAN, Canada; CAS, Central Asia; CHN, China; EQAF, Equatorial Africa; EU, 471 

Europe; KAJ, Korea and Japan; MIDE, Mideast; NAF, Northern Africa; NSA, Northern 472 

South America; OCE, Oceania; RUS, Russia; SAF, Southern Africa; SAS, South Asia; 473 

SEAS, Southeast Asia; SSA, Southwest South America; USA, The United States of 474 

America.  475 

The EFs under various scenarios over the future periods are projected to change significantly, 476 

compared with 2010. This is mainly attributed to the changes in alternative N regulation practices 477 

and future climatic scenarios (Figure 4 and S8). Detailed information about these different scenarios 478 

is provided in Table 1. Under the INMS scenarios 1-3 (i.e., Business-as-usual, low, and mediate 479 

ambition N regulation), the global average EFs by 2030 are projected to increase to 1.22-1.29% 480 

among different GCMs (relative increase of 0.5-8.0% from 2010 levels of 1.18-1.22%), 1.22-1.28% 481 

(relative increase of 0.03-6.3%), and 1.18-1.24% (relative increase of 0.01-2.5%), respectively, 482 

compared with 2010. By 2050, the EF is expected to increase to 1.27-1.34% (4.4%-11.4%), 1.24-483 

1.31% (2.8%-9.9%), and around 1.18-1.25% (0.01-3.2%). Under the INMS4 (high ambition N 484 

regulation) scenario, EF is projected to decrease to 1.15-1.21 (0-5%) by 2030, aligning with INMS3's 485 

projection by 2050 (Figure S9). The EF changes under INMS5-7 (Best-case, Best-case “plus”, and 486 

Bioenergy) would be similar to INMS4, yet slightly lower than INMS4 due to further reduction in N 487 

input. This raises the question here: why do high-ambition strategies with reduced N input only 488 

slightly decrease or sometimes even increase EFs? It is likely caused by the high sensitivity of EFs 489 

to climate (Griffis et al., 2017); as climate change intensifies (Figure S2-S3), the increases in EFs 490 

might offset the benefits of high-ambition strategies. The INMS1 and INMS2 scenarios are 491 

characterized by a lack of dedicated nitrogen management, which will not change Nitrogen Use 492 

Efficiency (NUE) and, with increased production, greater nitrogen loss, thus increasing EFs (Baral et 493 

al., 2017). The EF under INMS1 is slightly higher than INMS2 perhaps because more N input and 494 

higher temperature under SSP585 will further amplify the EF due to increased soil N mineralization 495 

and denitrification rates (Kanter et al., 2016; Revell et al., 2015). The moderate and high-ambition 496 

scenarios, aimed at minimizing N loss and increasing NUE, are projected to keep crop N surpluses 497 

within planetary boundaries until 2050 (Kanter et al., 2020b; Zhang et al., 2015), which potentially 498 

decreases EF. In addition, the high ambition scenarios (INMS4-7) also consider dietary shifts, like 499 

reduced meat consumption and waste (Geyik et al., 2023; Revell et al., 2015). These changes could 500 

lower the demand for N-intensive animal feed crops, reducing N use and consequently reducing N2O 501 

emissions and EFs (Figure 4 and Figure S8).  502 

Compared with the IPCC's default value (Hergoualc'h et al., 2019), our Dym-EF modeling 503 

characterizes EF variability over space and time by taking into account the effects of environmental 504 

factors, and various climate scenarios and ambition levels of N intervention over the coming decades. 505 

This improved methodology is crucial for making informed management decisions in mitigation 506 

strategies. Relying on a stationary EF fails to capture the various impacts of climate change, soil 507 

properties, and management practices. For example, if the EF increased from 1% to 1.1% due to 508 

climate warming, keeping EF unchanged could lead to a 10% underestimation of N2O emissions. The 509 

underestimation would be more pronounced when nitrogen inputs are increased. Our results showed 510 

that densely populated areas in developing countries typically exhibit large differences across the 511 

three ambition level scenarios, likely due to their high food demand leading to increased N inputs 512 

(Ramírez-Melgarejo et al., 2019; Springmann et al., 2018). For instance, in 2030, under the INMS1 513 

and INMS4 scenarios, we find the EFs could be approximately 1.75-1.86% and 1.45-1.5% in 514 
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Northern South America (NSA), 1.5-1.56% and 1.42-1.47% in Equatorial Africa (EQAF), 1.22-1.36% 515 

and 0.93-1.07% in China (CHN), and 2.11-2.24% and 1.93-2.07% in Southeast Asia (SEAS). The 516 

large EF difference between BAU and high ambition N regulation scenarios indicates a large potential 517 

in reducing N2O emission. These areas, especially in tropical regions (e.g., NSA, EQAF, and SEAS), 518 

are expected to see EF increases of around 0.17-0.28% under low ambition policies by 2050, which 519 

is equivalent to 12-17% of EF in 2010. Therefore, to meet the Goal 13 (climate action) of United 520 

Nations' Sustainable Development Goal (United Nation, 2015), intensified efforts are needed in such 521 

regions to reduce N2O emissions by improving NUE and reducing N loss (van Vuuren et al., 2015; 522 

Zhang et al., 2015). 523 

It is important to note that there is a trade-off between accessibility and accuracy in the EF 524 

estimation approaches such as the IPCC Tire-1 and our Dym-EF. The IPCC Tire-1 is designed to be 525 

generic and easily adopted without a need to provide any detailed local information, which is 526 

accessible for a wide range of applications. As for Dym-EF, although it provides more accurate EF 527 

projections and is easier to apply than process-based models, it still requires specific input data, 528 

limiting its scalability and accessibility. To enhance the accessibility of our model, we have used 529 

publicly available and commonly used datasets in global modeling, ensuring that input data is easily 530 

accessible to potential users. However, uncertainties remain due to potential variations in datasets. 531 

We suggest downscaling and bias-correcting the data to better match local information. Generally, 532 

balancing accuracy with ease of use is crucial to enhance broader applicability. 533 

3.4 Potential for N2O mitigation 534 

The spatial maps of EF changes provide quantitative insights for pinpointing hotspots requiring 535 

mitigation efforts (Figure 5). In low ambition scenarios (INMS1 to INMS2), we predict significant 536 

EF increases in regions such as Northeast and North China, the Midwest US, northern South America, 537 

northern Brazil, and parts of northern Africa, driven by the substantial increase in nitrogen (N) inputs 538 

from population growth and escalating food demands. Targeting reduction efforts in these high-539 

emission hotspots is more effective than solely focusing on the largest country emitters (West et al., 540 

2014). The moderate ambition scenario (INMS3) demonstrates a slight decrease in EF in southeastern 541 

China, RUS, part of SEAS, and the EU by 2030, with notable reductions in these areas by 2050. 542 

These are hotspots characterized by high N input and high EF at the current stage (Fig 4), but they 543 

are projected to have huge potential in EF reduction under moderate and high ambition N regulation 544 

scenarios (INMS4 to INMS7). However, slight increases are noted in regions like Vietnam, EQAF, 545 

and SEAS, even under high-ambition scenarios, attributed to increased food demands. The ‘best-case’ 546 

and ‘bioenergy’ scenarios (INMS5 to INMS7) illustrate that further reductions in EF can be achieved 547 

through reduced N input by High N use efficiency, adoption of low meat diets, and food waste 548 

reduction efforts (Kanter et al., 2020b). To meet the food gap and address N2O mitigation needs, 549 

various studies have explored potential optimal management practices (Gerber et al., 2016; Shang et 550 

al., 2024), while climate change potentially impacts the effectiveness of mitigations (Carlson et al., 551 

2016). Our study quantifies the potential of reducing global agricultural soil EF as one of nature-552 

based climate solutions, underscoring the need to consider EF changes under future climate and N 553 

regulation scenarios. It is important to clarify that higher EF reduction doesn’t necessarily yield higher 554 

N2O reduction and that lower EFs do not necessarily lead to lower N2O emissions, given that EF 555 

change direction may not consistently align with nitrogen input changes in some cases. The actual 556 

N2O emissions are the product of EF and the amount of anthropogenic nitrogen inputs. For instance, 557 

regions identified as hotspots for high EF (e.g., RUS and EQAF) in our study (Figure 4) may often 558 
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differ from the areas with the highest soil N2O emissions in the global N2O budget study (Tian et al., 559 

2024; Tian et al., 2019). 560 

 561 

Figure 5 The projected EF changes at global and regional scales. The maps illustrate the changes 562 

in EF in 2030 and 2050, respectively, compared to 2010 under INMS1 to INMS4.  563 

 564 

The temporal and spatially varying EFs are important in determining the effectiveness of 565 

mitigation efforts. We found the EFs were expected to increase under future climate change even 566 

without increasing N fertilizer input (Figure 6a). This is because the EFs are positively correlated 567 

with temperature and precipitation (Figure S8), which are projected to increase (Figure S2-S3), 568 

resulting in increased EFs. Although the temperature under SSP126 does not show a substantial rise, 569 

the increased precipitation under this scenario significantly amplifies the EFs. Consequently, the 570 

relationship between N input and EFs is asymmetric due to the impacts of climate change. This 571 

asymmetry leads to substantial EF increases when higher N input (INMS1-2), is combined with 572 

climate change effects (Figure 6b). Conversely, reductions in N input alone may not fully buffer the 573 

EF increase caused by warmer climates and changed precipitation patterns, especially in some 574 

climate-sensitive regions. Among the four high-ambition policy scenarios, our findings indicate that, 575 

despite INMS7 containing a best-case climate scenario (SSP126), EFs are not always projected to be 576 

the lowest among the ‘best-case’ climate scenarios by 2030 even with similar N input to current 577 

management? (Figure S1). This discrepancy may arise from varying temperature and precipitation 578 
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patterns (Figure 3), which could elevate EFs by 2030 (Figures S2-S3). However, by 2050, rising 579 

temperatures in INMS 5-6 could lead to higher EFs even in the ‘best-case’ climate scenarios (Figure 580 

6b). 581 

 582 
Figure 6 Global cropland and pasture EF changes under different scenarios. This figure displays 583 

smoothed lines reflecting changes in EF. a, the change in EF compared to the average EF 584 

during 1990-2010, excluding nitrogen fertilizer impacts under scenarios SSP126, SSP245, 585 

and SSP585. b, the change in EF compared to the average EF during 1990-2010 including 586 

nitrogen fertilizer effects under scenarios INMS1 to INMS7.  587 

Our study highlights the urgency to take relatively stringent N regulation practices as early as 588 

possible, as delays could exacerbate the challenges of mitigating N2O emissions due to climate-589 

induced increases in EFs. In addition, it is important to account for the impact of future climate 590 

changes on effective evaluations and to harness the potential for identifying easily achievable targets 591 

(e.g., prioritized mitigation goals, specific regions, and feasible practices) across the globe. More 592 

comprehensive strategies need to be considered, including cost-effective mitigation measures, which 593 

are essential to reduce greenhouse gas (GHG) emissions while ensuring the stability of food 594 

production (Gu et al., 2023; Peng and Guan, 2021; Ren et al., 2023). Furthermore, crop switching is 595 

proposed to be an effective strategy for sustainable agriculture (Rising and Devineni, 2020; Xie et al., 596 

2023). This approach holds the potential for reducing N2O emissions and enhancing crop productivity 597 

in the context of future climate change (Jägermeyr et al., 2021; Peng and Guan, 2021). However, the 598 

impact of crop switching on dietary diversity and nutritional intake remains a critical question 599 

(Carlson et al., 2016; West et al., 2014). Consequently, international food trade becomes crucial in 600 

striking a balance between maintaining food diversity and adapting to climate change (Janssens et al., 601 

2022; Janssens et al., 2020). Generally, collective action by different organizations is critical for us 602 

to achieve the climate mitigation goal in a race against time. 603 

3.5 Limitations and future framework 604 

Our study comprehensively explores N2O emission under different policy interventions and 605 

climate scenarios, identifying the direction towards achieving Sustainable Development Goals. 606 

However, we understand that there are several uncertainties in this study. Different process-based 607 

models have different structures and algorithms to represent non-linear N2O responses to key 608 

environmental drivers. Although the cross-model divergence can be minimized by using the model 609 

ensemble median estimates of EF as the learned variable, the uncertainties in projections derived from 610 

model inputs and structure still persist (Tian et al., 2024). Extensive measurements of soil N2O 611 

emissions could help improve the parameterization of individual NMIP2 models and better constrain 612 

their estimates of EF in various climate and soil conditions. The method of emergent constraint can 613 
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be effective in reducing uncertainties in process-based models (Wang et al., 2020b), as applied in 614 

studies on crop yield changes (Li et al., 2023), soil carbon (Varney et al., 2020), and land 615 

evapotranspiration based on field observed data (Lian et al., 2018). However, no such work is 616 

available for EF. 617 

The machine learning-based approaches have a common challenge in extrapolating, especially 618 

beyond the training dataset. In this study, to cover the range of potential future conditions, we trained 619 

our model on a large dataset spanning a wide range of time periods (1961-2020), covering the period 620 

with rapid changes in climate and human activities, such as enhanced anthropogenic N input in 621 

particular. However, the learning effort is still limited by the availability of input data and how 622 

process-based modeling has handled them. For example, some detailed information on nitrogen 623 

management practices, such as the seasonal application of nitrogen, the use of organic amendments, 624 

or slow-release forms of nitrogen, are either missing at the global level or over-simplified in the N2O 625 

modeling assessment. Incorporating a broader range of data and management practices will enhance 626 

the robustness of this hybrid model and make it more practical for future users who have more detailed 627 

information. 628 

For N fertilizer input, the EFs associated with manure deposition and application were not 629 

considered despite their significant role in N2O emissions (Charles et al., 2017; Walling and 630 

Vaneeckhaute, 2020). The changes in synthetic fertilizer and manure application rates vary 631 

substantially across different policy scenarios, influenced by dietary shifts, and changed NUE. 632 

Synthetic fertilizers are widely used in crop production, enhancing crop yield efficiently but 633 

increasing the risk of N pollution. Although changes in synthetic fertilizer composition (e.g., 634 

ammonium versus nitrate) might affect outcomes, this aspect was not explored in our study. Manure, 635 

while beneficial for soil health and providing a more sustainable N source, adds challenges in 636 

managing N2O emissions and N leaching. Selection between them should balance efficiency, 637 

environmental impact, and soil health considerations. Since data on N2O emissions induced by 638 

manure was not available for all the eight participant models in NMIP2, we did not include manure-639 

induced N2O emissions and the potential change in EFs for manure. Incorporating manure EFs into 640 

future studies could further optimize nitrogen inputs by balancing the trade-offs between synthetic 641 

fertilizers and manure. In addition, we mainly focus on annual EFs, derived from NMIP2 model 642 

ensembles that handle annual fertilizer input in various ways and assumptions without knowing how 643 

fertilizer application timings vary across the globe and over time. This may not fully capture the 644 

interactive effects of seasonal climate variations and nitrogen application on EFs.  645 

Considering crop-specific variations in using N and releasing N2O from soils (e.g., wheat, maize, 646 

and rice) could provide more nuanced guidance (Cui et al., 2021; Shang et al., 2024), an aspect not 647 

covered in our current study. Future work ought to explore how different policy ambition levels 648 

influence N2O emissions for different crops under future climate scenarios. This will offer targeted 649 

recommendations, helping to bridge these knowledge gaps and enhance our comprehension and 650 

management of N2O mitigation strategies. 651 

4. Conclusions 652 

In this study, we have developed a novel hybrid modeling framework that incorporates machine 653 

learning with process-based modeling to predict the non-linear dynamics of EF under various climate, 654 

soil, and management conditions across global agricultural lands. This approach provides new 655 

insights into global EF changes that can improve our understanding of N2O mitigation potential under 656 

different climate and policy scenarios. Our results provide a strong indication of a future increase in 657 
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N2O EF due to climate change, independent of N management. The increase of EFs when coupled 658 

with increased N input and climate change impacts is largely higher than the EF reductions through 659 

decreased N input. This asymmetry between nitrogen input and EFs poses additional challenges for 660 

N2O mitigation in the future, highlighting the urgency of nitrogen reductions as delayed actions could 661 

increase mitigation costs. Such information might not be fully captured by studies using country-662 

specific EFs, which are considered appropriate for "tier 2" approaches in national inventories. 663 

Furthermore, although the EFs are impacted by different environmental factors, optimizing N inputs 664 

to crop needs remains the most effective mitigation option. Our finding is a critical step towards 665 

achieving sustainable development goals, by improving the current static EF (IPCC tiers 1-2) 666 

approach with a more precise N2O emissions estimation under global change scenarios. Future efforts 667 

in enhancing measurement and data analysis with a uniform protocol would be helpful to reduce the 668 

EF estimation uncertainty from process-based modeling, and to improve the database used for 669 

dynamic EF learning and mitigation potential assessment under various management options. 670 

  671 
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