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A B S T R A C T

Karst groundwater is a critical freshwater resource for numerous regions worldwide. Monitoring and predicting 
karst spring discharge is essential for effective groundwater management and the preservation of karst ecosys
tems. However, the high heterogeneity and karstification pose significant challenges to physics-based models in 
providing robust predictions of karst spring discharge. In this study, an interpretable multi-step hybrid deep 
learning model called selective EEMD-TFT is proposed, which adaptively integrates temporal fusion transformers 
(TFT) with ensemble empirical mode decomposition (EEMD) for predicting karst spring discharge. The selective 
EEMD-TFT hybrid model leverages the strengths of both EEMD and TFT techniques to learn inherent patterns and 
temporal dynamics from nonlinear and nonstationary signals, eliminate redundant components, and emphasize 
useful characteristics of input variables, leading to the improvement of prediction performance and efficiency. It 
consists of two stages: in the first stage, the daily precipitation data is decomposed into multiple intrinsic mode 
functions using EEMD to extract valuable information from nonlinear and nonstationary signals. All decomposed 
components, temperature and categorical date features are then fed into the TFT model, which is an attention- 
based deep learning model that combines high-performance multi-horizon prediction and interpretable insights 
into temporal dynamics. The importance of input variables will be quantified and ranked. In the second stage, the 
decomposed precipitation components with high importance are selected to serve as the TFT model’s input 
features along with temperature and categorical date variables for the final prediction. Results indicate that the 
selective EEMD-TFT model outperforms other sequence-to-sequence deep learning models, such as LSTM and 
single TFT models, delivering reliable and robust prediction performance. Notably, it maintains more consistent 
prediction performance at longer forecast horizons compared to other sequence-to-sequence models, highlighting 
its capacity to learn complex patterns from the input data and efficiently extract valuable information for karst 
spring prediction. An interpretable analysis of the selective EEMD-TFT model is conducted to gain insights into 
relationships among various hydrological processes and analyze temporal patterns.

1. Introduction

Karst aquifers play a crucial role in serving freshwater to numerous 
regions worldwide, contributing approximately 25% of global ground
water resource and nearly 40% of the U.S. freshwater resource 
(Goldscheider et al., 2020). In comparison to other aquifer types, karst 
aquifers are known for their highly heterogeneous hydraulic properties 
and complex hydrological behaviors caused by the dissolution of soluble 

bedrocks and distinctive subsurface features including caves, sinkholes, 
and conduits (Hartmann et al., 2014). The interconnections of various 
porous spaces including micropores, fissures, fractures and conduits 
create complex networks of preferential flow pathways that are difficult 
to characterize, further increasing the heterogeneity and complexity of 
the karst system. Consequently, understanding and managing karst 
aquifers present distinct challenges (Bakalowicz, 2005).

The karst spring discharge data provides valuable information for 
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understanding hydrodynamics of karst aquifers and managing the 
freshwater resources in karst environments (Duran et al., 2020). Karst 
spring discharge can be affected by various factors, including climate 
variability, anthropogenic activities, the inherent heterogeneity of the 
karst system, and hierarchical permeability structures (Ghasemizadeh 
et al., 2012; Zhou and Zhang, 2023a). As a result, predicting karst spring 
discharge patterns requires specialized approaches and methodologies 
capable of addressing these complexities. A variety of physics-based 
hydrological models are developed to simulate the discharge values of 
karst springs (de Rooij et al., 2013; Duran et al., 2020; Fleury et al., 
2007). For example, de Rooij et al. (2013) provided a physics-based 
distributed model with a flexible spatial discretization to incorporate 
the complicated conduit networks and simulate flow in the karst system. 
Such a discrete-continuum model coupled flow between various do
mains including rock matrix, overland, conduit and channels for simu
lating flow dynamics within karst environments. Birk et al. (2006)
investigated how spring responses reflected geometric properties of the 
conduit system and proposed a process-based model coupling a pipe- 
network model with MODFLOW to simulate flow and transport in the 
karst systems. The physics-based models can estimate the physical dy
namics and offer valuable insights into hydrological processes within 
karst environments. However, these models often requires extensive 
input data, sophisticated mathematical tools and a detailed character
ization of internal structures, such as the geometry of the conduit system 
and the interaction between conduits and the fractured rock matrix, 
which are challenging to obtain and characterize for the karst system 
due to karstification and its tremendous heterogeneity (Sezen et al., 
2019). Thus, while physics-based models can potentially provide valu
able insights, their practical use in karst environments can be limited by 
these constraints. In addition to physics-based models, empirical 
models, such as traditional regression models and machine learning 
models, are widely used in hydrological studies as they exhibit strong 
data adaptability and establish direct mapping relationships between 
input features and the output as a “black box” without a detailed char
acterization of internal structures and physical processes (Jin et al., 
2024a). These qualities make data-driven models an alternative method 
to tackle complex hydrological behaviors in environments where 
comprehensive data and internal structures are difficult to obtain (Gao 
et al., 2020). Karst systems present unique challenges for spring 
discharge prediction. While spring discharge is influenced by rainfall, 
the complex hydrological systems within karst landscapes, character
ized by complex behaviors, multiple discharge sources, and intricate 
responses, often make traditional time series regression models insuffi
cient (Goldscheider et al., 2014; Hartmann et al., 2014; Zhou and Zhang, 
2023a). For example, spring discharge in the karst system is often 
nonlinearly related to precipitation due to complex flow paths, variable 
storage capacities, and threshold effects (Labat et al., 2000). A small 
increase in rainfall might lead to a disproportionately large increase in 
spring discharge. Rainfall and spring discharge in the karst system often 
exhibit nonstationarity due to seasonal variations, long-term climate 
trends, and changes in land use or karst system properties, leading to 
changes of their statistic properties over time.

In recent decades, machine learning and deep learning models have 
been extensively developed and employed for analyzing and predicting 
runoff in various hydrological systems, such as support vector machine 
(SVM) (Bray and Han, 2004; Feng et al., 2020) and artificial neural 
network (ANN) (An et al., 2020; Cui et al., 2022; Gao et al., 2020; Zhou 
et al., 2024; Zhou and Zhang, 2023b). In particular, various ANN ar
chitectures, including recurrent neural network (RNN) and its variants, 
were specifically designed for predicting time sequential data with high 
computational efficiency and accuracy, and had achieved good perfor
mance for hydrological models. For example, Zhang et al. (2021)
employed deep RNN models to predict daily runoff at Muskegon River 
and Pearl River with meteorological data and its principal component 
analysis (PCA) components as inputs. They concluded that deep RNN 
models with multiple meteorological input data obtained higher 

prediction accuracy compared to single meteorological data input. Zhou 
and Zhang (2022a) proposed hybrid deep learning models that com
bines a long short-term memory model (LSTM), a gated recurrent unit 
model (GRU) and a simple RNN model with an encoder-decoder archi
tecture for predicting runoff. The findings suggested that the deep 
learning models with an encoder-decoder architecture obtained superior 
prediction performance compared to those lacking such an architecture. 
In addition to RNN models, Transformer models proposed by Vaswani 
et al. (2017) have become widely adopted for predicting and analyzing 
sequential data because of its excellent ability to capture complex de
pendencies and patterns within data. Yin et al. (2022) proposed a runoff- 
rainfall model based on Transformer and the attention mechanism 
called RR-Former. It created direct connections between two arbitrary 
positions in time series using the attention mechanism and provided 
more flexibility than RNN models. Lim et al. (2021) introduced the 
Transformer-based Temporal Fusion Transformer model (TFT), which 
utilized the self-attention mechanism to capture the complex temporal 
dynamics of multi-horizon time sequences. This innovative TFT model 
demonstrated substantial performance improvement over other 
sequence-to-sequence models in established benchmarks. Compared to 
Local Interpretable Model-agnostic Explanations (LIME) and other 
Explainable AI (XAI) methods which do not account for the types and the 
order of input features, the TFT model can tackle multiple different input 
types in multi-horizon forecasting and offer interpretable insights into 
temporal dynamics by assessing the significance of each input variable 
in prediction outcomes. The TFT model has been successfully applied to 
multiple disciplines as a valuable tool for predicting and understanding 
the underlying patterns (Wu et al., 2022; Zhang et al., 2022). For 
example: Wu et al. (2022) employed the TFT model for wind speed 
forecasting and obtained satisfying performance. The model ranked the 
importance of multiple distinct meteorological data, while also offering 
an attention-based analysis of various forecast horizons.

Although deep learning models have shown impressive results in 
handling various sequence modeling tasks, the inherent strong nonlin
earity and nonstationarity in complex systems can significantly impact 
the accuracy and robustness of predictions (Liu et al., 2019). Multiple 
time–frequency analysis methods, such as empirical model decomposi
tion (EMD), ensemble empirical model decomposition (EEMD), and 
singular spectrum analysis (SSA) were employed to preprocess input 
data, reduce noises, facilitate the analysis of nonstationary signals, and 
enhance the simulation performance (Jin et al., 2024b; Nourani et al., 
2009; Wang et al., 2012). Wang et al. (2012) analyzed the applications 
of EMD and EEMD on time–frequency analyzing behaviors of nonlinear 
and nonstationary seismic signal. The comparison revealed that EEMD 
could better decompose the signal into multiple components without the 
mode mixing phenomenon occurred in EMD. Apaydin et al. (2021) in
tegrated SSA and ANN models for predicting streamflow and concluded 
that the SSA-ANN hybrid model improved streamflow prediction accu
racy by 24.11%. Zhou and Zhang (2022b) decomposed the precipitation 
data into multiple components using EEMD, which later served as the 
input of LSTM, convolutional neural network (CNN) and CNN-LSTM 
models to reconstruct the missing discharge data.

In the present study, we proposed an interpretable two-stage selec
tive EEMD-TFT hybrid model to predict multi-step ahead karst spring 
discharge. In the first stage, the nonlinear and nonstationary precipita
tion data is decomposed into multiple intrinsic model functions (IMFs) 
and a residual function using EEMD. The decomposed components, air 
temperature, and categorical variables including year, month, and day 
are served as the input of the TFT model, which examines and ranks the 
importance of input variables on karst spring discharge. In the second 
stage, the IMFs and residual function with high importance are selected 
to serve as the TFT model’s input features along with temperature and 
categorical variables to eliminate the redundant information, highlight 
the useful characteristics, improve the prediction performance and ef
ficiency of the model. The selective EEMD-TFT hybrid model presented 
in this study offers several unique contributions to the field of 
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hydrological modeling, particularly for karst systems. Firstly, it syner
gistically combines the strengths of EEMD in decomposing nonlinear 
and nonstationary signals with TFT’s capability to capture complex 
temporal dependencies for multi-step ahead karst spring forecasting and 
interpretability. This combination is particularly suited to the challenges 
posed by karst systems, where traditional methods often struggle with 
the inherent complexities and heterogeneities. Secondly, our two-stage 
approach incorporates an interpretable analysis to adaptively select 
the most relevant decomposed components, enhancing simulation effi
ciency and performance. This feature is valuable in karst landforms, 
where identifying the most relevant timescales and inputs can provide 
insights into the underlying hydrological processes. Furthermore, the 
newly proposed model demonstrates superior performance in multi-step 
ahead predictions for long forecast horizons, addressing a key challenge 
in hydrological forecasting. Lastly, the interpretability offered by this 
approach provides valuable insights into the relative importance of 
different timescales and input variables in karst spring discharge pre
diction, contributing to a better understanding of these complex 
systems.

2. Study area

To evaluate the prediction performance, the newly proposed model 
is applied for predicting multi-step ahead discharge values of the Barton 
Springs (USGS 08155500) in Austin, Central Texas (Fig. 1). The Barton 
Springs is a natural discharge point of the Edwards aquifer. The Barton 
Springs segment of the Edwards aquifer consists of highly karstified 
limestone and dolomite formations of Early Cretaceous age with 
extensively fractures, caves, and sinkholes. It supplies freshwater for 
municipal, industrial, commercial, recreation, agricultural and domestic 
uses in local communities, and supports the development of the econ
omy and population in surrounding communities (Scanlon et al., 2003). 
The Edwards aquifer comprises both confined and unconfined zones: the 
confined zone is overlain by the clay rich Del Rio formation, while the 
extensive unconfined zone directly connects to the surface and functions 
as the recharge zone (Mahler and Bourgeais, 2013). The Barton Springs 
monitoring station, operated by the U.S. Geological Survey (USGS), 
collects daily data on karst spring discharge and water quality. Situated 
within the unconfined area of the Edwards aquifer, it resides in a sub
tropical, humid climate zone with major rainstorms occurring in the 

spring and fall seasons. The local karst spring receives recharge through 
fractures and fissures in the streambed when surface water flows across 
the unconfined aquifer, storm runoff and infiltration from the surround 
upland areas (Hauwert, 2016). The spring discharge values may fluc
tuate quickly in response to rainfall events. Meteorological data is 
monitored by the Camp Mabry weather station (GHCND: 
USW00013958) managed by National Oceanic and Atmospheric 
Administration (NOAA). Precipitation is directly related to spring 
discharge and considered as an essential input variable. Temperature 
also plays an important role in the regional hydrological cycle and is 
closely linked to various hydrogeological processes. For example, tem
perature influences evapotranspiration and can be related to rainfall 
events, thereby affecting water infiltration, runoff patterns and spring 
discharge (Trenberth et al., 2015). Thus, both temperature and precip
itation are used as input variables, allowing our model to capture the 
complex hydrological interactions. Given its proximity to Barton Springs 
and its data coverage, the meteorological information collected at the 
Camp Mabry weather station is adopted to represent the local weather 
conditions of the studied area.

In this study, daily spring discharge, air temperature, and precipi
tation data from 11/27/2002 to 03/25/2023 with 7,424 data points are 
adopted as the training and testing datasets of the newly proposed model 
(see Fig. 2). The date is decomposed into three separate categorical 
features: “year”, “month”, and “day”. To associate categorical date 
features with chronological time, a relative time index is created to 
represent the chronological ordering of the data points and help the 
model understand the chronological progression of time, while the 
categorical date features can provide periodic information about seasons 
and yearly patterns.

3. Methods

3.1. Workflow of the selective EEMD-TFT model

In this study, an interpretable multi-step hybrid deep learning model 
that leverages the advantages of EEMD and TFT algorithms is developed 
for addressing the challenges of the karst system and forecasting spring 
discharge. Karst aquifers are characterized by highly heterogeneous 
flow paths, ranging from slow matrix flow to rapid conduit flow. The 
EEMD model decomposes nonstationary precipitation signals into 

Fig. 1. The locations of the Barton Springs monitoring station (USGS 08155500) and the Camp Mabry weather station (GHCND: USW00013958) at Austin, Texas.
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multiple intrinsic mode functions and effectively captures various tem
poral scales of rainfall patterns that may influence discharge differently. 
It allows the model to distinguish between rapid responses (potentially 
related to conduit flow) and slower, more gradual changes (possibly 
associated with matrix flow). Karst systems often exhibit nonlinear re
sponses and threshold behaviors due to the complex interplay of con
duits, fractures, and matrix porosity. The TFT model with its attention 
mechanism and variable selection networks can map complex and 
nonlinear relationships between various input variables and spring 
discharge across different time scales. The hybrid approach also lever
ages the interpretable mechanism of the TFT model to quantify the 
importance of different IMFs and select the most important IMFs. This 
selective and adaptive process can improve prediction accuracy by 
focusing on the most relevant components and provide valuable insights 
into the karst system’s behavior. The derived attention weight patterns 
can provide interpretable insights into the temporal dynamics of karst 
spring discharge, reveal the relative importance of different historical 
time steps for prediction, and help identify key time steps and temporal 
patterns. By integrating these methods and incorporating a selective 
process, the proposed hybrid model overcomes the limitations of indi
vidual methods and results in more robust predictions and deeper un
derstanding tailored to the complexities of the karst system.

As illustrated in Fig. 3, the selective EEMD-TFT hybrid deep learning 
model consists of several steps: data collection and preparation, 
decomposition of daily precipitation using EEMD, training and tuning of 
TFT, forecasting with TFT, interpretable analysis, selection of important 
decomposed components, and re-training and re-tuning of TFT. The 
detail processes of the selective EEMD-TFT hybrid model are described 
as follows. Step 1: The daily karst spring discharge, precipitation, and 
temperature data are collected from USGS and NOAA. Step 2: as the 
daily precipitation data exhibits strong nonstationary and nonlinear 
characteristics, the daily precipitation data is decomposed into several 
IMFs and a residual function using EEMD in order to better extract the 
inherent patterns and dynamics. Note that the daily temperature data is 
not decomposed because of its apparent seasonal patterns and periodic 

characteristics as shown in Fig. 2. Step 3: Temperature and all decom
posed components, including IMFs and R, are fed to TFT as known 
variables, while year, month and day are inputted to the TFT model as 
known categorical variables. Step 4: the TFT parameters, such as batch 
size, learning rate, number of hidden layers, number of hidden layer 

Fig. 2. Daily karst spring discharge, precipitation, and temperature from 11/27/2002 to 03/25/2023 measured at Barton Springs, Texas.

Fig. 3. Flowchart of the selective EEMD-TFT model.
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neurons and attention of head size, are tuned to obtain the optimal 
performance. Step 5: The model is then deployed to the testing samples 
and assessed by evaluation metrics. Step 6: An interpretable analysis of 
IMFs and R is conducted to quantify and rank the relative importance of 
individual input variables. The decomposed components are added as 
input variables for the subsequential step based on their importance, 
from highest to lowest. The selected high-importance decomposed 
components and temperature serve as input. Steps 4 & 5 are repeated 
until the optimal performance is achieved, determining the final com
bination of decomposed components. The model hyperparameters are 
tuned again to optimize the model based on the selected input variables 
for the final prediction. It is worthwhile noting that the number of 
selected decomposed components is determined through trial and error: 
multiple models with various decomposed components are simulated 
and compared, and the model with the best performance will be adopted 
to decide the number of decomposed components that should be 
included in the final model.

3.2. Ensemble empirical mode decomposition (EEMD)

Empirical model decomposition (EMD), introduced by Huang et al. 
(1998), is a time–frequency analysis method to decompose time series x 
(t) into a finite number of oscillatory modes from high to low frequencies 
through a sifting process. These oscillatory modes are referred to as 
intrinsic mode functions Ci(t) (IMFs) and a residual trend component R: 

x(t) =
∑n

i=1
Ci(t) + R (1) 

where n is the total number of IMFs after decomposition. Every IMF must 
meet two conditions: 1) IMF has the same number of extrema and zero 
crossings or differs at most by one; 2) IMF is symmetric with respect to 
the local zero mean, which means that the averages of the maxima and 
minima must be zero at any data point. After removing the effects of the 
noise and oscillatory behaviors, the residual component exhibits a 
monotonic trend or a curve with single extremum. Compared to wavelet 
transform methods that require a proper wavelet basis function, the 
EMD method is self-adaptive and automatically adapts to the data, 
making it particularly suitable for handling nonlinear and nonstationary 
time series and capturing the inherent patterns and dynamics (Huang 
et al., 1998; Wang et al., 2015). However, EMD may misrepresent 
characteristics of the original data caused by a potential mode-mixing 
problem, which can manifest in two ways: 1) a single IMF may 
comprise multiple components with widely disparate scales; 2) a signal 
of a specific scale may reside in various IMFs (Wang et al., 2012).

To improve the decomposition reliability, address the mode-mixing 
issue, and provide a more accurate representation of the original 
data’s characteristics, Wu and Huang (2009) introduced a white noise- 
assisted data-analysis technique known as the Ensemble Empirical 
Mode Decomposition (EEMD). By incorporating Gaussian white noises, 
EEMD creates a consistent reference background and eliminates the 
potential mode-mixing problem in EMD. It projects the original data 
with varying scales onto proper scales for decomposition and smooths 
out the exceptional events like pulse interferences (Wang et al., 2012).

The extraction of IMFs and R from the original data using EEMD 
involves the following steps: 1) the amplitude of the Gaussian white 
noise and the number of realizations are set; 2) a Gaussian white noise 
w1(t) is added to the investigated data x(t), creating noise-embedded 
data: x1(t) = x(t) + w1(t), where x1(t) is the white noise-added data; 
3) the local minima and maxima that define the lower envelope el(t) and 
the upper envelope eu(t) are labeled and connected by a cubic spline 
interpolation to create the envelope; 4) the average of the local minima 
and maxima is calculated: m1(t) = [el(t) +eu(t) ]/2, if the average m1(t) is 
close enough to zero, one can subtract it from x1(t): h1(t) =

x1(t) −m1(t). If h1(t) satisfies the two conditions of IMFs previously 
mentioned, h1(t) is considered an IMF C1(t). If not, x1(t) is replaced with 

h1(t) as a new time series data and the process is repeated until the 
stopping criteria are met; 5) after extracting the first IMF component 
C1(t), it is subtracted from x1(t) to compute the residual R1(t): R1(t) =

x1(t) −C1(t), which is then treated as a new time series for further 
decomposition into additional IMFs. This iterative decomposition is 
repeated until the residue Rn(t) only contains a monotonic function or a 
minimal number of local extremes, from which no further IMF can be 
derived; 6) The entire procedure is then repeated for N iterations, each 
with different Gaussian white noises added to the original data. The final 
decomposed components are the ensemble means of the corresponding 
IMFs and the residual components. The original time series x(t) is 
decomposed into m IMFs and a residue: x(t) =

∑m
i=1Ci(t) + R. Each in

stinct component represents a distinct oscillatory mode or frequency 
component in the original data series, facilitating the analysis of un
derlying patterns and characteristics. In this study, the daily precipita
tion data from 11/27/2002 to 03/25/2023 is decomposed into 13 IMFs 
and 1 residue function.

3.3. Temporal fusion transformer (TFT)

The TFT model is an attention-based deep learning model designed 
for tackling multi-horizon time series forecasting while offering inter
pretable insights into temporal dynamics (Lim et al., 2021). As shown in 
Fig. 4, it utilizes self-attention layers to capture long-term dependencies 
and incorporates recurrent layers to train and predict local patterns and 
temporal dependencies, which allows the model to focus on more rele
vant parts of the input sequences for the prediction and handle complex 
and diverse temporal structures. In addition, TFT employs the gating 
mechanism to regulate the information flow through the network and 
prioritize relevant features for improving time series forecasting per
formance. It contains five significant components including gating 
mechanisms, variable selection networks, static covariate encoders, 
temporal processing, and prediction intervals.

3.3.1. Gating mechanisms
Gated Residual Network (GRN) is adopted to provide adaptive depth 

and network complexity, facilitating nonlinear processing between 
input variables and the target under a wide range of scenarios. It offers 
efficient information flow with skip connections and gating layers. GRN 
blocks contain a primary input a and an optional context vector c, 
described as follows: 

GRNω(a, c) = LayerNorm(a + GLUω(η1) ) (2) 

η1 = W1,ωη2 + b1,ω (3) 

η2 = ELU
(
W2,ωa + W3,ωc + b2,ω

)
(4) 

where LayerNorm denotes the standard layer normalization; ω is an 
index of weight sharing; GLU is gated linear units, which is also the key 
element for the controlling function and network flexibility. With an 
input γ, GLUω(γ) can be calculated with the following equation: 
GLUω(γ) = σ

(
W4,ωγ + b4,ω

)
⊙

(
W5,ωγ + b5,ω

)
, where γ refers to the input, 

⊙ denotes the element-wise matrix multiplication product; ELU refers to 
the activation function of Exponential Linear Unit; η1, η2 refer to the 
intermediate layers: η1,η2 ∈ Rdmodel ; dmodel is the hidden state size; b(.,.) and 
W(.,.) are the biases and weights; σ is the sigmoid activation function.

3.3.2. Variable selection networks
Since the relationship between input variables and the target is 

typically unknown in advance, variable selection networks are designed 
to determine which input variables are more relevant and should be 
focused on at each time step. Entity embedding is adopted to represent 
categorical variables. Linear transformation is used to transform each 
input continuous variable into a vector with dimensions in subsequent 
layers for skip connections. It is worthwhile to note that the static, past, 
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and future inputs will have separate variable selections with distinct 
weights, marked by different colors in Fig. 4. The flattened vector of all 
past inputs at time step t can be calculate as: 

Ξt =
[
ξ(1)T

t , ⋯, ξ(mX)T

t

]T
(5) 

where ξ(j)
t is the transformed input of j-th variable at time step t. The 

flattened vector Ξt and an external context vector cs serve as inputs to a 
Softmax layer containing a GRN, which is used to determine variable 
selection weights in Eq. (6). Each ξ(j)

t is individually processed through a 
nonlinear layer by its own GRN at every time step, as shown in Eq. (7). 
Subsequently, the processed features ξ̃t are weighted according to their 
variable selection weights as outlined in Eq. (8). 

vXt = softmax(GRUvX (Ξt , cs) ) (6) 

ξ̃
(j)
t = GRNξ̃(j)

t

(
ξ(j)

t
)

(7) 

ξ̃t =
∑mχ

j=1
v(j)

χt ξ̃
(j)

t (8) 

where vXt is a vector of variable selection weights; v(j)
χt is the j-th element 

of vector vXt ; ̃ξ
(j)
t is the processed feature vector for variable j.

In this study, the static metadata consists of the categorical location 
identifier, labeled “Barton”. The past and future inputs include the same 
variables: categorical date features, relative time index, temperature, 
and decomposed precipitation components.

3.3.3. Static covariate encoders
In contrast to RNN models for time series forecasting, the TFT model 

can also extract and learn useful information from static input variables. 
To integrate the stable variables into the networks, it produces four 
different context vectors through different GRN encoders. The contexts 
vectors include temporal variable selection (cs), temporal features 
enrichment (ce), and temporal features local processing (cc, ch). This 
encoding process involves passing the static features through GRN en
coders, which transform the static information into a format that can be 
effectively used throughout the network. For instance, if ξ is considered 
as the output from the static variable selection network, the context for 
temporal features enrichment is defined using ce = GRNce (ξ). As 
depicted in Fig. 4, the context vectors are then integrated to various 
layers and locations in the model where static variables may play a 
significant role.

3.3.4. Interpretable multi-head attention
The TFT model learns short- and long-term temporal characteristics 

and patterns from observations and known time-varying inputs. The 
local processes are handled with a sequence-to-sequence layer. The long- 
term dependencies across different time steps are trained and learned 
through an interpretable transformer-based multi-head attention ar
chitecture with the self-attention mechanism. The self-attention mech
anism scales values V based on relationships between queries Q and keys 
K, and can be calculated in Eq. (9): 

Attention(Q, K, V) = A(Q, K)V (9) 

where A() is a normalization function. A(Q, K) is usually estimated by 

Fig. 4. The architecture of the TFT model. Static metadata, time-varying past inputs, and time-vary known future inputs serve as inputs of the TFT model. Variable 
selection network can select what features are more salient at each time step. Gated residual network (GRN) has the grating mechanism with gating layers and skip 
connections that can increase the efficiency of information flow and skip unnecessary parts of the networks if needed. It provides adaptive depth and network 
complexity for a wide range of scenarios.
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the scaled dot-product attention: A(Q, K) = softmax
(
QKT/

̅̅̅̅̅̅̅̅̅
dattn

√ )
, where 

dattn denotes the dimension of the attention layer. The initial values for 
the Q, K, and V matrices are derived from the output of the LSTM layers 
and the static enrichment process. These are learned parameters that are 
initialized randomly and then optimized during the training process. 
Multi-head attention is a technique adopted here to enhance the 
learning capacity of the attention mechanism by utilizing multiple 
heads, each focusing on different representation of subspace within the 
input data: 

MultiHead(Q, K, V) = [H1, ⋯, HmH ]WH (10) 

Hh = Attention
(

QW(h)

Q , KW(h)

K , VW(h)

V

)

where WH linearly combines outputs concatenated from all heads Hh; 
W(h)

Q , W(h)

K , W(h)

V are the head-specific weights for keys, queries, and 
values. Due to the distinct values in each head, attention weights alone 
may not be indicative of a particular feature’s importance. To address 
this issue, the multi-head attention is modified to share values across all 
heads and employ the additive aggregation of all heads. 

IMA(Q, K, V) = H̃WH (11) 

H̃ = Ã(Q, K)VWV (12) 

=

{
1

mH

∑mH

h=1
A

(
QW(h)

Q , KW(h)

k

)
}

VWV (13) 

=
1

mH

∑mH

h=1

Attention
(

QW(h)

Q , KW(h)

k , VWV

)
(14) 

Where IMA refers to interpretable multi-head attention; H̃ and Ã refer to 
the modified heads and normalization function, WV is the shared value 
weights across all heads; WH is employed for the final linear mapping; 
mH is the number of heads. Consequently, Ã(Q, K) efficiently enhances 
the representation capacity and enables interpretability studies through 
the analysis of attention weights.

3.3.5. Temporal fusion decoder
In the temporal fusion decoder, multiple layers are designed to learn 

temporal relevance in the dataset (see Fig. 4), including: 1) a sequence- 
to-sequence layer that handles for enhancing locality and extracting 
local patterns. By assigning ξ̃t−k:t to the encoder and ξ̃t+1:t+τmax into the 
decoder, a set of uniform temporal features is generated, serving as the 
input of the temporal fusion decoder itself; 2) a static enrichment layer 
that facilitates temporal features with static variables, which may have a 
notable influence in time series forecasting; 3) a temporal self-attention 
layer is employed after the static enrichment layer to maintain causal 
information flow through masking and learn long dependencies within 
the dataset; 4) a position-wise feed-forward layer using GRNs is imple
mented to nonlinearly process the outputs from the previous self- 
attention layer. A gated residual connection is also offered, which al
lows for skipping over the entire transformer block and providing a 
direct path to the sequence-to-sequence layer. This approach yields a 
simpler model when additional complexity is not necessary and provides 
an efficient and adaptable process of the input data.

In summary, the TFT model consists of several interconnected layers 
that process the input data sequentially: 1) Variable Selection Network 
uses GRNs to determine the importance of each input variable; 2) Static 
Covariate Encoders generate context vectors using GRNs, which are then 
used to condition the processing of temporal data; 3) Temporal Pro
cessing Layers use LSTMs to process past and future inputs separately 
and incorporate information with static enrichment layers to enhance 
the temporal features; 4) Temporal Fusion Decoder includes a temporal 

self-attention mechanism to capture long-term dependencies in the data 
and additional GRN layers to further process and refine the attention 
output. The output of each layer serves as input to subsequent layers, 
creating a flow of information through the network. Both GRN and the 
multi-head attention mechanism are important components of the TFT 
architecture and work in conjunction. The GRN is used in various parts 
of the network, such as the variable selection network and the static 
enrichment. Its output serves as input to the multi-head attention layers 
in the temporal fusion decoder. Specifically, the GRN processes input 
features and produces transformed representations, which are then used 
as the input for the multi-head attention mechanism. The multi-head 
attention operates on these GRN-processed inputs to capture complex 
temporal dependencies.

3.4. Model calibration and performance evaluation metrics

Root mean squared error (RMSE) and mean absolute error (MAE) are 
adopted to assess the prediction performance in the testing samples as 
evaluation metrics. They can be calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Qi − Q̂i)

√
√
√
√ (15) 

MAE =
1
N

∑N

i=1
|Qi − Q̂i| (16) 

where N refers to the size of output samples; Qi and Q̂i are the observed 
karst spring discharge and the predicted discharge values, respectively. 
RMSE quantifies how spread-out the prediction errors are. It emphasizes 
larger errors, as they contribute more significantly to the final RMSE 
value. On the other hand, MAE measures the mean of the absolute er
rors. This metric evaluates how closely the predictions align with the 
ground truth and treats all errors equally. Smaller RMSE and MAE values 
indicate better performance by the model, with predictions that are 
closer to the ground truth.

4. Results

4.1. The selection of decomposed components

The multi-step hybrid deep learning model in this analysis uses a 
maximum encoder length of 365 days for prediction and a forecast ho
rizon of 30 days. This means that for each prediction, the model con
siders up to 365 days of historical input variables to forecast Barton 
spring discharge for the next 30 days. The training dataset comprises 
daily spring discharge, temperature, and precipitation data collected 
from November 27, 2002, to February 23, 2023, which is used to train 
and fine-tune the model. The daily precipitation data at Barton Springs is 
decomposed into 13 IMFs from high to low frequencies and a residual 
function using EEMD (Fig. 5A). At first, all decomposed components, 
temperature and date serve as the input of the TFT model. An inter
pretable analysis off each input variable is then conducted using TFT to 
quantify and rank the importance of all IMFs and a residual function on 
the predicted karst spring discharge, as shown in Fig. 5B. The compo
nents with high importance values are selected to feed the TFT model 
again, while the redundant information and noisy components are 
abandoned, enabling the TFT model to focus more on the valuable in
formation and learn the data’s intrinsic characteristics. From the most to 
the least important components, we run the TFT model multiple times 
and compare the results of evaluation performance. The performance of 
variable models with different numbers of decomposed components is 
presented in Fig. 6: from the smallest to the greatest number on the x- 
axis, 1 means that only the most important decomposed component is 
selected while 14 means that all the decomposed components are 
selected. The smallest RMSE and MAE values are observed when the 
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most significant ten decomposed components are selected, including 
IMF6, IMF8, IMF12, IMF7, IMF10, IMF1, IMF13, IMF11, IMF4, and 
IMF3. When only a few decomposed components are selected, the TFT 
model has less satisfying performance due to the lack of necessary in
formation. As additional decomposed components are included, the 
prediction performance improves because of the incorporation of valu
able information, leading to reduced RMSE and MAE values. The 
optimal prediction performance is achieved when the ten most impor
tant decomposed components are selected with RMSE and MAE values 
of 0.0255 m3/s and 0.0224 m3/s. However, the prediction performance 
tends to decline as more decomposed components are added, likely 
caused by the introduction of redundant information and unnecessary 
noises. In the following sections, the selective EEMD-TFT model will 
adopt the top ten decomposed components for the optimal prediction 
performance.

4.2. The influence of the forecast horizon

To comprehensively assess the model performance, we extensively 
compare the prediction performance between the selective EEMD-TFT 
hybrid model and three sequence-to-sequence deep learning models 
for multi-step ahead predictions in karst spring discharge. The models 
compared are: 1) a multi-step ahead LSTM model with an encoder- 
decoder architecture (Zhou and Zhang, 2022a); 2) a standard TFT 

model that uses raw precipitation and temperature as input variables 
without EEMD preprocessing; 3) an EEMD-TFT model that uses all 
decomposed components of daily precipitation data without the selec
tion process. All models are trained and fine-tuned on the same datasets 
with a same input step of 365 days.

As illustrated in Fig. 7, the prediction performance is evaluated with 
RMSE and MAE across various forecast horizons. The forecast horizon 
refers to the length of time into the future for which the models generate 
predictions. For all four models, an increase of the forecast horizon 
corresponds to a decline of prediction performance. As the forecast 
horizon extends, the computational complexity and prediction difficulty 
significantly increase. The sequence-to-sequence models need to learn 
and predict more complex patterns and characteristics in the dataset and 
are more susceptible to exposure bias, leading to reduced performance.

Among the four models, the LSTM model with the encoder-decoder 
architecture has the least satisfactory prediction performance, as indi
cated by the highest RMSE and MAE values. Its performance is highly 
sensitive to the forecast horizon: its RMSE and MAE values increase from 
0.0324 m3/s and 0.0248 m3/s, respectively, when the forecast horizon is 
5 days, to 0.0938 m3/s and 0.0849 m3/s at a 30-day forecast horizon. 
The standard TFT model has better performance than the LSTM model 
with lower RMSE and MAE values. With the help of its attention 
mechanism and variable selection networks, the TFT model can capture 
complex and nonlinear relationships that might be challenging for 
traditional deep learning approaches and dynamically select the most 
relevant features for each time step that allows the model to focus on the 
most important information. It is less sensitive to the values of the 
forecast horizon with its RMSE and MAE ranging from 0.0159 m3/s and 
0.0101 m3/s to 0.0690 m3/s and 0.0657 m3/s, respectively. The EEMD- 
TFT model and the selective EEMD-TFT models obtain more robust re
sults and are less affected by the forecast horizon. It demonstrates that 
that the EEMD component can help mitigate random noises and allow 
the subsequent TFT models to better capture intrinsic patterns at mul
tiple temporal scales that might be overlooked by conventional deep 
learning models, which substantially improve prediction performance. 
Compared to the EEMD-TFT model, the selective EEMD-TFT model in
corporates a feature selection step and gains more accurate and robust 
predictions on karst spring discharge. It has the lowest RMSE and MAE 
values, ranging from 0.0144 m3/s and 0.0131 m3/s to 0.0307 m3/s and 
0.0250 m3/s over various forecast horizons, respectively. By making use 
of the interpretability of the TFT model and focusing on the most rele
vant components, the selective EEMD-TFT model has following advan
tages over other deep learning approaches: 1) it reduces noise and 
redundant information, enhancing the signal-to-noise ratio in the input 

Fig. 5. Precipitation IMFs and residue decomposed by EEMD (A) and their importance on karst spring discharge according to the TFT model (B).

Fig. 6. The prediction performance of the selective EEMD-TFT hybrid model 
with various numbers of selected decomposed components as input. On the x- 
axis, the numbers range from smallest to largest, where 1 indicates that only the 
most important decomposed component is selected, and 14 signifies that all 
IMFs and a residue are included.
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data and allowing the model to capture more robust and meaningful 
relationships between spring discharge and input variables; 2) it avoids 
potential overfitting by eliminating less relevant inputs, and thus im
proves generalization. As different IMFs may correspond to various 
hydrological processes operating at different time scales, such as rapid 
flow through conduits and slow flow through the matrix, this selective 
approach is particularly beneficial for karst spring discharge prediction, 
given the intricate nature of the karst landform. By identifying and 
focusing on the most important IMFs, the model can better capture the 
dominant component influencing spring discharge in karst systems.

Overall, the selective EEMD-TFT model outperforms other three 
sequence-to-sequence models and has obtained more accurate and 
robust prediction performance. It is less sensitive to the forecast horizon 
compared to other sequence-to-sequence models and demonstrates a 
stronger ability to learn intricate patterns from the training dataset and 
efficiently extract useful information for prediction.

4.3. Interpretable analysis

An interpretable analysis of the selective EEMD-TFT model is con
ducted to assess variable importance, provide insights into the re
lationships among various hydrological processes, and analyze temporal 
patterns. To reveals which temporal scales of rainfall patterns and other 

input variables are most influential in predicting discharge, the model 
quantifies the importance of different input variables, including 
decomposed precipitation components and other variables. As shown in 
Fig. 8A, IMF3 with high frequency and IMF13 with low frequency are 
the most important decomposed components and contribute greatly to 
the karst spring prediction. This suggests that the model extracts more 
information from the decomposed components with certain frequencies. 
The short-term fluctuations represented by IMF3 and long-term trends 
represented by IMF13 play crucial roles in the karst system’s behavior. 
Moreover, “Year” and “Month” play important roles in the prediction of 
karst spring discharge, while the contribution of “Day” is relatively 
insignificant. The general trend of attention weight patterns learned 
from raw training data is depicted in Fig. 8B. This approach sheds light 
on the length of time steps necessary for an intervention to have an 
impact and identifies the key historical time steps that the model de
pends on for its prediction. In this case, the greatest attention weights 
were observed about 330–360 steps prior to prediction steps. The 
observation is consistent with the previous analysis regarding the 
importance of “Year”, indicating that the model places more emphasis 
on annual patterns when making predictions about karst spring 
discharge.

Fig. 7. The comparison between LSTM, TFT, EEMD-TFT and selective EEMD-TFT at various forecast horizons. Two evaluation matrices are adopted: RMSE and MAE.

Fig. 8. Interpretable analysis of the selective EEMD-TFT model: (A) the overall importance of input variables consisting of the encoder and decoder variables’ 
importance; (B) the attention weight patterns.
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5. Conclusions

In this study, an interpretable two-stage selective EEMD-TFT hybrid 
deep learning model is proposed for predicting multi-step spring 
discharge. The novel approach incorporates the advantages of EEMD 
and TFT techniques and provides an improved multi-step ahead pre
diction of karst spring discharge. The selective EEMD-TFT model mainly 
includes two stages: in the first stage, the daily precipitation data is 
decomposed into multiple intricate components using EEMD, which 
extracts the patterns and characteristics from nonlinear and nonsta
tionary precipitation data. All decomposed components, daily temper
ature and date will be fed to TFT as input features for predicting karst 
spring discharge. The model then quantifies and ranks the importance of 
each input variable on kart spring discharge. In the second stage, the 
most important ten decomposed components are selected from all IMFs 
and R based on their importance. These components, along with tem
perature and date, are inputted to the TFT model again for predicting 
karst spring discharge. The selection process emphasizes key features, 
eliminates redundant signals, and thus improves prediction performance 
and efficiency. While the selective EEMD-TFT model is developed and 
tested using data from the Barton Springs karst system, its underlying 
principles and structure suggest potential for broader applications in 
hydrology and beyond. For example, the proposed model could be 
applicable to other karst systems which share common characteristics of 
high heterogeneity, nonlinear responses, and complex flow paths. 
Beyond karst systems, the proposed hybrid model can be applied in 
other hydrological systems characterized by complex dynamics and 
multiple influencing factors. For instance, glacial watersheds, which 
also exhibit nonlinear responses and are influenced by multiple vari
ables such as temperature, precipitation, solar radiation, could poten
tially benefit from the proposed approach. The primary conclusions are 
summarized as follows: 

1. A comparative analysis is conducted on the prediction performance 
of various models with various numbers decomposed components as 
input (see Fig. 6). It is observed that the model demonstrated less 
satisfying performance with a limited number of decomposed com
ponents because of the lack of necessary information. As more 
decomposed components are incorporated, the prediction perfor
mance improves, evidenced by decreased RMSE and MAE values. 
The optimal performance is obtained when the ten most important 
decomposed components are selected, resulting in RMSE and MAE 
values of 0.0255 m3/s and 0.0224 m3/s respectively. However, the 
further addition of decomposed components causes a decline in the 
model’s prediction performance, likely due to the redundant data 
and unnecessary noises.

2. The selective EEMD-TFT deep learning model is compared and 
benchmarked against other multivariate muti-step deep learning 
models, including a LSTM model with an encoder-decoder archi
tecture, a TFT model, and an EEMD-TFT model without the selection 
process. For all four sequence-to-sequence models, an increase in 
forecast horizons is related to a reduction in prediction performance. 
This is due to an increase in computational complexity and learning 
difficulty as the forecast horizon increases. These models need to 
learn and predict more intricate patterns in the dataset and are more 
susceptible to exposure bias, thereby affecting performance 
negatively.

3. Compared to the other sequence-to-sequence models, the selective 
EEMD-TFT model demonstrates more accurate and robust prediction 
performance. It is less sensitive to the forecast horizon than other 
models because of its ability to effectively learn intrinsic patterns and 
extract valuable information from the training data for prediction.
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