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Karst groundwater is a critical freshwater resource for numerous regions worldwide. Monitoring and predicting
karst spring discharge is essential for effective groundwater management and the preservation of karst ecosys-
tems. However, the high heterogeneity and karstification pose significant challenges to physics-based models in

Keywords: ) providing robust predictions of karst spring discharge. In this study, an interpretable multi-step hybrid deep

iemp?ral Fusion Transformers (TFT) learning model called selective EEMD-TFT is proposed, which adaptively integrates temporal fusion transformers
ran: rmer: . P ses P . . .
anstormers o (TFT) with ensemble empirical mode decomposition (EEMD) for predicting karst spring discharge. The selective

Ensemble Empirical Mode Decomposition . . .

(EEMD) EEMD-TFT hybrid model leverages the strengths of both EEMD and TFT techniques to learn inherent patterns and

temporal dynamics from nonlinear and nonstationary signals, eliminate redundant components, and emphasize
useful characteristics of input variables, leading to the improvement of prediction performance and efficiency. It
consists of two stages: in the first stage, the daily precipitation data is decomposed into multiple intrinsic mode
functions using EEMD to extract valuable information from nonlinear and nonstationary signals. All decomposed
components, temperature and categorical date features are then fed into the TFT model, which is an attention-
based deep learning model that combines high-performance multi-horizon prediction and interpretable insights
into temporal dynamics. The importance of input variables will be quantified and ranked. In the second stage, the
decomposed precipitation components with high importance are selected to serve as the TFT model’s input
features along with temperature and categorical date variables for the final prediction. Results indicate that the
selective EEMD-TFT model outperforms other sequence-to-sequence deep learning models, such as LSTM and
single TFT models, delivering reliable and robust prediction performance. Notably, it maintains more consistent
prediction performance at longer forecast horizons compared to other sequence-to-sequence models, highlighting
its capacity to learn complex patterns from the input data and efficiently extract valuable information for karst
spring prediction. An interpretable analysis of the selective EEMD-TFT model is conducted to gain insights into
relationships among various hydrological processes and analyze temporal patterns.

Deep learning
Rainfall-runoff relationship
Karst Hydrology

1. Introduction

Karst aquifers play a crucial role in serving freshwater to numerous
regions worldwide, contributing approximately 25% of global ground-
water resource and nearly 40% of the U.S. freshwater resource
(Goldscheider et al., 2020). In comparison to other aquifer types, karst
aquifers are known for their highly heterogeneous hydraulic properties
and complex hydrological behaviors caused by the dissolution of soluble
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bedrocks and distinctive subsurface features including caves, sinkholes,
and conduits (Hartmann et al., 2014). The interconnections of various
porous spaces including micropores, fissures, fractures and conduits
create complex networks of preferential flow pathways that are difficult
to characterize, further increasing the heterogeneity and complexity of
the karst system. Consequently, understanding and managing karst
aquifers present distinct challenges (Bakalowicz, 2005).

The karst spring discharge data provides valuable information for
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understanding hydrodynamics of karst aquifers and managing the
freshwater resources in karst environments (Duran et al., 2020). Karst
spring discharge can be affected by various factors, including climate
variability, anthropogenic activities, the inherent heterogeneity of the
karst system, and hierarchical permeability structures (Ghasemizadeh
etal., 2012; Zhou and Zhang, 2023a). As a result, predicting karst spring
discharge patterns requires specialized approaches and methodologies
capable of addressing these complexities. A variety of physics-based
hydrological models are developed to simulate the discharge values of
karst springs (de Rooij et al., 2013; Duran et al., 2020; Fleury et al.,
2007). For example, de Rooij et al. (2013) provided a physics-based
distributed model with a flexible spatial discretization to incorporate
the complicated conduit networks and simulate flow in the karst system.
Such a discrete-continuum model coupled flow between various do-
mains including rock matrix, overland, conduit and channels for simu-
lating flow dynamics within karst environments. Birk et al. (2006)
investigated how spring responses reflected geometric properties of the
conduit system and proposed a process-based model coupling a pipe-
network model with MODFLOW to simulate flow and transport in the
karst systems. The physics-based models can estimate the physical dy-
namics and offer valuable insights into hydrological processes within
karst environments. However, these models often requires extensive
input data, sophisticated mathematical tools and a detailed character-
ization of internal structures, such as the geometry of the conduit system
and the interaction between conduits and the fractured rock matrix,
which are challenging to obtain and characterize for the karst system
due to karstification and its tremendous heterogeneity (Sezen et al.,
2019). Thus, while physics-based models can potentially provide valu-
able insights, their practical use in karst environments can be limited by
these constraints. In addition to physics-based models, empirical
models, such as traditional regression models and machine learning
models, are widely used in hydrological studies as they exhibit strong
data adaptability and establish direct mapping relationships between
input features and the output as a “black box” without a detailed char-
acterization of internal structures and physical processes (Jin et al.,
2024a). These qualities make data-driven models an alternative method
to tackle complex hydrological behaviors in environments where
comprehensive data and internal structures are difficult to obtain (Gao
et al.,, 2020). Karst systems present unique challenges for spring
discharge prediction. While spring discharge is influenced by rainfall,
the complex hydrological systems within karst landscapes, character-
ized by complex behaviors, multiple discharge sources, and intricate
responses, often make traditional time series regression models insuffi-
cient (Goldscheider et al., 2014; Hartmann et al., 2014; Zhou and Zhang,
2023a). For example, spring discharge in the karst system is often
nonlinearly related to precipitation due to complex flow paths, variable
storage capacities, and threshold effects (Labat et al., 2000). A small
increase in rainfall might lead to a disproportionately large increase in
spring discharge. Rainfall and spring discharge in the karst system often
exhibit nonstationarity due to seasonal variations, long-term climate
trends, and changes in land use or karst system properties, leading to
changes of their statistic properties over time.

In recent decades, machine learning and deep learning models have
been extensively developed and employed for analyzing and predicting
runoff in various hydrological systems, such as support vector machine
(SVM) (Bray and Han, 2004; Feng et al., 2020) and artificial neural
network (ANN) (An et al., 2020; Cui et al., 2022; Gao et al., 2020; Zhou
et al., 2024; Zhou and Zhang, 2023b). In particular, various ANN ar-
chitectures, including recurrent neural network (RNN) and its variants,
were specifically designed for predicting time sequential data with high
computational efficiency and accuracy, and had achieved good perfor-
mance for hydrological models. For example, Zhang et al. (2021)
employed deep RNN models to predict daily runoff at Muskegon River
and Pearl River with meteorological data and its principal component
analysis (PCA) components as inputs. They concluded that deep RNN
models with multiple meteorological input data obtained higher

Journal of Hydrology 645 (2024) 132235

prediction accuracy compared to single meteorological data input. Zhou
and Zhang (2022a) proposed hybrid deep learning models that com-
bines a long short-term memory model (LSTM), a gated recurrent unit
model (GRU) and a simple RNN model with an encoder-decoder archi-
tecture for predicting runoff. The findings suggested that the deep
learning models with an encoder-decoder architecture obtained superior
prediction performance compared to those lacking such an architecture.
In addition to RNN models, Transformer models proposed by Vaswani
et al. (2017) have become widely adopted for predicting and analyzing
sequential data because of its excellent ability to capture complex de-
pendencies and patterns within data. Yin et al. (2022) proposed a runoff-
rainfall model based on Transformer and the attention mechanism
called RR-Former. It created direct connections between two arbitrary
positions in time series using the attention mechanism and provided
more flexibility than RNN models. Lim et al. (2021) introduced the
Transformer-based Temporal Fusion Transformer model (TFT), which
utilized the self-attention mechanism to capture the complex temporal
dynamics of multi-horizon time sequences. This innovative TFT model
demonstrated substantial performance improvement over other
sequence-to-sequence models in established benchmarks. Compared to
Local Interpretable Model-agnostic Explanations (LIME) and other
Explainable AI (XAI) methods which do not account for the types and the
order of input features, the TFT model can tackle multiple different input
types in multi-horizon forecasting and offer interpretable insights into
temporal dynamics by assessing the significance of each input variable
in prediction outcomes. The TFT model has been successfully applied to
multiple disciplines as a valuable tool for predicting and understanding
the underlying patterns (Wu et al., 2022; Zhang et al., 2022). For
example: Wu et al. (2022) employed the TFT model for wind speed
forecasting and obtained satisfying performance. The model ranked the
importance of multiple distinct meteorological data, while also offering
an attention-based analysis of various forecast horizons.

Although deep learning models have shown impressive results in
handling various sequence modeling tasks, the inherent strong nonlin-
earity and nonstationarity in complex systems can significantly impact
the accuracy and robustness of predictions (Liu et al., 2019). Multiple
time-frequency analysis methods, such as empirical model decomposi-
tion (EMD), ensemble empirical model decomposition (EEMD), and
singular spectrum analysis (SSA) were employed to preprocess input
data, reduce noises, facilitate the analysis of nonstationary signals, and
enhance the simulation performance (Jin et al., 2024b; Nourani et al.,
2009; Wang et al., 2012). Wang et al. (2012) analyzed the applications
of EMD and EEMD on time-frequency analyzing behaviors of nonlinear
and nonstationary seismic signal. The comparison revealed that EEMD
could better decompose the signal into multiple components without the
mode mixing phenomenon occurred in EMD. Apaydin et al. (2021) in-
tegrated SSA and ANN models for predicting streamflow and concluded
that the SSA-ANN hybrid model improved streamflow prediction accu-
racy by 24.11%. Zhou and Zhang (2022b) decomposed the precipitation
data into multiple components using EEMD, which later served as the
input of LSTM, convolutional neural network (CNN) and CNN-LSTM
models to reconstruct the missing discharge data.

In the present study, we proposed an interpretable two-stage selec-
tive EEMD-TFT hybrid model to predict multi-step ahead karst spring
discharge. In the first stage, the nonlinear and nonstationary precipita-
tion data is decomposed into multiple intrinsic model functions (IMFs)
and a residual function using EEMD. The decomposed components, air
temperature, and categorical variables including year, month, and day
are served as the input of the TFT model, which examines and ranks the
importance of input variables on karst spring discharge. In the second
stage, the IMFs and residual function with high importance are selected
to serve as the TFT model’s input features along with temperature and
categorical variables to eliminate the redundant information, highlight
the useful characteristics, improve the prediction performance and ef-
ficiency of the model. The selective EEMD-TFT hybrid model presented
in this study offers several unique contributions to the field of
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hydrological modeling, particularly for karst systems. Firstly, it syner-
gistically combines the strengths of EEMD in decomposing nonlinear
and nonstationary signals with TFT’s capability to capture complex
temporal dependencies for multi-step ahead karst spring forecasting and
interpretability. This combination is particularly suited to the challenges
posed by karst systems, where traditional methods often struggle with
the inherent complexities and heterogeneities. Secondly, our two-stage
approach incorporates an interpretable analysis to adaptively select
the most relevant decomposed components, enhancing simulation effi-
ciency and performance. This feature is valuable in karst landforms,
where identifying the most relevant timescales and inputs can provide
insights into the underlying hydrological processes. Furthermore, the
newly proposed model demonstrates superior performance in multi-step
ahead predictions for long forecast horizons, addressing a key challenge
in hydrological forecasting. Lastly, the interpretability offered by this
approach provides valuable insights into the relative importance of
different timescales and input variables in karst spring discharge pre-
diction, contributing to a better understanding of these complex
systems.

2. Study area

To evaluate the prediction performance, the newly proposed model
is applied for predicting multi-step ahead discharge values of the Barton
Springs (USGS 08155500) in Austin, Central Texas (Fig. 1). The Barton
Springs is a natural discharge point of the Edwards aquifer. The Barton
Springs segment of the Edwards aquifer consists of highly karstified
limestone and dolomite formations of Early Cretaceous age with
extensively fractures, caves, and sinkholes. It supplies freshwater for
municipal, industrial, commercial, recreation, agricultural and domestic
uses in local communities, and supports the development of the econ-
omy and population in surrounding communities (Scanlon et al., 2003).
The Edwards aquifer comprises both confined and unconfined zones: the
confined zone is overlain by the clay rich Del Rio formation, while the
extensive unconfined zone directly connects to the surface and functions
as the recharge zone (Mahler and Bourgeais, 2013). The Barton Springs
monitoring station, operated by the U.S. Geological Survey (USGS),
collects daily data on karst spring discharge and water quality. Situated
within the unconfined area of the Edwards aquifer, it resides in a sub-
tropical, humid climate zone with major rainstorms occurring in the
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spring and fall seasons. The local karst spring receives recharge through
fractures and fissures in the streambed when surface water flows across
the unconfined aquifer, storm runoff and infiltration from the surround
upland areas (Hauwert, 2016). The spring discharge values may fluc-
tuate quickly in response to rainfall events. Meteorological data is
monitored by the Camp Mabry weather station (GHCND:
USWO00013958) managed by National Oceanic and Atmospheric
Administration (NOAA). Precipitation is directly related to spring
discharge and considered as an essential input variable. Temperature
also plays an important role in the regional hydrological cycle and is
closely linked to various hydrogeological processes. For example, tem-
perature influences evapotranspiration and can be related to rainfall
events, thereby affecting water infiltration, runoff patterns and spring
discharge (Trenberth et al., 2015). Thus, both temperature and precip-
itation are used as input variables, allowing our model to capture the
complex hydrological interactions. Given its proximity to Barton Springs
and its data coverage, the meteorological information collected at the
Camp Mabry weather station is adopted to represent the local weather
conditions of the studied area.

In this study, daily spring discharge, air temperature, and precipi-
tation data from 11/27/2002 to 03/25/2023 with 7,424 data points are
adopted as the training and testing datasets of the newly proposed model
(see Fig. 2). The date is decomposed into three separate categorical
features: “year”, “month”, and “day”. To associate categorical date
features with chronological time, a relative time index is created to
represent the chronological ordering of the data points and help the
model understand the chronological progression of time, while the
categorical date features can provide periodic information about seasons
and yearly patterns.

3. Methods
3.1. Workflow of the selective EEMD-TFT model

In this study, an interpretable multi-step hybrid deep learning model
that leverages the advantages of EEMD and TFT algorithms is developed
for addressing the challenges of the karst system and forecasting spring
discharge. Karst aquifers are characterized by highly heterogeneous
flow paths, ranging from slow matrix flow to rapid conduit flow. The
EEMD model decomposes nonstationary precipitation signals into

Fig. 1. The locations of the Barton Springs monitoring station (USGS 08155500) and the Camp Mabry weather station (GHCND: USW00013958) at Austin, Texas.
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Fig. 2. Daily karst spring discharge, precipitation, and temperature from 11/27/2002 to 03/25/2023 measured at Barton Springs, Texas.

multiple intrinsic mode functions and effectively captures various tem-
poral scales of rainfall patterns that may influence discharge differently.
It allows the model to distinguish between rapid responses (potentially
related to conduit flow) and slower, more gradual changes (possibly
associated with matrix flow). Karst systems often exhibit nonlinear re-
sponses and threshold behaviors due to the complex interplay of con-
duits, fractures, and matrix porosity. The TFT model with its attention
mechanism and variable selection networks can map complex and
nonlinear relationships between various input variables and spring
discharge across different time scales. The hybrid approach also lever-
ages the interpretable mechanism of the TFT model to quantify the
importance of different IMFs and select the most important IMFs. This
selective and adaptive process can improve prediction accuracy by
focusing on the most relevant components and provide valuable insights
into the karst system’s behavior. The derived attention weight patterns
can provide interpretable insights into the temporal dynamics of karst
spring discharge, reveal the relative importance of different historical
time steps for prediction, and help identify key time steps and temporal
patterns. By integrating these methods and incorporating a selective
process, the proposed hybrid model overcomes the limitations of indi-
vidual methods and results in more robust predictions and deeper un-
derstanding tailored to the complexities of the karst system.

As illustrated in Fig. 3, the selective EEMD-TFT hybrid deep learning
model consists of several steps: data collection and preparation,
decomposition of daily precipitation using EEMD, training and tuning of
TFT, forecasting with TFT, interpretable analysis, selection of important
decomposed components, and re-training and re-tuning of TFT. The
detail processes of the selective EEMD-TFT hybrid model are described
as follows. Step 1: The daily karst spring discharge, precipitation, and
temperature data are collected from USGS and NOAA. Step 2: as the
daily precipitation data exhibits strong nonstationary and nonlinear
characteristics, the daily precipitation data is decomposed into several
IMFs and a residual function using EEMD in order to better extract the
inherent patterns and dynamics. Note that the daily temperature data is
not decomposed because of its apparent seasonal patterns and periodic
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Fig. 3. Flowchart of the selective EEMD-TFT model.
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characteristics as shown in Fig. 2. Step 3: Temperature and all decom-
posed components, including IMFs and R, are fed to TFT as known
variables, while year, month and day are inputted to the TFT model as
known categorical variables. Step 4: the TFT parameters, such as batch
size, learning rate, number of hidden layers, number of hidden layer
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neurons and attention of head size, are tuned to obtain the optimal
performance. Step 5: The model is then deployed to the testing samples
and assessed by evaluation metrics. Step 6: An interpretable analysis of
IMFs and R is conducted to quantify and rank the relative importance of
individual input variables. The decomposed components are added as
input variables for the subsequential step based on their importance,
from highest to lowest. The selected high-importance decomposed
components and temperature serve as input. Steps 4 & 5 are repeated
until the optimal performance is achieved, determining the final com-
bination of decomposed components. The model hyperparameters are
tuned again to optimize the model based on the selected input variables
for the final prediction. It is worthwhile noting that the number of
selected decomposed components is determined through trial and error:
multiple models with various decomposed components are simulated
and compared, and the model with the best performance will be adopted
to decide the number of decomposed components that should be
included in the final model.

3.2. Ensemble empirical mode decomposition (EEMD)

Empirical model decomposition (EMD), introduced by Huang et al.
(1998), is a time—frequency analysis method to decompose time series x
(t) into a finite number of oscillatory modes from high to low frequencies
through a sifting process. These oscillatory modes are referred to as
intrinsic mode functions Ci(t) (IMFs) and a residual trend component R:

x(t)= Y C(t) +R M

where n is the total number of IMFs after decomposition. Every IMF must
meet two conditions: 1) IMF has the same number of extrema and zero
crossings or differs at most by one; 2) IMF is symmetric with respect to
the local zero mean, which means that the averages of the maxima and
minima must be zero at any data point. After removing the effects of the
noise and oscillatory behaviors, the residual component exhibits a
monotonic trend or a curve with single extremum. Compared to wavelet
transform methods that require a proper wavelet basis function, the
EMD method is self-adaptive and automatically adapts to the data,
making it particularly suitable for handling nonlinear and nonstationary
time series and capturing the inherent patterns and dynamics (Huang
et al,, 1998; Wang et al., 2015). However, EMD may misrepresent
characteristics of the original data caused by a potential mode-mixing
problem, which can manifest in two ways: 1) a single IMF may
comprise multiple components with widely disparate scales; 2) a signal
of a specific scale may reside in various IMFs (Wang et al., 2012).

To improve the decomposition reliability, address the mode-mixing
issue, and provide a more accurate representation of the original
data’s characteristics, Wu and Huang (2009) introduced a white noise-
assisted data-analysis technique known as the Ensemble Empirical
Mode Decomposition (EEMD). By incorporating Gaussian white noises,
EEMD creates a consistent reference background and eliminates the
potential mode-mixing problem in EMD. It projects the original data
with varying scales onto proper scales for decomposition and smooths
out the exceptional events like pulse interferences (Wang et al., 2012).

The extraction of IMFs and R from the original data using EEMD
involves the following steps: 1) the amplitude of the Gaussian white
noise and the number of realizations are set; 2) a Gaussian white noise
wi(t) is added to the investigated data x(t), creating noise-embedded
data: x;(t) = x(t) + wi(t), where x;(t) is the white noise-added data;
3) the local minima and maxima that define the lower envelope ¢;(t) and
the upper envelope e,(t) are labeled and connected by a cubic spline
interpolation to create the envelope; 4) the average of the local minima
and maxima is calculated: m; (t) = [e;(t) +eu(t)]/2, if the average m;(¢) is
close enough to zero, one can subtract it from x;(t): hi(t) =
x1(t) —my (t). If hyi(t) satisfies the two conditions of IMFs previously
mentioned, h;(t) is considered an IMF C; (). If not, x; (t) is replaced with
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h; (t) as a new time series data and the process is repeated until the
stopping criteria are met; 5) after extracting the first IMF component
C1(0), it is subtracted from x;(t) to compute the residual Ry(t): R (t) =
x1(t) —C1(t), which is then treated as a new time series for further
decomposition into additional IMFs. This iterative decomposition is
repeated until the residue R,(t) only contains a monotonic function or a
minimal number of local extremes, from which no further IMF can be
derived; 6) The entire procedure is then repeated for N iterations, each
with different Gaussian white noises added to the original data. The final
decomposed components are the ensemble means of the corresponding
IMFs and the residual components. The original time series x(t) is
decomposed into m IMFs and a residue: x(t) = >, Ci(t) + R. Each in-
stinct component represents a distinct oscillatory mode or frequency
component in the original data series, facilitating the analysis of un-
derlying patterns and characteristics. In this study, the daily precipita-
tion data from 11,/27,/2002 to 03/25/2023 is decomposed into 13 IMFs
and 1 residue function.

3.3. Temporal fusion transformer (TFT)

The TFT model is an attention-based deep learning model designed
for tackling multi-horizon time series forecasting while offering inter-
pretable insights into temporal dynamics (Lim et al., 2021). As shown in
Fig. 4, it utilizes self-attention layers to capture long-term dependencies
and incorporates recurrent layers to train and predict local patterns and
temporal dependencies, which allows the model to focus on more rele-
vant parts of the input sequences for the prediction and handle complex
and diverse temporal structures. In addition, TFT employs the gating
mechanism to regulate the information flow through the network and
prioritize relevant features for improving time series forecasting per-
formance. It contains five significant components including gating
mechanisms, variable selection networks, static covariate encoders,
temporal processing, and prediction intervals.

3.3.1. Gating mechanisms

Gated Residual Network (GRN) is adopted to provide adaptive depth
and network complexity, facilitating nonlinear processing between
input variables and the target under a wide range of scenarios. It offers
efficient information flow with skip connections and gating layers. GRN
blocks contain a primary input a and an optional context vector c,
described as follows:

GRN,(a,c) = LayerNorm(a+ GLU,(n;) ) @
m= Wl,zurlz + bl.w (3)
1, = ELU(Ws,a+ W3¢ +bay) (O]

where LayerNorm denotes the standard layer normalization; ® is an
index of weight sharing; GLU is gated linear units, which is also the key
element for the controlling function and network flexibility. With an
input y, GLU,(y) can be calculated with the following equation:
GLU,(y) =06(Wawy +baw) © (Wswy + bs,), where y refers to the input,
® denotes the element-wise matrix multiplication product; ELU refers to
the activation function of Exponential Linear Unit; 5, 12 refer to the
intermediate layers: 1,1, € Rmoaes g, +.1is the hidden state size; b¢,yand
W) are the biases and weights; ¢ is the sigmoid activation function.

3.3.2. Variable selection networks

Since the relationship between input variables and the target is
typically unknown in advance, variable selection networks are designed
to determine which input variables are more relevant and should be
focused on at each time step. Entity embedding is adopted to represent
categorical variables. Linear transformation is used to transform each
input continuous variable into a vector with dimensions in subsequent
layers for skip connections. It is worthwhile to note that the static, past,
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complexity for a wide range of scenarios.

and future inputs will have separate variable selections with distinct
weights, marked by different colors in Fig. 4. The flattened vector of all
past inputs at time step t can be calculate as:

T
B = [6, g™ | ®)

where &?) is the transformed input of j-th variable at time step t. The
flattened vector E; and an external context vector ¢, serve as inputs to a
Softmax layer containing a GRN, which is used to determine variable

selection weights in Eq. (6). Each §fj> is individually processed through a
nonlinear layer by its own GRN at every time step, as shown in Eq. (7).
Subsequently, the processed features &, are weighted according to their
variable selection weights as outlined in Eq. (8).

Vxe = softmax(GRU, (&, ¢;) ) ©

& =GRN (&) @

G=>owE ®
=

where vy, is a vector of variable selection weights; v)({t) is the j-th element

of vector vyx; Eﬁ” is the processed feature vector for variable j.

In this study, the static metadata consists of the categorical location
identifier, labeled “Barton”. The past and future inputs include the same
variables: categorical date features, relative time index, temperature,
and decomposed precipitation components.

3.3.3. Static covariate encoders

In contrast to RNN models for time series forecasting, the TFT model
can also extract and learn useful information from static input variables.
To integrate the stable variables into the networks, it produces four
different context vectors through different GRN encoders. The contexts
vectors include temporal variable selection (cs), temporal features
enrichment (c.), and temporal features local processing (c., cy). This
encoding process involves passing the static features through GRN en-
coders, which transform the static information into a format that can be
effectively used throughout the network. For instance, if £ is considered
as the output from the static variable selection network, the context for
temporal features enrichment is defined using c. = GRN(&). As
depicted in Fig. 4, the context vectors are then integrated to various
layers and locations in the model where static variables may play a
significant role.

3.3.4. Interpretable multi-head attention

The TFT model learns short- and long-term temporal characteristics
and patterns from observations and known time-varying inputs. The
local processes are handled with a sequence-to-sequence layer. The long-
term dependencies across different time steps are trained and learned
through an interpretable transformer-based multi-head attention ar-
chitecture with the self-attention mechanism. The self-attention mech-
anism scales values V based on relationships between queries Q and keys
K, and can be calculated in Eq. (9):

Attention(Q,K, V) = A(Q,K)V €)]

where AQ) is a normalization function. A(Q,K) is usually estimated by
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the scaled dot-product attention: A(Q,K) = softmax(QKT/ @), where
dam denotes the dimension of the attention layer. The initial values for
the Q, K, and V matrices are derived from the output of the LSTM layers
and the static enrichment process. These are learned parameters that are
initialized randomly and then optimized during the training process.
Multi-head attention is a technique adopted here to enhance the
learning capacity of the attention mechanism by utilizing multiple
heads, each focusing on different representation of subspace within the
input data:

MultiHead(Q,K, V) = [Hy, -+, Hp, |Wy (10)
H,, = Attention (ngl) s KW}?), VWV’” )

where Wy linearly combines outputs concatenated from all heads Hp;
ng>, WI@, ng) are the head-specific weights for keys, queries, and
values. Due to the distinct values in each head, attention weights alone
may not be indicative of a particular feature’s importance. To address
this issue, the multi-head attention is modified to share values across all
heads and employ the additive aggregation of all heads.

IMA(Q,K, V) = HWjy an
H=A(QK)VWy 12)
= iHjA(QW“‘) KWW) VW, (13)
My 1= e’ ¢ !
1y Attention QWS KW, vw ) a4
My 3=

Where IMA refers to interpretable multi-head attention; H and A refer to
the modified heads and normalization function, Wy is the shared value
weights across all heads; Wy is employed for the final linear mapping;

my is the number of heads. Consequently, A(Q,K) efficiently enhances
the representation capacity and enables interpretability studies through
the analysis of attention weights.

3.3.5. Temporal fusion decoder

In the temporal fusion decoder, multiple layers are designed to learn
temporal relevance in the dataset (see Fig. 4), including: 1) a sequence-
to-sequence layer that handles for enhancing locality and extracting

local patterns. By assigning Et,k;t to the encoder and Ewl:m.m into the
decoder, a set of uniform temporal features is generated, serving as the
input of the temporal fusion decoder itself; 2) a static enrichment layer
that facilitates temporal features with static variables, which may have a
notable influence in time series forecasting; 3) a temporal self-attention
layer is employed after the static enrichment layer to maintain causal
information flow through masking and learn long dependencies within
the dataset; 4) a position-wise feed-forward layer using GRNs is imple-
mented to nonlinearly process the outputs from the previous self-
attention layer. A gated residual connection is also offered, which al-
lows for skipping over the entire transformer block and providing a
direct path to the sequence-to-sequence layer. This approach yields a
simpler model when additional complexity is not necessary and provides
an efficient and adaptable process of the input data.

In summary, the TFT model consists of several interconnected layers
that process the input data sequentially: 1) Variable Selection Network
uses GRNs to determine the importance of each input variable; 2) Static
Covariate Encoders generate context vectors using GRNs, which are then
used to condition the processing of temporal data; 3) Temporal Pro-
cessing Layers use LSTMs to process past and future inputs separately
and incorporate information with static enrichment layers to enhance
the temporal features; 4) Temporal Fusion Decoder includes a temporal

Journal of Hydrology 645 (2024) 132235

self-attention mechanism to capture long-term dependencies in the data
and additional GRN layers to further process and refine the attention
output. The output of each layer serves as input to subsequent layers,
creating a flow of information through the network. Both GRN and the
multi-head attention mechanism are important components of the TFT
architecture and work in conjunction. The GRN is used in various parts
of the network, such as the variable selection network and the static
enrichment. Its output serves as input to the multi-head attention layers
in the temporal fusion decoder. Specifically, the GRN processes input
features and produces transformed representations, which are then used
as the input for the multi-head attention mechanism. The multi-head
attention operates on these GRN-processed inputs to capture complex
temporal dependencies.

3.4. Model calibration and performance evaluation metrics

Root mean squared error (RMSE) and mean absolute error (MAE) are
adopted to assess the prediction performance in the testing samples as
evaluation metrics. They can be calculated as follows:

N
RMSE = | = Y~ (Qi— Q) (15)
i=1
1 & ~
MAE =23 _1Q: - Qi (16)

]
-

i

where N refers to the size of output samples; Q; and ai are the observed
karst spring discharge and the predicted discharge values, respectively.
RMSE quantifies how spread-out the prediction errors are. It emphasizes
larger errors, as they contribute more significantly to the final RMSE
value. On the other hand, MAE measures the mean of the absolute er-
rors. This metric evaluates how closely the predictions align with the
ground truth and treats all errors equally. Smaller RMSE and MAE values
indicate better performance by the model, with predictions that are
closer to the ground truth.

4. Results
4.1. The selection of decomposed components

The multi-step hybrid deep learning model in this analysis uses a
maximum encoder length of 365 days for prediction and a forecast ho-
rizon of 30 days. This means that for each prediction, the model con-
siders up to 365 days of historical input variables to forecast Barton
spring discharge for the next 30 days. The training dataset comprises
daily spring discharge, temperature, and precipitation data collected
from November 27, 2002, to February 23, 2023, which is used to train
and fine-tune the model. The daily precipitation data at Barton Springs is
decomposed into 13 IMFs from high to low frequencies and a residual
function using EEMD (Fig. 5A). At first, all decomposed components,
temperature and date serve as the input of the TFT model. An inter-
pretable analysis off each input variable is then conducted using TFT to
quantify and rank the importance of all IMFs and a residual function on
the predicted karst spring discharge, as shown in Fig. 5B. The compo-
nents with high importance values are selected to feed the TFT model
again, while the redundant information and noisy components are
abandoned, enabling the TFT model to focus more on the valuable in-
formation and learn the data’s intrinsic characteristics. From the most to
the least important components, we run the TFT model multiple times
and compare the results of evaluation performance. The performance of
variable models with different numbers of decomposed components is
presented in Fig. 6: from the smallest to the greatest number on the x-
axis, 1 means that only the most important decomposed component is
selected while 14 means that all the decomposed components are
selected. The smallest RMSE and MAE values are observed when the
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Fig. 6. The prediction performance of the selective EEMD-TFT hybrid model
with various numbers of selected decomposed components as input. On the x-
axis, the numbers range from smallest to largest, where 1 indicates that only the
most important decomposed component is selected, and 14 signifies that all
IMFs and a residue are included.

most significant ten decomposed components are selected, including
IMF6, IMF8, IMF12, IMF7, IMF10, IMF1, IMF13, IMF11, IMF4, and
IMF3. When only a few decomposed components are selected, the TFT
model has less satisfying performance due to the lack of necessary in-
formation. As additional decomposed components are included, the
prediction performance improves because of the incorporation of valu-
able information, leading to reduced RMSE and MAE values. The
optimal prediction performance is achieved when the ten most impor-
tant decomposed components are selected with RMSE and MAE values
of 0.0255 m>/s and 0.0224 m>/s. However, the prediction performance
tends to decline as more decomposed components are added, likely
caused by the introduction of redundant information and unnecessary
noises. In the following sections, the selective EEMD-TFT model will
adopt the top ten decomposed components for the optimal prediction
performance.

4.2. The influence of the forecast horizon

To comprehensively assess the model performance, we extensively
compare the prediction performance between the selective EEMD-TFT
hybrid model and three sequence-to-sequence deep learning models
for multi-step ahead predictions in karst spring discharge. The models
compared are: 1) a multi-step ahead LSTM model with an encoder-
decoder architecture (Zhou and Zhang, 2022a); 2) a standard TFT

model that uses raw precipitation and temperature as input variables
without EEMD preprocessing; 3) an EEMD-TFT model that uses all
decomposed components of daily precipitation data without the selec-
tion process. All models are trained and fine-tuned on the same datasets
with a same input step of 365 days.

As illustrated in Fig. 7, the prediction performance is evaluated with
RMSE and MAE across various forecast horizons. The forecast horizon
refers to the length of time into the future for which the models generate
predictions. For all four models, an increase of the forecast horizon
corresponds to a decline of prediction performance. As the forecast
horizon extends, the computational complexity and prediction difficulty
significantly increase. The sequence-to-sequence models need to learn
and predict more complex patterns and characteristics in the dataset and
are more susceptible to exposure bias, leading to reduced performance.

Among the four models, the LSTM model with the encoder-decoder
architecture has the least satisfactory prediction performance, as indi-
cated by the highest RMSE and MAE values. Its performance is highly
sensitive to the forecast horizon: its RMSE and MAE values increase from
0.0324 m%/s and 0.0248 m®/s, respectively, when the forecast horizon is
5 days, to 0.0938 m>/s and 0.0849 m®/s at a 30-day forecast horizon.
The standard TFT model has better performance than the LSTM model
with lower RMSE and MAE values. With the help of its attention
mechanism and variable selection networks, the TFT model can capture
complex and nonlinear relationships that might be challenging for
traditional deep learning approaches and dynamically select the most
relevant features for each time step that allows the model to focus on the
most important information. It is less sensitive to the values of the
forecast horizon with its RMSE and MAE ranging from 0.0159 m%/s and
0.0101 m%/s to 0.0690 m>/s and 0.0657 m®/s, respectively. The EEMD-
TFT model and the selective EEMD-TFT models obtain more robust re-
sults and are less affected by the forecast horizon. It demonstrates that
that the EEMD component can help mitigate random noises and allow
the subsequent TFT models to better capture intrinsic patterns at mul-
tiple temporal scales that might be overlooked by conventional deep
learning models, which substantially improve prediction performance.
Compared to the EEMD-TFT model, the selective EEMD-TFT model in-
corporates a feature selection step and gains more accurate and robust
predictions on karst spring discharge. It has the lowest RMSE and MAE
values, ranging from 0.0144 m®/s and 0.0131 m®/s to 0.0307 m>/s and
0.0250 m>/s over various forecast horizons, respectively. By making use
of the interpretability of the TFT model and focusing on the most rele-
vant components, the selective EEMD-TFT model has following advan-
tages over other deep learning approaches: 1) it reduces noise and
redundant information, enhancing the signal-to-noise ratio in the input
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data and allowing the model to capture more robust and meaningful
relationships between spring discharge and input variables; 2) it avoids
potential overfitting by eliminating less relevant inputs, and thus im-
proves generalization. As different IMFs may correspond to various
hydrological processes operating at different time scales, such as rapid
flow through conduits and slow flow through the matrix, this selective
approach is particularly beneficial for karst spring discharge prediction,
given the intricate nature of the karst landform. By identifying and
focusing on the most important IMFs, the model can better capture the
dominant component influencing spring discharge in karst systems.

Overall, the selective EEMD-TFT model outperforms other three
sequence-to-sequence models and has obtained more accurate and
robust prediction performance. It is less sensitive to the forecast horizon
compared to other sequence-to-sequence models and demonstrates a
stronger ability to learn intricate patterns from the training dataset and
efficiently extract useful information for prediction.

4.3. Interpretable analysis

An interpretable analysis of the selective EEMD-TFT model is con-
ducted to assess variable importance, provide insights into the re-
lationships among various hydrological processes, and analyze temporal
patterns. To reveals which temporal scales of rainfall patterns and other

input variables are most influential in predicting discharge, the model
quantifies the importance of different input variables, including
decomposed precipitation components and other variables. As shown in
Fig. 8A, IMF3 with high frequency and IMF13 with low frequency are
the most important decomposed components and contribute greatly to
the karst spring prediction. This suggests that the model extracts more
information from the decomposed components with certain frequencies.
The short-term fluctuations represented by IMF3 and long-term trends
represented by IMF13 play crucial roles in the karst system’s behavior.
Moreover, “Year” and “Month” play important roles in the prediction of
karst spring discharge, while the contribution of “Day” is relatively
insignificant. The general trend of attention weight patterns learned
from raw training data is depicted in Fig. 8B. This approach sheds light
on the length of time steps necessary for an intervention to have an
impact and identifies the key historical time steps that the model de-
pends on for its prediction. In this case, the greatest attention weights
were observed about 330-360 steps prior to prediction steps. The
observation is consistent with the previous analysis regarding the
importance of “Year”, indicating that the model places more emphasis
on annual patterns when making predictions about karst spring
discharge.
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Fig. 8. Interpretable analysis of the selective EEMD-TFT model: (A) the overall importance of input variables consisting of the encoder and decoder variables’

importance; (B) the attention weight patterns.
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5. Conclusions

In this study, an interpretable two-stage selective EEMD-TFT hybrid
deep learning model is proposed for predicting multi-step spring
discharge. The novel approach incorporates the advantages of EEMD
and TFT techniques and provides an improved multi-step ahead pre-
diction of karst spring discharge. The selective EEMD-TFT model mainly
includes two stages: in the first stage, the daily precipitation data is
decomposed into multiple intricate components using EEMD, which
extracts the patterns and characteristics from nonlinear and nonsta-
tionary precipitation data. All decomposed components, daily temper-
ature and date will be fed to TFT as input features for predicting karst
spring discharge. The model then quantifies and ranks the importance of
each input variable on kart spring discharge. In the second stage, the
most important ten decomposed components are selected from all IMFs
and R based on their importance. These components, along with tem-
perature and date, are inputted to the TFT model again for predicting
karst spring discharge. The selection process emphasizes key features,
eliminates redundant signals, and thus improves prediction performance
and efficiency. While the selective EEMD-TFT model is developed and
tested using data from the Barton Springs karst system, its underlying
principles and structure suggest potential for broader applications in
hydrology and beyond. For example, the proposed model could be
applicable to other karst systems which share common characteristics of
high heterogeneity, nonlinear responses, and complex flow paths.
Beyond karst systems, the proposed hybrid model can be applied in
other hydrological systems characterized by complex dynamics and
multiple influencing factors. For instance, glacial watersheds, which
also exhibit nonlinear responses and are influenced by multiple vari-
ables such as temperature, precipitation, solar radiation, could poten-
tially benefit from the proposed approach. The primary conclusions are
summarized as follows:

1. A comparative analysis is conducted on the prediction performance
of various models with various numbers decomposed components as
input (see Fig. 6). It is observed that the model demonstrated less
satisfying performance with a limited number of decomposed com-
ponents because of the lack of necessary information. As more
decomposed components are incorporated, the prediction perfor-
mance improves, evidenced by decreased RMSE and MAE values.
The optimal performance is obtained when the ten most important
decomposed components are selected, resulting in RMSE and MAE
values of 0.0255 m®/s and 0.0224 m>/s respectively. However, the
further addition of decomposed components causes a decline in the
model’s prediction performance, likely due to the redundant data
and unnecessary noises.

2. The selective EEMD-TFT deep learning model is compared and
benchmarked against other multivariate muti-step deep learning
models, including a LSTM model with an encoder-decoder archi-
tecture, a TFT model, and an EEMD-TFT model without the selection
process. For all four sequence-to-sequence models, an increase in
forecast horizons is related to a reduction in prediction performance.
This is due to an increase in computational complexity and learning
difficulty as the forecast horizon increases. These models need to
learn and predict more intricate patterns in the dataset and are more
susceptible to exposure bias, thereby affecting performance
negatively.

3. Compared to the other sequence-to-sequence models, the selective
EEMD-TFT model demonstrates more accurate and robust prediction
performance. It is less sensitive to the forecast horizon than other
models because of its ability to effectively learn intrinsic patterns and
extract valuable information from the training data for prediction.
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