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ABSTRACT

We compute moments of L-functions associated to the polynomial family of Artin–Schreier covers over �q, 
where q is a power of a prime p > 2, when the size of the 昀椀nite 昀椀eld is 昀椀xed and the genus of the family goes 
to in昀椀nity. More speci昀椀cally, we compute the kth moment for a large range of values of k, depending on the 
sizes of p and q. We also compute the second moment in absolute value of the polynomial family, obtaining an 
exact formula with a lower order term, and con昀椀rming the unitary symmetry type of the family.

1 . I N T R O D U CT I O N
In this paper, we are interested in evaluating moments of L-functions associated to Artin–Schreier 
covers of ℙ1. Computing moments in families of L-functions has a long history. For example, the 
moments of the Riemann zeta-function �(s) were introduced by Hardy and Li琀琀lewood [25], who 
obtained asymptotic formulas for the second moment. 吀栀e fourth moment was studied in [24, 26]. 
吀栀ere has been a wealth of literature on moments in various other families of L-functions; for a (non-
exhaustive) list, see for example [13, 42, 43, 47].

Here, we focus on the moments of L-functions of Artin–Schreier curves. 吀栀ese form an interesting 
family with a rich arithmetic structure. 吀栀eir zeta functions are expressed in terms of additive char-
acters of �p, not in terms of multiplicative characters (as in the case of hyperelliptic curves or cyclic ℓ-covers, for example). 吀栀e terms corresponding to a 昀椀xed additive character can be expressed as expo-
nential sums. 吀栀e extra arithmetic structure can be used to re昀椀ne the Weil bound on Artin–Schreier 
curves [38].

Statistics of zeros of Artin–Schreier L-functions have been extensively studied. When the size of the 
昀椀nite 昀椀eld goes to in昀椀nity, one can use deep equidistribution results of Katz [27], building on work of 
Katz–Sarnak [30], to show that the local statistics are given by the corresponding statistics of eigenval-
ues of random matrices in certain ensembles, depending on the speci昀椀c family under consideration. 
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When considering Artin–Schreier curves, the p-rank introduces a strati昀椀cation of the moduli space of 
covers of genus g [36]. For example, p-rank 0 corresponds to the family of polynomial Artin–Schreier 
curves, while, when (p − 1) divides the genus, the maximal p-rank corresponds to the family of ordinary 
Artin–Schreier curves. Using the Katz–Sarnak results, one can show that in the large 昀椀nite 昀椀eld limit, 
the local statistics in the polynomial family follow the local statistics of the unitary group of random 
matrices ([27, 吀栀eorem 3.9.2]).

One can also consider the same statistics in the regime when the base 昀椀nite 昀椀eld is 昀椀xed, and the 
genus of the family goes to in昀椀nity, in which case one cannot make use of the equidistribution results. 
In this case, as in the number 昀椀eld se琀琀ing, one can usually compute only a few small moments (see, 
for example, [14, 20–22, 44]); a notable exception is the very recent work on moments of quadratic 
Dirichlet L–functions over function 昀椀elds, which recovers all the moments [9, 35].)

Entin [17] considered the local statistics for the polynomial Artin–Schreier family and showed 
agreement with the random matrix model; these results were further improved and extended to the 
ordinary and odd polynomial families in recent work of Entin and Pirani [18]. 吀栀e mesoscopic statistics 
for the ordinary and polynomial families (as well as other p-rank strata) were considered in [4, 8], 
where the authors showed that the number of zeros with angles in a prescribed subinterval I of [−�,�]
whose length is either 昀椀xed or goes to 0, while g|I| → ∞ (where g denotes the genus of the family), has 
a standard Gaussian distribution. One notices that the mesoscopic scale does not distinguish between 
the various Artin–Schreier families; hence, the local scale is a 昀椀ner detector of the family structure. We 
note that the local statistics of zeros in the 昀椀xed 昀椀nite 昀椀eld limit have been studied over function 昀椀elds 
in the case of hyperelliptic curves [10, 11, 19, 37, 40], cyclic ℓ–covers [5–7], non-cyclic cubic covers 
of ℙ1�q

 [3, 33] and Dirichlet L-functions [2]. 吀栀e distribution of zeros in the global and mesoscopic 
regimes were considered in [23] for hyperelliptic curves, in [45] for cyclic ℓ-covers and in [46] for 
abelian covers of algebraic curves.

In this work, we compute moments in the family of polynomial Artin–Schreier L-functions, and 
show that the moments for the polynomial family behave like the moments of the characteristic poly-
nomials of random matrices in the unitary group. Moreover, we check that our answers agree with 
conjectures about moments [12, 32]. Our results further support the Katz–Sarnak philosophy and 
agree with the behavior observed in Entin [17] and Entin–Pirani [18] regarding the local statistics of 
zeros.

To describe our results, we 昀椀rst introduce some notation. Let p > 2 be an odd prime, and q a power 
of p. An Artin–Schreier curve is given by the a昀케ne equation 

Cf : yp − y = f (x),

where f (x) ∈ �q(x) is a rational non-constant function, together with the automorphism y ↦ y + 1. 
Let p1,… , pr+1 be the set of poles of f (x) and let dj be the order of the pole pj. 吀栀en the genus of Cf is 
given by 

�(Cf ) =
p − 1

2
( − 2 +

r+1∑
j=1

(dj + 1)) =
p − 1

2
(r − 1 +

r+1∑
j=1

dj).

To an Artin–Schreier curve one also associates its p–rank, which is de昀椀ned to be the ℤ/p-rank of 
Jac(Cf ×�q)[p] (see, for example, [36]). A curve with p-rank 0 is in the polynomial family, which 
corresponds to the case in which f (x) is a polynomial. If we impose the extra condition that f (−x) =
−f (x), then the curve is in the odd polynomial family. When p − 1 divides �(Cf ), a curve with p-rank 
equal to �(Cf ) is in the ordinary family. We note that the techniques used to deal with the various 
subfamilies of Artin–Schreier L-functions are di昀昀erent and do not transfer from one subfamily to the 
others. In this paper, we focus on the family of polynomial Artin–Schreier L-functions. From now on, 
we assume that f  is a polynomial.
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吀栀e zeta function of Cf is given by 

ZCf
(u) = exp( ∞∑

k=1
Nk(Cf ) uk

k
),

where Nk(Cf ) denotes the number of points on Cf over �qk  (see, for example, [34, 39]). By the Weil 
conjectures, it follows that 

ZCf
(u) =

ℒ(u, Cf )

(1 − u)(1 − qu)
, (1)

where ℒ(u, Cf ) is the L-function associated to Cf, which is a polynomial of degree 2�(Cf ). It further 
follows that ℒ(u, Cf ) = ∏�≠1

ℒ(u, f ,�),

where � varies over the non-trivial additive characters of �p and where 

ℒ(u, f ,�) = exp( ∞∑
n=1

Sn(f ,�)
q−ns

n
),

with 

Sn(f ,�) = ∑�∈�qn

�(trqn/p(f (�))).

(See, for example, [4, 8].)
In the above, trqn/p : �qn → �p denotes the absolute trace map.
Here, we will consider the family of polynomial Artin–Schreier L-functions. 吀栀e polynomial Artin–

Schreier family, denoted by ��0
d , is de昀椀ned for (d, p) = 1 by 

��0
d = {f ∈ �q[x] : f (x) =

d∑
j=0

ajx
j, ad ≠ 0, aj = 0, if j > 0, p ∣ j}. (2)

Each curve Cf with f ∈ ��0
d  has genus � = (p − 1)(d − 1)/2 and p-rank 0.

We will compute moments in the family above, and show that their behavior is given by that of 
random unitary matrices. More precisely, we will prove the following theorems. 吀栀roughout, 昀椀x a 
non-trivial additive character � of �p. Our results do not depend on the choice of �.

Theorem 1.1 Let p > 2 be a odd prime and d be such that (d, p) = 1. As d → ∞, for an integer 
2 ≤ k < q1/2, we have 

1|��0
d| ∑

f ∈��0
d

ℒ( 1√q
, f ,�)k

=∏
P

⎛⎜⎝1
p

p−1∑ℓ=0

(1 −
�ℓ

p√|P|)−k⎞⎟⎠
+ O( q

d
2
( k+1

p
−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)(k+1)dkk−1),

where the product on the right-hand side is over monic, irreducible polynomials; �p denotes a 
primitive pth root of unity; |P| := qdeg(P), and the implicit constant in the error term is 
independent of k, q for d su昀케ciently large.
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When k = 1, we have 

1|��0
d| ∑

f ∈��0
d

ℒ( 1√q
, f ,�) = (1 − q−1)

1 − q(1− p
2
)(⌊ d

p
⌋+1)

(1 − q(1− p
2
))(1 − q− p

2 )
.

Remark 1.2 In order to get an asymptotic formula above for k ≥ 2, we need 

(k + 1)( logq(k + 2) + 1
2p

) ≤ 1
2

− �,

for some � > 0. Note that in the expression above, the greater logp q is, the more moments we 
can compute. When q is a very large power of p, one would be able to compute roughly p
moments, while the case q = p would allow for a more restricted range of moments.

We also consider the second moment in absolute value for the polynomial family, which is the more 
standard moment to consider in the case of a family with unitary symmetry. In this case, we obtain an 

exact formula with a lower order term of size dq
d
p

− d
2  as follows.

For m ∈ ℤ, let [m]p denote the element of {0, 1,… , p − 1} such that m ≡ [m]p (mod p).

Theorem 1.3 Let p > 2 be an odd prime and d be such that (d, p) = 1. We have 

1|��0
d| ∑

f ∈��0
d

∣ℒ( 1√q
, f ,�)∣2

=
(1 − q1−p)d

(1 − q1− p
2 )2

−
2pq1− p

2 (1 − q− p
2 )

(1 − q1− p
2 )3

+ dq(d+p−[d]p)( 1
p

− 1
2
) (1 − 1

q
)( 1

(1 − q1− p
2 )2

−
[d]p

p(1 − q1− p
2 )

)
+ Cd

q(d−1)( 1
p

− 1
2
)

p
,

where Cd is a constant depending solely on [d]p. More precisely, 

Cd =
1 − q− p

2

1 − q1− p
2

S2(d − 1, q
1
2

− 1
p ) + S2(d − 1, q

1
2

− 1
p ) +

q − 1
pq

S2(d − 1, q
1
2

− 1
p )(−1 − [d]p)

−
q − 1

pq
S2(−1, q

1
2

− 1
p )S1(d, q

1
2

− 1
p ) +

q − 1
pq

S3(d − 1, q
1
2

− 1
p ) −

q − 1
pq

S3(d − 2, q
1
2

− 1
p ),

where the formula for Sℓ(n, x) is given by Lemma 2.3.

吀栀e proofs of 吀栀eorems 1.1 and 1.3 use di昀昀erent techniques. 吀栀e proof of 吀栀eorem 1.1 has as 
starting point the relationship between the L-function of an Artin–Schreier curve and the L-function 
of a multiplicative character associated to each such curve, described explicitly in [17] and [18]. 
One can roughly express the kth moment in terms of the kth moment of multiplicative characters 
of order p modulo xd+1. Computing moments of L-functions associated to 昀椀xed order characters is 
generally a di昀케cult problem; moments of quadratic L-functions over function 昀椀elds are relatively well-
understood (see, for example, [1, 20–22]). Some partial results are known towards moments of cubic 
L-functions (see [15]), and much less is known about higher order characters. However, in the case of 
Artin–Schreier L-functions, the multiplicative characters of order p under consideration are modulo 
xd, which is special. In this case, one can use the dichotomy exploited by Keating and Rudnick in [29], 
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to express sums of the kth divisor function in arithmetic progressions in terms of short interval sums 
over function 昀椀elds. One can then use strong results about the sum of the generalized divisor function 
in short intervals over function 昀椀elds due to Sawin [41].

Proving 吀栀eorem 1.3 requires di昀昀erent ideas, as one cannot rely on results about the divisor func-
tion in short intervals in this case. Instead, we use the approximate functional equation to write the 
absolute value squared of the L-function in terms of sums of length roughly d (note that the L-function 
is a polynomial of degree approximately d), and then we use orthogonality relations for the sums over 
additive characters as in the work in [4]. We remark that in 吀栀eorem 1.3 we computed a speci昀椀c lower 

order term of size X
2−p

2(p−1)  where X is roughly the size of the family, that is, X = qd(1− 1
p

).
吀栀e paper is organized as follows. In Section 2, we provide some background on Artin–Schreier 

L-functions and gather the results we will need from the work in [18]. In Sections 3 and 4, we prove 
吀栀eorems 1.1 and 1.3, respectively. We 昀椀nally check that our results match the Random Matrix 吀栀eory 
predictions in Section 5.

2 . A RT I N – S C H R E I E R C U RV E S A N D L-F U N CT I O N S
Here, we will give some basic properties of Artin–Schreier L-functions and their associated characters.

2.1. Some generalities of function 昀椀eld arithmetics
We 昀椀rst introduce some notation and basic objects of study. Let ℳ denote the set of monic polynomial 
in �q[x], ℳn the set of monic polynomials of degree n in �q[x], and ℳ≤n the set of monic polynomials 
of degree less than or equal to n. For f  a polynomial in ℳ, let dk(f ) denote the kth divisor function 
(i.e., dk(f ) = ∑f1⋯fk=f

fj∈ℳ 1). 吀栀is is extended for non-zero polynomials in �q[x] by dk(cf ) := dk(f ) for 

c ∈ �*
q.

吀栀e zeta-function of �q[x] is de昀椀ned by �q(s) = ∑
f ∈ℳ 1|f |s

,

for Re(s) > 1. By counting monic polynomials of a 昀椀xed degree, it follows that �q(s) = 1
1 − q1−s ,

and this provides a meromorphic continuation of �q(s), with a simple pole at s = 1. Making the change 
of variables u = q−s, the zeta-function becomes 

�(u) = ∑
f ∈ℳudeg(f ) = ∏

P
(1 − udeg(P))−1

,

for |u| < 1/q, where the Euler product above is over monic, irreducible polynomials. One then obtains 
the expression �(u) = 1

1 − qu
,

for the zeta-function in the whole complex plane, having a simple pole at u = 1
q

.
吀栀roughout the proof of 吀栀eorem 1.3, we use Perron’s formula over function 昀椀elds. Namely, if �(u) = ∑f ∈ℳ a(f )udeg(f ) is absolutely convergent in |u| ≤ r < 1, then ∑

f ∈ℳn

a(f ) = 1
2�i

∮|u|=r

�(u)
un+1 du, ∑

f ∈ℳ≤n

a(f ) = 1
2�i

∮|u|=r

�(u)
un+1(1 − u)

du. (3)
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2.2. Artin–Schreier L-functions
We will consider curves given by the a昀케ne equation 

Cf : yp − y = f (x),

where f (x) ∈ �q[x] is a polynomial of degree d and (d, p) = 1, together with the automorphism y ↦
y + 1. Recall the de昀椀nition (1) of the L-function ℒ(u, f ,�), where � is a non-trivial additive character 
of �p. We also have the following Euler product for the L-function: 

ℒ(u, f ,�) = ∏
P

(1 − �f (P)udeg(P))−1
,

where �f (P) = ∑�∈�qdegP

P(�)=0

�(f (�)) = �(trqdegP/p f (�)) for any � a root of P,

and where trqn/p : �qn → �p is the absolute trace map. We extend �f (F) to a completely multiplicative 
function for any element of �q(x) by se琀琀ing �f (0) = 0 and �f (c) = 1 for any non-zero c ∈ �q.

On the other hand, we also have that the L-function is a polynomial of degree d − 1, so we can write 

ℒ(u, f ,�) =
d−1∑
j=0

aj(f ,�)uj,

where 

aj(f ,�) = ∑
F∈ℳj

�f (F).

吀栀e functional equation of ℒ(u, f ,�) is given by ℒ(u, f ,�) = �(f )(qu2)
d−1

2 ℒ( 1
qu

, f ,�). (4)

(see [38, Section 3].)
We will now explain how to associate a multiplicative character to each Artin–Schreier L-function. 

Before that, we quickly recall some basic facts about Dirichlet characters over �q[x] and their 
L-functions.

2.3. Multiplicative characters and their L-functions
Let Q (x) denote a monic polynomial in �q[x]. A Dirichlet character modulo Q  is de昀椀ned to be a 
character of the multiplicative group (�q[x]/Q )×, extended to a completely multiplicative function 
by �(g) = 0 for any (g, Q ) ≠ 1 and �(g) = �(g (mod Q )) if (g, Q ) = 1.

A Dirichlet character is even if �(cF) = �(F) for any 0 ≠ c ∈ �q, and odd otherwise. A charac-
ter is primitive if there is no proper divisor Q1|Q  such that �(g) = 1 whenever (g, Q ) = 1 and g ≡ 1
(mod Q1).

If Q ∈ ℳ, and H denotes a subset of the group of characters modulo Q, we denote by Hpr the set 
of primitive characters in H.

吀栀e L-function associated to a Dirichlet character � modulo Q  is given by ℒ(u,�) = ∑
F∈ℳ�(F)udeg(F) = ∏

P
(1 − �(P)udeg(P))−1

,

where the product is over monic irreducible polynomials P. Using orthogonality of characters, it 
follows that if � is non-principal, ℒ(u,�) is a polynomial of degree at most deg(Q ) − 1.
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If � is a primitive character, then the Riemann hypothesis for ℒ(u,�) is true, and we can write 

ℒ(u,�) = (1 − u)�(�)
deg(Q )−1−�(�)∏

j=1
(1 − u

√
q�j),

where |�j| = 1 are the normalized inverse roots of ℒ(u,�), and where �(�) = 1 if � is even and �(�) =
0 otherwise.

2.4. Multiplicative characters associated to Artin–Schreier curves
Here, we gather a few results we need from the work of Entin [17] and Entin–Pirani [18], which relate 
the Artin–Schreier L-functions to Dirichlet L-functions. For (d, p) = 1, let 

ℱd = {f ∈ �q[x] : f (x) =
d∑

j=0
ajx

j, ad ≠ 0, aj = 0 if p ∣ j}.

Note that we have |ℱd| = (q − 1)qd−⌊ d
p
⌋−1.

Using (2), we can write ��0
d = ⨆

b∈�q

{f + b : f ∈ ℱd}. (5)

We have the following result from [18].

Lemma 2.1 [18, Lemma 2.1]  For f ∈ �q(x)\�q which is not of the form f = hp − h for 
h ∈ �q(x), we have ℒ(u, f + b,�) = ℒ(�(trq/p(b)) ⋅ u, f ,�).

For c ∈ �q[x], if x|c, we put �f (c) = 0; otherwise, let �f (c) := �( trq/p ( ∑
c(�)=0

f (�))).

We also have the following.

Proposition 2.2 [17, Lemmata 7.1, 7.2]  Assume that (d, p) = 1, and f ∈ ℱd . 吀栀en• �f is a primitive Dirichlet character modulo xd+1 of order p. (In particular �f is even since 
(p, q − 1) = 1, and |�*

q| = q − 1.)• 吀栀e map ℱd → {primitive Dirichlet characters modulo xd+1of order p}
given by f ↦ �f  is a bijection.• ℒ(u,�f ) = (1 − u)ℒ(u, f ,�).

Following [18], for an abelian group A and a group of characters B ⊆ A*, let 

B⟂ = {a ∈ A : �(a) = 1 for all � ∈ B}.

吀栀e orthogonality relations imply that 

1|B| ∑�∈B
�(a) = {1 if a ∈ B⟂,

0 if a ∉ B⟂.
(6)
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2.5. Sums involving roots of unity
Here, we will prove certain results about sums involving roots of unity, which we will use repeatedly 
throughout the paper. Let 

Sℓ(n, x) =
p−1∑
j=0

�−nj
p

(1 − �j
px)ℓ ,

where �p is a non-trivial pth root of unity in ℂ. We will obtain formulas for Sℓ(n, x) for ℓ = 1, 2, 3. For 
m ∈ ℤ, recall that [m]p denotes the element of {0, 1,… , p − 1} such that m ≡ [m]p (mod p).

Lemma 2.3. For |x| > 1 and n ∈ ℤ, we have 

S1(n, x) =
px[n]p

1 − xp ,

S2(n, x) = px[n+1]p−1 ( [n + 1]p

1 − xp +
pxp

(1 − xp)2
) ,

and 

S3(n, x) =
px[n+2]p−2

2
( [n + 2]p([n + 2]p − 1)

1 − xp +
p(2[n + 2]p + p − 1)xp

(1 − xp)2
+

2p2x2p

(1 − xp)3
) .

Proof. We have 

S1(n, x) =
p−1∑
j=0

1
(1 − �j

px)�nj
p

= − 1
x

∞∑
k=0

x−k
p−1∑
j=0

�−(n+1+k)j
p

= −
p
x

∞∑
k=0

k≡−n−1 (mod p)

x−k = −
px−[−n−1]p−1

1 − x−p ,

since the inner sum in the 昀椀rst line is equal to p when n + 1 + k is divisible by p, and 0 
otherwise.

Notice that [−n − 1]p + 1 = p − [n]p, giving 

S1(n, x) = −
px[n]p

xp − 1
.

吀栀e expressions of S2(n, x) and S3(n, x) can be obtained by using the fact that 

Sℓ+1(n, x) = 1ℓ ��x
Sℓ(n + 1, x)

when ℓ > 0. �

We will also need the case x = 1. More precisely, we prove the following result.
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Lemma 2.4. We have 
p−1∑
j=1

�−nj
p

(1 − �j
p)

=
p − 1

2
− [n]p.

Proof. Notice that for 0 < a ≤ p − 1, 

p−1∑
j=1

1 − �aj
p

(1 − �j
p)

=
p−1∑
j=1

(1 + �j
p + ⋯ + �(a−1)j

p ) = p − a.

By looking at the logarithmic derivative at x = 1 of xp−1 + ⋯ + x + 1 = ∏p−1
j=1 (x − �j

p), we have 

p−1∑
j=1

1
(1 − �j

p)
=

p − 1
2

.

We conclude by combining the above equations. �

2.6. Some combinatorial identities
Here we consider some combinatorial identities that will be needed in the proof of 吀栀eorem 1.1.

Lemma 2.5 Let r, t, m ≥ 0 be integers and s real. 吀栀en 

r∑
j=0

(r − j
m )( s

j − t)(−1)j−t = ( r − t − s
r − t − m) . (7)

吀栀is can be found in Equation (24) in [28, 1.2.6].

Lemma 2.6 If m, r, t ∈ ℤ with m > 0 and r, t ≥ 0, then 

m(m + t
t ) r∑

j=0
(j + t

t )( t
r − j) (−1)r−j

m + r − j
= (r + m + t

t ) . (8)

Proof. First notice that (j + t
t ) = (−1)j (−t − 1

j ) .

吀栀erefore, it su昀케ces to prove (−t − 1
m ) r∑

j=0
(−t − 1

j )( t
r − j) m

m + r − j
= (−t − 1

m + r ) .

Notice that 
r∑

j=0
(−t − 1

j )( t
r − j)xm−1+r−j = [xm−1(1 + T)−t−1(1 + xT)t]Tr ,

where the notation [⋅]Tr  indicates the coe昀케cient of Tr in the expression inside the brackets. 
We integrate to get 

r∑
j=0

(−t − 1
j )( t

r − j) 1
m + r − j

= [(1 + T)−t−1 ∫1

0
xm−1(1 + xT)tdx]

Tr
.
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By doing integration by parts repeatedly, we obtain 

(1 + T)−t−1 ∫1

0
xm−1(1 + xT)tdx = t!(m − 1)!

m−1∑
h=0

(−1)h

(h + t + 1)!(m − 1 − h)!
(1 + T)h

Th+1

+
t!(m − 1)!(−1)m

(m + t)!Tm(1 + T)t+1
.

吀栀e only term above contributing to a monomial Tr is the last one, with coe昀케cient 

t!(m − 1)!(−1)m

(m + t)!
(−t − 1

m + r ) = 1
m

(−t − 1
m )−1 (−t − 1

m + r ) .

吀栀is proves the result. �

3 . P R O O F O F T H EO R E M 1 . 1
Before proving 吀栀eorem 1.1, we 昀椀rst state some results that we will need and prove some preliminary 
lemmas.

吀栀e following estimate for sums of the generalized divisor function in short intervals is due to Sawin 
[41], and will be crucial in our computations.

Proposition 3.1 ([41, 吀栀eorem 1.1.])  For natural numbers n, h, k with h < n and f a monic 
polynomial of degree n in �q[T], we have ∣∣∣∣ ∑

g∈�q[T]
degg<h

dk(f + g) − (n + k − 1
k − 1 )qh

∣∣∣∣ ≤ 3(n + k − 1
k − 1 )(k + 2)2n−hq

1
2
(h+⌊ n

p
⌋−⌊ n−h

p
⌋+1).

We will now prove the following lemma.

Lemma 3.2 Let n > d ≥ 0 and let A(x) ∈ �q[x] such that A(0) ≠ 0 and deg(A) ≤ d. 吀栀en ∑
deg(F)=n

F(x)≡A(x) (mod xd+1)

dk(F) =
n−d−1∑

j=0
(n − j + k − 1

k − 1 )(k
j)(−1)jqn−d−j

+ O(( k − 1
n − d − 1) d −deg(A) + k

n −deg(A)
(d −deg(A) + k − 1

k − 1 )dk(A)

+ (k + 2)n+dq
1
2
((n−d)(1+ 1

p
)+2)(n + k − 1)k−1),

and the implied constant in the error term above does not depend on k and q.

Proof. Let 

A(x) =
d∑

j=0
ajx

j,

where aj ∈ �q, a0 ≠ 0 (note that ad can be 0). Also note that we can assume, without loss of 
generality, that a0 = 1. Otherwise, we can rewrite the sum as
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deg(F)=n

F(x)≡A(x) (mod xd+1)

dk(F) = ∑
deg(F)=n

a−1
0 F(x)≡A1(x) (mod xd+1)

dk(F),

where A1(x) = a−1
0 A(x). Since dk(F) = dk(cF) for c ∈ �*

q, we easily see that ∑
deg(F)=n

F(x)≡A(x) (mod xd+1)

dk(F) = ∑
deg(F)=n

F(x)≡A1(x) (mod xd+1)

dk(F),

and A1(x) has the property that its constant coe昀케cient is 1.
Now since F(x) ≡ A(x) (mod xd+1), we write 

F(x) = fnxn + ⋯ + fd+1xd+1 + adxd + ⋯ + a1x + 1,

where fn ≠ 0. Now let 

F*(x) = xnF(1
x

)
be the reverse polynomial of F. 吀栀en we have 

F*(x) = xn + a1xn−1 + ⋯ + adxn−d + fd+1xn−d−1 + ⋯ + fn,

and deg(F*) = n. Note that we can write 

F*(x) = xn−deg(A)A*(x) + g(x),

where g(x) varies over polynomials of degree less than n − d and such that g(0) ≠ 0. Also 
note that for F(x) such that F(0) ≠ 0, we have dk(F) = dk(F*). Hence we rewrite ∑

deg(F)=n
F(x)≡A(x) (mod xd+1)

dk(F) = ∑
deg(g)<n−d

g(0)≠0

dk(g(x) + xn−deg(A)A*(x)).

We have ∑
deg(g)<n−d

dk(g(x) + xn−deg(A)A*(x))

= dk(xn−deg(A)A*(x)) +
n−d−1∑

j=0
dk(xj) ∑

deg(g)<n−d−j
g(0)≠0

dk(g(x) + xn−j−deg(A)A*(x))

= (n −deg(A) + k − 1
k − 1 )dk(A*(x)) +

n−d−1∑
j=0

(j + k − 1
k − 1 ) ∑

deg(g)<n−d−j
g(0)≠0

dk(g(x) + xn−j−deg(A)A*(x)), (9)

where the term dk(xn−deg(A)A*(x)) is accounting for the polynomial g = 0, which we consider 
to have degree −∞.
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For n > 0, we let 

�n := ∑
deg(g)<n

dk(g(x) + xn+d−deg(A)A*(x)) and �n := ∑
deg(g)<n

g(0)≠0

dk(g(x) + xn+d−deg(A)A*(x)).

Set also by convention (to take into account the polynomial g = 0), �0 = dk(xd−deg(A)A*(x))
and �0 = dk(A*(x)). 吀栀en, (9) can be wri琀琀en as 

�n−d = (n −deg(A) + k − 1
k − 1 )�0 +

n−d−1∑
j=0

(j + k − 1
k − 1 )�n−d−j. (10)

We claim that for n > 0, 

�n = (−1)n (k − 1
n − 1) d −deg(A) + k

d −deg(A) + n
�0 +

n−1∑
j=0

(k
j)(−1)j�n−j. (11)

Indeed, for n = 1 we have from (10) that �1 = (d + 1 − deg(A) + k − 1
k − 1 )�0 + �1, which gives �1 = �1 − d−deg(A)+k

d−deg(A)+1
�0. We proceed by induction. Suppose that (11) is true for all positive 

integers up to n. By (10), we have 

�n+1 = (n + d + 1 − deg(A) + k − 1
k − 1 )�0 +

n∑
j=0

(j + k − 1
k − 1 )�n+1−j,

and 

�n+1 =�n+1 − (n + d −deg(A) + k
k − 1 )�0 −

n∑
j=1

(j + k − 1
k − 1 )�n+1−j

=�n+1 − (n + d −deg(A) + k
k − 1 )(d −deg(A) + k − 1

k − 1 )−1 �0

− (d −deg(A) + k)
n∑

j=1
(j + k − 1

k − 1 )(k − 1
n − j) (−1)n+1−j

d −deg(A) + n + 1 − j
�0

−
n∑

j=1
(j + k − 1

k − 1 ) n−j∑
h=0

(k
h)(−1)h�n+1−j−h.
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Applying Lemma 2.6, we have 

�n+1 =�n+1 + (−1)n+1 (k − 1
n ) d −deg(A) + k

d −deg(A) + n + 1
�0

−
n∑

j=1
(j + k − 1

k − 1 ) n∑ℓ=j
( kℓ − j)(−1)ℓ−j�n+1−ℓ, where ℓ = j + h,

=�n+1 + (−1)n+1 (k − 1
n ) d −deg(A) + k

d −deg(A) + n + 1
�0

−
n∑ℓ=1

ℓ∑
j=1

(j + k − 1
k − 1 )( kℓ − j)(−1)ℓ−j�n+1−ℓ

=�n+1 + (−1)n+1 (k − 1
n ) d −deg(A) + k

d −deg(A) + n + 1
�0

−
n∑ℓ=1

ℓ−1∑
m=0

(ℓ + k − 1 − m
k − 1 )( k

m)(−1)m�n+1−ℓ, where m = ℓ − j,

=�n+1 + (−1)n+1 (k − 1
n ) d −deg(A) + k

d −deg(A) + n + 1
�0

+
n∑ℓ=1

(kℓ)(−1)ℓ�n+1−ℓ,

where in the last equality we applied Lemma 2.5.
吀栀is concludes the induction proving (11).
Pu琀琀ing (9) together with Proposition 3.1 in the case h = n − d − j and using the fact that 

A*(x)xn−deg(A)−j is a monic polynomial of degree n − j, it follows from (11) that 

∑
deg(F)=n

F(x)≡A(x) (mod xd+1)

dk(F) = ∑
deg(g)<n−d

g(0)≠0

dk(g(x) + xn−deg(A)A*(x)) = �n−d

= (−1)n ( k − 1
n − d − 1) d −deg(A) + k

n −deg(A)
�0 +

n−d−1∑
j=0

(k
j)(−1)j�n−d−j

=
n−d−1∑

j=0
(n − j + k − 1

k − 1 )(k
j)(−1)jqn−d−j

+ O(( k − 1
n − d − 1) d −deg(A) + k

n −deg(A)
(d −deg(A) + k − 1

k − 1 )dk(A)

+
n−d−1∑

j=0
(n − j + k − 1

k − 1 )(k
j)(k + 2)n+d−jq

1
2
(n−d−j+⌊ n−j

p
⌋−⌊ d

p
⌋+1)).
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Now notice that the sum over j in the error term above is 

n−d−1∑
j=0

(n − j + k − 1
k − 1 )(k

j)(k + 2)n+d−jq
1
2
(n−d−j+⌊ n−j

p
⌋−⌊ d

p
⌋+1)

≤ (k + 2)n+d
n−d−1∑

j=0
(n − j + k − 1)k−1kj(k + 2)−jq

1
2
((n−d−j)(1+ 1

p
)+2)

≤ (k + 2)n+dq
1
2
((n−d)(1+ 1

p
)+2) n−d−1∑

j=0
(n − j + k − 1)k−1q− j

2
(1+ 1

p
)

≤ (k + 2)n+dq
1
2
((n−d)(1+ 1

p
)+2)(n + k − 1)k−1 1

1 − q− 1
2
(1+ 1

p
)≤ (k + 2)n+dq

1
2
((n−d)(1+ 1

p
)+2) (n + k − 1)k−1

1 − 3− 1
2

.

吀栀is 昀椀nishes the proof of the statement. �

Now for ℓ (mod p), we let �k(ℓ) = ∑
b∈�q

�(trq/p(b))ℓ(1 −
�(trq/p(b))√q

)k
.

We will prove the following.

Lemma 3.3 For ℓ (mod p), we have �k(ℓ) =
q
p

p−1∑
j=0

�jℓ
p(1 − q−1/2�j

p)k
.

Proof. We have �k(ℓ) = ∑
b∈�q

�(trq/p(b))ℓ (1 −
�(trq/p(b))√q

)−k

= ∑
b∈�q

�(trq/p(b))ℓ ∞∑
h=0

(−k
h )(−

�(trq/p(b))√q
)h

by the binomial theorem. 吀栀erefore, �k(ℓ) =
∞∑
h=0

(−k
h )(−q−1/2)h ∑

b∈�q

�(trq/p(b))ℓ+h.

吀栀e inner sum above is equal to q when ℓ + h is divisible by p. Otherwise, the inner sum is 
equal to zero since � is a nontrivial additive character. 吀栀erefore, �k(ℓ) =

q
p

∞∑
h=0

(−k
h )(−q−1/2)h

p−1∑
j=0

�j(ℓ+h)
p .
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We switch the order of summation and use the binomial theorem again to conclude that �k(ℓ) =
q
p

p−1∑
j=0

�jℓ
p

∞∑
h=0

(−k
h )(−q−1/2�j

p)h =
q
p

p−1∑
j=0

�jℓ
p(1 − q− 1

2 �j
p)k

.

�

We are now ready to begin the proof of 吀栀eorem 1.1.

 Proof of 吀栀eorem 1.1 Using (5), Lemma 2.1, and Proposition 2.2, we write 

1|��0
d| ∑

f ∈��0
d

ℒ( 1√q
, f ,�)k

= 1
q|ℱd| ∑

b∈�q

∑
f ∈ℱd

ℒ( 1√q
, f + b,�)k

= 1
q|ℱd| ∑

b∈�q

∑
f ∈ℱd

ℒ(�(trq/p(b))√q
, f ,�)k

= 1
q|ℱd| ∑

b∈�q

1(1 −
�(trq/p(b))√q

)k
∑
f ∈ℱd

ℒ(�(trq/p(b))√q
,�f )k

= 1
q|ℱd| ∑

b∈�q

1(1 −
�(trq/p(b))√q

)k
∑
f ∈ℱd

∑
F∈ℳ≤kd
F(0)≠0

dk(F)�f (F)�(trq/p(b))deg(F)√|F|
= 1

q|ℱd| ∑
f ∈ℱd

∑
F∈ℳ≤kd
F(0)≠0

�k(deg(F))dk(F)�f (F)√|F| . (12)

Interchanging the sums over f  and F, we then need to study ∑f ∈ℱd
�f (F) for F 昀椀xed.

Let 

Hn = {� (mod xn) : �p = 1}
and 

Hpr
n = {� ∈ Hn : � primitive }.

(We will work with both n = d and n = d + 1.) Using Proposition 2.2, there is a bijection 
between ℱd and Hpr

d+1. Moreover, a character in Hd+1 that is not primitive is necessarily a 
character in Hd. 吀栀us we have 

Hpr
d+1 = Hd+1\Hd.

It follows that ∑
f ∈ℱd

�f (F) = ∑�∈Hpr
d+1

�(F) = ∑�∈Hd+1

�(F) − ∑�∈Hd

�(F).
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Now, using (6), we have ∑
f ∈ℱd

�f (F) =
⎧{⎨{⎩0 F ∉ H⊥

d ,
−|Hd| F ∈ H⊥

d \H⊥
d+1,|Hd+1| − |Hd| F ∈ H⊥

d+1.
(13)

Notice that Hd ⊆ Hd+1 implies that H⊥
d+1 ⊆ H⊥

d .
Let us compute the order of Hn with p ∤ n. Following the proof of [17, Lemma 7.1], |Hn|

corresponds to |(�q[x]/xn)×[p]| and that corresponds to counting polynomials 
g(x) = ∑n−1

j=0 cjx
j such that g(x)p ≡ 1 (mod xn) and c0 ≠ 0 (so that g(x) is a unit). Taking 

the pth power, we see that this imposes the condition cp
0 = 1 (implying c0 = 1) and 

cp
1 = ⋯ = cp⌊ n−1

p
⌋ = 0 (implying c1 = ⋯ = c⌊ n−1

p
⌋ = 0). 吀栀e total count is then 

|Hn| =
qn−1(q − 1)

q⌊ n−1
p

⌋(q − 1)
= qn−1−⌊ n

p
⌋,

where we have used that, since p ∤ n, we have ⌊ n−1
p

⌋ = ⌊ n
p
⌋.

By [18, Lemma 4.1], F(x) ∈ �q[x] with F(0) ≠ 0 satis昀椀es �(F) = 1 for all � ∈ Hd+1 if 
and only if F(x) ≡ R(xp) (mod xd+1) for some R(x) ∈ �q[x] with R(0) ≠ 0 and 

deg(R) ≤ ⌊ d
p
⌋. A similar result applies for F(x) ∈ �q[x] with F(0) ≠ 0 that satis昀椀es �(F) = 1 for all � ∈ Hd.

Pu琀琀ing (12), (13) and the observation above together, we get that 

1|��0
d| ∑

f ∈��0
d

ℒ( 1√q
, f ,�)k

=
|Hd+1|
q|ℱd| ∑

F∈ℳ≤kd
F(0)≠0

F(x)∈H⊥
d+1

�k(deg(F))dk(F)√|F|
−

|Hd|
q|ℱd| ∑

F∈ℳ≤kd
F(0)≠0

F(x)∈H⊥
d

�k(deg(F))dk(F)√|F|
=

|Hd+1|
q|ℱd| Sk,d+1 −

|Hd|
q|ℱd|Sk,d

=
Sk,d+1

q − 1
−

Sk,d

q(q − 1)
, (14)

where 

Sk,d+1 = ∑
deg(R)≤⌊ d

p
⌋

R(0)≠0

∑
F∈ℳ≤kd

F(x)≡R(xp) (mod xd+1)

�k(deg(F))dk(F)√|F| ,

and 

Sk,d = ∑
deg(R)≤⌊ d−1

p
⌋

R(0)≠0

∑
F∈ℳ≤kd

F(x)≡R(xp) (mod xd)

�k(deg(F))dk(F)√|F| .
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Notice that since p ∤ d, the condition deg(R) ≤ ⌊ d
p
⌋ is equivalent to the condition 

deg(R) ≤ ⌊ d−1
p

⌋.
Now note that the terms in the inner sum that satisfy deg(F) < d for Sk,d (resp. 

deg(F) < d + 1 for Sk,d+1) have the property that F(x) = R(xp), and we can write 
R(xp) = R0(x)p by applying the Frobenius automorphism.

When k = 1, note that we have S1,d+1 = S1,d, and using (14), we have that the moment 
under consideration equals 

1
q

∑
R∈ℳ≤⌊ d

p ⌋
R(0)≠0

�1(deg(R)p)|R| p
2

=
�1(0)

q

⌊ d
p
⌋∑

j=0

qj−1(q − 1)

q
jp
2

=
�1(0)

q
(1 − q−1)

1 − q(1− p
2
)(⌊ d

p
⌋+1)

1 − q(1− p
2
) .

Note that Lemmas 3.3 and 2.3 imply that 

�1(0) =
q
p

p−1∑
j=0

1

1 − �j
p√q

= −
q

3
2

p

p−1∑
m=0

�m
p

1 − �m
p

√q
= −

q
3
2

p
S1( − 1,

√
q) =

q

1 − q− p
2

.

Pu琀琀ing the above together 昀椀nishes the proof of 吀栀eorem 1.1 in the case k = 1.
Now we consider k > 1. Suppose that n > d. 吀栀en, using Lemma 3.2, we

have that ∑
deg(F)=n

F(x)≡R0(x)p (mod xd+1)

dk(F) =
n−d−1∑

j=0
(n − j + k − 1

k − 1 )(k
j)(−1)jqn−d−j

+ O(( k − 1
n − d − 1) d − pdeg(R0) + k

n − pdeg(R0)
(d − pdeg(R0) + k − 1

k − 1 )dk(Rp
0)

+ (k + 2)n+dq
1
2
((n−d)(1+ 1

p
)+2)(n + k − 1)k−1)

=
n−d−1∑

j=0
(n − j + k − 1

k − 1 )(k
j)(−1)jqn−d−j

+ O(( k − 1
n − d − 1) d + k

n − d
(d + k − 1

k − 1 )dk(Rp
0)

+ (k + 2)n+dq
1
2
((n−d)(1+ 1

p
)+2)(n + k − 1)k−1) .

Notice that the main term in the above expression is independent of R(xp). Moreover, 
dk(F) = dk(cF) for any c ∈ �*

q and similarly |F| = |cF|. 吀栀us, we get the same value if we sum 
over F non-monic and divide by q − 1 to account for the leading coe昀케cient. Pu琀琀ing all of this 
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together, we have 

Sk,d+1 =�k(0) ∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0)|R0| p
2

(15)

+ 1
q − 1

∑
deg(R)≤⌊ d

p
⌋

R(0)≠0

∑
d<n≤kd

�k(n)

q
n
2

∑
deg(F)=n

F(x)≡R(xp) (mod xd+1)

dk(F)

=�k(0) ∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0)|R0| p
2

+ q⌊ d
p
⌋ ∑

d<n≤kd

�k(n)

q
n
2

n−d−1∑
j=0

(n − j + k − 1
k − 1 )(k

j)(−1)jqn−d−j

+ O( q
(1 − q−1/2)k

∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0) ∑

d<n≤kd

1

q
n
2

( k − 1
n − d − 1)(d + k − 1

k − 1 ) d + k
n − d

+
q

(1 − q−1/2)k
∑

d<n≤kd
(k + 2)n+dq

n
2p

− d
2

+ d
2p

+1(n + k − 1)k−1),

where we have used the bound |�k(n)| ≤ q
(1−q−1/2)k .

Now we bound the 昀椀rst error term in the equation above. We have ∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0) ∑

d<n≤kd

1

q
n
2

( k − 1
n − d − 1)(d + k − 1

k − 1 ) d + k
n − d

≤ (d + k)k ∑
R0∈ℳ≤⌊ d

p ⌋ dk(Rp
0) ∑

d<n≤kd

kn−d−1

q
n
2≤ (d + k)kk−1q−d/2

d(k−1)∑
m=1

km

qm/2
∑

R0∈ℳ≤⌊ d
p ⌋ dk(Rp

0). (16)

To bound the sum over R0 above, we consider the generating series and we have ∑
R0∈ℳdk(Rp

0)udeg(R0) =∏
Q

(1 + (p + k − 1
k − 1 )udeg(Q ) + ∑

j≥2
(jp + k − 1

k − 1 )ujdeg(Q ))
= �(u)

(p + k − 1
k − 1

)ℱ(u),

where ℱ(u) is given by an Euler product which converges absolutely for |u| < q−1/2. Using 
Perron’s formula, we get that ∑

R0∈ℳ≤⌊ d
p ⌋ dk(Rp

0) = 1
2�i

∮|u|=q−1−� ℱ(u)

(1 − u)(1 − qu)
(p + k − 1

k − 1
)

u⌊d/p⌋ du
u

,
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We shi昀琀 the contour of integration to |u| = q−1/2−�, and we encounter the pole at u = 1/q. 
It then follows that ∑

R0∈ℳ≤⌊ d
p ⌋ dk(Rp

0) ≪ q
d
p (d

p
)(p + k − 1

k − 1
)

. (17)

For the sum over m in (16), since k < q1/2, we have 
d(k−1)∑

m=1

km

qm/2
≤ k

q1/2 − k
.

Combining the equation above and (17) and (16), it follows that ∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0) ∑

d<n≤kd

1

q
n
2

( k − 1
n − d − 1)(d + k − 1

k − 1 ) d + k
n − d

≪ (d + k)kq
d
p

− d
2 d

(p + k − 1
k − 1

)
, (18)

and note that the implied constant above does depend on q and k.
Finally, we bound the second error term in (15) and we have ≪ q

d
2p

− d
2

+2

(1 − q−1/2)k
∑

d≤n≤kd
(k + 2)n+dq

n
2p (n + k − 1)k−1 ≪ q

d
2

( k+1
p

−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)d(k+1)kk−1,

and the implicit constant in the error term above is independent of q and k. Note that this last 
error term dominates (18) for d large enough. Pu琀琀ing these together, it follows that 

Sk,d+1 =�k(0) ∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0)|R0| p
2

+ q⌊ d
p
⌋ ∑

d<n≤kd

�k(n)

q
n
2

n−d−1∑
j=0

(n − j + k − 1
k − 1 )(k

j)(−1)jqn−d−j

+ O( q
d
2

( k+1
p

−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)d(k+1)kk−1).

Similarly, 

Sk,d =�k(0) ∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0)|R0| p
2

+ q⌊ d
p
⌋ ∑

d≤n≤kd

�k(n)

q
n
2

n−d∑
j=0

(n − j + k − 1
k − 1 )(k

j)(−1)jqn−d−j+1

+ O( q
d
2

( k+1
p

−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)d(k+1)kk−1).

Finally, 

Sk,d+1

q − 1
−

Sk,d

q(q − 1)
=

�k(0)
q

∑
R0∈ℳ≤⌊ d

p ⌋
R0(0)≠0

dk(Rp
0)|R0| p
2

−
q⌊ d

p
⌋

q − 1
∑

d≤n≤kd

�k(n)

q
n
2

(d + k − 1
k − 1 )( k

n − d)(−1)n−d

+ O( q
d
2

( k+1
p

−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)d(k+1)kk−1). (19)
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We remark that the second term above is bounded by ≪ q
d
p (d + k − 1

k − 1 ) ∑
d≤n≤kd

1

q
n
2

( k
n − d) ≤ q

d
p (d + k − 1)k−1k−d ∑

d≤n≤d+k

kn

q
n
2

≪ q
d
p

− d
2 (d + k − 1)k−1,

where we used the fact that k < q1/2. Note that this term is also dominated by the error term 
in (19).

Hence we get that 

1|��0
d| ∑

f ∈��0
d

ℒ( 1√q
, f ,�)k

=
�k(0)

q
∑

R∈ℳ≤[ d
p ]

R(0)≠0

dk(Rp)|R| p
2

+ O( q
d
2
( k+1

p
−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)(k+1)dkk−1).

In the above, we extend the sum over R to all monic R with R(0) ≠ 0 at the expense of an 

error term of size qd( 1
p

− 1
2

)d
(p + k − 1

k − 1
)

. Note that this error term is dominated by the error term 
in the equation above. Hence we get that 

1|��0
d| ∑

f ∈��0
d

ℒ( 1√q
, f ,�)k

=
�k(0)

q
∑
R∈ℳ

R(0)≠0

dk(Rp)|R| p
2

+ O( q
d
2
( k+1

p
−1)+2

(1 − q−1/2)k
(d + 1)k(k + 2)(k+1)dkk−1).

Using an additive character sum to detect pth powers, we further write the main term 
above as �k(0)

q
∑
R∈ℳ

R(0)≠0

dk(Rp)|R| p
2

= 1
p

p−1∑ℓ=0

1(1 − �ℓ
p√q
)k

∏
P≠x

(1
p

p−1∑ℓ=0

1(1 − �ℓ
p√|P|)k

)
=∏

P
(1

p

p−1∑ℓ=0

1(1 − �ℓ
p√|P|)k

).

Combining the two equations above 昀椀nishes the proof of 吀栀eorem 1.1 in the case k > 1. �

4 . P R O O F O F T H EO R E M 1 . 3
We 昀椀rst need to prove the following approximate functional equation.

Lemma 4.1 (Approximate Functional Equation)  For f ∈ ��0
d  and k ∈ ℕ, we have 

∣ℒ( 1√q
, f ,�)∣2k

= ∑
F,H∈ℳ

deg(FH)≤k(d−1)

dk(F)dk(H)�f (F)�f (H)√|FH|
+ ∑

F,H∈ℳ
deg(FH)≤k(d−1)−1

dk(F)dk(H)�f (F)�f (H)√|FH| .
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Proof. Using (4), we have ∣ℒ(u, f ,�)∣2k
= (qu2)k(d−1)∣ℒ( 1

qu
, f ,�)∣2k

.

Now ∣ℒ(u, f ,�)∣2k
=

2k(d−1)∑
n=0

un ∑
F,H∈ℳ

deg(FH)=n

dk(F)dk(H)�f (F)�f (H) =
2k(d−1)∑

n=0
a(n)un.

From the functional equation above, we get that 

a(n) = qn−k(d−1)a(2k(d − 1) − n).

Using this and plugging in u = 1√q
, we 昀椀nish the proof. �

吀栀e following result allows us to compute averages of �f (F) with f  varying over the family ��0
d . 

Let ⟨�f (F)⟩d = 1|��0
d| ∑

f ∈��0
d

�f (F).

Lemma 4.2 Let P1,… , Ps be distinct monic irreducible polynomials in �q[x] such that 
deg(P1) + ⋯ +deg(Ps) < d, and h1,… , hs integers. 吀栀en ⟨�f (P1)h1 …�f (Ps)

hs⟩d = { 1 if p ∣ hi for 1 ≤ i ≤ s,
0 otherwise.

Proof. 吀栀is is a simple case of [4, Lemma 9.1]. �

We are now ready to begin the proof of 吀栀eorem 1.3.

 Proof of 吀栀eorem 1.3 Using Lemma 4.1 for k = 1, we have 

1|��0
d| ∑

f ∈��0
d

∣ℒ( 1√q
, f ,�)∣2

= 1|��0
d| ∑

f ∈��0
d

∑
F,H∈ℳ

deg(FH)≤d−1

�f (F)�f (H)√|FH| + 1|��0
d| ∑

f ∈��0
d

∑
F,H∈ℳ

deg(FH)≤d−2

�f (F)�f (H)√|FH|
= ∑

F,H∈ℳ
deg(FH)≤d−1

⟨�f (F/H)⟩d√|FH| + ∑
F,H∈ℳ

deg(FH)≤d−2

⟨�f (F/H)⟩d√|FH| .

吀栀us consider the general sum 

S(n) := ∑
F,H∈ℳ

deg(FH)≤n

⟨�f (F/H)⟩d√|FH| .

By Lemma 4.2, ⟨�f (F/H)⟩d is trivial unless F/H is a pth-power. Write R = (F, H) and 
F = F1R, H = H1R so that (F1, H1) = 1. 吀栀us F/H = F1/H1 and we must have F1 = Fp

0 , 
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H1 = Hp
0 . We then have to evaluate the term 

S(n) = ∑
R∈ℳ≤ n

2

1|R| ∑
F0,H0∈ℳ

pdeg(F0H0)≤n−2deg(R)
(F0,H0)=1

1|F0H0| p
2

.

First we consider the inner sum. Its generating series is given by 

ℱ(u, v) = ∑
F0,H0∈ℳ
(F0,H0)=1

updeg(F0)vpdeg(H0)|F0H0| p
2

.

吀栀en we have 

ℱ(u, v) = ∏
Q

(1 +
∞∑
j=1

upjdeg(Q )|Q | pj
2

+
∞∑
j=1

vpjdeg(Q )|Q | pj
2

) =
�(up/q

p
2 )�(vp/q

p
2 )�(upvp/qp)

=
1 − q1−pupvp

(1 − q1− p
2 up)(1 − q1− p

2 vp)
.

Now using Perron’s formula (3) for the sums over F0 and H0 we get that ∑
F0,H0∈ℳ

pdeg(F0H0)≤n−2deg(R)
(F0,H0)=1

1|F0H0| p
2

= 1
(2�i)2

∮∮ ℱ(u, uv)
(1 − u)(1 − v)(uv)n−2deg(R)

du
u

dv
v

,

where the integral takes place over small circles around the origin.
Introducing the sum over R as well and using Perron’s formula (3), we get that 

S(n) = 1
(2�i)3

∮∮∮ ℱ(u, uv)�(u2v2z2/q)
(1 − u)(1 − v)(1 − z)(uvz)n

dz
z

du
u

dv
v

= 1
(2�i)3

∮∮∮ 1 − q1−pu2pvp

(1 − q1− p
2 up)(1 − q1− p

2 upvp)(1 − u2v2z2)(1 − u)(1 − v)(1 − z)(uvz)n

dz
z

du
u

dv
v

,

where the integral takes place over small circles around the origin. Since we need to consider 

S(d − 1) + S(d − 2),

we will sum the integral expressions for S(n) and S(n − 1) and later set n = d − 1. 吀栀us, we 
get 

S(n) + S(n − 1) =

1
(2�i)3

∮∮∮ 1 − q1−pu2pvp

(1 − q1− p
2 up)(1 − q1− p

2 upvp)(1 − uvz)(1 − u)(1 − v)(1 − z)(uvz)n

dz
z

du
u

dv
v

.

In the integral above, we can choose the contour to be |u| = |v| = |z| = q−�. In the integral 
over z, we shi昀琀 the contour of integration to |z| = � and � → ∞. 吀栀en the integral over z is 
given by the residues at z = 1 and z = 1

uv
.
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We write 

S(n) + S(n − 1) = A + B,

where A corresponds to the residue at z = 1 and B corresponds to the residue at z = 1/(uv). 
We have that 

A = 1
(2�i)2

∮∮ 1 − q1−pu2pvp

(1 − q1− p
2 up)(1 − q1− p

2 upvp)(1 − uv)(1 − u)(1 − v)(uv)n

du
u

dv
v

,

and 

B = 1
(2�i)2

∮∮ 1 − q1−pu2pvp

(1 − q1− p
2 up)(1 − q1− p

2 upvp)(uv − 1)(1 − u)(1 − v)
du dv.

Note that in the integral for B, there are no poles of the integrand inside the contour of 
integration, so B = 0. Hence we have 

S(n) + S(n − 1) = A.

In the expression for A, we shi昀琀 the contour over u to |u| = � and let � → ∞. We encounter 
poles when u = 1, u = 1

v
, upvp = q

p
2

−1 and up = q
p
2

−1. 吀栀en we have poles at 

u = 1, u = 1
v

, u = q
1
2

− 1
p �j

p, u = q
1
2

− 1
p �j

pv−1, for j = 0,… , p − 1. 吀栀us, we have that 

S(n) + S(n − 1) = A1 + Av−1 +
p−1∑
j=0

(A�j
p

+ A�j
pv−1),

where A1, Av−1  are the negatives of the residues at u = 1, u = 1
v

 respectively, and A�j
p
, A�j

pv−1  are 

the negatives of the residues at u = �j
pq

1
2

− 1
p , u = �j

pq
1
2

− 1
p v−1, respectively. We have that 

A1 = 1
2�i

∮ 1 − q1−pvp

(1 − q1− p
2 )(1 − q1− p

2 vp)(1 − v)2vn

dv
v

.

Now we have a double pole at v = 1 and poles at v = �j
pq

1
2

− 1
p  for j = 0,… , p − 1. We write 

A1 = A1,1 +
p−1∑
j=0

A1,�j
p
,

where A1,1 corresponds to the pole at v = 1, and A1,�j
p
 corresponds to the pole at v = �j

pq
1
2

− 1
p . 

We have 

A1,1 =
(1 − q1−p)(n + 1)

(1 − q1− p
2 )2

−
pq1− p

2 (1 − q− p
2 )

(1 − q1− p
2 )3

,

and 

A1,�j
p

=
1 − q− p

2

(1 − �j
pq

1
2

− 1
p )2�nj

p qn( 1
2

− 1
p
)(1 − q1− p

2 )∏ℓ≠j(1 − �j−ℓ
p )

=
1 − q− p

2

(1 − �j
pq

1
2

− 1
p )2�nj

p qn( 1
2

− 1
p
)(1 − q1− p

2 )p
.
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吀栀e sum over these residues gives 

p−1∑
j=0

A1,�j
p

=qn( 1
p

− 1
2
) 1 − q− p

2

p(1 − q1− p
2 )

p−1∑
j=0

1

(1 − �j
pq

1
2

− 1
p )2�nj

p

=qn( 1
p

− 1
2
) 1 − q− p

2

p(1 − q1− p
2 )

S2(n, q
1
2

− 1
p ).

We now compute Av−1 , the negative of the residue of the pole in A coming from u = 1
v

. We 
have that 

Av−1 = − 1
(2�i)

∮ vp − q1−p

(1 − q1− p
2 )(vp − q1− p

2 )(1 − v)2
dv.

In the expression above, we make the change of variables v ↦ 1/v. We get that 

Av−1 = − 1
(2�i)

∮ 1 − q1−pvp

(1 − q1− p
2 )(1 − q1− p

2 vp)(1 − v)2
dv.

Recall that we are now integrating over |v| = q�. Hence the integral is equal to the residue of 
the pole at v = 1. 吀栀is gives 

Av−1 = −
pq1− p

2 (1 − q− p
2 )

(1 − q1− p
2 )3

.

We consider the negatives of the residues at u = �j
pq

1
2

− 1
p  and at u = �j

pq
1
2

− 1
p v−1. For 

u = �j
pq

1
2

− 1
p  we get 

A�j
p

= 1
2�i

∮ (1 − q−1vp)v−n

p(1 − �j
pq

1
2

− 1
p )(1 − �j

pq
1
2

− 1
p v)(1 − vp)(1 − v)(�j

pq
1
2

− 1
p )n

dv
v

.

In the above, we shi昀琀 the contour of integration to |v| = � and let � → ∞. We encounter 
poles at v = �k

p  for k = 0,… , p − 1 (a double pole at v = 1 and simple poles at v = �k
p  and 

k = 1,… , p − 1). We then have that 

A�j
p

=
p−1∑
k=0

A�j
p,�k

p
,

where A�j
p,�k

p
 corresponds to the residue at v = �k

p . Computing the residue at v = �k
p  for 

k = 1,… , p − 1 and v = 1 we get 

A�j
p

=
p−1∑
k=1

(1 − q−1)qn( 1
p

− 1
2
)

p2(1 − �j+k
p q

1
2

− 1
p )(1 − �j

pq
1
2

− 1
p )(1 − �k

p)(�k+j
p )n

+
qn( 1

p
− 1

2
)

p(1 − �j
pq

1
2

− 1
p )(�j

p)n
( n(q − 1)

pq(1 − �j
pq

1
2

− 1
p )

+
p + q − 1 + pq − �j

pq
1
2

− 1
p (pq + 3q + p − 3)

2pq(1 − �j
pq

1
2

− 1
p )2

).
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Now we want to sum over j = 0,… , p − 1 and then over k = 1,… , p − 1. Notice that 

p−1∑
j=0

p−1∑
k=1

�−n(k+j)
p

(1 − �j+k
p q

1
2

− 1
p )(1 − �j

pq
1
2

− 1
p )(1 − �k

p)

=
p−1∑
j=0

p−1∑
k=1

�−n(k+j)−k
p

(1 − �j
pq

1
2

− 1
p )2(1 − �k

p)
−

�−n(k+j)−k
p

(1 − �j
pq

1
2

− 1
p )2(1 − �j+k

p q
1
2

− 1
p )

=
p−1∑
j=0

�−nj
p

(1 − �j
pq

1
2

− 1
p )2

p−1∑
k=1

�−(n+1)k
p

(1 − �k
p)

−
p−1∑
j=0

p−1∑
k=0

�−(n+1)(k+j)+j
p

(1 − �j
pq

1
2

− 1
p )2(1 − �j+k

p q
1
2

− 1
p )

+
p−1∑
j=0

�−nj
p

(1 − �j
pq

1
2

− 1
p )3

=
p−1∑
j=0

�−nj
p

(1 − �j
pq

1
2

− 1
p )2

p−1∑
k=1

�−(n+1)k
p

(1 − �k
p)

−
p−1∑
j=0

�j
p

(1 − �j
pq

1
2

− 1
p )2

p−1∑ℓ=0

�−(n+1)ℓ
p

(1 − �ℓ
p q

1
2

− 1
p )

+
p−1∑
j=0

�−nj
p

(1 − �j
pq

1
2

− 1
p )3

=S2(n, q
1
2

− 1
p )

p−1∑
k=1

�−(n+1)k
p

(1 − �k
p)

− S2(−1, q
1
2

− 1
p )S1(n + 1, q

1
2

− 1
p ) + S3(n, q

1
2

− 1
p ).

We also have 

p−1∑
j=0

�−nj
p (pq + p + q − 1 − �j

pq
1
2

− 1
p (pq + 3q + p − 3))

2pq(1 − �j
pq

1
2

− 1
p )3

=
p−1∑
j=0

�−nj
p (pq + p + q − 1)

2pq(1 − �j
pq

1
2

− 1
p )2

−
�(1−n)j

p q
1
2

− 1
p (q − 1)

pq(1 − �j
pq

1
2

− 1
p )3

.

Pu琀琀ing the above together, we have 

p−1∑
j=0

A�j
p

=
qn( 1

p
− 1

2
)(q − 1)

p2q
[S2(n, q

1
2

− 1
p )(p − 1

2
− [n + 1]p) − S2(−1, q

1
2

− 1
p )S1(n + 1, q

1
2

− 1
p )

+ S3(n, q
1
2

− 1
p )] +

qn( 1
p

− 1
2
)

p
[n(q − 1)

pq
S2(n, q

1
2

− 1
p ) +

pq + p + q − 1
2pq

S2(n, q
1
2

− 1
p )

−
q

1
2

− 1
p (q − 1)
pq

S3(n − 1, q
1
2

− 1
p )]
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=
qn( 1

p
− 1

2
)

p
S2(n, q

1
2

− 1
p ) +

qn( 1
p

− 1
2
)(q − 1)

p2q
S2(n, q

1
2

− 1
p )(n − [n + 1]p)

−
qn( 1

p
− 1

2
)(q − 1)

p2q
S2(−1, q

1
2

− 1
p )S1(n + 1, q

1
2

− 1
p ) +

qn( 1
p

− 1
2
)(q − 1)

p2q
S3(n, q

1
2

− 1
p )

−
q(n−1)( 1

p
− 1

2
)(q − 1)

p2q
S3(n − 1, q

1
2

− 1
p ).

For u = �j
pq

1
2

− 1
p v−1 we get 

A�j
pv−1 = − 1

2�i
∮ vp − q−1

p(1 − �j
pq

1
2

− 1
p )(v − �j

pq
1
2

− 1
p )(vp − 1)(1 − v)(�j

pq
1
2

− 1
p )n

dv.

Note that there is no pole of the integrand inside the contour of integration with |v| = q−�, so 
this integral is equal to 0.

Finally, pu琀琀ing all the non-zero residues together and se琀琀ing n + 1 = d gives 

S(d − 1) + S(d − 2) = A1,1 + Av−1 +
p−1∑
j=0

A1,�j
p

+
p−1∑
j=0

p−1∑
k=1

A�j
p,�k

p

=
d(1 − q1−p)

(1 − q1− p
2 )2

−
2pq1− p

2 (1 − q− p
2 )

(1 − q1− p
2 )3

+
q(d−1)( 1

p
− 1

2
)(1 − q− p

2 )

p(1 − q1− p
2 )

S2(d − 1, q
1
2

− 1
p )

+
q(d−1)( 1

p
− 1

2
)

p
S2(d − 1, q

1
2

− 1
p ) +

q(d−1)( 1
p

− 1
2
)(q − 1)

p2q
S2(d − 1, q

1
2

− 1
p )(d − 1 − [d]p)

−
q(d−1)( 1

p
− 1

2
)(q − 1)

p2q
S2(−1, q

1
2

− 1
p )S1(d, q

1
2

− 1
p ) +

q(d−1)( 1
p

− 1
2
)(q − 1)

p2q
S3(d − 1, q

1
2

− 1
p )

−
q(d−2)( 1

p
− 1

2
)(q − 1)

p2q
S3(d − 2, q

1
2

− 1
p ).

�

5 . AG R E E M E N T W I T H T H E R A N D O M M AT R I X M O D E L S
Here, we show that the asymptotic formula in 吀栀eorem 1.3 agrees with the conjectured asymptotic 
formula for the moments in a family with unitary symmetry. We note that considering the moment 
with absolute value, as in 吀栀eorem 1.3, is the more standard moment to consider for a family with 
expected unitary symmetry.

Starting with the observation of Montgomery and Dyson that the zeros of �(s) seem to obey the 
same distribution pa琀琀erns as the eigenvalues of large random unitary matrices, random matrix mod-
els have been given for families of L-functions and have been instrumental in the formulation of 
conjectures in number theory. Associating a random matrix group to each family of L-functions as 
suggested by the work of Katz and Sarnak [30], Keating and Snaith [31, 32] used random matrix 
theory computations to conjecture formulas for moments in families of L-functions.

We reproduce here the expected conjectures in the cases of families of L-functions with unitary 
symmetry.
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Let ℱ denote a family of L-functions. For f ∈ ℱ, let c(f ) denote the conductor of the L-function 
associated to f, denoted by Lf (s). Let 

X* = ∣{f ∈ ℱ : c(f ) ≤ X}∣.
In the case of a unitary family, the Keating–Snaith conjecture states the following.

Conjecture 5.1. For a family ℱ of L-functions with unitary symmetry and k a positive integer, 

1
X*

∑
f ∈ℱ

c(f )≤X

|Lf (1/2)|2k ∼ a(k)gU(k)(logX)k2
,

where a(k) is an arithmetic factor depending on the speci昀椀c family considered, and where 

gU(k) =
k−1∏
j=0

j!
(j + k)!

.

In particular, in the case of the second moment (k = 1), we have gU(1) = 1.
Note that Conjecture 5.1 above is stated for a family of L-functions over number 昀椀elds, but a sim-

ilar Conjecture can be stated in the function 昀椀eld se琀琀ing. Namely, for a family ℱ of L-functions over 
function 昀椀elds with expected unitary symmetry, one would expect 

1
D*

∑
f ∈ℱ

logq c(f )=d

|Lf (1/2)|2k ∼ a(k)gU(k)dk2
,

where 

D* = ∣{f ∈ ℱ : logq |c(f )| = d}∣.
Note that the leading order term in 吀栀eorem 1.3 (apart from the arithmetic factor which depends on q
and which corresponds to the factor a(1) in Conjecture 5.1) matches the conjecture above (it is equal 
to 1), under the correspondence: ℱ = ��0

d , Lf = ℒ(u, f ,�), logq |c(f )| = d. (20)

(Technically, the degree of the conductor is d + 1, but this leads to the same asymptotic.)
It is also possible to extract a conjecture for moments without absolute value from Keating and 

Snaith’s work [32] by following the computation in Section 2 of [16]. 吀栀is leads to 

1
X*

∑
f ∈ℱ

c(f )≤X

Lf (1/2)k ∼ a(k, 0),

where, as before, a(k, 0) is an arithmetic factor. Translating as before, this leads to 

1
D*

∑
f ∈ℱ

logq c(f )=d

Lf (1/2)k ∼ a(k, 0).

Once again, we recover the result of 吀栀eorem 1.1 under the correspondence (20).
Hence the polynomial family is expected to have unitary symmetry, as suggested both by 吀栀eorems 

1.1 and 1.3 and by the local statistics results due to Entin and Pirani [17, 18].
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