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ABSTRACT

We compute moments of L-functions associated to the polynomial family of Artin—Schreier covers over [,
where g is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes
to infinity. More specifically, we compute the kth moment for a large range of values of k, depending on the
sizes of p and g. We also compute the second moment in absolute value of the polynomial family, obtaining an
exact formula with a lower order term, and confirming the unitary symmetry type of the family.

1. INTRODUCTION

In this paper, we are interested in evaluating moments of L-functions associated to Artin—Schreier
covers of PL. Computing moments in families of L-functions has a long history. For example, the
moments of the Riemann zeta-function ((s) were introduced by Hardy and Littlewood [25], who
obtained asymptotic formulas for the second moment. The fourth moment was studied in [24, 26].
There has been a wealth of literature on moments in various other families of L-functions; for a (non-
exhaustive) list, see for example [13, 42, 43, 47].

Here, we focus on the moments of L-functions of Artin—Schreier curves. These form an interesting
family with a rich arithmetic structure. Their zeta functions are expressed in terms of additive char-
acters of [, not in terms of multiplicative characters (as in the case of hyperelliptic curves or cyclic
{-covers, for example). The terms corresponding to a fixed additive character can be expressed as expo-
nential sums. The extra arithmetic structure can be used to refine the Weil bound on Artin—Schreier
curves [38].

Statistics of zeros of Artin—Schreier L-functions have been extensively studied. When the size of the
finite field goes to infinity, one can use deep equidistribution results of Katz [27], building on work of
Katz—Sarnak [30], to show that the local statistics are given by the corresponding statistics of eigenval-
ues of random matrices in certain ensembles, depending on the specific family under consideration.
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When considering Artin—Schreier curves, the p-rank introduces a stratification of the moduli space of
covers of genus g [36]. For example, p-rank 0 corresponds to the family of polynomial Artin-Schreier
curves, while, when (p — 1) divides the genus, the maximal p-rank corresponds to the family of ordinary
Artin-Schreier curves. Using the Katz—Sarnak results, one can show that in the large finite field limit,
the local statistics in the polynomial family follow the local statistics of the unitary group of random
matrices ([27, Theorem 3.9.2]).

One can also consider the same statistics in the regime when the base finite field is fixed, and the
genus of the family goes to infinity, in which case one cannot make use of the equidistribution results.
In this case, as in the number field setting, one can usually compute only a few small moments (see,
for example, [ 14, 20-22, 44]); a notable exception is the very recent work on moments of quadratic
Dirichlet L-functions over function fields, which recovers all the moments [9, 35].)

Entin [17] considered the local statistics for the polynomial Artin-Schreier family and showed
agreement with the random matrix model; these results were further improved and extended to the
ordinary and odd polynomial families in recent work of Entin and Pirani [ 18]. The mesoscopic statistics
for the ordinary and polynomial families (as well as other p-rank strata) were considered in [4, 8],
where the authors showed that the number of zeros with angles in a prescribed subinterval I of [, 7]
whose length is either fixed or goes to 0, while g|I| — oo (where g denotes the genus of the family), has
a standard Gaussian distribution. One notices that the mesoscopic scale does not distinguish between
the various Artin—Schreier families; hence, the local scale is a finer detector of the family structure. We
note that the local statistics of zeros in the fixed finite field limit have been studied over function fields
in the case of hyperelliptic curves [10, 11, 19, 37, 40], cyclic {~covers [ 5-7], non-cyclic cubic covers
of [F"[qu [3, 33] and Dirichlet L-functions [2]. The distribution of zeros in the global and mesoscopic

regimes were considered in [23] for hyperelliptic curves, in [45] for cyclic /-covers and in [46] for
abelian covers of algebraic curves.

In this work, we compute moments in the family of polynomial Artin—Schreier L-functions, and
show that the moments for the polynomial family behave like the moments of the characteristic poly-
nomials of random matrices in the unitary group. Moreover, we check that our answers agree with
conjectures about moments [12, 32]. Our results further support the Katz—Sarnak philosophy and
agree with the behavior observed in Entin [17] and Entin-Pirani [ 18] regarding the local statistics of
Zeros.

To describe our results, we first introduce some notation. Let p > 2 be an odd prime, and g a power
of p. An Artin—Schreier curve is given by the affine equation

Cf :yp_y =f(x)l

where f(x) € F, («) is a rational non-constant function, together with the automorphism y - y + 1.
Letp,,...,p,,; be the set of poles of f (x) and let d; be the order of the pole p;. Then the genus of Cis
given by

B r+l 3 r+1
MCf):I%(‘“}Z_;(dJH)) =P21 (r—1+jz_1:d].>.

To an Artin-Schreier curve one also associates its p-rank, which is defined to be the Z/p-rank of
Jac(C; % [Fq)[p] (see, for example, [36]). A curve with p-rank 0 is in the polynomial family, which
corresponds to the case in which f (x) is a polynomial. If we impose the extra condition that f(—x) =
—f(x), then the curve is in the odd polynomial family. When p — 1 divides g(Cf) , a curve with p-rank
equal to g(Cf) is in the ordinary family. We note that the techniques used to deal with the various
subfamilies of Artin—Schreier L-functions are different and do not transfer from one subfamily to the
others. In this paper, we focus on the family of polynomial Artin—Schreier L-functions. From now on,
we assume that f is a polynomial.
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The zeta function of C; is given by

Ze,(u) = exp (iNk(Cf)%k>’

where N (C;) denotes the number of points on C; over . (see, for example, [34, 39]). By the Weil
conjectures, it follows that

L(urcf)
(1-u)(1-qu)’

where £ (u, Cf) is the L-function associated to Gy which is a polynomial of degree 2g( Cf). It further
follows that

Zcf(”) = (1)

L@, C) = [ [ £(uf,v),
P#1
where 1) varies over the non-trivial additive characters of F, and where

£luf)=exp (Y50 L),
with
S.(H) = Y dlery,(f(@)).
a€F

(See, for example, [4, 8].)
In the above, tr,., : F . — [, denotes the absolute trace map.
Here, we will consider the family of polynomial Artin—Schreier L-functions. The polynomial Artin-

Schreier family, denoted by ./152, is defined for (d,p) = 1 by

A8 = {fE[F (f(x) = Zax’ a; #0,a;=0, ifj>0,p|j}. (2)

Each curve C;with f € AS8Y has genus ¢ = (p— 1)(d - 1)/2 and p-rank 0.

We will compute moments in the family above, and show that their behavior is given by that of
random unitary matrices. More precisely, we will prove the following theorems. Throughout, fix a
non-trivial additive character v of F,. Our results do not depend on the choice of 9.

THEOREM 1.1 Let p > 2 be a odd prime and d be such that (d,p) = 1. Asd — o0, for an integer
2<k< ql/z, we have

p-1

|A180|f§50 <%’f’w>k:1;[ (P%;;( %)k)

g(%—1)+2
(q (d+1)k(k+2)(k+1)dkk_l>,

(1-q 1)k

where the product on the right-hand side is over monic, irreducible polynomials; £, denotes a

primitive pth root of unity; |P| := q%8"), and the implicit constant in the error term is

independent of k, q for d sufficiently large.
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1258 + A.FLOREAetal.
When k = 1, we have
D
(1-q")(a-g7%)

REMARK 1.2 In order to get an asymptotic formula above for k > 2, we need

LS o)<

|fe/l8°

(k+1)(logq(k+2)+$> < %—e,

for some € > 0. Note that in the expression above, the greater logp q is, the more moments we
can compute. When g is a very large power of p, one would be able to compute roughly p
moments, while the case g = p would allow for a more restricted range of moments.

We also consider the second moment in absolute value for the polynomial family, which is the more
standard moment to consider in the case of a farmly with unitary symmetry. In this case, we obtain an

exact formula with a lower order term of size qu 2 as follows.
Form € Z,let [m], denote the element of {0, 1,...,p — 1} such that m = [m], (mod p).

THEOREM 1.3 Let p > 2 be an odd prime and d be such that (d,p) = 1. We have

s 2 [ %f )

|fe/l8°

zz(l—ql“’)d g (1-q7)
(1-4"2)2 (1-¢"%)3

v dg () (1_;) N
(1-4"72) p(1-4"7)

(i)
e

where C, is a constant depending solely on [d] . More precisely,

|
SN

-q 11 11 g-1 11
Cd=1 —S(d-1,¢> #)+S,(d-1,¢° P)+—pq $,(d-1,q* »)(-1-[d],)
_qt

q-1 11 11 g-1 1o g-1 11
-—5(-Lq* 1)S,(d,q* ")+ ——=83(d-1,q> 7) - ——S;(d-2,q* ),
pg 1 pg pg

where the formula for S,(n,x) is given by Lemma 2.3.

The proofs of Theorems 1.1 and 1.3 use different techniques. The proof of Theorem 1.1 has as
starting point the relationship between the L-function of an Artin—Schreier curve and the L-function
of a multiplicative character associated to each such curve, described explicitly in [17] and [18].
One can roughly express the kth moment in terms of the kth moment of multiplicative characters
of order p modulo xL Computing moments of L-functions associated to fixed order characters is
generally a difficult problem; moments of quadratic L-functions over function fields are relatively well-
understood (see, for example, [1,20-22]). Some partial results are known towards moments of cubic
L-functions (see [15]), and much less is known about higher order characters. However, in the case of
Artin-Schreier L-functions, the multiplicative characters of order p under consideration are modulo
x?, which is special. In this case, one can use the dichotomy exploited by Keating and Rudnick in [29],
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to express sums of the kth divisor function in arithmetic progressions in terms of short interval sums
over function fields. One can then use strong results about the sum of the generalized divisor function
in short intervals over function fields due to Sawin [41].

Proving Theorem 1.3 requires different ideas, as one cannot rely on results about the divisor func-
tion in short intervals in this case. Instead, we use the approximate functional equation to write the
absolute value squared of the L-function in terms of sums of length roughly d (note that the L-function
is a polynomial of degree approximately d), and then we use orthogonality relations for the sums over
additive characters as in the work in [4]. We remark that in Theorem 1.3 we computed a specific lower

2~ 1
order term of size X B where X is roughly the size of the family, that is, X = qd(k; ).

The paper is organized as follows. In Section 2, we provide some background on Artin—Schreier
L-functions and gather the results we will need from the work in [18]. In Sections 3 and 4, we prove
Theorems 1.1 and 1.3, respectively. We finally check that our results match the Random Matrix Theory

predictions in Section 5.

2. ARTIN-SCHREIER CURVES AND L-FUNCTIONS

Here, we will give some basic properties of Artin—Schreier L-functions and their associated characters.

2.1. Some generalities of function field arithmetics

We first introduce some notation and basic objects of study. Let M denote the set of monic polynomial
inlF, [x], M, the set of monic polynomials of degree nin [F g [x],and M, the set of monic polynomials

of degree less than or equal to n. For f a polynomial in M, let d;.(f) denote the kth divisor function
(e, d.(f) = Zf}.g;‘ 1). This is extended for non-zero polynomials in I, [x] by di(cf) := d,.(f) for
=

S [F;.
The zeta-function of [F, [] is defined by

6= ﬁ

fem
for Re(s) > 1. By counting monic polynomials of a fixed degree, it follows that

1
l_ql—s’

6, =

and this provides a meromorphic continuation of ¢, (s), with a simple pole at s = 1. Making the change
of variables u = g™, the zeta-function becomes

2= 3" w0 ] (1),

feat 2
for |u| < 1/q, where the Euler product above is over monic, irreducible polynomials. One then obtains

the expression

1

Zu) = 1-qu

)

for the zeta-function in the whole complex plane, having a simple pole at u = L

Throughout the proof of Theorem 1.3, we use Perron’s formula over function fields. Namely, if
A(u) = ZfeMa(f)udeg(f) is absolutely convergent in |u| < r < 1, then

_ 1 A(u) y A(F) = 1 A(u) u
Z a(f) - 27 lu|=r yn+l di Z (f) 27i %;;:r u"“(l —u) du (3)

fem, fem,,

G20z Ae|\l G| uo Josn auinl| ‘eluiopeD Jo AusieAlun Aq G/029.L/SSTLIvIS /o1 /uyewlb/woodno-oiwepese)/:sdiy woly papeojumod



1260 . A.FLOREAetal.

2.2. Artin—Schreier L-functions

‘We will consider curves given by the affine equation
Cr:yf -y =f(x),

where f(x) € F, [x] is a polynomial of degree d and (d,p) = 1, together with the automorphism y -
y+ 1. Recall the definition (1) of the L-function £ (u,f, 1), where 1 is a non-trivial additive character
of F,,. We also have the following Euler product for the L-function:

-1
]

Swf,) = [T (1= (PJutes®)
where

zl)f(P) = Z P(f(a)) = w(trqdegp/pf(a)) forany o arootof P,
Otel]:qdegp
P(a)=0
and wheretr,,, : F ;. — [, is the absolute trace map. We extend ¢ (F) to a completely multiplicative

function for any element of [Fq (x) by setting wf(O) =0and wf(c) = 1 for any non-zero ¢ € [Fq.
On the other hand, we also have that the L-function is a polynomial of degree d — 1, so we can write

d-1
L (M,f, 7/}) = Z aj(f) 1/1)uj,
=0
where
a(f, ) =Y Uy(F).
FEM;

The functional equation of £(u,f, 1)) is given by
£(uf,0) = (@) TL( 51, 0). (4)
qu

(see [38, Section 3].)

‘We will now explain how to associate a multiplicative character to each Artin—Schreier L-function.
Before that, we quickly recall some basic facts about Dirichlet characters over F, [x] and their
L-functions.

2.3. Multiplicative characters and their L-functions
Let Q (x) denote a monic polynomial in F, [x]. A Dirichlet character modulo Q is defined to be a
character of the multiplicative group ( Flx]/ Q)*, extended to a completely multiplicative function
by x(g) = 0forany (g,Q) # land x(g) = x(g (mod Q))if (g,Q) =1.

A Dirichlet character is even if x(cF) = x(F) for any 0 # ¢ € [Fq, and odd otherwise. A charac-
ter is primitive if there is no proper divisor Q, |Q such that x(g) = 1 whenever (g,Q) =1landg =1
(mod Q).

If Q € M, and H denotes a subset of the group of characters modulo Q, we denote by H" the set
of primitive characters in H.

The L-function associated to a Dirichlet character x modulo Q is given by

£Gux) = Y x(Eues® = TT (1-x(pue®))
FeM P

where the product is over monic irreducible polynomials P. Using orthogonality of characters, it

follows that if x is non-principal, £(u, \) is a polynomial of degree at most deg(Q ) — 1.
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If  is a primitive character, then the Riemann hypothesis for £(u, ) is true, and we can write

deg(Q)-1-¢(x)

L) = (1= @ T (1-uvas),

j=1
where | p;| = 1 are the normalized inverse roots of £ (1, X ), and where €(x) = 1 if y is evenand €(x) =
0 otherwise.

2.4. Multiplicative characters associated to Artin—Schreier curves

Here, we gather a few results we need from the work of Entin [17] and Entin—Pirani [ 18], which relate
the Artin—Schreier L-functions to Dirichlet L-functions. For (d,p) = 1, let

d
F,= {f €F,[x] : f(x) = Zaixj,ad #0,a;=0 ifp |]}
=0
Note that we have
d-14]-
1l = (q- a1,

Using (2), we can write

ASS=| |{f+b:feF}. (5)

bel,

We have the following result from [18].

LemMA 2.1 [18, Lemma 2.1] Forf € F (x)\F, which is not of the form f = h” — h for
he [Fq(x), we have £ (u,f + b,1)) = L(w(trq/p(b)) “u,f,1).

ForceF, [«], if x|c, we put Xf(c) = 0; otherwise, let

X =1y, (Y f(@))).

c(a)=0

We also have the following.

PROPOSITION 2.2 [17,Lemmata7.1,7.2] Assume that (d,p) = 1, andf € F . Then

® Xyis a primitive Dirichlet character modulo x¥1 of order p. (In particular X is even since

(p,q—1)=1,and \[F;| =q-1)
o The map

F; — {primitive Dirichlet characters modulo x**'of order p}

given by f = X is a bijection.
i L(”}Xf) =(1- u)£’(“rf;¢)‘

Following [18], for an abelian group A and a group of characters B C A’ let
Bt ={acA: x(a)=1forall x € B}.
The orthogonality relations imply that

1 1 ifac B,

XEB
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2.5. Sums involving roots of unity

Here, we will prove certain results about sums involving roots of unity, which we will use repeatedly
throughout the paper. Let

Sy(n,x) i &
\,X) = - (l_géx)fj

where &, is a non-trivial pth root of unity in C. We will obtain formulas for § ,(n,x) for £ = 1,2,3. For
m € Z, recall that [m],, denotes the element of {0, 1,...,p — 1} such that m = [m], (mod p).

LemMA 2.3. For |x| > 1 and n € Z, we have

b
8y (mx) =

—ab’

S,(nx) = I’x[ﬁl]f1 (

[n+1], pat
- (1-ar)?

and

palm 2 ([n+2] ([n+2],-1) p(2[n+2]p+p—1)xp 2%
Sy(n,x) = .

+
2 1-«F (1-xp)2 (l—xP)3

Proof. We have

p-1 [e’e]
_ 1 _k (n+1+k)j
Sl(n’ ) Z(l £ ) nj __;;x ng
j=0 p j=0
00 —[-n-1],-1
__F S
T ox Z ¥ 1-x7 '

k=0
k=-n-1 (mod p)

since the inner sum in the first line is equal to p when n + 1 + k is divisible by p, and 0
otherwise.
Notice that [-n — l]p +l=p- [n]p, giving

Pl

S, (n,x) = et

The expressions of S, (n,x) and S;(n,x) can be obtained by using the fact that

10
S[+l (n,x) = ZaS@(ﬂ + l,x)

when ¢ > 0. O

‘We will also need the case x = 1. More precisely, we prove the following result.
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LEMMA 2.4. We have

p-1 l_gfli p-1 L
Z(1+§p ~+§I(, 1)’)=p—a.

T (1-g) A
By looking at the logarithmic derivative at x = 1 of &' + -+ +x+ 1 = H]‘:l (x - 5;,) , we have

Z

j=1 (1 gp :T'

‘We conclude by combining the above equations. O

2.6. Some combinatorial identities

Here we consider some combinatorial identities that will be needed in the proof of Theorem 1.1.

LEMMA 2.5 Letr,t,m > 0 be integers and s real. Then

r

L))o= (55) g

j=0
This can be found in Equation (24) in [28, 1.2.6].

LEMMA 2.6 Ifm,r,t € Zwithm>0andr,t > 0, then

ro 1)y
(TS0 (L) - (), ®
Proof. First notice that
()0 ()
Therefore, it suffices to prove
CZ 07 )= G)
m 5 j r=j) m+r—j m+r /)’

S () ()= ey ey,

=0

r

j:
Notice that

where the notation [ -], indicates the coefficient of T” in the expression inside the brackets.
We integrate to get

r

3 (‘tj”l> (rf]) m+1r—j = [aem) [ (L aT) .

j=0
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By doing integration by parts repeatedly, we obtain

e [ tdy — ¢ lm_l (_l)h (1+T)h
(1+7T) [x (1+xT)dx—t.(m—l).;(h+t+1)!(m_1_h)! Thtl

t(m-1)1(-1)"
(m+t)ITm(1+T)H1

The only term above contributing to a monomial T" is the last one, with coeflicient

ti(m-1)1(-1)" [—t-1 1 (-t-1 L/ s
(m+1t)! m+r) m\ m m+r)’
This proves the result. O

3. PROOFOF THEOREMI1.1

Before proving Theorem 1.1, we first state some results that we will need and prove some preliminary
lemmas.

The following estimate for sums of the generalized divisor function in short intervals is due to Sawin
[41], and will be crucial in our computations.

ProrosITiON 3.1 ([41, Theorem 1.1.]) For natural numbers n, h, k with h < n and f a monic
polynomial of degree n in 7, [ T], we have

S ae0- (") o< (5 el L)
¢F,[T) -1 -1
degg<h

‘We will now prove the following lemma.

LEMMA 3.2 Letn>d > 0andlet A(x) € F,[x] such that A(0) # 0 and deg(A) < d. Then

N (k1Y (K)o
> am=> ("I (4 e
deg(E)=n j=0

F(x)=A(x) (mod x*')

k-1 \ d-deg(A)+k /d-deg(A) +k-1
+O<<”—d—1> n—deg(A) ( k-1 )dk(A)

n (k+2)n+dq%<(n—d)(l+i)+2) (n+k- l)kl),

and the implied constant in the error term above does not depend on k and q.

Proof. Let

d
Ax) = Z ajxj ,
=0

where a,€Fya # 0 (note that a; can be 0). Also note that we can assume, without loss of
generality, that a;, = 1. Otherwise, we can rewrite the sum as
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> d,(F) = > dy(F),

deg(F)=n deg(F)=n
F(x)=A(x) (mod ™) ag'F(x)=A,(x) (mod x*1)

where A, (x) = ay'A(x). Since d,.(F) = d,(cF) for c € [F;, we easily see that

> d,(F) = > d, (F),

deg(F)=n deg(F)=n
F(x)=A(x) (mod x*) F(x)=A,(x) (mod ™)

and A, (x) has the property that its constant coefficient is 1.
Now since F(x) = A(x) (mod x%*!), we write

F(x) =fx"+ ~~~+fd+1xd+1 +adxd+-~+a1x+ 1,

where f, # 0. Now let

1

F(x) = x”F(;)

be the reverse polynomial of F. Then we have

* — —, —d—-
F(x)=a"+a,x" "+ +an" d+fd+1x” 1y "

and deg(F") = n. Note that we can write

F'(x) = 2" 9WA" (x) + g(x),

where g(x) varies over polynomials of degree less than n — d and such that g(0) # 0. Also
note that for F(x) such that F(0) # 0, we have d;(F) = d,(F"). Hence we rewrite

> dF) = Y dglx) +x DA (2)).

deg(F)=n deg(g)<n-d
F(x)=A(x) (mod x%) g(0)#0

We have

Z di(g(x) + x"4es4) A" (x))

deg(g)<n—d
n—d-1
= dk(x”_deg(A)A*(x)) + Z di(+) Z di(g(x) + x”_j_deg(A)A*(x))
j=0 deg(g)<n-d-j
g(0)#0
n—d-1

S (RO @@+ Y ()Y @ e a ), o)
j=0 deg(ig);z*dﬁ'
2(0)#0

n—deg(A

where the term d (« VA" (x)) is accounting for the polynomial g = 0, which we consider

to have degree —oo.
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Forn >0, we let

Vo= > dlg(e) +a DA () and  B,= Y dy(g(a) +amAEWA(R).
deg(g)<n deg(g)<n
g(0)#0
Set also by convention (to take into account the polynomial g =0), 7, = d;. (x¥des) A" (x))
and f, = d, (A" (x)). Then, (9) can be written as

n—-d—-1
—deg(A) +k-1 +k-1
Vn-d = <n gk(_)l ) + (J ) n—d-j- (10)
j=0
‘We claim that for n > 0,
k_1> d-deg(A) +k a1 (k) )
=(-1)" —_—+ ) (1Y, 11
a0 (0 01) ot 2 () 0 ()
Indeed, for n = 1 we have from (10) that v, = <d+ - dzg_(f) k- 1) By + B, which gives

_ d-deg(A)+k
ﬁ =N- d-deg(A)+1 To-
integers up to n. By (10), we have

We proceed by induction. Suppose that (11) is true for all positive

+d+1-deg(A)+k-1 " litk-1
7n+1=(n k_gl( ) )ﬂo"’Z(]k_l )ﬁrﬁl—j’

and

d-deg(A) +k ~ (j+k-1
Bt =7n+1_<n+ kigl( )+ >BO_Z<]-};_1 )Bnﬂ—j

j=1

(n +d—-deg(A) + k) (d— deg(A) + k- 1)‘1
Yo+l — k-1 k-1 Yo

—d- deg(A)+k)Z<]+k 1) (I:,__D d_de;_(;);lnjﬂ_j%

SO () e

j=1
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Applying Lemma 2.6, we have

k—1> d—-deg(A) +k

— -1 n+l<
/Brl+l ’Yn+1+( ) n d—deg(A)+n+l’yO

Z (J A 1) Z (fli]> (_l)l_j%ﬂ»er where £ = j+h,

05
k_1> d-deg(A) +k
n ) d—deg(A)+n+1°

=,7n+1 + (_1)n+1 (

() () 0

=1 j=1

Va1t (_1)n+1 (

n £-1
— Z Z <€ +k-1- m) (i) (_1)”1’7’”172, where m = 8 _]',

/=1 m=0

oy + (1) (

. ; (7) Do

k—l) d-deg(A)+k
n d—deg(A)+n+1%

k—1> d-deg(A) +k
n d—deg(A)+n+1%

where in the last equality we applied Lemma 2.5.

This concludes the induction proving (11).

Putting (9) together with Proposition 3.1 in the case = n — d — j and using the fact that
A (x)x”_deg(A) 7 is a monic polynomial of degree 1 — j, it follows from (11) that

Yo d®= Y A+ DA () =

deg(F)=n deg(g)<n-d
F(x)=A(x) (mod «*') g(0)#0
L k=1 d-deg(A)+k g
N OLTR TP,
n n—deg(A) =
n—d-1

n—j+k—1 k _1\j
S () e

(
+o((,1'5;;)%(*dei@z%*)@m

S (el i),
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Now notice that the sum over j in the error term above is

n—d-1 i
S (VIR (Y a5 )
=0 -1 J
n—-d-1 . ) .
< (k+2)™ Y (n-j+k- 1)k-1kf(k+z)-fqi(<”“”")(“5)”)
j=0
(n— d) 1+ + n ! k ,i(Hl)
<(k+2)"+d 2 (n—j+k-1)"1g 2\
=0
< (ke 2yigh (000 2) Gy — L
1_q*z(“;)
1 1 _1\k-1
< (k+2)n+dqz<(”’d)(”;>*2> (ntk-1"7 11) ,
1-372
This finishes the proof of the statement.
Now for ¢ (mod p), we let
W(try, (b))
o=y )
beF, (1 3 w(trq/p(b))>
Vi
We will prove the following.
Lemma 3.3 For ¢ (mod p), we have
]é

o (0) = . Z

j ey <1 q—l/zg)

Proof. We have

(e, ()
a(0) =Y (tr,, (b)) (1 - %)

belF,
(try, (b))
Z§ : 9/p
2 ) g )< % )

by the binomial theorem. Therefore,

o (6) = Z( ) q*“)tharq/p(b))‘f*h

The inner sum above is equal to g when £ + h is divisible by p. Otherwise, the inner sum is
equal to zero since 1) is a nontrivial additive character. Therefore,

[e%e} p-1 )
@ =13 () oy g,
=0

) Gy
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We switch the order of summation and use the binomial theorem again to conclude that

q p-1 oo . q J[
w0255 () () <1
P75 h=0 j=0 (1 q z§’>
O
‘We are now ready to begin the proof of Theorem 1.1.
Proof of Theorem 1.1 Using (S), Lemma 2.1, and Proposition 2.2, we write
LS (L)
|"48 |fe/l8° \/q
Sy e (L)
|5td| bel, feF, (

Ly (M)

q|‘Td| be[qug_’}‘d \/q

k

_ 1 Z 1 ZL w(tfq/p(b)) X

al7d & (1 ~ wm.,/,,(b)))k = Va f

Vi
q|‘?d| be[F <1 w(trq/P(h)))kfedequd \/ |F‘
Vi F(0)%0

I ONONG .

9174l {7 o, VIF|

F(0)#0
Interchanging the sums over f and F, we then need to study > feF, Xs (F) for F fixed.
Let
H,={x (mod«x"):x’=1}
and

HY = {x € H, :  primitive }.

(We will work with both n=d and n = d + 1.) Using Proposition 2.2, there is a bijection
between J; and Hgil. Moreover, a character in H,_, that is not primitive is necessarily a
character in H,;. Thus we have

i

d+1 — Hd+1 \Hd'

It follows that

S xE) =D x(B)= > x(B)- ) x(®).

feF, XEH" X€Hy,, X€H,
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Now, using (6), we have

0 F¢H

> X (F) =< - |H,| FeHi\ Y. (13)

fe%s |Hd+1| - |Hd| Fe Hdl+1

Notice that H; C H,,, implies that Hd e HJ‘

Let us compute the order of H, with p } n. Following the proof of [17, Lemma 7.1], |H, |
corresponds to | ([F [x]/x")*[ | ]| and that corresponds to counting polynomials

g(x) = Z ¢ ' such that g(x)p =1 (mod «") and ¢, # 0 (so that g(x) is a unit). Taking
the pth power, we see that this imposes the condition c) = 1 (implying ¢, = 1) and
dtl’ == CI[HJ =0 (implying ¢, = -+ = c[ﬂJ = 0). The total count is then
= »
n 1 "
(‘1 1) n—l—[;J
[ L (g-1)

where we have used that, since p } n, we have \‘" IJ = f

By [18, Lemma 4.1], F(x) € F [x] with F(0) # 0 satlsﬁes X(F) =1forall x € H,, if
and only if F(x) = R(x”) (mod x**!) for some R(x) € F ;[x] with R(0) # 0 and
deg(R) < [ J A similar result applies for F(x) € [, [x] with F(0) # 0 that satisfies

X(F) = 1forall x € H,.
Putting (12), (13) and the observation above together, we get that

! A ey el o (deg(F))d; (F)
s 2, () 3 2 T T

|H,| =

)

F(o);&o
F(x)E d+1
CH o ou(deg(F)d,(P)
A%l 52, VF]
F(0)#0
F(x)€H;
_[Hy |Hy|
kd+l = = kd
q|F 4l o alF4l
S S
_Okdtl kd ’ (14)
q-1 g(q-1)
where
S _ Z Z o (deg(F))d,(F)
kd+l = — =
’ deg(R)< L J FeM oy V |F‘
R(0)40 F(x)=R(x*) (mod x*")
and

o (deg(F))d,(F)
Sea= Y > A A
" deg(R)<[’1 IJ FEM 4y \% |F|

ROy, - FEO=RE)  (mod )
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Notice that since p } d, the condition deg(R) < EJ is equivalent to the condition

deg(R) < Vﬂ :

Now note that the terms in the inner sum that satisfy deg(F) < d for Std (resp.
deg(F) <d+1for Skldﬂ) have the property that F(x) = R(x”), and we can write
R(#") = Ry(x)* by applying the Frobenius automorphism.

When k = 1, note that we have S, 4,, = S, ;, and using (14), we have that the moment
under consideration equals

1 3 o, (deg(R)p) al(O)Zq’ 1(q 1) al(o)(l_q_l)1_q(1‘§)([ﬂ“)‘

r

q REMS[ | IR|: =0 qz q l_q(l’g)
R(0)%0

Note that Lemmas 3.3 and 2.3 imply that

pl 3 p-1 m 3
q> P q?
a@=1y LS T (1, 4) -
p,ol__ﬁ szol—fp\/q l—q*§

Vi

Putting the above together finishes the proof of Theorem 1.1 in the case k = 1.
Now we consider k > 1. Suppose that n > d. Then, using Lemma 3.2, we
have that

n—-d—1

> d(F) = > (n ]+k 1) (]]C) (~1)ig"4

deg(F)=n J

F(x)=R,(x)? (mod x™")
k-1 \ d-pdeg(Ry) +k /d—pdeg(R,) +k-1 »
+O(<”_d_l> n-pdeg(R,) ( k-1 )dk(Ro)

s (ka2 (m0()2) g 1)k-1>

n-d-1

e (e
0 ((n:;) %Z (d;;l:l> di(Rg)
S )

Notice that the main term in the above expression is independent of R(«?). Moreover,
d.(F) = d(cF) for any ¢ € F and similarly |F| = |cF|. Thus, we get the same value if we sum
over F non-monic and divide by g — 1 to account for the leading coefficient. Putting all of this
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together, we have

dk(Rp)
Skae1 =4 (0) Z
Ry | |f§ﬂ
Ro(o#o

1 Q@ (n)
=D V. B DI
q deg(R)<L Jd<n<kd qz deg(Fy=n -
R(0)#0 F(x)=R(x) (mod x™")

dk(Rg) FJ Oék(n) nd-1 n—j+k—l k i
= ( ) -5 P —_— ) (_1)] n—d—j
o R0€;[ | |R0‘£ " dm;ai q2 j:zo ( k-1 ) (]) 1
Ry(0)0

ooty A X (5 (1) £

R0€M<“17J d<n<kd q?

Ry(0)£0

d
+W S (kv 2y ign T k- 1)t )
d<n<kd

where we have used the bound | (n)| < ﬁ.

Now we bound the first error term in the equation above. We have

> oaw) S (5 ()

ROEM [ J d<n<kd q?

Ry(0)£0
kn—d—l

<@+ Y ARy Y

ROEMSLpJ d<n<kd qz

d(k-1)

1 - K™
<(@d+R)Kg 2 — > d(R)).

m=1 q ROEM<HJ
“Lp

To bound the sum over R above, we consider the generating series and we have

S d (RE)udes(®) H <1 N (Pﬁ; 1) wes@ 4 5 (J’P;fl- 1) uideg(Q)>

RyeM j=>2

2zl ) ),

where F(u) is given by an Euler product which converges absolutely for |u| < />

Perron’s formula, we get that

F(u) du
Rﬁ%:mdk(RO) ) %fq‘ e (P+k 1) u’
d (1-u)(1—qu)\ =1/ yld/p]

. Using

(18)

(16)
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We shift the contour of integration to |u] = g~'/>~

It then follows that

, and we encounter the pole atu = 1/4.

> Am) <q G)( 2 (17)

RoeM 4]

For the sum over m in (16), since k < g'/2, we have
d(k-1) .
k_/z = 1 f :
el s
Combining the equation above and (17) and (16), it follows that

p+k-1
» 1 (k-1 d+k-1)d+k k j(kl)
> oaw) S () () @it ) ay)
RyeM_ L J d<n<kd q 2
Ro(0)#0
and note that the implied constant above does depend on g and k.
Finally, we bound the second error term in (15) and we have

4 4 -(ki—l)+2

q” * d S
« N (k)i (k-1
(1-q12)F d;kd ( BPTHT

and the implicit constant in the error term above is independent of q and k. Note that this last
error term dominates (18) for d large enough. Putting these together, it follows that

P q n n-d-1 ni _ ' .
R e

R 4] IR, |2 dn<kd 42 =0
Ry(0)£0

(d+ 1) (k+2) D,

k+1

-(——1)+2
1 k d(k+1)7k-1
+O(—(1_q_1/2)k(d+l) (k+2) k )

Similarly,
n-d
k(Ro) d o (n k R~
s 3 LSl 5 S () (5 e
RyEM |R0| d<n<kd qz =0 J
Ro<o)#o
qd(k;l ) 2
k d(k+1)7.k-1
((1 1/z)k(d+1) (k+2) k )
Finally,

a

Skds1 Sk o (0) dk(Rg) qbJ a(n) (d+k-1 k ed
B - Z B k-1 n—d (-1)
g-1 q(g-1) q Ry | \ROI =155 g
Ro<o>seo

k+1

-(——1)+2
q— k d(k+1)7.k-1
+O<(1_q_1/2)k(d+1) (k+2) k ) (19)
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‘We remark that the second term above is bounded by

d — d n d_d
< g <d;:k 1) L ( k ) <gr(d+k-DME > k— < g (d+k-1)F,
_ T \pn—d ¥
d<n<kd q* d<n<d+k q*
where we used the fact that k < ql/ 2 Note that this term is also dominated by the error term
in (19).
Hence we get that

4L 1)+2

1 ( 1 £, (0) d,(R¥) ‘12( v k (k+1)dg k-1

—;fyd)) = +0| ————(d+1)"(k+2) k .

A A e, O\
R(o)aé(};

In the above, we extend the sum over R to all monic R with R(0) # 0 at the expense of an

p+k-1
PGS
error term of size q G )d k=1J Note that this error term is dominated by the error term
in the equation above. Hence we get that

d ([ k+1 _1)+2

1 1 k a,(0) d.(R?) g:\7 o
ASD > 4 <ﬁ’f’”> ==y +o<(1_q1/2)k(d+1)’<(k+2)<’< ik )

| dl feAs)

1 rem |R|:
R(0)#0
Using an additive character sum to detect pth powers, we further write the main term
above as
1 -1
. (0) G(RY) 1 1 1T (1 < 1 )
iy N » c\ k
19 rem [R|z P7% 0<1_£_§> pZx \P =0 (1_ 51{)
R(0)#0 Vi |P|
1
()
P p £=0 (1 _ 51{ )k
VIl
Combining the two equations above finishes the proof of Theorem 1.1 in the case k > 1. g

4. PROOFOFTHEOREM1.3

We first need to prove the following approximate functional equation.

LeMMA 4.1 (Approximate Functional Equation) Forf € ./452 and k € N, we have

‘(07

5 > d(F)d (H) vy (F) ) (H)
FHeM \% |FH|

deg(FH)<k(d-1)
d,(F)d m
Ly WL
FHEM V/|FH|

deg(FH)<k(d-1)-1
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Proof. Using (4), we have

etus o - @0 e (L)

Now
2k(d- 1) - 2k(d-1)
e =" w3 d B (B ) = > atn
- d:;(JFEI-IJ\)/in -

From the functional equation above, we get that
a(n) = ¢" ¥4 Va(2k(d - 1) - n).
Using this and plugging in u = ﬁ , we finish the proof. 0

The following result allows us to compute averages of 1/1f (F) with f varying over the family ./ng.

Let
|/l80 Z wf( )

feAS]

(4 (F)), =

LEMMA 4.2 Let Py, ..., P, be distinct monic irreducible polynomials in F [x] such that
deg(P,) +---+deg(P,) < d, and hy, ..., h, integers. Then

h wy _J 1 ifplh for1 <i<s,
<7/)f(P1) ~~'7/’f(Ps) >d_{ 0 otherwise.

Proof. This is a simple case of [4, Lemma 9.1]. O
We are now ready to begin the proof of Theorem 1.3.
Proof of Theorem 1.3 Using Lemma 4.1 for k = 1, we have

sy o | (ﬁm@

| dl feAs’

2

|“480 feas rHem  /|FH| |ASO feas) rHem  \/|FH|
deg(FH)gd 1 deg(FH)gd 2
= —_— _—
FHEM v/ |FH| FHEM V/ |FH|
deg(FH)<d-1 deg(FH)<d-2
Thus consider the general sum
n):= R m—

FHeM vV |FH |
deg(FH)<n

By Lemma 4.2, <wf (F/H)), is trivial unless F/H is a pth-power. Write R = (F,H) and
F=F,R H=H,Rsothat (F;,H,) = 1. Thus F/H = F,/H, and we must have F, = Fg,
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H, = H‘g . We then have to evaluate the term

1 1
Sm= > D -
ReMg% | Fo,HyeM |FOH0| 2
pdeg(FoHy)<n-2deg(R)
(Fo,Hy)=1

First we consider the inner sum. Its generating series is given by

pdeg(F,), pdeg(H,)
Flu,v) = %
FO’HOEM |F0HO| 2
(ForHo):l
Then we have
i P
o0 pideg(Q) 22 pideg(Q) Z(“p/W)Z(Vp/qZ) 1-g" PubyP
3"(u,v)=H<1+ ~ +Z ~ ): v ar = — —
e Ik (wror/q?) (1-¢"w)(1-q" )

Now using Perron’s formula (3) for the sums over F,, and H,, we get that

S T i
Rimer |FgHr  (mi)? (1-1)(1 - v)(uv)r-2des® u v’
pdeg(FyH,)<n-2deg(R)

(FOIHO):I

where the integral takes place over small circles around the origin.
Introducing the sum over R as well and using Perron’s formula (3), we get that

1 F(u,uv)Z(u*v*2*/q) dz du dv
S(n) = (27Ti)3%%%(1—@(1—1})(1—2)(141}2)" Z u v

S L-q dz du dv
(27”)37{%?{(l—ql'gup)(l—ql'guf’vp)(l—uzvzzz)(l—u)(l—v)(l—z)(uvz)" zu v’

where the integral takes place over small circles around the origin. Since we need to consider
S(d-1)+S(d-2),

we will sum the integral expressions for S(n) and S(n — 1) and later set n = d — 1. Thus, we
get

S(n) +S(n-1) =

1 L-q T dz du dv
(27“')3%?4%(l—ql_gup)(l—ql_gupvf’)(l—uvz)(l—u)(l—v)(l—z)(uvz)” zu v

In the integral above, we can choose the contour to be |u| = |v| = |z| = ™. In the integral
over z, we shift the contour of integration to |z| = p and p — 00. Then the integral over z is

given by the residuesatz=1andz = <,
uv
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‘We write

S(n)+S(n-1)=A+B,

where A corresponds to the residue at z =1 and B corresponds to the residue at z = 1/(uv).
‘We have that

) 1-q" Puv? du dv
A= ; ; u v’
(27‘1‘1’)27{?{(1_ql‘iu}’)(l_ql‘EquP)(l—uv)(l—u)(l—v)(uV)” v

and

1 1_q1—pu2pvp
B= dudv.
(27”')2?4% (1_qlf}ijuﬁ)(l—qlfgul’vp)(uv—l)(l—u)(l—V)

Note that in the integral for B, there are no poles of the integrand inside the contour of
integration, so B = 0. Hence we have

S(n)+S(n-1) = A.
In the expression for A, we shift the contour over u to |u| = p and let p — co. We encounter
b b
poleswhenu=1,u= %, w? = g2 " and v = q>~'. Then we have poles at

1L 11
u=1,u=l u=gq? Pfi,,u:ql Pﬁi,v‘l,forjzo,...,p—l.Thus,wehavethat

)
v

p-1
S(n)+S(n-1)=A, +A, ., + ZO <A5; +A£LV,1>,
=
where A, A, are the negatives of the residuesatu = 1,u = % respectively, and Ag’ ’Aﬁi, -1 are
i 11 Y
the negatives of the residues at u = f;,ql Py = ﬁ;,q 2 ry7!, respectively. We have that
1 1-g' "W dv
2 (1) (1= ) (1 vy ¥

i L1
Now we have a double pole at v=1 and poles at v = f;,qz »forj=0,...,p— 1. We write

p-1

A=A+ ZAL&L )
j=0
i L1
where A, | corresponds to the pole atv=1, and A corresponds to the pole atv = £;q2 7.

‘We have

(=g N)(n+1) pgi(1-q7)

Al,l - ? P
(1-q"2) (1-q"2)3
and
-
_q 2
A1,§i.= joLd n(g_g) b j-t
(1-&q* 1)2&q 2 7/ (1-q 2)[],(1-§ )
_e
1-g>

(1-gai el 5 (1= g by
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The sum over these residues gives

r i) 1-g7F 2 1
ZAI,% =q (P 2) qliz_a Z 1
=0 p(1-972) =0 (1-&q> )%,
_r
0 s gt )
p(1-972)

‘We now compute A, 1, the negative of the residue of the pole in A coming from u = L We
v
have that

1 Y -q
Av»l == " 7 7 dv.
@mi) ] (1-¢" ) (0 - g ) (1 -0p?
In the expression above, we make the change of variables v = 1/v. We get that

lfpvp
(27‘1’1)?{(1 q 2)(1 q' va)(l—V)z

=

dv.

V’

Recall that we are now integrating over |v| = q°. Hence the integral is equal to the residue of
the pole at v = 1. This gives

_t _r
pqg 2(1-q2)
(1-¢'2)3

Avfl ==
j 11 j 11
We clonlsider the negatives of the residuesat u = {,q> » andatu = §,q> * v For
u= f;,qi_; we get
-1 -
1 (=g )™ dv

A
Sy L1 ;L1 11
2ri p(1-&g ) (1-&g ) (1-w)(1-v)(Ehq> 7)"

In the above, we shift the contour of integration to |v| = p and let p — 00. We encounter
polesatv = 5115 fork=0,...,p—1 (a double pole at v= 1 and simple poles at v = 5}; and
k=1,...,p—1). We then have that

p-1
Ag =D Ade
k=0
. : _ ¢k : : _ ¢k
where Ag et corresponds to the residue at v = {,. Computing the residue at v = {, for

k=1,...,p-1andv=1weget

S S R (5
T (- T-8a )1-)ET) p(1-Ga )(E) \pa(1-Ea*r)
JPra-tltpg- §pq”(pq+3q+p 3))

2pq(1- &g )2
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Now we want to sum overj =0,...,p — 1 and then overk = 1,...,p — 1. Notice that

-1 p-1 ~n(k+j)

p P §p

T (-8t ) (1-8g ) (1-€)

— — —n(k+j)-k -n(k+j)-k
S &

T (-ggTr(-8) (1-ggitra-gte

5
=3
~
Ii

p-1 g—nj p-1 é.-(n+l)k p-1 p-1 f—(”"'l)(k"']')‘*'j
_ » p P
= (1-¢ §_§2;(1—§k) ;; g m2(1—e®ais
=0 (1-&,q2 7) v/ (1-&q> »)X(1-& > )
p-1 é«;”j

+

= (1-6g77)}
_ —nj _ —(n+1)k - j —(n+1)€
p-1 ng plgp("’) p-1 ] p-1 fp(+)

- ) Z

=0 (l—géqz 7)2 k=1 (1—51’;) =0 (1- §1 s p)z = (1 _gﬁq%,i)

r- g;”f
+ —_—
=0 (1-8q 7)?
~(n+1)k L L .
=S (n, 2 p)z P Sz(—l,qr;)s1(”+1;‘15_‘-’)"'33(71,(15_;)-
We also have

e (pgptg-1- qul F(pq+3q+p-3))
= 2pg(1-€g" )}
Pl éénj(pq+p+q—1) &l “gi T (q-1)

= 2pg(1-Eg ) pa(l-ghg* )3

Putting the above together, we have

PZ_I: qn(i-i)(q—n[ i (p—l

Ag = B S,(n,q* ¥) 5 —[n+1]p>—SZ(—l,qE’E)sl(nH,qi’E)
j=0
111 ¢ (3-3) n(q-1) 11 pgtp+q-1 11
S,(n,q> } [ S,(n,q* 7)) + ————8,(n,q"
+85(n,q* 7) | + E 2(nq* 7))+ e L(nq* 7)

_atr(g-1)

S (n— 1,q%_i)}
pa
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qn(ﬁii) 11 qn(}l’7%>(q—1)

Sy(m gt 1) + S,(nq> ) (n=[n+1],)

q”(;‘i)(q—l) ! 1l q”(;_i)(q—l) -
-8 (-Lq* ")S,(n+1,q* )+ —————S;(nq* 7)
v r’q

211
Foru = §;,q2 P! we get

W -1
AELV'I:_%% o1 1 1 1q 11 dv.
T 11 11 11
(-6 - ) - D) (1-v)(§q2 )"

Note that there is no pole of the integrand inside the contour of integration with |v| = g™, so
this integral is equal to 0.
Finally, putting all the non-zero residues together and setting n + 1 = d gives

p-1 p-1 p-1
Sd-1)+S(d-2) = A +A+ Y A g+ Ag
= =m e
d1-47) 2gta-ghH ¢Ha-gh
= i 3 + 3 S,(d-1,q* )
(1-q72)2  (1-q2) p(l-q72)
d-1)( -1 d-1)( -1
q( )(p 2) §>1 ‘1( )(p 2)(‘1_1) L 1
1 ) e s g -1 (4]

(d-l)(l-l)
q r 2 (qg-1) 11 11
—TSZ(—W 0)S,(d,q* 1)+

(d_z)(l_l)

q ‘v *(q-1) 11

-————5;(d-2,9* 7).
pq

5. AGREEMENT WITH THE RANDOM MATRIXMODELS

Here, we show that the asymptotic formula in Theorem 1.3 agrees with the conjectured asymptotic
formula for the moments in a family with unitary symmetry. We note that considering the moment
with absolute value, as in Theorem 1.3, is the more standard moment to consider for a family with

expected unitary symmetry.

Starting with the observation of Montgomery and Dyson that the zeros of {(s) seem to obey the
same distribution patterns as the eigenvalues of large random unitary matrices, random matrix mod-
els have been given for families of L-functions and have been instrumental in the formulation of
conjectures in number theory. Associating a random matrix group to each family of L-functions as
suggested by the work of Katz and Sarnak [30], Keating and Snaith [31, 32] used random matrix

theory computations to conjecture formulas for moments in families of L-functions.

We reproduce here the expected conjectures in the cases of families of L-functions with unitary

symmetry.
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Let F denote a family of L-functions. For f € F, let c(f) denote the conductor of the L-function
associated to f, denoted by L (s). Let

X = Hf e F: o(f) gx}‘
In the case of a unitary family, the Keating—Snaith conjecture states the following.

CoNJECTURE S.1. For a family F of L-functions with unitary symmetry and k a positive integer,

1 >
= 2 L (/2P ~ aog (0 log ),
feF
(f)<x

where a(k) is an arithmetic factor depending on the specific family considered, and where

k-1 .
_ !
gu(k) = g (j+k)!.

In particular, in the case of the second moment (k = 1), we have g;(1) = 1.

Note that Conjecture 5.1 above is stated for a family of L-functions over number fields, but a sim-
ilar Conjecture can be stated in the function field setting. Namely, for a family F of L-functions over
function fields with expected unitary symmetry, one would expect

1 2
o2 IL/2)P ~akg ()4,
feF
log, c(f)=d

where
D = ‘{f e 7 : log, |c(f)] = d}].

Note that the leading order term in Theorem 1.3 (apart from the arithmetic factor which depends on g
and which corresponds to the factor a(1) in Conjecture S.1) matches the conjecture above (it is equal
to 1), under the correspondence:

F= Asgy Lf = L(u)f) V), 1qu |C(f)| =d. (20)

(Technically, the degree of the conductor is d + 1, but this leads to the same asymptotic.)
It is also possible to extract a conjecture for moments without absolute value from Keating and
Snaith’s work [32] by following the computation in Section 2 of [ 16]. This leads to

1
e > L(1/2)" ~ a(k,0),
feF
«(f)<x
where, as before, a(k,0) is an arithmetic factor. Translating as before, this leads to
L D L(1/2)F ~ a(k,0).
b feF
log, c(f)=d

Once again, we recover the result of Theorem 1.1 under the correspondence (20).
Hence the polynomial family is expected to have unitary symmetry, as suggested both by Theorems
1.1 and 1.3 and by the local statistics results due to Entin and Pirani [17, 18].
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