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We introduce a Poisson version of the graded twist of a graded associative algebra and 
prove that every graded Poisson structure on a connected graded polynomial ring A :=
k[x1, . . . , xn] is a graded twist of a unimodular Poisson structure on A, namely, if π is a 
graded Poisson structure on A, then π has a decomposition

π = πunim +
1∑n

i=1 deg xi
E ∧ m

where E is the Euler derivation, πunim is the unimodular graded Poisson structure on 
A corresponding to π , and m is the modular derivation of (A, π). This result is a 
generalization of the same one in the quadratic setting. The rigidity of graded twisting, 
P H1-minimality, and H-ozoneness are studied. As an application, we compute the Poisson 
cohomologies of the quadratic Poisson structures on the polynomial ring of three variables 
when the potential is irreducible, but not necessarily having an isolated singularity.

 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

Introduction

Poisson algebras have recently been studied extensively by many researchers, see e.g., [2,3,12–15,18,21,23–25], with 
topics related to (twisted) Poincaré duality and the modular derivation, Poisson Dixmier-Moeglin equivalences, Poisson en-
veloping algebras, and so on. Poisson algebras have been used in the representation theory of PI Sklyanin algebras [37,38]. 
The isomorphism problem and the cancellation problem in the Poisson setting have been investigated in [10,11]. Poisson 
valuations are utilized to address problems related to rigidity, automorphisms, Dixmier property, isomorphisms, and em-

beddings of Poisson algebras and fields [16,17].
Let k be a base field. Except for Sections 1 and 2 we further assume that k is of characteristic zero. Quadratic Poisson 

structures on k[x1, . . . , xn] with deg xi = 1 for all i = 1, · · · , n have played an important role in several other subjects, see 
papers [22] by Liu-Xu, [4] by Bondal, and [31] by Pym. Deformation quantizations of such Poisson structures are homo-

geneous coordinate rings of quantum Pn−1s. In general, such a deformation quantization is skew Calabi-Yau; while it is 
Calabi-Yau if and only if the Poisson structure on k[x1, . . . , xn] is unimodular [6].

In addition to the quadratic case, we are interested in weighted Poisson structures on k[x1, . . . , xn] where deg xi > 0 for 
all i = 1, . . . , n. Note that deformation quantizations of weighted Poisson structures are homogeneous coordinate rings of 
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weighted quantum Pn−1s. If π is a graded Poisson structure on k[x1, . . . , xn] where 
∑n

i=1 deg xi �= 0 in the base field k, we 
prove that π has a decomposition

π = πunim +
1∑n

i=1 deg xi
E ∧m (E0.0.1)

where E is the Euler derivation, πunim is the unimodular graded Poisson structure on k[x1, . . . , xn] corresponding to π , and 
m is the modular derivation of (k[x1, . . . , xn], π). If deg xi = 1 for all i, (E0.0.1) was observed by Bondal [4], Liu-Xu [22], and 
in the book [20, Theorem 8.26]. Similar to the ideas in [31], to classify all graded Poisson structures on polynomial rings 
where deg xi > 0, it is a good idea to first classify unimodular ones.

To prove (E0.0.1), we will use a Poisson version of the graded twist [39]. Let A be a Z-graded Poisson algebra such that 
both the commutative multiplication · and the Poisson bracket π := {−, −} are graded of degree 0. If a ∈ A is homogeneous, 
we use |a| to denote its degree. Define the Euler derivation E of A by

E(a) = |a|a (E0.0.2)

for all homogeneous elements a ∈ A. Let δ be a graded Poisson derivation of A. We define a new Poisson structure, denoted 
by πnew := {−, −}new , to be

{a,b}new := {a,b} + E(a)δ(b) − δ(a)E(b) (E0.0.3)

for all homogeneous elements a, b ∈ A, or equivalently

πnew := π + E ∧ δ.

We will show that (A, ·, {−, −}new) (or (A, πnew)) is a graded Poisson algebra in Section 2 and it is denoted by Aδ .

Now we state some results. Let A be a polynomial algebra k[x1, . . . , xn] and let δ be a derivation of A. By [20, (4.21)], 
the divergence of δ is defined to be

div(δ) :=

n∑

i=1

∂δ(xi)

∂xi
, (E0.0.4)

which is independent of the choices of generators {x1, . . . , xn} [Definition 1.1 and Lemma 1.2]. For a more general Poisson 
algebra, the definition of div(δ) will be given in Definition 1.1, which is dependent on the volume form. Recall a Hamiltonian 
derivation of a Poisson algebra A is given by Ha := {a, −} for any a ∈ A. The modular derivation of A is defined by

m(a) := −div(Ha) (E0.0.5)

for all a ∈ A [Definition 1.3]. We need the following lemma that concerns the divergence of the modular derivation.

Lemma 0.1. [36, Corollary 3.10] [20, Proposition 4.17] Let A be a Poisson algebra with volume form ν and m be the modular derivation 
of A corresponding to ν . Then div(m) = 0.

Proof. Following the notation of [36, Theorem 3.5], we denote m by φ and ν by vol. By the proof of [36, Corollary 3.10], 
Lm(ν) = 0. Then, by Definition 1.1, div(m) = 0. �

According to the ideas of Dolgushev [6], the modular derivation of a Poisson algebra corresponds to the Nakayama 
automorphism of a noetherian AS regular algebra. For more information on AS regular algebras, we refer the reader to [1]
and the references therein. Hence the above lemma is a Poisson version of [33, Corollary 5.5] which says that the Nakayama 
automorphism of a noetherian AS regular algebra has homological determinant 1.

When A is a polynomial algebra k[x1, . . . , xn] with any Poisson structure, the definitions of the divergence div and the 
modular derivation m are independent of choices of the volume form. Here is one of the main results of this paper.

Theorem 0.2. Let δ be a graded Poisson derivation of a Z-graded Poisson polynomial algebra A := k[x1, . . . , xn]. Let n be the modular 
derivation of Aδ . Then

n = m+

(
n∑

i=1

deg xi

)
δ − div(δ)E.

Note that Theorem 0.2 holds even when char k > 0, see Remark 3.7.

If we consider the analogy between the modular derivation of a Poisson algebra and the Nakayama automorphism of a 
graded skew Calabi-Yau algebra [6], Theorem 0.2 is a Poisson version of [32, Theorem 0.3]. Combining Theorem 0.2 with 
Lemma 0.1, we obtain
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Corollary 0.3. Let A be a weighted graded Poisson algebra k[x1, . . . , xn] with deg xi > 0 for all i. Let δ = − 1
l
mwhere l =

∑n
i=1 deg xi . 

Then Aδ is unimodular. As a consequence, (E0.0.1) holds.

Let A be a Z-graded Poisson algebra. Suppose δ is a derivation of A and a, b, c are homogeneous elements of A. Set

p({−,−}, δ;a,b, c) : = |a|a[δ({b, c}) − {δ(b), c} − {b, δ(c)}]

− |b|b[δ({a, c}) − {δ(a), c} − {a, δ(c)}] (E0.3.1)

+ |c|c[δ({a,b}) − {δ(a),b} − {a, δ(b)}].

Definition 0.4. Let A be a Z-graded Poisson algebra. A derivation δ of A is called semi-Poisson if p({−, −}, δ, a, b, c) = 0 for 
all homogeneous elements a, b, c in A.

It is clear that

Poisson derivation ⇒ semi-Poisson derivation ⇒ derivation

and opposite implications are not true [Example 2.6]. Let Gspd(A) (resp. Gpd(A)) be the set of graded semi-Poisson deriva-
tions (resp. graded Poisson derivations) of degree 0. We prove the following

Theorem 0.5. Let A be a graded Poisson algebra k[x1, . . . , xn] with deg xi > 0 for all i.

(1) If A is unimodular, then Gspd(A) = Gpd(A).

(2) If B is a twist of A, then Gspd(A) = Gspd(B).

(3) Gspd(A) is a finite-dimensional Lie algebra.

Now we introduce the rigidity of graded twisting of A, denoted by rgt(A) (see Definition 4.3), to measure the complex-

ity/rigidity of a Poisson structure on A. We relate the rigidity with other properties. We say a Poisson derivation φ of A
is ozone if φ(z) = 0 for all z in the Poisson center of A. It is obvious that every Hamiltonian derivation is ozone, but the 
converse is not true in general.

Let M be a Z-graded k-vector space. The Hilbert series of M is defined to be

hM(t) =
∑

i∈Z

(dimMi)t
i . (E0.5.1)

Let P H i(A) denote the ith Poisson cohomology of A (E1.5.3). Recall that E denotes the Euler derivation. We have the 
following result.

Theorem 0.6. Let k be algebraically closed and A = k[x1, x2, x3] be a graded Poisson algebra with deg xi = 1 for i = 1, 2, 3. Denote 
by Z the Poisson center of A. Then the following are equivalent.

(1) rgt(A) = 0.

(2) Any graded twist of A is isomorphic to A.
(3) The Hilbert series of the graded vector space of Poisson derivations of A is 1

(1−t)3
.

(4) hP H1(A)(t) is 
1

1−t3
.

(5) hP H1(A)(t) is equal to hZ (t).

(6) Every Poisson derivation φ has a decomposition

φ = zE + Ha

where z ∈ Z and a ∈ A. Here z is unique and a is unique up to a central element.

(7) Every ozone derivation is Hamiltonian.

(8) A is unimodular, and the potential is irreducible.
(9) hP H3(A)(t) − hP H2(A)(t) = t−3 .

Some partial generalizations of the above theorem to the higher dimensional cases are given in Section 7. As an applica-
tion, we have the following result.

Corollary 0.7. Let k be algebraically closed. Let A be the unimodular quadratic Poisson structure on k[x, y, z]with irreducible potential 
�. Then
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(1) hP H0(A)(t) =
1

1− t3
.

(2) hP H1(A)(t) =
1

1− t3
.

(3) hP H2(A)(t) =
1

t3

(
(1 + t)3

1− t3
− 1

)
.

(4) hP H3(A)(t) =
(1 + t)3

t3(1− t3)
.

When the potential � has an isolated singularity, the Poisson cohomologies have been computed by several authors, see 
[27–30,35] and the references therein. The above corollary is probably the first computation of the Poisson cohomologies 
when � is irreducible, but does not have an isolated singularity.

The paper is organized as follows. Section 1 recalls some basic definitions, such as divergence and modular derivation. 
In Section 2, we introduce the Poisson version of a graded twist. The proofs of Theorem 0.2 and Corollary 0.3 are given in 
Section 3. The rigidity of graded twisting is introduced in Section 4, and Theorem 0.5 is proved there. In Sections 5 and 
6, we compute the rigidity of some Poisson structures on polynomial rings. Theorem 0.6 and Corollary 0.7 are proved in 
Section 7.

1. Preliminaries

In this section, we recall several definitions, such as divergence, modular derivation, and Poisson cohomology. Other basic 
definitions of Poisson algebras can be found in the book [20]. Everything in this section is well-known.

In Sections 1 and 2, let k be a base field of any characteristic and A be any commutative Poisson k-algebra unless 
specified otherwise. Let �1(A) be the module of Kähler differentials over A [20, Sect. 3.2.1]. For each k ≥ 0, let �k(A) be 
∧

p
A�1(A) [20, Sect. 3.2.2]. Set d = Kdim A where Kdim denotes the Krull dimension. If A is smooth and �d(A) is a free 

A-module with a generator ν , then ν is called a volume form of A. The differential d : A → �1(A) extends to a well-defined 
differential of the complex �•(A) and the complex (�•(A), d) is called the algebraic de Rham complex of A.

For each p ≥ 0, let Xp(A) be the set of skew-symmetric p-derivations of A. It is also true that

X
p(A) ∼= HomA(�p(A), A) (E1.0.1)

for all p ≥ 0 [20, (3.15)].
For every element P ∈X

p(A), the internal product with respect to P , denoted by ιP , is an A-module map

ιP : �•(A) → �•−p(A)

which is determined by

ιP (dF1 ∧ dF2 ∧ · · · ∧ dFk) =

⎧
⎪«
⎪¬

0 k < p,∑
σ∈Sp,k−p

sgn(σ )P [Fσ (1), . . . , Fσ (p)]

dFσ (p+1) ∧ · · · ∧ dFσ (k) ∈ �k−p(A) k ≥ p

(E1.0.2)

for all dF1 ∧ dF2 ∧ · · · ∧ dFk ∈ �k(A). Here Sp,q ⊂ Sk is the set of (p, q)-shuffles with p + q = k.

For every P ∈X
p(A), the Lie derivative with respective to P is defined to be

LP = [ιP ,d] : �•(A) → �•−p+1(A), (E1.0.3)

see [20, (3.49)]. Below is the definition of the divergence of a derivation. In several definitions in this paper we assume that 
A is a smooth Poisson algebra with a fixed volume form ν .

Definition 1.1. [20, (4.20)] Let δ be a derivation of A, namely, δ ∈ X
1(A). The divergence of δ, denoted by div(δ), is an 

element in A defined by the equation

Lδ(ν) = div(δ)ν. (E1.1.1)

It is clear that the divergence of δ is dependent on the volume form ν , but independent of the Poisson structure of A. 
The definition of the divergence of a skew-symmetric k-derivation, for k ≥ 2, can be found in [20, Sect. 4.3.3].

Let G be an abelian group (or semigroup). A G-graded algebra is a k-algebra A =
⊕

g∈G Ag where Ag is a k-vector space 
for each g ∈ G and Ag1 · Ag2 ⊆ Ag1g2 for any g1, g2 ∈ G . A k-linear map ϕ : A −→ A of a G-graded algebra A is called 
graded if ϕ(Ag) ⊆ Ag for each g ∈ G . A Poisson structure {−, −} on a G-graded commutative algebra A is called G-graded 
(of degree zero) if deg{a, b} = dega + degb for all homogeneous elements a, b ∈ A. Part (1) of the following lemma justifies 
the definition of the divergence given in (E0.0.4).
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Lemma 1.2. Let A be a Poisson polynomial algebra k[x1, . . . , xn] and δ be a derivation of A.

(1)

div(δ) =

n∑

i=1

∂δ(xi)

∂xi
. (E1.2.1)

(2) If A is a Z-graded Poisson polynomial algebra with xi homogeneous for all i and if δ is graded (of degree 0), then div(δ) ∈ A0 .

(3) If A is a connected N-graded Poisson polynomial algebra with deg xi > 0 for all i and if δ is graded (of degree 0), then div(δ) ∈ k.

(4) Suppose, in addition to (3), deg xi = 1 for all i. Let δ be a graded derivation of A (of degree 0). Write

δ(xi) =

n∑

j=1

ci jx j

where ci j ∈ k for all 1 ≤ i, j ≤ n. Then

div(δ) =

n∑

i=1

cii . (E1.2.2)

(5) Let A be a Z-graded Poisson algebra with deg xi ∈ Z and let E be the Euler derivation of A as defined in (E0.0.2). Then div(E) =
degν .

Proof. (1) Since A = k[x1, . . . , xn] is a polynomial algebra, ν := dx1 ∧ · · · ∧ dxn is a volume form. By the definition of the Lie 
derivative Lδ ,

Lδν = d

(
n∑

i=1

(−1)i−1δ(xi)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

)

=

n∑

i=1

(−1)i−1

⎛
¿

n∑

j=1

∂δ(xi)

∂x j

dx j

À
⎠ ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

(
n∑

i=1

∂δ(xi)

∂xi

)
dx1 ∧ · · · ∧ dxn

=

(
n∑

i=1

∂δ(xi)

∂xi

)
ν.

Then, the assertion follows.

(2) Since deg δ = 0, deg δ(xi) = deg xi . As a consequence, deg
∂δ(xi)
∂xi

= 0. By part (1), degdiv(δ) = 0. The assertion follows.

(3) This follows from part (3) and the fact that A0 = k.
(4) This follows from part (1) and the fact that ∂δ(xi )

∂xi
= cii for all i.

(5) In this case, ν = dx1 ∧ · · · ∧ dxn and E(xi) = (deg xi)xi . The assertion follows from (E1.2.1). �

We recall the following definition.

Definition 1.3. Let A be a Poisson algebra with volume form ν .

(1) [20, Definition 4.10] The modular derivation (or modular vector field) of A associated to ν is defined to be

m(a) := −div(Ha)

for all a ∈ A, or equivalently,

LHa (ν) = −m(a)ν.

(2) [20, Definition 4.12] If m = 0 for some volume form ν , then A is called unimodular.

If A = k[x1, . . . , xn], then m is independent of the choice of the volume form ν .
Let us give an easy example.
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Example 1.4. Let A be the Poisson polynomial algebra k[x1, x2] with {x1, x2} = xn1 for some integer n ≥ 0. It is easy to check 
that m(x1) = 0 and m(x2) = nxn−1

1 . If char k = p > 0 and p | n, then A is unimodular. Now suppose n = 2. Since {x1x2, x2} =
x21x2 , m({x1x2, x2}) = m(x21x2) = 2x31 . As a consequence, div([δ1, δ2]) is in general nonzero for any two derivations δ1, δ2 .

Next, we review the Poisson cohomology. Let (A, π) be a Poisson algebra. For each k ≥ 0, Xk(A) denotes the space 
of skew-symmetric k-derivations of A. The Poisson coboundary map dπ : X•(A) → X

•+1(A) is defined as follows. For any 
Q ∈ X

q(A), where q ∈ N , we define

d
q
π (Q )[F0, . . . , Fq] :=

q∑

i=0

(−1)i{F i, Q [F0, . . . , F̂ i, . . . , Fq]} (E1.5.1)

+
∑

0≤i≤ j≤q

(−1)i+ jQ [{F i, F j}, F0, . . . , F̂ i, . . . , F̂ j, . . . , Fq],

for all F0, · · · , Fq ∈ A. In particular,

d0π (Q )[F0] = {F0, Q },

d1π (Q )[F0, F1] = {F0, Q [F1]} − {F1, Q [F0]} − Q [{F0, F1}],

d2π (Q )[F0, F1, F2] = {F0, Q [F1, F2]} − {F1, Q [F0, F2]} + {F2, Q [F0, F1]}

− Q [{F0, F1}, F2] + Q [{F0, F2}, F1] − Q [{F1, F2}, F0].

For P ∈ X
p(A) and Q ∈ X

q(A), the wedge product P ∧ Q ∈ X
p+q(A) is the skew-symmetric (p + q)-derivation of A, 

defined by

(P ∧ Q )[F1, · · · , F p+q] :=∑

σ∈Sp,q

sgn(σ )P [Fσ (1), . . . , Fσ (p)] Q [Fσ (p+1), . . . , Fσ (p+q)],

for all F1, · · · , F p+q ∈ A. In particular, if P ∈X
1(A) and Q ∈X

2(A), then we have

(P ∧ Q )[F1, F2, F3] = P [F1]Q [F2, F3] − P [F2]Q [F1, F3] + P [F3]Q [F1, F2]. (E1.5.2)

Therefore, (X∗(A), ∧, d) is a dga (differential graded algebra). For each q ≥ 0, the q-th Poisson cohomology of A is defined 
to be

P Hq(A) :=
kerd

q
π

imd
q−1
π

. (E1.5.3)

A derivation δ : A −→ A of a Poisson algebra A is called a Poisson derivation if δ({a, b}) = {δ(a), b} +{a, δ(b)} for any a, b ∈ A. 
It is clear from the definition that the first Poisson cohomology of A is

P H1(A) :=
the set of Poisson derivations

the set of Hamiltonian derivations
. (E1.5.4)

If A is a quadratic Poisson algebra k[x, y, z] (with deg(x) = deg(y) = deg(z) = 1), then the complex (X•(A), dπ ) is [29, 
(15)]

0 → A → (A[1])⊕3 → (A[2])⊕3 → A[3] → 0.

By the additivity of the Hilbert series, we have

3∑

i=0

(−1)ihP H i(A)(t) = −t−3. (E1.5.5)

It is easy to check that

(a) the lowest degree of nonzero elements in P H0(A) is 0 and P H0(A)0 = k;
(b) the lowest degree of nonzero elements in P H1(A) is ≥ −1;

(c) the lowest degree of nonzero elements in P H2(A) is ≥ −2;

(d) the lowest degree of nonzero elements in P H3(A) is −3 and P H3(A)−3 = k.

If A is further unimodular, then

6
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(e) the lowest degree of nonzero elements in P H2(A) is −2 and P H2(A)−2 = k⊕3 .

A natural operation on X•(A) is the Schouten bracket

[·, ·]S : Xp(A) ×X
q(A) → X

p+q−1(A)

for all p, q ≥ 0. We refer to [20, Section 3.3.2] for the precise definition. By [20, (4.5)],

dπ (·) = −[·,π ]S .

By [20, Proposition 3.7], (X•(A), ∧, [·, ·]S) is a Gerstenhaber algebra.
Let A = (A, π) be a Poisson algebra with Poisson bracket π . Let ξ ∈ k× be any nonzero scalar. We define a new Poisson 

bracket πξ := ξπ or {−, −}ξ := ξ{−, −}. Then it is easy to see that A′ := (A, πξ ) is indeed a Poisson algebra. In general, A′

is not isomorphic to A, but they are closely related as follows.

Lemma 1.5. Retain the notations as above. Let dqπ (resp. dqπ ′ ) be the differential of X•(A) (resp. X•(A′)) as defined in (E1.5.1). The 
following hold:

(1) d
q

π ′ = ξd
q
π for all q.

(2) kerd
q

π ′ = kerd
q
π for all q.

(3) imd
q

π ′ = imd
q
π for all q.

(4) P Hq(A) = P Hq(A′) for all q.

2. Twists of graded Poisson algebras

Let G be an abelian group and A be a G-graded Poisson algebra (namely, both the multiplication · and the Poisson 
bracket {−, −} of A are graded of degree 0). We use g for elements in G . If a is a homogeneous element in A, we use |a|
to denote its degree in G .

The aim of this section is to define a Poisson version of the graded twist of graded associative algebras [39].

Definition 2.1. Let δ := {δg | g ∈ G} be a set of graded derivations of A (of degree 0). We say δ is a Poisson twisting system if 
it satisfies the following conditions:

(1) For all g, h ∈ G ,

δgδh = δhδg . (E2.1.1)

(2) For homogeneous elements a, b ∈ A,

δ|ab| = δ|a| + δ|b|. (E2.1.2)

(3) For homogeneous elements a, b, c, ∈ A and g ∈ G ,

p({−,−}, δg;a,b, c) = 0. (E2.1.3)

Remark 2.2.

(1) The definition of a Poisson twisting system is a “translation” of the twisting system in the setting of graded associative 
algebras given in [39, Definition 2.1].

(2) If δ is a Poisson derivation, it is automatic that p({−, −}, δ; a, b, c) = 0. The converse is not true; see Example 2.6.

(3) Suppose G = Z and let φ = δ1 . By (E2.1.2), δn = nφ. It is clear that

p({−,−}, φ;a,b, c) = (E ∧ d1π (φ))(a,b, c),

which implies that (E2.1.3) is equivalent to E ∧ d1π (φ) = 0. By [20, Sect. 4.3] and the fact that d1π (E) = 0, the equation 
E ∧ d1π (φ) = 0 is equivalent to d2π (E ∧ φ) = 0.

(4) Let G = Z and A be a Z-graded Poisson algebra. A convenient Poisson twisting system is constructed as follows. Let φ
be a graded Poisson derivation of A (namely, d1π (φ) = 0). For each n ∈ Z, let δn := nφ and δ := {δn | n ∈ Z}. Then (E2.1.1)
and (E2.1.2) are obvious and (E2.1.3) follows from the fact that δn is a Poisson derivation; see part (2) or (3).

Example 2.3. Let G = Z/(n) for some positive integer n. Let A be a G-graded Poisson algebra and δ be a graded Poisson 
derivation of A. Suppose p := char k is positive. If p | n, let δi = iδ for all i ∈ G . Then {δi | i ∈ G} is a Poisson twisting system 

7
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for A. If p ∤ n, there is no nontrivial Poisson twisting system for A. Suppose {δi | i ∈ G} is a Poisson twisting system for A. 
We have

0 = δ0 = δn = nδ1,

which implies that δ1 = 0 and hence δi = 0 for all i ∈ G .

Let A be a G-graded Poisson algebra and let δ := {δg | g ∈ G} be a system of derivations of A. We define

〈a,b〉 := {a,b} + aδ|a|(b) − bδ|b|(a) (E2.3.1)

for all homogeneous elements a, b ∈ A.

Theorem 2.4. Let δ := {δg | g ∈ G} be a set of graded derivations of a G-graded Poisson algebra A satisfying (E2.1.1) and (E2.1.2). Then, 
the following hold.

(1) 〈−, −〉 is skew-symmetric.

(2) For every homogeneous element a ∈ A, 〈a, −〉 is a derivation of A
(3) 〈−, −〉 satisfies the Jacobian identity if and only if (E2.1.3) holds.

In particular, if (E2.1.3) holds, then (A, 〈−, −〉) is a Poisson algebra.

Proof. If G = Z, there is a shorter proof using the Schouten bracket. We make the following direct computation for a 
general abelian group G .

(1) follows immediately from (E2.3.1).
(2) For homogeneous elements a, b, c in A, we have

〈a,bc〉 = {a,bc} + aδ|a|(bc) − bcδ|bc|(a)

= {a,b}c + {a, c}b + a
(
bδ|a|(c) + δ|a|(b)c

)
− bcδ|bc|(a),

〈a,b〉c =
(
{a,b} + aδ|a|(b) − bδ|b|(a)

)
c,

b〈a, c〉 = b
(
{a, c} + aδ|a|(c) − cδ|c|(a)

)
.

By the above and (E2.1.2), we obtain that

〈a,bc〉 = 〈a,b〉c + b〈a, c〉.

(3) For homogeneous elements a, b, c in A, we have

〈a, 〈b, c〉〉 = {a, 〈b, c〉} + aδ|a|(〈b, c〉) − 〈b, c〉δ|bc|(a)

= {a,
(
{b, c} + bδ|b|(c) − cδ|c|(b)

)
} + aδ|a|

(
{b, c} + bδ|b|(c) − cδ|c|(b)

)

−
(
{b, c} + bδ|b|(c) − cδ|c|(b)

)
δ|bc|(a)

= {a, {b, c}} + {a,b}δ|b|(c) + b{a, δ|b|(c)} − {a, c}δ|c|(b)

− c{a, δ|c|(b)} + aδ|a|({b, c}) + aδ|a|(b)δ|b|(c) + abδ|a|δ|b|(c)

− aδ|a|(c)δ|c|(b) − acδ|a|δ|c|(b) − {b, c}δ|bc|(a) − bδ|b|(c)δ|bc|(a)

+ cδ|c|(b)δ|bc|(a)

and

〈〈a,b〉, c〉 = 〈c, 〈b,a〉〉

= {c, {b,a}} + {c,b}δ|b|(a) + b{c, δ|b|(a)} − {c,a}δ|a|(b)

− a{c, δ|a|(b)} + cδ|c|({b,a}) + cδ|c|(b)δ|b|(a) + cbδ|c|δ|b|(a)

− cδ|c|(a)δ|a|(b) − caδ|c|δ|a|(b) − {b,a}δ|ba|(c) − bδ|b|(a)δ|ba|(c)

+ aδ|a|(b)δ|ba|(c)

and

8
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〈b, 〈a, c〉〉 = {b, {a, c}} + {b,a}δ|a|(c) + a{b, δ|a|(c)} − {b, c}δ|c|(a)

− c{b, δ|c|(a)} + bδ|b|({a, c}) + bδ|b|(a)δ|a|(c) + baδ|b|δ|a|(c)

− bδ|b|(c)δ|c|(a) − bcδ|b|δ|c|(a) − {a, c}δ|ac|(b) − aδ|a|(c)δ|ac|(b)

+ cδ|c|(a)δ|ac|(b).

Using the Jacobi identity

−{a, {b, c}} + {{a,b}, c} + {b, {a, c}} = 0,

(E2.1.1) and (E2.1.2), we can simplify

−〈a, 〈b, c〉〉 + 〈〈c,b〉,a〉 + 〈b, 〈a, c〉〉

to

p({−,−}, δ;a,b, c).

Therefore, 〈−, −〉 satisfies the Jacobi identity when p(δ; a, b, c) = 0. (3) follows. The consequence is clear. �

Definition 2.5. Let δ := {δg | g ∈ G} be a Poisson twisting system of a G-graded Poisson algebra A. Then the new Poisson 
algebra (A, 〈−, −〉) given in Theorem 2.4 is called the twist of A by δ and denoted by Aδ .

Example 2.6. Let A = k[x, y] be the Z-graded Poisson algebra defined by {x, y} = x2 . Let φ be the derivation sending x → −x

and y → y − x. Let δn = nφ. It is easy to see that

d1π (φ)(x, y) = −φ({x, y}) + {x, φ(y)} + {φ(x), y}

= −φ(x2) + {x, y − x} + {−x, y} = 2x2 �= 0,

which implies that φ is not a Poisson derivation.
We claim that δ := {δn} is a Poisson twisting system. Let f be the derivation of A determined by

f (x) = 0, and f (y) = −x.

It is easy to verify that f is a Poisson derivation. By Remark 2.2(4), f ′ := {nf | n ∈ Z} is a Poisson twisting system, and by 
Theorem 2.4, A f ′

is equipped with a Poisson structure such that

〈x, y〉 = {x, y} + xf (y) − yf (x) = x2 − x2 − 0 = 0.

Therefore A f ′
has trivial Poisson structure. Let g be the Poisson derivation of A f ′

determined by

g(x) = −x, and g(y) = y.

Let g′ = {ng | n ∈ Z}. By Remark 2.2(4), g′ is a Poisson twisting system of A f ′
and the Poisson structure of (A f ′

)g
′
is 

determined by, for all homogeneous elements a, b ∈ A,

{a,b}new : = 〈a,b〉 + |a|ag(b) − |b|bg(a)

= {a,b} + |a|af (b) − |b|bf (a) + |a|ag(b) − |b|bg(a)

= {a,b} + ah|a|(b) − bh|b|(a)

where hn = nf + ng for all n ∈ Z. Since f + g is a derivation of A, by Theorem 2.4, h′ := {hn | n ∈ Z} is a Poisson twisting 
system of A. It is clear that δ = h′ . So δ is a Poisson twisting system.

Since δ is a Poisson twisting system, by Remark 2.2(3), φ is a graded semi-Poisson derivation. By the first paragraph, φ
is not a Poisson derivation.

Lemma 2.7. Suppose G is cyclic. Then, the set of Poisson twisting systems of A is a k-vector space.

Proof. Let δ and ϕ be two Poisson twisting systems. It is clear that cδ is a Poisson twisting system for all c ∈ k. It remains 
to show h := δ + ϕ is a Poisson twisting system.

Since G is cyclic, hn = nh1 . So (E2.1.1) is clear. Now (E2.1.2) and (E2.1.3) hold as these are “linear” in terms of δ. �

9
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Remark 2.8. If G is Z2 , then the set of Poisson twisting systems of (k[x1, x2, x3], 0) with deg x1 = deg x2 = (1, 0) and 
deg x3 = (0, 1) is not a k-vector space. To see this, we consider two graded Poisson derivations δ1 and φ1 that do not 
commute (for example, δ1 : x1 → x1, x2 → 0, x3 → 0 and φ1 : x1 → x2, x2 → 0, x3 → 0). Let δ(n,m) = nδ1 and φ(n,m) =mφ1 . It 
is easy to see that both δ and φ are twisting systems of the G-graded Poisson algebra (k[x1, x2, x3], 0). We define δ + φ by 
(δ + φ)(n,m) = nδ1 +mφ1 for all (n, m) ∈ Z2 . Since δ1 and φ1 do not commute, we see that (E2.1.1) fails for δ + φ.

As noted before, a derivation δ of A is Poisson if and only if d1π (δ) = 0. By Definition 0.4, a graded derivation δ of a 
Z-graded Poisson algebra A is semi-Poisson if E ∧ d1π (δ) = 0.

Next, we show that the Poisson twisting systems induce an equivalence relation. Let A be a G-graded commutative 
algebra. Two graded Poisson structures π and π ′ on A are called equivalent if (A, π ′) is a graded twist of (A, π). In this 
case we write (A, π) ∼ (A, π ′).

Proposition 2.9. Suppose G is cyclic and A is a G-graded commutative algebra. Then, ∼ is an equivalence relation.

Proof. It is clear that (A, π) ∼ (A, π) by taking the trivial Poisson twisting system δ. So, ∼ is reflexive.
To prove the symmetry of ∼, we suppose that (A, π ′) is a graded twist of (A, π) by δ. We claim that −δ is a Poisson 

twisting system of (A, π ′). Once proved, then it is obvious that (A, π ′)−δ = (A, π) as desired. It remains to show that −δ

satisfies (E2.1.1), (E2.1.2) and (E2.1.3). The first two are easy. For the last one, we compute

δ|a|(〈b, c〉) − 〈δ|a|(b), c〉 − 〈b, δ|a|(c)〉

= δ|a|({b, c} + bδ|b|(c) − cδ|c|(b))

− [{δ|a|(b), c} + δ|a|(b)δ|b|(c) − cδ|c|δ|a|(b)]

− [{b, δ|a|(c)} + bδ|b|δ|a|(c) − δ|a|(c)δ|c|(b)]

= δ|a|({b, c}) − {δ|a|(b), c} − {b, δ|a|(c)}

+ δ|a|(b)δ|b|(c) + bδ|a|δ|b|(c) − δ|a|(c)δ|c|(b) − cδ|a|δ|c|(b)

− δ|a|(b)δ|b|(c) + cδ|c|δ|a|(b) − bδ|b|δ|a|(c) + δ|a|(c)δ|c|(b)

= δ|a|({b, c}) − {δ|a|(b), c} − {b, δ|a|(c)}

which implies that

p(〈−,−〉,−δ;a,b, c) = p({−,−},−δ;a,b, c) = 0.

Therefore −δ is a Poisson twisting system of Aδ and (Aδ)−δ = A. So, ∼ is symmetric.

To prove the transitivity of ∼, we use the idea given in Example 2.6. Suppose δ is a Poisson twisting system of A and φ
a Poisson twisting system of Aδ . Let σ := {σg := δg + φg | g ∈ G}.

Since G is cyclic, σn = nσ1 by definition for all n ∈ G . Therefore (E2.1.1)-(E2.1.2) are obvious. Define

{a,b}new = {a,b} + aσ|a|(b) − bσ|b|(a) = 〈a,b〉 + aφ|a|(b) − bφ|b|(a).

Then {−, −}new is the Poisson bracket of (Aδ)φ . By Theorem 2.4, σ is a Poisson twisting system of A and Aσ = (Aδ)φ . 
Therefore ∼ is transitive. �

Remark 2.10. Let G be Z2 and A = k[x0, x1, x2, x3] with deg xi = (1, 0) for i = 0, 1, 2 and deg x3 = (0, 1). We claim that ∼
is not an equivalence relation among the Poisson structures on A. We use Y for the Z2-graded Poisson algebra with trivial 
Poisson structure.

Let δ1 be the Poisson derivation of Y sending x0 → 0, x1 → x2 , x2 → 0, and x3 → 0. Let φ1 be the Poisson derivation of 
Y sending x0 → 0, x1 → x1 , x2 → 0 and x3 → 0. We define two Poisson twisting systems as follows. Let δ := {δ(n,m) = nδ1}

and φ := {φ(n,m) =mφ1}. Since δ1 and φ1 are Poisson derivations, it is easy to verify that δ, −δ and φ are Poisson twisting 
systems. By Theorem 2.4, X := Y−δ is a Poisson algebra and by the first part of the proof of Proposition 2.9, δ is a Poisson 
twisting system of X and Y = Xδ . So we have X ∼ Y . Let Z = Y φ . Then Y ∼ Z . We claim that X �∼ Z . Suppose, on the 
contrary, that X ∼ Z . Then Z = Xh for some Poisson twisting system h of X . Applying (E2.3.1) to pairs of elements of the 
form (xi, x j) for all 0 ≤ i, j ≤ 3, we see that h = δ + φ. But it is clear that (E2.1.1) fails for δ + φ as δ1φ1 �= φ1δ1 . Therefore, 
there is no Poisson twisting system h such that Z = Xh as desired.

This example suggests that there should be a more general definition of twisting systems that induce an equivalence 
relation ∼.

We conclude this section with more examples.

10



X. Tang, X. Wang and J.J. Zhang Journal of Geometry and Physics 207 (2025) 105344

Example 2.11. Here are two examples of twists of graded Poisson algebras.
(1) Let A be the Poisson polynomial ring k[x1, . . . , xn] with trivial Poisson bracket. Consider A as a Zn-graded algebra 

with deg xi = ei where

ei = (0, . . . ,0,1,0, . . . ,0) ∈ Z
n

with 1 in the ith position. Let {pi j | 1 ≤ i < j ≤ n} be a subset of k. For each i, define a Zn-graded Poisson derivation δi by

δi(x j) =

{
pi jx j j > i,

0 j ≤ i.

For each (a1, . . . , an) ∈ Zn , let δ(a1,...,an) =
∑n

i=1 aiδi . Since each δ(a1,...,an) is a graded Poisson derivation of A, it is easy to 
see that

δ := {δ(a1,...,an) | (a1, . . . ,an) ∈ Z
n}

is a twisting system of A. By (E2.3.1), the Poisson bracket of the new Poisson algebra Aδ is determined by

〈xi, x j〉 = xiδi(x j) − x jδ j(xi) = pi jxix j for all i < j.

(2) Let A be the Poisson polynomial ring k[x1, . . . , xn] with trivial Poisson bracket. Consider A as a Z-graded algebra 
with deg xi = 1 for all i. Let δ1 be a Poisson derivation of A determined by

δ1(xi) =

{
−xi−1 i > 1,

0 i = 1.

Let δ := {δd := dδ1 | ∀ d ∈ Z}. Since δ1 is a graded Poisson derivation, δ is a twisting system of A. By (E2.3.1), the Poisson 
bracket of the new Poisson algebra Aδ is determined by

〈xi, x j〉 = xiδ(x j) − x jδ(xi) = −xix j−1 + x jxi−1 for all i < j.

When n = 2, the Poisson bracket of Aδ is determined by

〈x2, x1〉 = x21.

3. Proofs of Theorem 0.2 and Corollary 0.3

For the rest of the paper we assume that char k = 0. Let A be a commutative Poisson k-algebra of Krull dimension d. 
First, we recall the definition of divergence of a skew-symmetric k-derivation for k ≥ 0 [20, Sect. 4.4.3]. A special case is 
given in Definition 1.1. For P ∈X

p(A), the internal product ιP is defined at the beginning of Section 1.

Let ν be a volume form of A. Then ν ∈ �d(A), where �d(A) �= 0 and �k(A) = 0 for k > d. The form ν is also called a 
d-form. We define the star operator

�A : X•(A) → �d−•(A)

as follows: for each k ≥ 0 and Q ∈ X
k(A), we set

�AQ := ιQ ν.

So �A is a k-linear map from Xk(A) to �d−k(A) for each k. It follows from (E1.0.2) that �A is an A-linear map. We simply 
write �A as � if no confusion arises.

Lemma 3.1. Let B be a smooth affine domain of dimension n with volume form ν . Then, �B is an isomorphism.

Proof. To prove that � is an isomorphism, it suffices to show that �B ⊗B Bm is an isomorphism for all maximal ideals m
of B . Let A be the local ring Bm . Then A is a regular local ring of global dimension, Krull dimension, and transcendence 
degree n. Since all the operations commute with the localization,

�B ⊗B Bm = �B ⊗B A = �A .

Now we assume that A is local with maximal ideal m generated by {x1, . . . , xn}. Then �1(A) is a free module of rank n. 
Write �1(A) = ⊕n

i=1Adxi . Then for each k ≥ 0, �k(A) is a free A-module with basis

{di1,··· ,ik := dxi1 ∧ · · · ∧ dxik | 1 ≤ i1 < · · · < ik ≤ n}

11
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and that, via (E1.0.1), Xk(A) is a free A-module with basis as in (E1.0.1)

{∂i1,...,ik :=
∂

∂xi1
∧ · · · ∧

∂

∂xik
| 1 ≤ i1 < · · · < ik ≤ n}.

Recall that ν = a d1,2,...,n for an invertible element a ∈ A. By definition,

�A∂i1,...,ik = ι∂i1,...,ik
(ν) = aιdi1,...,ik

(d1,2,··· ,n)

=
∑

σ∈Sk,n−k

sgn(σ )a∂i1,...,ik [xσ (1), . . . , xσ (k)]d1,...,̂σ (1),...,̂σ (k),...,n

= ±ad1,...,î1,··· ,îk,...,n

where ±1 = sgn({i1, . . . , ik, 1, . . . , ̂i1, . . . , ̂ik, . . . , n}). Therefore, �A is an isomorphism as desired. �

Definition 3.2. We say A is a standard Poisson algebra if A is an affine smooth Z-graded Poisson domain with a homoge-

neous volume form ν (with degν not necessarily zero) and � is an isomorphism.

Note that every polynomial Poisson algebra k[x1, . . . , xn] is standard (even when char k > 0). Lemma 3.1 provides another 
class of such algebras. Now we assume that A is standard of dimension n. By [20, Sect. 4.4.3], the divergence operator with 
respect to the volume form ν is a graded k-linear map of degree −1,

div : X•(A) → X
•−1(A),

which makes the following diagram commutes

X
•(A)

�
−−−−→ �n−•(A)

div

⏐⏐�
⏐⏐�d

X
•−1(A)

�
−−−−→ �n−•+1(A).

Since A is standard, the star operator � is an A-linear isomorphism. Now we have the following lemmas proved in [20, 
Sect. 4.4.3].

Lemma 3.3. [20, Proposition 4.16] Suppose (A, π) is standard with volume form ν . Let δ and φ be two derivations of A. Then

div(δ ∧ φ) = div(φ)δ − div(δ)φ − [δ,φ].

The following lemma gives another proof of Lemma 0.1.

Lemma 3.4. [20, Proposition 4.17] Suppose (A, π) is standard with volume form ν . Let m be the modular derivation of A. Then

m = −div(π).

Consequently, the divergence of m is zero.

Question 3.5. It is not clear how to handle nonaffine smooth domain A as the proof of Lemma 3.1 uses the fact A is affine.

Theorem 3.6. Suppose (A, π) is standard with volume form ν . Let δ be a graded semi-Poisson derivation of A. Let m (resp. n) be the 
modular derivation of A (resp. Aδ). Then

n = m+ (div E)δ − (div δ)E.

Proof. Let π ′ be the Poisson structure of Aδ . By (E2.3.1),

π ′ = π + E ∧ δ.

By Lemmas 3.3 and 3.4, we have

n = −div(π ′) = −div(π) − div(E ∧ δ)

= m+ div(E)δ − div(δ)E − [δ, E].

The assertion follows as [δ, E] = 0 for each graded derivation δ. �

12
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Proof of Theorem 0.2. Let A be a Z-graded Poisson algebra k[x1, . . . , xn] with each xi homogeneous. By Lemma 1.2(5), 
div(E) = degν =

∑n
i=1 deg xi =: l. Now the assertions follow from Theorem 3.6. �

Remark 3.7. There is a different proof of Theorem 0.2 without using Theorem 3.6 (details are omitted). In fact, the different 
proof does not use the hypothesis that char k = 0.

The following result is an immediate consequence of Theorem 3.6.

Theorem 3.8. Suppose (A, π) is standard with a volume form ν ∈ �d(A). Assume that div(E) ∈ k is nonzero. Let m be the modular 
derivation of A and let δ = − 1

div(E)
m. Then (Aδ, π ′) is unimodular and

π = π ′ +
1

div(E)
E ∧m.

In particular, we have Lδ(α) = 0 where α = �π ′ is the closed differential (d − 2)-form associated with the unimodular Poisson 
structure π ′ on A.

Proof. Let n be the modular derivation of (Aδ, π ′). By Theorem 3.6 and the fact δ = − 1
div(E)

m,

n = m+ div(E)δ − div(δ)E = −div(δ)E = 0

where the last equation follows from div(m) = 0 [Lemma 0.1]. Therefore (Aδ, π ′) is unimodular. By (E2.3.1), for all a, b ∈ A,

π ′(a,b) = 〈a,b〉 = {a,b} + aδ|a|(b) − bδ|b|(a)

= π(a,b) + |a|aδ(b) − |b|bδ(a) = π(a,b) + E(a)δ(b) − δ(a)E(b).

As a result, we have that

π ′ = π + E ∧ δ,

which is equivalent to the above assertion. Finally by [20, Proposition 3.11(2)] we have

Lδ(α) =Lδ (ιπ ′(ν)) = ιπ ′ (Lδ(ν)) + ι[δ,π ′]S (ν)

=ιπ ′ (div(δ)ν) + ι[δ,π ′]S (ν) = ι[δ,π ′]S (ν).

One can easily check that δ is also a Poisson derivation of (Aδ, π ′). So [δ, π ′]S = −dπ ′ (δ) = 0 and we get Lδ(α) = 0. �

Proof of Corollary 0.3. Let A be a Z-graded Poisson algebra k[x1, · · · , xn] with each xi homogeneous. By Lemma 1.2(5), 
l =

∑n
i=1 deg xi . Now the assertions follow from Theorem 3.8. �

4. Rigidity of graded twisting

Let A be a Z-graded Poisson algebra. Recall that the set of graded semi-Poisson derivations (resp. graded Poisson deriva-
tions) of A with degree 0 is denoted by Gspd(A) (resp. Gpd(A)). We first prove Theorem 0.5.

Lemma 4.1. Let A be a Z-graded Poisson algebra k[x1, . . . , xn] with deg xi > 0 for every i. Suppose that A is unimodular and that 
l :=

∑n
i=1 deg xi is a nonzero element in k. If δ is a graded semi-Poisson derivation of A, then δ is a Poisson derivation of A. Namely, 

Gspd(A) = Gpd(A).

Proof. Since deg xi > 0 for all i, by Lemma 1.2(1,3), both div(δ) and l = div(E) are in k. Let B be the twist Aδ with modular 
derivation n. By Theorem 0.2,

n = m+ lδ − div(δ)E = lδ − div(δ)E.

Since n and E (and div(δ)E) are Poisson derivations of B , we have that lδ (and hence δ) is a Poisson derivation of B . Let 
〈−, −〉′ (resp. {−, −}) be the Poisson structure of B (resp. A). By (E2.3.1), we have

{−,−} = 〈−,−〉 − E ∧ δ.

Then, for all homogeneous elements a, b ∈ A,

13
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δ ({a,b})−{δ(a),b} − {a, δ(b)}

= δ (〈a,b〉) − 〈δ(a),b〉 − 〈a, δ(b)〉

− δ ((E ∧ δ)[a,b]) + E ∧ δ[δ(a),b] + E ∧ δ[a, δ(b)]

= 0− δ (|a|aδ(b) − |b|bδ(a))

+
(
|a|δ(a)δ(b) − |b|bδ2(a)

)
+

(
|a|aδ2(b) − |b|δ(b)δ(a)

)

= −|a|δ(a)δ(b) − |a|aδ2(b) + |b|δ(b)δ(a) + |b|bδ2(a)

+
(
|a|δ(a)δ(b) − |b|bδ2(a)

)
+

(
|a|aδ2(b) − |b|δ(b)δ(a)

)

= 0.

Therefore δ is a Poisson derivation of A. �

Lemma 4.2. Let B be a twist of A. Then Gspd(A) = Gspd(B).

Proof. Write B = Aδ for some graded semi-Poisson derivation δ of A. So B = A as a commutative algebra. Let π (resp. π ′) 
be the Poisson bracket of A (resp. B).

Let φ be a graded derivation of A with degree zero. Then we have [E, φ]S = [E, φ] = 0. For any two graded derivations 
φ1, φ2 of A with degree zero, we have

[E ∧ φ1, E ∧ φ2]S = ±[E, E ∧ φ2]S ∧ φ1 ± E ∧ [φ1, E ∧ φ2]S

= ± ([E, E]S ∧ φ2 ± [E, φ2]S ∧ E) ∧ φ1

± E ∧ ([φ1, E]S ∧ φ2 ± [φ1, φ2]S ∧ E)

= 0.

Let φ be a graded semi-Poisson derivation of A with degree zero. By definition,

[E ∧ φ,π ]S = 0.

Then

[E ∧ φ,π ′]S = [E ∧ φ,π + E ∧ δ]S

= [E ∧ φ,π ]S + [E ∧ φ, E ∧ δ]S

= 0.

Therefore, φ is a graded semi-Poisson derivation of B with degree zero. �

Proof of Theorem 0.5. Part (1) is Lemma 4.1 and part (2) is Lemma 4.2.

(3) By Corollary 0.3 and part (2), we may assume that A is unimodular. By part (1), Gspd(A) is the k-vector space of 
graded Poisson derivations A. It is well-known that it is a Lie algebra. Let φ be any Poisson derivation of A. It is clear that 
φ is determined by {φ(xi)}

n
i=1 . Therefore Gspd(A) is finite-dimensional. �

One of the main definitions in this paper is the following.

Definition 4.3. Let A be a Z-graded Poisson algebra.

(1) The rigidity of graded twisting (or simply rigidity) of A is defined to be

rgt(A) = 1− dimk Gspd(A).

(2) We say A is rigid if rgt(A) = 0.

(3) We say A is (−1)-rigid if rgt(A) = −1.

Note that this notion of rigidity is different from the rigidity defined in [9, Definition 0.1] and other papers.
It follows from Lemma 4.2 that

rgt(A) = rgt(Aδ) (E4.3.1)

for every graded semi-Poisson derivation δ of A.
Other basic facts about rgt(A) are listed in the following lemma.
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Lemma 4.4. Let A be a Z-graded Poisson algebra with Ai �= 0 for some i �= 0. In parts (2)-(6), we further assume that A is k[x1, . . . , xn]
with deg xi > 0 for all i.

(1) Suppose that rgt(A) = 0. Then every graded twist of A is isomorphic to A.
(2) If A is not unimodular, then rgt(A) ≤ −1.

(3) If rgt(A) = 0, then A is unimodular.

(4) If rgt(A) �= 0, then dimk Gspd(A) ≥ dimk Gpd(A) ≥ 2.

(5) If rgt(A) = −1, then dimk Gspd(A) = dimk Gpd(A) = 2.

(6) Let {A(a)}a∈k be a family of Poisson polynomial algebras such that (i) A(a) is a Poisson twist of A(a′) for all a, a′ ∈ k and that (ii) 
there is an a0 such that A(a0) is unimodular. If dimk Gpd(A(a0)) = 2, then rgt(A(a)) = −1 for all a.

(7) If rgt(A) = 0 and A is a connected graded domain, then every Poisson normal element of A is Poisson central.
(8) If dimk Gpd(A) = 1 and div(E) �= 0, then rgt(A) = 0.

Proof. (1) Since Ai �= 0 for some i, the Euler derivation E is not zero. Since rgt(A) = 0, Gspd(A) = kE . Let B be a graded 
twist of A. Then B = Aδ where δ ∈ Gspd(A). Let 〈−, −〉 be the Poisson bracket of B . Since δ = αE for some α ∈ k, one sees 
from (E2.3.1) that 〈a, b〉 = {a, b} where {a, b} is the original Poisson bracket of A. The assertion follows.

(2) Since A is not unimodular, the modular derivation m is not in kE , as div(E) =
∑n

i=1 deg xi �= 0 and div(m) = 0

[Lemma 0.1]. Therefore dimk Gspd(A) ≥ 2. The assertion follows.

(3) This is equivalent to (2).
(4) By definition, it is clear that dimk Gspd(A) ≥ dimk Gpd(A). It remains to show dimk Gpd(A) ≥ 2. If A is unimodular, 

then, by Lemma 4.1,

dimk Gpd(A) = dimk Gspd(A) = 1− rgt(A) ≥ 2.

Now we assume that A is not unimodular with nonzero modular derivation m. Since div(E) �= 0 and div(m) = 0, the k-
dimension of Gpd(A) is at least 2 as desired.

(5) By definition, dimk Gspd(A) = 1 − rgt(A) = 2. The assertion follows from part (4).
(6) It follows from Lemmas 4.1 and 4.2 that we have

rgt(A(a)) = rgt(A(a0)) = 1− dimk Gspd(A(a0)) = 1− dimk Gpd(A(a0)) = −1.

The assertion follows from (4).
(7) We only need to consider a homogeneous Poisson normal element f of positive degree. Note the log-Hamiltonian 

derivation LH f := f −1{ f , −} is a Poisson derivation of degree 0. Suppose f is not central. Then LH f ( f ) �= 0. Note that LH f

is clearly not the Euler derivation. Therefore rgt(A) ≤ −1, yielding a contradiction. The assertion follows.

(8) We know Gpd(A) is spanned by the Euler derivation E , which is not the modular derivation by Lemma 0.1. This 
implies that A is unimodular and the result follows by Lemma 4.2. �

Examples of rgt(A) will be given in the next 2 sections.

5. Examples and comments

Note that the graded twists in the associative algebra setting has an important property, namely, a graded algebra R and 
its twist have isomorphic corresponding graded module categories [39]. The following example shows that a similar result 
does not hold in the Poisson setting.

Example 5.1. Let A be the Poisson algebra k[x1, x2] with trivial Poisson structure. Let δ be the Poisson derivation of A
determined by

δ(x1) = 0 and δ(x2) = x2.

Let B be the graded twist of A by δ, namely, B = Aδ . By definition, B is a Poisson algebra k[x1, x2] with Poisson bracket 
determined by

{x1, x2} = x1x2.

Let U (A) denote the Poisson enveloping algebra of A [3]. Since A has the trivial Poisson structure, U (A) is the commuta-

tive polynomial ring k[x1, x2, y1, y2]. Let U (B) be the Poisson enveloping algebra of B . We claim that U (B) is not a graded 
twist of U (A) in the sense of [39].

Suppose on the contrary that U (B) is a graded twist of U (A) in the sense of [39]. Then, by [39, Theorem 1.1],

GrMod-U (A) ∼= GrMod-U (B). (E5.1.1)
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Let D(A) (resp. D(B)) be the degree zero part of the graded quotient ring of U (A) (resp., U (B)). Then it follows from (E5.1.1)
that D(A) ∼= D(B). Since U (A) is commutative, D(A) is commutative. Thus D(B) is commutative. Next we prove that D(B)

is not commutative, so we obtain a contradiction. By [3, Theorem 2.2], U (B) is generated by four elements x1, x2, δ1, δ2 and 
subject to 6 relations

x1x2 = x2x1,

δ1x1 = x1δ1,

δ1x2 = x2δ1 + x1x2,

δ2x1 = x1δ2 − x1x2,

δ2x2 = x2δ2,

δ2δ1 = δ1δ2 + x2δ1 + x1δ2.

Let a = x1x
−1
2 and b = δ2x

−1
2 which are elements in D(B). It follows from the six relations that

ba = ab − a.

So D(B) is not commutative, yielding a contradiction. Therefore U (B) is not a graded twist of U (A).

As a consequence, the category of graded Poisson modules over Aδ , denoted by GrPMod-Aδ is not equivalent to the 
category of graded Poisson modules over A, denoted by GrPMod-A. That is,

GrPMod-Aδ �∼= GrPMod-A.

Remark 5.2. When A is a connected graded Poisson algebra with Ai �= 0 for some i > 0, P H1(A) is also graded. Since 
(P H1(A))0 ∼= Gpd(A), we have rgt(A) ≤ 1 − dimk(P H

1(A))0 . If dimk(P H
1(A))0 = 1, then rgt(A) = 0 by Lemma 4.4(8). 

Therefore we can obtain information about rgt(A) from P H1(A).

Remark 5.3. Let A = k[x0, x1, x2, x3] be the polynomial algebra with the Poisson bracket defined by

{xi, xi+1} = xi+2xi+3 − λ2xixi+1,

{xi, xi+1} = λ(x2i+1 − x2i+3),

for some λ ∈ k with indices i = 0, 1, 2, 3 (modulo 4). Then A can be considered the semiclassical limit of the 4-dimensional 
Sklyanin algebra. The Poisson (co)homologies of A have been computed in [27, p.1154]. By the Poincaré duality, both P H0(A)

and P H1(A) have Hilbert series 1
(1−t2)2

. By Remark 5.2, rgt(A) = 0. Further, since hP H1(A)(t) = hP H0(A)(t) = hZ (t) = 1
(1−t2)2

, 

where Z denotes the Poisson center of A, A is P H1-minimal in the sense of Definition 7.3(1).

Note that the Poisson (co)homologies of the quadratic Poisson algebra A = k[x, y, z] of Sklyanin type were computed in 
[28,29,35]. An argument similar to the above shows that rgt(A) = 0 and A is P H1-minimal. We will give an elementary 
and direct computation of this rgt(A) in Example 6.6(Case 3).

Remark 5.4. For n ≥ 2 and a ∈ C. Let A(n, a) = C[x1, . . . , xn] be the family of Poisson polynomial algebras studied in [21]. 
The Poisson bracket on A(n, a) is defined as follows:

{xi, x j} = z jxi−1x j − zix j−1xi

where z j = a + j and x−1 = 0. One can check for each fixed n ≥ 2 the family {A(n, a)|a ∈ C} satisfies all the assumptions 
stated in Lemma 4.4(6) with a0 =

(n+2)(1−n)
2(n+1)

such that rgt(A(n, a)) = −1. Computations are omitted. In particular for any 
a, a′ ∈ C, A(n, a) is a Poisson twist of A(n, a′), which is a Poisson version of [21, Theorem 4.2].

We will compute rgt for some classes of Poisson algebras. Here is a warm-up.

Example 5.5. Let A = k[x, y, z] with deg(x) = 1, deg(y) = 2 and deg(z) = 3. Let � = x6 + y3 + z2 + λxyz where λ ∈ k. Define 
a Poisson structure on A := k[x, y, z] by

{ f , g} := det

⎛
¿

�x fx gx
�y f y gy

�z f z gz

À
⎠

for all f , g ∈ A. It is easy to see that
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{x, y} = �z = 2z + λxy, (E5.5.1)

{x, z} = −�y = −(3y2 + λxz), (E5.5.2)

{y, z} = �x = 6x5 + λyz (E5.5.3)

and that A is unimodular. If λ6 �= 63 , then Asing := A/(�x, �y, �z) is finite dimensional. In this case, � has an isolated 
singularity. Let δ be a graded Poisson derivation of degree zero. Then

δ(x) = c1x,

δ(y) = c2 y + c3x
2,

δ(z) = c4z + c5x
3 + c6xy.

Subtracting by c1E , we may assume that c1 = 0. Applying δ (with c1 = 0) to (E5.5.1), we obtain that

c2(2z + λxy) = 2(c4z + c5x
3 + c6xy) + λx(c2 y + c3x

2),

which implies that c2 = c4 , c6 = 0, and 2c5 + λc3 = 0. Applying δ (with c1 = 0 and c6 = 0) to (E5.5.2), we obtain that

−c4(3y
2 + λxz) = −6y(c2 y + c3x

2) − λx(c4z + c5x
3),

which implies that c2 = c3 = c4 = c5 = 0. Therefore δ = 0. This means that rgt(A) = 0. By Lemma 4.4(1), A has no non-trivial 
twists.

In general, when � has an isolated singularity, the fact that rgt(A) = 0 also follows from the Poisson cohomology 
computation given in [29, Proposition 4.5] (after matching up the notations). The same idea applies to the algebra in 
Example 6.6(Case 3).

6. Some computations of rgt

In this section, we compute rgt for all quadratic Poisson structures on A = k[x, y, z] with deg(x) = deg(y) = deg(z) = 1. 
Some of the computations have been done by other researchers in different language (for example, some are hidden inside 
in Poisson cohomology computation), but we provide all details of computations of rgt for completeness. The classification 
of all quadratic Poisson structures on k[x, y, z] were given in [8,7,22].

First we fix some notations. Let k be an algebraically closed field of characteristic zero (one might assume k = C if 
necessary). Let V = A1 = kx + ky + kz and let {−, −} be a quadratic Poisson bracket of A := k[x, y, z] = k[V ]. Let f be a 
graded Poisson derivation of (A, {−, −}). Let W = {V , V }. It is clear that

f (W ) = f ({V , V }) ⊆ { f (V ), V } + {V , f (V )} ⊆ {V , V } = W . (E6.0.1)

Write

f (x) = a1x+ a2 y + a3z, f (y) = b1x+ b2 y + b3z, f (z) = c1x+ c2 y + c3z. (E6.0.2)

After replacing f by f − a1E , we can further assume that

a1 in (E6.0.2) is zero. (E6.0.3)

Note that, for any given polynomial � ∈ A, one can define a Poisson bracket on A as follows:

{x, y} =
∂�

∂z
, {y, z} =

∂�

∂x
, {z, x} =

∂�

∂ y
.

Such a bracket is called a Jacobian Poisson bracket and � is called a potential. If {−, −} is unimodular, it comes from a 
potential � ∈ A3 . One can classify cubic � as follows: (a): � is a product of three linear terms, (b): � is a product of a 
linear term and an irreducible polynomial of degree 2, and (c): � is irreducible of degree 3. This classification is well-known 
(e.g., [5,19,34]); we list them below for the reader’s convenience (Table 1).

Table 1

Classification of cubic potential � in k[x, y, z].
Reducible � Irreducible �

(a) x3 , x2 y, xyz xy(x+ y)

(b) xyz + x3 , xy2 + x2z

(c) x3 + y2z, x3 + x2z + y2z
1
3
(x3 + y3 + z3) + λxyz, λ3 �= −1

The following four examples deal with the first case, namely, � is a product of three linear terms. Define Asing to be 
A/(�x, �y, �z).
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Example 6.1. Let � = x3 . Then

{x, y} = �z = 0,

{z, x} = �y = 0,

{y, z} = �x = 3x2.

It is clear that Kdim(Asing) = 2. Let f be a graded Poisson derivation of A. By (E6.0.1)

2xf (x) = f (x2) ∈ f (W ) ⊆ W = kx2.

Then f (x) = ax for some a ∈ k. By (E6.0.3), we may assume that f (x) = 0. Retain the notations in (E6.0.2). Applying f to 
{y, z} = 3x2 implies that b2 +c3 = 0 with b1, b3, c1, c2 free. Therefore rgt(A) = −5. One can check that every Poisson normal 
element of A is Poisson central.

Example 6.2. Let � = x2 y. Then

{x, y} = �z = 0,

{z, x} = �y = x2, (E6.2.1)

{y, z} = �x = 2xy.

It is clear that Kdim(Asing) = 2. Let f be a graded Poisson derivation of A. By (E6.0.1), we have

kx2 + kxy = W ⊇ f (W ) = k (2xf (x)) + k ( f (x)y + xf (y)) .

Then f (x)y does not have terms y2 and yz. So f (x) = ax for some a ∈ k, and by (E6.0.3), we may assume that f (x) = 0. 
Using the notations in (E6.0.2), then (E6.2.1) implies that b1 = b3 = c3 = 0 with b2, c1, c2 free. Therefore rgt(A) = −3.

Example 6.3. Let � = xyz. Then

{x, y} = �z = xy,

{z, x} = �y = xz, (E6.3.1)

{y, z} = �x = yz.

As before we assume that a1 = 0. Note that W := kxy + kyz + kxz which does not contain term x2 and y2 . By (E6.0.1), we 
have

(a1x+ a2 y + a3z)y + (b1x+ b2 y + b3z)x = f (x)y + xf (y) = f (xy) ∈ W

which implies that a2 = b1 = 0. Similarly, using f (xz), f (yz) ∈ W , we obtain that a3 = c1 = b3 = c2 = 0. Thus f (x) = 0, 
f (y) = b2 y and f (z) = c3z. Therefore rgt(A) = −2.

One can check that Kdim(Asing) = 1.

Example 6.4. Let � = xy(x + y). Then

{x, y} = �z = 0,

{z, x} = �y = x2 + 2xy, (E6.4.1)

{y, z} = �x = 2xy + y2.

Again we may assume that a1 = 0. By (E6.0.1), we have

f (x2 + 2xy) = 2xf (x) + 2xf (y) + 2yf (x) ∈ k(x2 + 2xy) + k(2xy + y2) =: W ,

f (2xy + y2) = 2xf (y) + 2yf (x) + 2yf (y) ∈ k(x2 + 2xy) + k(2xy + y2).

As a consequence, both f (x) and f (y) do not have a z term, namely, a3 = b3 = 0. Furthermore, by the above and a little bit 
of linear algebra, we have

b1 = b2 = −a2.

Now we can write f (x) = a2 y and f (y) = −a2x − a2 y. Applying f to the second equation of (E6.4.1), we obtain that c3 = 0

and a2 = 0 with c1 and c2 free. Therefore rgt(A) = −2.

One can check that Kdim(Asing) = 1.
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Next we consider the second case. Some linear algebra details will be omitted in the next two examples.

Example 6.5. Case 1: � = xyz + x3 . In this case, the Poisson bracket of A is determined by

{x, y} = �z = xy,

{z, x} = �y = xz, (E6.5.1)

{y, z} = �x = yz + 3x2.

One can check that Kdim(Asing) = 1. Recall that W is {V , V } = kxy +kxz+k(yz+ 3x2) which does not involve either y2 or 
z2 . By the second equation of (E6.5.1), we have

f (x)z + xf (z) ∈ W

which implies that f (x) does not have the z term, or a3 = 0. Similarly, b3 = 0 by the third equation of (E6.5.1). By using the 
first equation of (E6.5.1), we obtain that a2 = 0. By (E6.0.3), we can assume that f (x) = 0. Now the first equation of (E6.5.1)
implies that {x, f (y)} = xf (y). So f (y) ∈ ky or f (y) = b2 y.

Using the second equation of (E6.5.1), one can show that c1 = c2 = 0. By using the third equation of (E6.5.1) and the 
fact that W does not contain the term y2 , we obtain that c2 = 0. So f (z) = c3z. From this we can derive that b2 + c3 = 0. 
Therefore rgt(A) = −1.

Case 2: � = xy2 + x2z. Then we have

{x, y} = �z = x2,

{z, x} = �y = 2xy, (E6.5.2)

{y, z} = �x = y2 + 2xz.

One can check that Kdim(Asing) = 1. By definition W = kx2 + kxy + k(y2 + 2xz), and it does not contain terms z2 and yz. 
Using the third equation of (E6.5.2), we have

f (y2 + 2xz) = 2yf (y) + 2xf (z) + 2zf (x) ∈ W .

Therefore f (x)z does not contain a z2 term. So f (x) = a1x + a2 y and with (E6.0.3) we can assume that f (x) = a2 y. Now we 
apply f to the first equation of (E6.5.2), we obtain that b2 = 0 and b3 = −a2 . (Some calculations are omitted.) Applying f
to the second equation of (E6.5.2), we obtain that a2 = 0, c3 = 0 and c2 = −2b1 . Finally applying f to the third equation of 
(E6.5.2), we obtain that c1 = 0 with b1 free. Therefore rgt(A) = −1.

The final example deals with the irreducible cubic �.

Example 6.6. Suppose � is an irreducible cubic function in x, y, z. By classification (see, for example, [19, Theorems 1 and 
2] and [5, Theorem 2.12]), there are following two singular ones and one non-singular.

Case 1: � = x3 + y2z. Then we have

{x, y} = �z = y2,

{z, x} = �y = 2yz, (E6.6.1)

{y, z} = �x = 3x2.

So W := ky2 + kyz + kx2 does not have terms z2 , xy and xz. Then f (x2) = 2xf (x) ∈ W implies that f (x) ∈ kx. By (E6.0.3), 
we have f (x) = 0. Applying f to the first equation of (E6.6.1), we obtain that f (y) = 0. Applying f to the last two equations 
of (E6.6.1), we obtain that f (z) = 0. So rgt(A) = 0.

One can check that Kdim(Asing) = 1. By a Gröbner Basis argument, one sees that the Hilbert series of Asing is 2
(1−t)

+

t2 + t − 1.

Case 2: � = x3 + x2z + y2z. Then we have

{x, y} = �z = x2 + y2,

{z, x} = �y = 2yz, (E6.6.2)

{y, z} = �x = 3x2 + 2xz.

So W does not have terms z2 and xy. By the second equation of (E6.6.2), we have

f (yz) = yf (z) + zf (y) ∈ W
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which implies that f (y) has no z term and f (z) has no x term. By the third relation of (E6.6.2), we obtain that f (x) has no 
z term. By (E6.0.3), one can assume that f (x) = a2 y. Applying f to the first equation, we obtain that b2 = 0 and b1 = −a2
(namely, f (x) = a2 y and f (y) = −a2x). Applying f to the second equation, we obtain that c2 = a2 = 0 (so f (x) = f (y) = 0). 
Then applying f to the third equation of (E6.6.2) yields that f (z) = 0. Therefore rgt(A) = 0.

One can check that Kdim(Asing) = 1. By a Gröbner Basis argument, one sees that the Hilbert series of Asing is 2
(1−t)

+

t2 + t − 1.

Case 3: � = 1
3
(x3 + y3 + z3) + λxyz where λ3 �= −1 (which is the Hesse normal form given in [5, Theorem, 2.12]). 

One can check that Asing is finite dimensional or Kdim(Asing) = 0. Consequently, � has an isolated singularity at zero. As 
mentioned at the end of Example 5.5, we have rgt(A) = 0 which follows from the Poisson cohomology computation given 
in [29, Proposition 4.5] (and [35, Theorem 5.1]). Here we will give a direct computation. By definition,

{x, y} = �z = z2 + λxy,

{z, x} = �y = y2 + λxz, (E6.6.3)

{y, z} = �x = x2 + λyz.

Note that W = k(z2 +λxy) +k(y2 +λxz) +k(x2 +λyz). This means that in W , z2 (respectively, y2 and x2) appears together 
with λxy (respectively, xz and yz). By the first equation of (E6.6.3), we have f (z2 +λxy) ∈ W . Using the notation in (E6.0.2), 
we compute

f (z2 + λxy) = 2zf (z) + λ (xf (y) + yf (x))

= 2z(c1x+ c2 y + c3z) + λ[x(b1x+ b2 y + b3z) + y(a1x+ a2 y + a3z)]

≡ 2c1xz + 2c2 yz + 2c3(−λxy) + λ[b1(−λyz) + b2xy + b3xz

+ a1xy + a2(−λxz) + a3 yz] mod W

≡ (2c1 + λb3 − λ2a2)xz + (2c2 − λ2b1 + λa3)yz

+ (−2λc3 + λb2 + λa1)xy mod W .

So we have

2c1 + λb3 − λ2a2 = 0,

2c2 + λa3 − λ2b1 = 0,

−2λc3 + λb2 + λa1 = 0.

From now on we assume that λ �= 0 (if λ = 0, the proof is slightly simpler and is omitted to save the space). With this 
assumption, we can remove λ from the third equation of the above system. Similarly, by working with the last two equations 
in (E6.6.3), we obtain the following

2b1 + λc2 − λ2a3 = 0,

2b3 + λa2 − λ2c1 = 0,

−2b2 + c3 + a1 = 0,

2a2 + λc1 − λ2b3 = 0,

2a3 + λb1 − λ2c2 = 0,

−2a1 + b2 + c3 = 0.

By (E6.0.3), we may assume that a1 = 0. Then by the three equations involving a1 , we obtain that b2 = c3 = 0. Applying f
to three equations in (E6.6.3) with some linear algebra computations, we obtain that f (x) = f (y) = f (z) = 0 (but this is 
true only if λ3 �= −1). Therefore rgt(A) = 0.

Since {�x, �y, �z} is a regular sequence, the Hilbert series of Asing is (1 + t)3 .

Based on the above examples, we have the following classification.

Corollary 6.7. Let A be a quadratic Poisson polynomial ring k[x, y, z].

(1) Suppose A is unimodular. Then (A, �, rgt(A)) is listed as follows up to isomorphisms.

� 0 x3 x2 y xyz xy(x + y) xyz + x3 xy2 + x2z

rgt(A) −8 −5 −3 −2 −2 −1 −1

Ex. 6.1 Ex. 6.2 Ex. 6.3 Ex. 6.4 Ex. 6.5(1) Ex. 6.5(2)
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� x3 + y2z x3 + x2z + y2z 1
3
(x3 + y3 + z3) + λxyz, λ3 �= −1

rgt(A) 0 0 0

Ex. 6.6(1) Ex. 6.6(2) Ex. 6.6(3)

(2) Gpd(A) is one-dimensional if and only if A is unimodular with � in the second table.

Definition 6.8. A Poisson derivation φ of a Poisson algebra A is called ozone if φ(z) = 0 for all z in the Poisson center of A.

By Definition 1.3(1), the modular derivation m is always ozone.

Lemma 6.9. Let A be the quadratic Poisson algebra in Example 6.6(1) with � = x3 + y2z. Then every ozone derivation of A is Hamil-

tonian.

Proof. By definition,

{x, y} = y2, (E6.9.1)

{z, x} = 2yz, (E6.9.2)

{y, z} = 3x2. (E6.9.3)

We define a new grading on the polynomial ring A = k[x, y, z]. Let G be Z and define degG x = 0, degG y = 1 and degG z =

−2. For example, degG � = 0. Every element f ∈ A can be written as 
∑

i∈Z
f(i) where f(i) is homogeneous of G-degree i. 

Then f = f(i) if and only if f is homogeneous of G-degree i. By (E6.9.1) and (E6.9.2) the Hamiltonian derivation Hx has 
G-degree 1.

Claim 1: If f is homogeneous of G-degree i, then Hx( f ) = i f y.

Proof: Let f be a linear combination of monomials xa ybzc . Since degG f = i, we have b − 2c = i. Then

Hx(x
a ybzc) = bxa yb−1 y2zc + cxa ybzc−1(−2yz)

= (b − 2c)(xa ybzc)y = i(xa ybzc)y.

So the claim follows.

Let φ denote an ozone Poisson derivation of A.

Claim 2: Up to a Hamiltonian derivation, φ(x) = yw(0) where degG w(0) = 0.

Proof: Since � is Poisson central, φ(�) = 0. Then

0 = φ(�) = 3x2φ(x) + 2yzφ(y) + y2φ(z). (E6.9.4)

This implies that y | φ(x). Let φ(x) = yw where w =
∑

i∈Z
w(i) where degG w(i) = i. By Claim 1, H∑

i �=0
−1
i
w(i)

(x) =

Hx(
∑

i �=0
1
i
w(i)) =

∑
i �=0 w(i) y. After replacing φ by φ − H∑

i �=0
−1
i
w(i)

, we obtain that φ(x) = yw(0) as required.

Claim 3: If degG w = 0, then w is a polynomial in x and �.

Proof: Since w has G-degree 0, w =
∑

i, j≥0 αi, jx
i y2 jz j . The assertion follows after replacing y2z by � − x3 .

From now on, we assume that φ(x) = yw(0) .

Claim 4: degG {φ(x), y} = 3 or {φ(x), y} = {φ(x), y}(3) .

Proof: Write φ(x) = y 
∑

i,k≥0 αi,kx
i�k . We compute

{φ(x), y} =

⎧
«
¬y

⎛
¿ ∑

i,k≥0

αi,kx
i�k

À
⎠ , y

«
¬
­ = y

⎛
¿ ∑

i,k≥0

αi,kix
i−1 y2�k

À
⎠

= y3

⎛
¿ ∑

i,k≥0

αi,kix
i−1�k

À
⎠ ,

which has G-degree 3.

Claim 5: y3 | φ(x).

21



X. Tang, X. Wang and J.J. Zhang Journal of Geometry and Physics 207 (2025) 105344

Proof: By Claim 2, φ(x) = y 
∑

i,k≥0 αi,kx
i y2kzk . If αi,0 �= 0 for some i, we have a nonzero term yxi+2 in 3x2φ(x). But yxi+2

cannot appear in 2yzφ(y) + y2φ(z) for any i, which contradicts (E6.9.4). Therefore αi,0 = 0 for all i and y3 | φ(x).

Claim 6: y | φ(y).

Proof: This follows from (E6.9.4) and Claim 5.

It follows from (E6.9.4), Claim 5 and Claim 6 that

φ(x) = yw(0) = y3zv(0), (E6.9.5)

φ(y) = yf , (E6.9.6)

φ(z) = −2zf − 3x2 yzv(0) (E6.9.7)

where v0 has G-degree 0 and f ∈ A. Next we will apply φ to the relations given in (E6.9.1) and (E6.9.2). We compute

0 = φ
(
{x, y} − y2

)
= {φ(x), y} + {x, φ(y)} − 2yφ(y)

= {yw(0), y} + {x, yf } − 2yφ(y)

= y{w(0), y}(2) + y2 f + y{x, f } − 2y2 f

= y{w(0), y}(2) − y2

(∑

i∈Z

f(i)

)
+ y{x,

∑

i∈Z

f(i)}

= y{w(0), y}(2) − y2

(∑

i∈Z

f(i)

)
+ y2

(∑

i∈Z

i f(i)

)

= y{w(0), y}(2) + y2

(∑

i∈Z

(i − 1) f(i)

)
.

Therefore

f = f(1) and {w(0), y} = 0. (E6.9.8)

As a consequence, f = yq(0) where degG q(0) = 0. So we have φ(y) = y2q(0) and φ(z) = −2yzq(0) − 3x2 yzv(0) .

Applying φ to (E6.9.2), we have

0 = φ ({z, x} − 2yz) = {φ(z), x} + {z, φ(x)} − 2φ(y)z − 2yφ(z)

=
(
−2q(0) − 3x2v(0)

)
{yz, x} + zv(0){z, y

3} − 2y2q(0)z − 2y
(
−2yzq(0) − 3x2 yzv(0)

)

=
(
−2q(0) − 3x2v(0)

)
y2z + zv(0)(−9x2 y2) − 2y2q(0)z + 4y2zq(0) + 6x2 y2zv(0)

= −6x2 y2zv(0).

Therefore v(0) = 0 and

φ(x) = 0, (E6.9.9)

φ(y) = y2q(0), (E6.9.10)

φ(z) = −2yzq(0). (E6.9.11)

Write q(0) =
∑

i,k≥0 αi,kx
i�k . Let q′

(0) =
∑

i,k≥0 βi,kx
i�k where βi,k :=

αi,k

i+1
. It is easy to check that Hxq′

(0)
= φ. Therefore φ is 

Hamiltonian as desired. �

Lemma 6.10. Let A be the quadratic Poisson algebra in Example 6.6(2) with potential � = x3 + x2z+ y2z. Then every ozone derivation 
of A is Hamiltonian.

Proof. The Jacobian Poisson structure on A = k[x, y, z] is explicitly given by

{x, y} = x2 + y2, {y, z} = 3x2 + 2xz, {z, x} = 2yz.

We show that every ozone derivation of A is Hamiltonian, which is based on a tedious computation. Since A is graded, it 
suffices to check every graded Poisson derivation φ of degree n vanishing on the Poisson center Z is Hamiltonian. So we 
can write
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φ(x) =

n+1∑

i=0

φix
i ∈ k[x, y, z] of degree n + 1 with φi ∈ k[y, z]n+1−i .

Claim 1: By subtracting a Hamiltonian derivation H g = {g, −} from φ for some suitable g ∈ k[x, y, z]n , we can assume that 
φi ∈ k[z] 

⊕
y3z(k[z, y2z]) for all 0 ≤ i ≤ n − 1.

Proof: For simplicity, we denote the k-linear map Tm : k[y, z]m → k[y, z]m+1 by

Tm( f ) := 2yz
∂ f

∂z
− y2

∂ f

∂ y
for anym ≥ 0.

It is clear to check that

• ker(Tm) = 0 if 3 ∤m and ker(Tm) = k(y2z)
m
3 if 3 |m;

• img(Tm) 
⊕

y(ker(Tm)) = y(k[y, z]m). In particular y(y2z)
m
3 �∈ img(Tm) if 3 |m.

For any homogeneous polynomial g =
∑

gix
i ∈ k[x, y, z]n with gi ∈ k[y, z]n−i , we get

{g, x} =
∂ g

∂ y
{y, x} +

∂ g

∂z
{z, x} = −

∂ g

∂ y
(x2 + y2) +

∂ g

∂z
(2yz)

= −
∂ gn−1

∂ y
xn+1 −

∂ gn−2

∂ y
xn +

(
T1(gn−1) −

∂ gn−3

∂ y

)
xn−1 + · · ·

+

(
Tn−2(g2) −

∂ g0

∂ y

)
x2 + Tn−1(g1)x+ Tn(g0).

Hence by choosing g0, g1, . . . , gn−1 for the coefficients of x0, x1, . . . , xn−1 inductively, we can achieve Claim 1.

Claim 2: Modulo a Hamiltonian derivation, we can set

φ(x) = xzf (x, z) + y3zg(x, y2z),

φ(y) = (
3

2
xy + yz) f (x, z) + (

3

2
y4 − xy2z)g(x, y2z) + (x2 + y2)p,

φ(z) = −(3xz + 2z2) f (x, z) − 3y3zg(x, y2z) − 2yzp

where f (x, z) ∈ k[x, z]n−1 , g(x, y2z) ∈ k[x, y2z]n−3 and p ∈ k[x, y, z]n−1. Furthermore, we can assume p does not contain 
xn−1 .

Proof: By Claim 1, up to a Hamiltonian derivation, we can write

φ(x) = xzf (x, z) + y3zg(x, y2z) + azn+1 + bxn y + cxn+1

for some coefficients a, b, c ∈ k. One can directly check that k[�] ⊆ Z . Therefore, we have

φ(�) = (3x2 + 2xz)φ(x) + 2yzφ(y) + (x2 + y2)φ(z) = 0.

By comparing degrees (of x, y, z), we see that xzn+2 is not a summand of 2yzφ(z) and (x2 + y2)φ(y). Hence, the coefficient 
of xzn+2 in φ(�) is 2a. It follows that a = 0. If c �= 0, then by considering y-degree we have that φ(z) contains the summand 
−3cxn+1 . But then the coefficient of xn+1 y2 is −3c. Thus, c = 0. A similar argument shows that b = 0. So we can write φ(x)

as in Claim 2, and the expressions of φ(y) and φ(z) follow immediately. Finally, by further subtracting {axn, −} from φ, we 
can replace p with p − anxn−1 . So, by choosing a suitable scalar a, we can assume p does not contain xn−1 .

Claim 3: We have

{p, x} = −(2z +
3

2
x) f (x, z) − (3xz + 2z2)

∂ f (x, z)

∂z
+ zx

∂ f (x, z)

∂x

+ (3y3 − 2xyz)g(x, y2z) + y3z
∂ g(x, y2z)

∂x
− 2xy3z2

∂ g(x, y2z)

∂(y2z)
.

Proof: A long and tedious calculation yields Claim 3.

Now we write

f =

n∑

i=1

aix
n−izi−1 and g =

� n
3 �∑

i=1

bix
n−3i(y2z)i−1
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for some ai, bi ∈ k where we set ai = 0 if i �∈ [1, n] and bi = 0 if i �∈ [1, � n
3
�]. Define

ci := (n − 3i)ai − (
3

2
+ 3i)ai+1.

Then Claim 3 can be rewritten as

{p, x} =

n∑

i=0

ciz
ixn−i +

� n
3 �∑

i=1

(3bi y
2i+1zi−1)xn−3i

−

� n
3 �∑

i=1

(2ibi y
2i−1zi)xn+1−3i +

� n
3 �∑

i=1

(
(n − 3i)bi y

2i+1zi
)
xn−1−3i.

Write p =
∑n−1

i=0 pix
i with pi ∈ k[y, z]n−1−i and pn−1 = 0. As in Claim 1, we get

{p, x} =

n−1∑

i=−1

(
T i(pn−1−i) −

∂pn−3−i

∂ y

)
xn−1−i,

where we set T−1 = 0 and p−2 = p−1 = pn = 0. Hence we have

T3i−1(pn−3i) −
∂pn−3i−2

∂ y
= c3iz

3i + 3bi y
2i+1zi−1,

T3i−2(pn+1−3i) −
∂pn−1−3i

∂ y
= c3i−1z

3i−1 − 2ibi y
2i−1zi, (E6.10.1)

T3i(pn−1−3i) −
∂pn−3−3i

∂ y
= c3i+1z

3i+1 + (n − 3i)bi y
2i+1zi

for all 1 ≤ i ≤ � n
3
� together with − ∂pn−2

∂ y
= c0 and − ∂pn−3

∂ y
= c1z. In particular, if n ≡ 2 (mod 3), then Tn−1(p0) = cnz

n .

Claim 4: We have f = 0.

Proof: We show that c0 = · · · = cn = 0, which implies that a1 = · · · = an = 0. By the above equations, it suffices to show that 
Tn−i−1(pi) −

∂pi−2

∂ y
∈ yk[y, z] for 0 ≤ i ≤ n. We claim that pi ∈ k[y2, z] for 0 ≤ i ≤ n. It is clear when i = 0. Suppose it works 

for pi for all i ≤ m. Then inductively, the above equations imply that Tn−m−2(pm+1) ∈ spank{y
2i+1z j | for all possible i, j}. 

Note that ker(Tn−m−2) ∈ k[y2, z]. Our claim follows by the definition of Tn−m−2 . Since img(Tn−i−1) ∈ (y), we get 
Tn−i−1(pi) −

∂pi−2

∂ y
∈ yk[y, z] for 0 ≤ i ≤ n.

Claim 5: We have g = 0.

Proof: By Claim 4, we can take f = 0. We will only treat the case n ≡ 0 (mod 3) here and other cases will follow in a 
similar manner. We write n = 3s and group the equations (E6.10.1) into s + 1 parts named by (Ei) with 0 ≤ i ≤ s. In details, 
(E0) is given by

Tn−1(p0) = 3bs y
2s+1zs−1, (E0.1)

Tn−2(p1) = −2sbs y
2s−1zs, (E0.2)

Tn−3(p2) −
∂p0

∂ y
= 3bs−1 y

2s−1zs−1. (E0.3)

For 1 ≤ i ≤ s − 2, (Ei) is given by

Tn−3i−1(p3i) −
∂p3i−2

∂ y
= 3bs−i y

2s−2i+1zs−i−1, (Ei.1)

Tn−3i−2(p3i+1) −
∂p3i−1

∂ y
= −2(s − i)bs−i y

2s−2i−1zs−i, (Ei.2)

Tn−3i−3(p3i+2) −
∂p3i

∂ y
= (3s − 3(s − i − 1))bs−i−1 y

2s−2i−1zs−i−1. (Ei.3)

Moreover, (E(s-1)) and (Es) are given by
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T2(pn−3) −
∂pn−5

∂ y
= 3b1 y

3, (E(s-1).1)

T1(pn−2) −
∂pn−4

∂ y
= −2b1 yz, (E(s-1).2)

−
∂pn−3

∂ y
= 0, (E(s-1).3)

−
∂pn−2

∂ y
= 0. (Es)

As in Claim 4, we know pi ∈ k[y2, z]n−1−i . Assign the lexicographic order with y > z on all monomials in k[y, z]. We 
prove the following statement inductively for all 0 ≤ i ≤ s − 2 with n = 3s:

p3i = −
3

2
bs−i(y

2)s−izs−i−1 + lower terms in k[y2, z]n−3i−1,

p3i+1 = αi(y
2)s−i−1zs−i + lower terms in k[y2, z]n−3i−2,

p3i+2 = βi(y
2)s−i−1zs−i−1 + lower terms in k[y2, z]n−3i−3

for some αi, βi ∈ k and (i + 1)bs−i−1 = (s − i)bs−i . When i = 0, we use (E0.1) and (E0.2) to get

p0 = −
3

2
bs y

2szs−1 and p1 = −sbs y
2s−2zs

for Tn−1 and Tn−2 are injective. So (E0.3) implies that

Tn−3(p2) = 3bs−1 y
2s−1zs−1 +

∂p0

∂ y
= 3(bs−1 − sbs)y

2s−1zs−1.

Since 3 | n − 3, we have ker(Tn−3) = ky2s−2zs−1 and y2s−1zs−1 �∈ img(Tn−3). We get bs−1 = sbs and p2 = β0 y
2s−2zs−1 for 

some β0 ∈ k. Suppose the statement holds for p3i, p3i+1 and p3i+2 . Then (E(i+1).1) implies that

Tn−3i−4(p3i+3)

=3bs−i−1 y
2s−2i−1zs−i−2 +

∂

∂ y

(
αi(y

2)s−i−1zs−i + lower terms in k[y2, z]n−3i−2

)

=3bs−i−1 y
2s−2i−1zs−i−2 + lower terms in y(k[y2, z]n−3i−4).

Since Tn−3i−4 is injective, we get

p3i+3 = −
3

2
bs−i−1(y

2)s−i−1zs−i−2 + lower terms in k[y2, z]n−3i−4.

Similarly from (E(i+1).2), we get

p3i+4 = αi+1(y
2)s−i−2zs−i−1 + lower terms in k[y2, z]n−3i−5

for some αi+1 ∈ k. Finally, (E(i+1).3) implies that

Tn−3i−6(p3i+5) = (3s − 3(s − i − 2))bs−i−2 y
2s−2i−3zs−i−2

+
∂

∂ y

(
−

3

2
bs−i−1(y

2)s−i−1zs−i−2 + lower terms in k[y2, z]n−3i−4

)

=3 ((i + 2)bs−i−2 − (s − i − 1)bs−i−1) y
2s−2i−3zs−i−2

+ lower terms in y(k[y2, z]n−3i−6).

Note that ker(Tn−3i−6) = ky2s−2i−4zs−i−2 and y2s−2i−3zs−i−2 �∈ img(Tn−3i−6) for 3 | n − 3i − 6. So we get (i + 2)bs−i−2 =

(s − i − 1)bs−i−1 and we can write

p3i+5 = βi+1(y
2)s−i−2zs−i−2 + lower terms in k[y2, z]n−3i−6

for some βi+1 ∈ k. This completes our induction argument. From the above result, we have

pn−5 = p3(s−2)+1 = αs−2 y
2z2 + lower terms in k[y2, z]4.
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From (E(s-1).1): T2(pn−3) −
∂pn−5

∂ y
= 3b1 y

3 , we get pn−3 = − 3
2
b1 y

2 + λz2 for some λ ∈ k. Moreover, (E(s-1).3): − ∂pn−3

∂ y
= 0

implies that b1 = 0. Again from the above statement, we have all bi = 0 and g = 0.

Finally, we can show that φ is Hamiltonian. By all the above claims, up to a proper Hamiltonian derivation, we can take 
a Poisson derivation φ of degree n as

φ(x) = 0, φ(y) = (x2 + y2)p, φ(y) = −2yzp

for some p ∈ k[x, y, z]n−1. From {φ(x), y} + {x, φ(y)} = φ(x2 + y2), we get {p, x} = 0 or (x2 + y2)p y = 2yzpz . We show 
that p = p(x, �) by induction on the degree of f . It is clear that we can write p y = 2yzq and pz = (x2 + y2)q for some 
q ∈ k[x, y, z] of degree deg(p) − 3. Then pzy = p yz implies that (x2 + y2)qy = 2yzqz . So our induction hypothesis implies 
that q = q(x, �). Take any polynomial h(x, �) such that ∂h(x,�)

∂�
= q. An easy calculation shows that hy = p y and hz = pz . So 

p − h ∈ k[x]. This proves our claim. Now take any Q (x, �) such that ∂Q (x,�)
∂x

= p(x, �). Then one checks that φ = {Q , −}

and φ is Hamiltonian. �

Remark 6.11. If A is a non-unimodular quadratic Poisson polynomial algebra k[x1, · · · , xn], then by Corollary 0.3, Aδ is 
unimodular for some graded Poisson derivation δ of A (in fact δ = 1∑

i deg xi
m). By (E4.3.1), rgt(A) = rgt(Aδ). If one can 

calculate rgt for all unimodular quadratic Poisson structures on k[x1, · · · , xn], then the above formula provides a way of 
computing rgt(A) when A is not unimodular.

Note that all 13 classes of non-unimodular quadratic Poisson structures on k[x1, x2, x3] were listed explicitly in [8] (also 
see [7,22]). For each class, the modular derivation m is easy to compute. Therefore rgt can be calculated by the method 
mentioned in the above paragraph.

7. Rigidity, H -ozoneness, and P H1-minimality

In this section we will study some connections between rigidity of graded twisting, ozone derivations and the first 
Poisson cohomology.

Let A be a general Poisson algebra with Poisson center Z . Let Pd(A) be the Lie algebra of all Poisson derivations of A and 
let Hd(A) be the Lie ideal of Pd(A) of all Hamiltonian derivations. Recall from (E1.5.4) that the first Poisson cohomology of 
A is defined to be

P H1(A) := Pd(A)/Hd(A). (E7.0.1)

If A is Z-graded, then so is P H1(A). Part (1) of the following definition is Definition 6.8.

Definition 7.1. Let A be a Poisson algebra.

(1) A Poisson derivation φ of A is called ozone if φ(z) = 0 for all z ∈ Z .

(2) Let Od(A) denote the Lie algebra of all ozone Poisson derivations of A.
(3) We say A is H-ozone if Od(A) = Hd(A), namely, if every ozone Poisson derivation is Hamiltonian.

It is clear that Od(A) is a Lie ideal of Pd(A) and

Hd(A) ⊆ Od(A) ⊆ Pd(A).

In general, not every ozone Poisson derivation is Hamiltonian.

For the rest of this section, we only consider locally finite connected N-graded Poisson algebras A with Ai �= 0 for 
some i > 0. Later we will only consider A = k[x, y, z] where deg(x) = deg(y) = deg(z) = 1. In this case, the Euler derivation 
defined in (E0.0.2) is a nonzero Poisson derivation.

Lemma 7.2. Let A be a connected graded Poisson algebra with center Z . Suppose Z is a domain. Then Z E ∩ Od(A) = 0 if Z �= k. As 
a consequence, Z E ∩ Hd(A) = 0 and the canonical map Z E → P H1(A) sending zE to the coset zE + Hd(A) is a graded injective 
Z-module map.

Proof. Let f be any homogeneous element in Z . It is easy to check that f E is a Poisson derivation. So Z E is an abelian Lie 
subalgebra of Pd(A). Moreover, one can check that Pd(A) is a Z -module.

Next we assume that Z �= k. Let φ be in Z E ∩ Od(A) and we can write it as φ = f E for some f ∈ Z . Let z ∈ Z be a 
nonzero element of positive degree. Then φ(z) = 0 as φ ∈ Od(A). Since φ = f E , we obtain that 0 = f (deg z)z. This implies 
that f = 0 or φ = 0. Hence Z E ∩ Od(A) = 0.

Since Hd(A) ⊆ Od(A), Z E ∩ Hd(A) = 0. So the map

Z E → Pd(A)/Hd(A) =: P H1(A)
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is injective.
Finally if Z = k, then Z E = kE . It is trivial to see that Z E ∩ Hd(A) = 0 for E �∈ Hd(A). �

By the above lemma, the minimal possibility of P H1(A) is Z E . This motivates the following definition.

Definition 7.3. Let A be a nontrivial connected graded Poisson algebra with Poisson center Z . Suppose Z is a domain.

(1) We say A is P H1-minimal if P H1(A) ∼= Z E .

(2) We say A has an Euler-ozone decomposition if

Pd(A) = Z E ⋊ Od(A).

(3) We say A has an Euler-Hamiltonian decomposition if

Pd(A) = Z E ⋊ Hd(A).

By Remark 5.3, if A is the Poisson polynomial algebra being the semiclassical limit of the 4-dimensional (resp. 3-
dimensional) Sklyanin algebra, then it is P H1-minimal. Note that the dimension of Gpd(A) is the constant term of hPd(A)(t). 
So A is rigid of graded twisting if and only if the constant term of hPd(A)(t) is 1 [Remark 5.2]. Therefore we have

A is P H1-minimal ⇒ rgt(A) = 0. (E7.3.1)

Proposition 7.4. Let A be a connected graded Poisson algebra. Then the following are equivalent.

(i) A is P H1-minimal.

(ii) hP H1(A)(t) = hZ (t) provided Z is a domain.

(iii) hPd(A)(t) = hA(t).

Proof. (i) ⇔ (ii) The equivalence follows from the definition.
(ii) ⇔ (iii) It is clear that the map A → Hd(A) sending a → Ha is surjective. The kernel is the center Z . So hHd(A)(t) =

hA(t) − hZ (t). By (E7.0.1), hP H1(A)(t) = hPd(A)(t) − hHd(A)(t). Therefore

hPd(A)(t) − hA(t) = hP H1(A)(t) + hHd(A)(t) − hA(t)

= hP H1(A)(t) + hA(t) − hZ (t) − hA(t)

= hP H1(A)(t) − hZ (t).

The assertion follows. �

Let A be the Poisson algebra in Example 6.6(Case 3). This Poisson algebra can be considered as the semiclassical limit of 
the 3-dimensional Sklyanin algebra. The potential � has an isolated singularity. By [29, Proposition 4.5] (and [35, Theorem 
5.1]), P H1(A) = Z E . Consequently, A is P H1-minimal.

Lemma 7.5. Let A be a connected graded Poisson algebra. Assume that Z is a non-trivial domain. If A is P H1-minimal, then A is 
H-ozone and has an Euler-Hamiltonian decomposition.

Proof. Since A is P H1-minimal, Z E ∼= P H1(A) = Pd(A)/Hd(A). This implies that Pd(A) = Z E ⋊ Hd(A). So A has an Euler-
Hamiltonian decomposition.

For a graded Poisson derivation φ of degree d, by the Euler-Hamiltonian decomposition, we have

φ = f E + Ha.

Let z be a nonzero central element of positive degree. Then φ(z) = |z| f z + Ha(z) = |z| f z. If φ is ozone, 0 = φ(z) = |z| f z

which implies that f = 0 and φ = Ha as desired. �

Lemma 7.6. Let A be a connected graded Poisson domain. Suppose A is H-ozone.

(1) Every Poisson normal element in A is Poisson central.
(2) Suppose A is a Poisson polynomial ring. Then A is unimodular.
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Proof. (1) Let x be a nonzero Poisson normal element. Then it is the sum of homogeneous Poisson normal elements. So we 
can assume that x is homogeneous. Let φ be the log-Hamilton derivation x−1Hx . Since Hx(z) = 0 for all z in the center Z , 
φ is ozone. By the hypothesis, φ is Hamiltonian, namely, φ = H y for some element y. Since φ has degree 0, deg y = 0 (or 
y ∈ k) and consequently, φ = 0. This implies that x is central.

(2) Let m be the modular derivation of A. It follows from the definition that it is ozone. Since degm = 0, by the 
hypothesis, m = H y for some element y of degree 0. Hence y ∈ k and consequently, m = 0. The assertion follows. �

By far we have proved the following diagram

A is P H1-minimal
Lemma 7.5
−−−−−→ A is H-ozone

(E7.3.1)

⏐⏐�
⏐⏐�Lemma 7.6(2)

rgt(A) = 0 −−−−−−−→
Lemma 4.4(3)

A is unimodular.

Next we show that some of the conditions are equivalent under extra hypotheses.

Lemma 7.7. Suppose A is a connected graded Poisson algebra such that Z = k[z] where z is homogeneous with deg z > 0.

(1) If Pd(A)≤−1 = 0, then A has an Euler-ozone decomposition.

(2) Suppose A is H-ozone. Then rgt(A) = 0.

Proof. (1) Let φ be a Poisson derivation of A of degree i. By the hypothesis, i ≥ 0.

Case 1: deg z | i. Since φ(z) is central, φ(z) = azn for some a ∈ k and n ≥ 0. Then φ′ := φ − a
|z|

zn−1E satisfies φ′(z) = 0. 

So φ′ is ozone. Therefore φ = a
|z|

zn−1E + φ′ .

Case 2: deg z ∤ i. Since φ(z) is central, it must be 0. Therefore φ is ozone.
Combining these two cases, every Poisson derivation is the sum of f E for some f ∈ Z and an ozone derivation.
(2) By Lemma 4.4(4), it suffices to show that dimk Gpd(A) = 1, or equivalently, Gpd(A) = kE . Let φ ∈ Gpd(A) and φ(z) =

az for some a ∈ k. Let δ be φ − a
|z|

E . Then δ ∈ Gpd(A) is ozone. By the hypothesis, δ is Hamiltonian, say δ = H f for some 
homogeneous element f ∈ A. Since deg δ = 0, deg f = 0. Since A is connected graded, H f = 0 and consequently, δ = 0. Thus 
φ = a

|z|
E and Gpd(A) = kE . �

Now we are ready to prove Theorem 0.6.

Proof of Theorem 0.6. (1) ⇒ (2): Since rgt(A) = 0, every graded Poisson derivation δ is of the form cE . Then E ∧ δ = 0. By 
(E2.3.1), 〈a, b〉 = {a, b}. So A = Aδ . The assertion follows.

(2) ⇒ (1): By Corollary 0.3, there is a Poisson derivation δ such that Aδ is unimodular. Since Aδ ∼= A for all δ, A is uni-
modular. Suppose to the contrary that A is not rigid. Then there is a Poisson derivation δ not in Z E . Thus, by Theorem 0.2, 
the modular derivation of Aδ is

n = 0+

(
3∑

i=1

deg xi

)
δ − div(δ)E

which cannot be zero as div(δ) ∈ k [Lemma 1.2(3)]. Therefore Aδ is not isomorphic to A, yielding a contradiction.
(5) ⇔ (6): Under the hypothesis of (5), A is P H1-minimal. One implication follows by Lemma 7.5 and the other is clear.
(6) ⇒ (7): See the proof of Lemma 7.5.

(7) ⇒ (1): This is Lemma 7.7(2).

(3) ⇔ (5): This is Proposition 7.4.

(1) ⇔ (8): This is Corollary 6.7.

(8) ⇒ (6,7): If � = 1
3
(x3 + y3 + z3) + λxyz with λ3 �= −1, then by the comments before Lemma 7.5, A is P H1-minimal. 

Hence A is H-ozone since (5) ⇔ (6). If � is x3 + y2z or x3 + x2z + y2z, it follows by Lemmas 6.9 and 6.10 that A is 
H-ozone. In all three cases in Example 6.6, one can check easily that Pd(A)≤−1 = 0. By Lemma 7.7(1), A has an Euler-ozone 
decomposition. Since A is H-ozone, A has an Euler-Hamiltonian decomposition.

(5) ⇒ (1): The assertion follows from Remark 5.2.

(4) ⇒ (1): The assertion follows from Remark 5.2

(8) ⇒ (4): In all three cases, Z is k[�] (this is a well-known fact and a special case of it is [26, Lemma 1], also see 
Lemmas 7.8 and 7.9 later), which has Hilbert series 1

1−t3
. The assertion follows from (5) since (5) is equivalent to (8).

(4) ⇔ (9): It follows from (E1.5.5) that hP H3(A)(t) −hP H2(A)(t) = hP H0(A)(t) −hP H1(A)(t) +t−3 . We know that P H0(A) = Z . 

So the assertion follows from the fact that hP H1(A)(t) = hP H0(A)(t) =
1

1−t3
if and only if hP H3(A)(t) − hP H2(A)(t) = t−3 . �
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Before we prove Corollary 0.7, we will need to calculate the Hilbert series of P H0(A) for A in the first two cases of 
Example 6.6. By definition and [28, p.2357], the 0th Poisson homology of the Poisson polynomial algebra k[x, y, z] is

P H0(A) ∼=
A

{A, A}
=

A(
Hx(A) + H y(A) + Hz(A)

) .

Case 1: � = x3 + y2z. We use the G-grading introduced in the proof of Lemma 6.9, namely, degG x = 0, degG y = 1 and 
degG z = −2. Let

ai, j,0,l = xi y jz0�l, i, j, l ≥ 0,

bi,0,k,l = xi y0zk�l, i, l ≥ 0,k ≥ 1,

ci,1,k,l = xi yzk�l, i, l ≥ 0,k ≥ 1,

A := {ai, j,0,l | i, j, l ≥ 0},

B := {bi,0,k,l | i, l ≥ 0,k ≥ 1},

C := {ci,1,k,l | i, l ≥ 0,k ≥ 1}.

If X is a subset of elements in A, we use kX to denote the k-linear span of X .

Lemma 7.8. Retain the above notations.

(1) A ∪ B ∪ C is a k-linear basis of A.

(2)

Hx(ai, j,0,l) = jai, j+1,0,l,

Hx(bi,0,k,l) = (−2k)ci,1,k,l,

Hx(ci,1,k,l) =

{
(1− 2k)(bi,0,k−1,l+1 − bi+3,0,k−1,l) k > 1,

(1− 2k)(ai,0,0,l+1 − ai+3,0,0,l) k = 1.

(3)
H y(ai, j,0,l) = (−i)ai−1, j+2,0,l,

H y(bi,0,k,l) =

{
(−i)bi−1,0,k−1,l+1 + (i + 3k)bi+2,0,k−1,l k > 1,

(−i)ai−1,0,0,l+1 + (i + 3)ai+2,0,0,l k = 1,

H y(ci,1,k,l) =

{
(−i)ci−1,1,k−1,l+1 + (i + 3k)ci+2,1,k−1,l k > 1,

(−i)ai−1,1,0,l+1 + (i + 3)ai+2,1,0,l k = 1.

(4)

Hz(ai, j,0,l) =

{
2iai−1, j−1,0,l+1 + (−2i − 3 j)ai+2, j−1,0,l j > 0,

2ici−1,1,1,l j = 0,

Hz(bi,0,k,l) = 2ici−1,1,k+1,l,

Hz(ci,1,k,l) = 2ibi−1,0,k,l+1 + (−3 − 2i)bi+2,0,k,l.

(5) A/(Hx(A) + H y(A) + H z(A)) has a k-linear basis

{a0,0,0,0,a1,0,0,0} ∪ {a0,1,0,l}l≥0 ∪ {a1,1,0,l}l≥0 ∪ {b0,0,k,0}k≥1 ∪ {b1,0,k,0}k≥1.

(6) The Hilbert series of PH0(A) is

(1 + t)3

1− t3
.

(7) The Hilbert series of PH0(A) = hZ (t) is

1

1− t3
.

Proof. This follows from a tedious and direct computation. �
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The proof of the above lemma is routine and long, but very elementary, only using easy linear algebra arguments. To 
save space the details are omitted here. Note that Lemma 7.8(7) is a well-known fact.

Case 2: � = x3 + x2z + y2z. We need to prove a lemma similar to Lemma 7.8. We use the same notations as in Case 1 
except that � is x3 + x2z + y2z instead of x3 + y2z.

Lemma 7.9. Let A be as in Example 6.6(Case 2) with potential � = x3 + x2z + y2z.

(1) A ∪ B ∪ C is a k-linear basis of A.

(2)

Hx(ai, j,0,l) = jai, j+1,0,l + jai+2, j−1,0,l,

Hx(bi,0,k,l) = (−2k)ci,1,k,l,

Hx(ci,1,k,l) =

{
(1− 2k)(bi,0,k−1,l+1 − bi+3,0,k−1,l) + 2kbi+2,0,k,l k > 1,

−(ai,0,0,l+1 − ai+3,0,0,l) + 2bi+2,0,1,l k = 1.

(3)
H y(ai, j,0,l) = (−i)ai−1, j+2,0,l + (−i)ai+1, j,0,l,

H y(bi,0,k,l) =

{
(−i)bi−1,0,k−1,l+1 + (i + 3k)bi+2,0,k−1,l + 2kbi+1,0,k,l k > 1,

(−i)ai−1,0,0,l+1 + (i + 3)ai+2,0,0,l + 2bi+1,0,1,l k = 1,

H y(ci,1,k,l) =

{
(−i)ci−1,1,k−1,l+1 + (i + 3k)ci+2,1,k−1,l + 2kci+1,1,k,l k > 1,

(−i)ai−1,1,0,l+1 + (i + 3)ai+2,1,0,l + 2ci+1,1,1,l k = 1.

(4)

Hz(ai, j,0,l) =

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

2ici−1,1,1,l j = 0,

2iai−1,0,0,l+1 + (−2i − 3)ai+2,0,0,l + (−2i − 2)bi+1,0,1,l j = 1,

2iai−1,1,0,l+1 + (−2i − 6)ai+2,1,0,l + (−2i − 4)ci+1,1,1,l j = 2,

2iai−1, j−1,0,l+1 + (−2i − 3 j)ai+2, j−1,0,l

+(−2i − 2 j)xi+1 y j−1z�l j ≥ 3,

Hz(bi,0,k,l) = 2ici−1,1,k+1,l,

Hz(ci,1,k,l) = 2ibi−1,0,k,l+1 + (−3 − 2i)bi+2,0,k,l + (−2 − 2i)bi+1,0,k+1,l.

(5) A/(Hx(A) + H y(A) + H z(A)) has a k-linear basis

{a0,0,0,0,a1,0,0,0} ∪ {a3i,1,0,0}i≥0 ∪ {a1+3i,1,0,0}i≥0 ∪ {b0,0,k,0}k≥1 ∪ {b1,0,k,0}k≥1.

(6) The Hilbert series of PH0(A) is

(1 + t)3

1− t3
.

(7) The Hilbert series of PH0(A) = hZ (t) is

1

1− t3
.

Proof. This follows from a tedious and direct computation. �

Similar to Lemma 7.8, the proof of Lemma 7.9 is routine and long (even longer than the proof of Lemma 7.8), but still 
very elementary. To save space the details are omitted here. Note that Lemma 7.9(7) is a well-known fact.

Finally we prove Corollary 0.7.

Proof of Corollary 0.7. (1) This is clear since Z = k[�] by Lemmas 7.8 and 7.9.
(2) It follows from Theorem 0.6((8)⇒(4)).

(4) By the Poincaré duality [23, Theorem 3.5], hP H3(A)(t) = t−3hP H0(A) . Then the assertion follows from Lemmas 7.8 and 
7.9.

(3) It follows from Parts (1,2,4) and (E1.5.5). �
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