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Introduction

Poisson algebras have recently been studied extensively by many researchers, see e.g., [2,3,12-15,18,21,23-25], with
topics related to (twisted) Poincaré duality and the modular derivation, Poisson Dixmier-Moeglin equivalences, Poisson en-
veloping algebras, and so on. Poisson algebras have been used in the representation theory of PI Sklyanin algebras [37,38].
The isomorphism problem and the cancellation problem in the Poisson setting have been investigated in [10,11]. Poisson
valuations are utilized to address problems related to rigidity, automorphisms, Dixmier property, isomorphisms, and em-
beddings of Poisson algebras and fields [16,17].

Let k be a base field. Except for Sections 1 and 2 we further assume that k is of characteristic zero. Quadratic Poisson
structures on k[x1,...,X;] with degx; =1 for all i =1,--- ,n have played an important role in several other subjects, see
papers [22] by Liu-Xu, [4] by Bondal, and [31] by Pym. Deformation quantizations of such Poisson structures are homo-
geneous coordinate rings of quantum P"~!s. In general, such a deformation quantization is skew Calabi-Yau; while it is

Calabi-Yau if and only if the Poisson structure on k[x1, ..., x,] is unimodular [6].
In addition to the quadratic case, we are interested in weighted Poisson structures on k[xq, ..., x,] where degx; > 0 for
all i =1,...,n. Note that deformation quantizations of weighted Poisson structures are homogeneous coordinate rings of
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weighted quantum P"~!s. If v is a graded Poisson structure on k[x1, ..., x,] where 2?21 degx; # 0 in the base field k, we
prove that 7t has a decomposition
1
T = Typim+ —=————EAm (E0.0.1)
unim Z?:-l degxi
where E is the Euler derivation, 7y,im, is the unimodular graded Poisson structure on k[x1, ..., x,] corresponding to 7r, and
m is the modular derivation of (k[x1,...,xs], 7). If degx; =1 for all i, (E0.0.1) was observed by Bondal [4], Liu-Xu [22], and

in the book [20, Theorem 8.26]. Similar to the ideas in [31], to classify all graded Poisson structures on polynomial rings
where degx; > 0, it is a good idea to first classify unimodular ones.

To prove (E0.0.1), we will use a Poisson version of the graded twist [39]. Let A be a Z-graded Poisson algebra such that
both the commutative multiplication - and the Poisson bracket m := {—, —} are graded of degree 0. If a € A is homogeneous,
we use |a| to denote its degree. Define the Euler derivation E of A by

E(a) = |ala (E0.0.2)
for all homogeneous elements a € A. Let § be a graded Poisson derivation of A. We define a new Poisson structure, denoted
by 7Tnew :={—, —}new, to be

{a, blnew = {a,b}+ E(@)3(b) — S(a)E(b) (E0.0.3)

for all homogeneous elements a, b € A, or equivalently

TThew = T + E AS.

We will show that (A, -, {—, —}new) (0r (A, Tnew)) is a graded Poisson algebra in Section 2 and it is denoted by A°.
Now we state some results. Let A be a polynomial algebra k[x1,...,x,] and let § be a derivation of A. By [20, (4.21)],
the divergence of § is defined to be

n

. 98 (x;)
div($) := , E0.0.4
) Z i (E0.0.4)
i=1
which is independent of the choices of generators {xi,...,x,} [Definition 1.1 and Lemma 1.2]. For a more general Poisson

algebra, the definition of div(§) will be given in Definition 1.1, which is dependent on the volume form. Recall a Hamiltonian
derivation of a Poisson algebra A is given by H, := {a, —} for any a € A. The modular derivation of A is defined by

m@) = —div(Hg) (E0.0.5)

for all a € A [Definition 1.3]. We need the following lemma that concerns the divergence of the modular derivation.

Lemma 0.1. [36, Corollary 3.10] [20, Proposition 4.17] Let A be a Poisson algebra with volume form v and m be the modular derivation
of A corresponding to v. Then div(m) = 0.

Proof. Following the notation of [36, Theorem 3.5], we denote m by ¢ and v by vol. By the proof of [36, Corollary 3.10],
Lm(v) =0. Then, by Definition 1.1, divim) =0. O

According to the ideas of Dolgushev [6], the modular derivation of a Poisson algebra corresponds to the Nakayama
automorphism of a noetherian AS regular algebra. For more information on AS regular algebras, we refer the reader to [1]
and the references therein. Hence the above lemma is a Poisson version of [33, Corollary 5.5] which says that the Nakayama
automorphism of a noetherian AS regular algebra has homological determinant 1.

When A is a polynomial algebra k[x1, ..., x,] with any Poisson structure, the definitions of the divergence div and the
modular derivation m are independent of choices of the volume form. Here is one of the main results of this paper.

Theorem 0.2. Let § be a graded Poisson derivation of a Z-graded Poisson polynomial algebra A :=Xk[x1, ..., xn]. Let n be the modular
derivation of A°. Then

n
n=m-+ (Z degx,-) § —div(d)E.

i=1

Note that Theorem 0.2 holds even when char k > 0, see Remark 3.7.

If we consider the analogy between the modular derivation of a Poisson algebra and the Nakayama automorphism of a
graded skew Calabi-Yau algebra [6], Theorem 0.2 is a Poisson version of [32, Theorem 0.3]. Combining Theorem 0.2 with
Lemma 0.1, we obtain
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Corollary 0.3. Let A be a weighted graded Poisson algebra k[x1, ..., X,] with degx; > 0 foralli. Let § = — 1[ mwhere [ =31 | degx;.
Then A? is unimodular. As a consequence, (E0.0.1) holds.

Let A be a Z-graded Poisson algebra. Suppose § is a derivation of A and a, b, c are homogeneous elements of A. Set

p({—, =}, 8;a,b,0) : =lalals({b, c}) — {3(b), c} — {b, 8(0)}]
— bIb[5({a, c}) — {8(a), ¢} — {a,8(0)}] (E0.3.1)
+ Iclc[8({a, b}) — {3(a), b} — {a, 3(b)}].

Definition 0.4. Let A be a Z-graded Poisson algebra. A derivation § of A is called semi-Poisson if p({—, —},8,a,b,c) =0 for
all homogeneous elements a, b, ¢ in A.

It is clear that

Poisson derivation = semi-Poisson derivation = derivation

and opposite implications are not true [Example 2.6]. Let Gspd(A) (resp. Gpd(A)) be the set of graded semi-Poisson deriva-
tions (resp. graded Poisson derivations) of degree 0. We prove the following

Theorem 0.5. Let A be a graded Poisson algebra k[x1, ..., x,] with degx; > O for all i.

(1) If A is unimodular, then Gspd(A) = Gpd(A).
(2) If B is a twist of A, then Gspd(A) = Gspd(B).
(3) Gspd(A) is a finite-dimensional Lie algebra.

Now we introduce the rigidity of graded twisting of A, denoted by rgt(A) (see Definition 4.3), to measure the complex-
ity/rigidity of a Poisson structure on A. We relate the rigidity with other properties. We say a Poisson derivation ¢ of A
is ozone if ¢(z) =0 for all z in the Poisson center of A. It is obvious that every Hamiltonian derivation is ozone, but the
converse is not true in general.

Let M be a Z-graded k-vector space. The Hilbert series of M is defined to be

hw(t) = (dimMt'. (E0.5.1)
icZ
Let PHi(A) denote the ith Poisson cohomology of A (E15.3). Recall that E denotes the Euler derivation. We have the
following result.

Theorem 0.6. Let k be algebraically closed and A = Kk[x1, X2, x3] be a graded Poisson algebra with degx; =1 fori =1, 2, 3. Denote
by Z the Poisson center of A. Then the following are equivalent.

rgt(A) =0.
Any graded twist of A is isomorphic to A.
The Hilbert series of the graded vector space of Poisson derivations of A is

(1)

(2) :
3) o
(4) hpyra) (©) is L.

(5) hpyiay(t) is equal to hz (¢).

(6)

6) Every Poisson derivation ¢ has a decomposition

¢ = zE + Hq

where z € Z and a € A. Here z is unique and a is unique up to a central element.
(7) Every ozone derivation is Hamiltonian.
(8) A is unimodular, and the potential is irreducible.
(9) hPH3(A) (t) - hPHz(A) (t) = t_3.

Some partial generalizations of the above theorem to the higher dimensional cases are given in Section 7. As an applica-
tion, we have the following result.

Corollary 0.7. Let k be algebraically closed. Let A be the unimodular quadratic Poisson structure on k[x, y, z] with irreducible potential
Q. Then
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1
(1) hPHO(A)(t) = l——t3

1
(2) hpp1(a)(®) = -

1[0+

(3) hpp2ay(®) = 3 <1——t3 - 1)-
(1413

(4) hpysa)(0) = BA-0)

When the potential 2 has an isolated singularity, the Poisson cohomologies have been computed by several authors, see
[27-30,35] and the references therein. The above corollary is probably the first computation of the Poisson cohomologies
when  is irreducible, but does not have an isolated singularity.

The paper is organized as follows. Section 1 recalls some basic definitions, such as divergence and modular derivation.
In Section 2, we introduce the Poisson version of a graded twist. The proofs of Theorem 0.2 and Corollary 0.3 are given in
Section 3. The rigidity of graded twisting is introduced in Section 4, and Theorem 0.5 is proved there. In Sections 5 and
6, we compute the rigidity of some Poisson structures on polynomial rings. Theorem 0.6 and Corollary 0.7 are proved in
Section 7.

1. Preliminaries

In this section, we recall several definitions, such as divergence, modular derivation, and Poisson cohomology. Other basic
definitions of Poisson algebras can be found in the book [20]. Everything in this section is well-known.

In Sections 1 and 2, let k be a base field of any characteristic and A be any commutative Poisson k-algebra unless
specified otherwise. Let Q1(A) be the module of Kihler differentials over A [20, Sect. 3.2.1]. For each k > 0, let Q¥(A) be
/\in(A) [20, Sect. 3.2.2]. Set d = Kdim A where Kdim denotes the Krull dimension. If A is smooth and Q9(A) is a free
A-module with a generator v, then v is called a volume form of A. The differential d : A — Q!(A) extends to a well-defined
differential of the complex 2°(A) and the complex (2°(A), d) is called the algebraic de Rham complex of A.

For each p >0, let XP(A) be the set of skew-symmetric p-derivations of A. It is also true that

XP(A) = Homgy (QP(A), A) (E1.0.1)
for all p >0 [20, (3.15)].
For every element P € XP(A), the internal product with respect to P, denoted by (p, is an A-module map
tp:Q%(A) = Q*P(A)
which is determined by
0 k < p,
Lp(dF1 AN sz ARREIAN dFk) = ZUGSp,k—p Sgn(O')P[Fg(]), ey Fg(p)] (El.O.Z)
dFo(pi1y A+~ AdFgg) € QKP(A) k>p
for all dF; AdF; A --- AdFy € 2¥(A). Here Sp.q C Sk is the set of (p, q)-shuffles with p+q=k.
For every P € XP(A), the Lie derivative with respective to P is defined to be
Lp=/[tp,d]: Q%A — Qeptl (A), (E1.0.3)

see [20, (3.49)]. Below is the definition of the divergence of a derivation. In several definitions in this paper we assume that
A is a smooth Poisson algebra with a fixed volume form v.

Definition 1.1. [20, (4.20)] Let § be a derivation of A, namely, § € X'(A). The divergence of 8, denoted by div(§), is an
element in A defined by the equation

Ls(v) =div(s)v. (E1.1.1)

It is clear that the divergence of § is dependent on the volume form v, but independent of the Poisson structure of A.
The definition of the divergence of a skew-symmetric k-derivation, for k > 2, can be found in [20, Sect. 4.3.3].

Let G be an abelian group (or semigroup). A G-graded algebra is a k-algebra A = @gec Ag where Ag is a k-vector space
for each g € G and Ag, - Ag, C Agg, for any g1, g2 € G. A k-linear map ¢: A — A of a G-graded algebra A is called
graded if ¢(Ag) € Ag for each g € G. A Poisson structure {—, —} on a G-graded commutative algebra A is called G-graded
(of degree zero) if deg{a, b} = dega + degb for all homogeneous elements a, b € A. Part (1) of the following lemma justifies
the definition of the divergence given in (E0.0.4).
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Lemma 1.2. Let A be a Poisson polynomial algebra k[x1, ..., x] and 8 be a derivation of A.
(1)
1L 98(x;)
div(s) =y ———. E1.2.1
®=2 7% (E121)

i=1

(2) If Ais a Z-graded Poisson polynomial algebra with x; homogeneous for all i and if § is graded (of degree 0), then div(5) € Ao.
(3) If A'is a connected N-graded Poisson polynomial algebra with degx; > 0 for all i and if § is graded (of degree 0), then div(§) € k.
(4) Suppose, in addition to (3), degx; = 1 for all i. Let § be a graded derivation of A (of degree 0). Write

n
§(xi) = Z CijXj
=1

where c;j ek forall1 <i, j <n. Then
n
divd) =Y cii. (E1.2.2)
i=1

(5) Let A be a Z-graded Poisson algebra with degx; € Z and let E be the Euler derivation of A as defined in (E0.0.2). Then div(E) =
degv.

Proof. (1) Since A =Kk[xq,...,X,] is a polynomial algebra, v :=dx; A --- Adx, is a volume form. By the definition of the Lie
derivative Ls,

n
Lsv=d (Z(—l)“a(x,-)wq A AdXA - /\dxn>
i=1

n

" 38 (x;)
—1i-1 Vdx: | Adxy A~ Adxi A - Ad
';( Y | Xi Xn

j=1

n
08 (X;
(Z (xl))dxlx\-nAdxn
4 0x;

Then, the assertion follows. )
) Since degd =0, degé(x;) = degx;. As a consequence, deg B _q, By part (1), degdiv(§) = 0. The assertion follows.
0X;

2
3) This follows from part (3) and the fact that Ap =k.
4

) This follows from part (1) and the fact that % =c;; for all i.

5) In this case, v =dx; A--- Adx, and E(x;) = (delgxi)x,-. The assertion follows from (E1.2.1). O

(
(
(
(
We recall the following definition.

Definition 1.3. Let A be a Poisson algebra with volume form v.

(1) [20, Definition 4.10] The modular derivation (or modular vector field) of A associated to v is defined to be

m(a) := —div(H,)
for all a € A, or equivalently,
Ly, (v) =—m(a)v.

(2) [20, Definition 4.12] If m = 0 for some volume form v, then A is called unimodular.

If A=Kk[xq,...,X;], then m is independent of the choice of the volume form v.
Let us give an easy example.
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Example 1.4. Let A be the Poisson polynomial algebra k[xq, xo] with {x1,x2} = x'i‘ for some integer n > 0. It is easy to check
that m(x1) =0 and m(xy) = nxrl‘_l. If chark=p >0 and p | n, then A is unimodular. Now suppose n = 2. Since {x1x2,X2} =
x%xz, m({x1x2,Xx2}) = m(x%xz) = 2x§. As a consequence, div([81, 82]) is in general nonzero for any two derivations 81, &>.

Next, we review the Poisson cohomology. Let (A,7) be a Poisson algebra. For each k > 0, X¥(A) denotes the space
of skew-symmetric k-derivations of A. The Poisson coboundary map dy : X*(A) — X*t1(A) is defined as follows. For any
Q € X9(A), where g € N, we define

q
d3 (Q)[Fo, ..., Fgl:= Y (=D{Fi, Q[Fo,.... Fi, ..., Fl} (E15.1)
i=0
+ Y (—DMQUFi. Fj}.Fo..... Fi.... . Fj..... Fgl,
0<i<j<q
for all Fo,---, Fq € A. In particular,

d3 (Q)[Fol = {Fo, Q).
d} (Q)[Fo, F11= {Fo, Q[F11} — {F1. Q[Fol} — Q[{Fo. F1}],
d% (Q)[Fo. F1, F2]1 = {Fo, Q[F1, F21} — {F1, Q[Fo, F21} + {F2, Q[Fo. F11}
— Q{Fo, F1}, F21+ QI[{Fo, F2}, F11 — Q[{F1, F2}, Fol.

For P € XP(A) and Q € X9(A), the wedge product P A Q € XPT9(A) is the skew-symmetric (p + q)-derivation of A,
defined by

(PAQ)F1, -+, Fpiql ==
Z sgn(o)P[Fs(1y, -, Fom] QFo(p+1), - - -» Foprg],

0€Spq

for all Fy,---, Fpiq € A. In particular, if P € X'(A) and Q € X?(A), then we have

(P A Q)[F1, F2, F3] = P[F1]1Q[F2, F3] — P[F2]1Q[F1, F3] + P[F3]Q[F1, F2l. (E15.2)
Therefore, (X*(A), A, d) is a dga (differential graded algebra). For each q > 0, the g-th Poisson cohomology of A is defined
to be

kerdl

PHI(A) := (E1.5.3)

imd? !
A derivation §: A — A of a Poisson algebra A is called a Poisson derivation if §({a, b}) = {8(a), b} + {a, §(b)} for any a, b € A.
It is clear from the definition that the first Poisson cohomology of A is

the set of Poisson derivations

PH'(A) = (E1.5.4)

the set of Hamiltonian derivations
If A is a quadratic Poisson algebra k[x, y, z] (with deg(x) = deg(y) = deg(z) = 1), then the complex (X°*(A),dy) is [29,
(15)]
0> A— (A[1])®3 = (A[2])®% > A[3] — 0.

By the additivity of the Hilbert series, we have

3
D (=D hphiay O =—t 2. (E15.5)
i=0

It is easy to check that
(a) the lowest degree of nonzero elements in PHO(A) is 0 and PH?(A)g =k;
(b) the lowest degree of nonzero elements in PH!(A) is > —1;

(c) the lowest degree of nonzero elements in PH%(A) is > —2;
(d) the lowest degree of nonzero elements in PH3(A) is —3 and PH3(A)_3 =k.

If A is further unimodular, then



X. Tang, X. Wang and J.J. Zhang Journal of Geometry and Physics 207 (2025) 105344

(e) the lowest degree of nonzero elements in PH%(A) is —2 and PH2(A)_, = k®3.

A natural operation on X*(A) is the Schouten bracket
[, 15 : XP(A) x XI(A) - XPH~1(A)
for all p, g > 0. We refer to [20, Section 3.3.2] for the precise definition. By [20, (4.5)],

dﬂ(') = _['a H]So

By [20, Proposition 3.7], (X°(A), A, [+, -]s) is a Gerstenhaber algebra.

Let A= (A, ) be a Poisson algebra with Poisson bracket ir. Let & € k* be any nonzero scalar. We define a new Poisson
bracket 7w :=&m or {—, —}¢ :=&{—, —}. Then it is easy to see that A’ := (A, ;) is indeed a Poisson algebra. In general, A’
is not isomorphic to A, but they are closely related as follows.

Lemma 1.5. Retain the notations as above. Let d%. (resp. dfT,) be the differential of X*(A) (resp. X*(A’)) as defined in (E1.5.1). The
following hold:

1) dl, =&d%, forall q.

2) kerd?, =kerd%, for all g.
) imd?, = imd}, for all .
)

(
(
(
(4) PHY(A) = PHY(A’) for all q.

3
4
2. Twists of graded Poisson algebras

Let G be an abelian group and A be a G-graded Poisson algebra (namely, both the multiplication - and the Poisson
bracket {—, —} of A are graded of degree 0). We use g for elements in G. If a is a homogeneous element in A, we use |a|
to denote its degree in G.

The aim of this section is to define a Poisson version of the graded twist of graded associative algebras [39].

Definition 2.1. Let § := {3, | g € G} be a set of graded derivations of A (of degree 0). We say § is a Poisson twisting system if
it satisfies the following conditions:

(1) For all g,h €G,

Sgdh = Sndyg. (E2.11)

(2) For homogeneous elements a, b € A,

Slab] = 8jaj + Sip)- (E2.1.2)

(3) For homogeneous elements a, b, c,€ A and g € G,
p({—,—}.8g:a,b,0)=0. (E2.1.3)
Remark 2.2.

(1) The definition of a Poisson twisting system is a “translation” of the twisting system in the setting of graded associative
algebras given in [39, Definition 2.1].

(2) If 8 is a Poisson derivation, it is automatic that p({—, —}, §; a, b, c) = 0. The converse is not true; see Example 2.6.

(3) Suppose G =Z and let ¢ = §1. By (E2.1.2), 8, =n¢. It is clear that

p({—, =} ¢:a,b,c) = (E AdL ())(a,b,0),

which implies that (E2.1.3) is equivalent to E A d}, (¢) =0. By [20, Sect. 4.3] and the fact that d},(E) =0, the equation
E AdL(¢) =0 is equivalent to d2 (E A ¢) =0.

(4) Let G=7Z and A be a Z-graded Poisson algebra. A convenient Poisson twisting system is constructed as follows. Let ¢
be a graded Poisson derivation of A (namely, d}, (¢) =0). For each n € Z, let 8, :=n¢ and § := {8, | n € Z}. Then (E2.1.1)
and (E2.1.2) are obvious and (E2.1.3) follows from the fact that 8, is a Poisson derivation; see part (2) or (3).

Example 2.3. Let G = Z/(n) for some positive integer n. Let A be a G-graded Poisson algebra and § be a graded Poisson
derivation of A. Suppose p :=chark is positive. If p | n, let §; =i6 for all i € G. Then {4; | i € G} is a Poisson twisting system

7
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for A. If p {n, there is no nontrivial Poisson twisting system for A. Suppose {&; | i € G} is a Poisson twisting system for A.
We have
0=86=8ﬁ=n8T’

which implies that 67 =0 and hence §; =0 for all i € G.

Let A be a G-graded Poisson algebra and let § := {§¢ | g € G} be a system of derivations of A. We define

(a,b) :={a, b} + adjq (b) — bép (@) (E2.3.1)

for all homogeneous elements a, b € A.

Theorem 2.4. Let § := {8 | g € G} be a set of graded derivations of a G-graded Poisson algebra A satisfying (E2.1.1) and (E2.1.2). Then,
the following hold.

(1) (—, —) is skew-symmetric.
(2) For every homogeneous element a € A, (a, —) is a derivation of A
(3) (—, —) satisfies the Jacobian identity if and only if (E2.1.3) holds.

In particular, if (E2.1.3) holds, then (A, (—, —)) is a Poisson algebra.

Proof. If G = Z, there is a shorter proof using the Schouten bracket. We make the following direct computation for a
general abelian group G.

(1) follows immediately from (E2.3.1).

(2) For homogeneous elements a, b, c in A, we have

(a, bc) = {a, bc} + adjq (bc) — bedpei(a)

= {a, bjc + {a, c}b + a (b8jq (¢) + 8ja) (b)) — bcd e (@),
(a, b)c = ({a, b} + adjq (b) — bsp (@) c,
b(a,c) =b ({a, c} +adj(c) — cdic(@)).

By the above and (E2.1.2), we obtain that

{a,bc) = (a,b)c+b(a,c).
(3) For homogeneous elements a, b, c in A, we have

(a, (b, c)) ={a, (b, c)} + adj((b, c)) — (b, )8)pc| (@)
= {a, ({b, ¢} + b8jp| () — 8| (b))} + adjq| ({b. c} + b8} () — B (b))
— ({b, c} + bp (c) — 81| (D)) 8| (@)
={a, {b, c}} + {a, b}dp(c) + b{a, §5;(©)} — {a, c}8)c|(b)
—c{a, 8ic;(b)} 4 adiq ({b, c}) + adjq;(b)8)p| (c) + abdjq|8jp (C)
— a8)q|(©)8)c|(b) — acdq 8¢ (b) — (b, c}8jpc| (@) — bSjp| (C)d)b| (@)
+ 8¢ (b)d)pc) (@)

and
({a,b),c) = (c, (b, a))
={c, {b,a}} + {c, b}djp| (@) + b{c, 8p;(@)} — {c, a}§jq| (b)
—a{c, 8ja(b)} + ¢djc| ({b, a}) + ¢3¢ (b)dp| (@) + cbSjc|dpp (@)
— €8¢ (@)8q) (b) — cadc|8jq(b) — {b, a}d|paj(c) — bdp) (@)8}pq (C)
+ adyq)(b)3pq (C)
and
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(b, {a,c)) ={b,{a,c}} +{b,a}djq/(c) +-a{b, §q/(©)} — {b, c}J|c| (@)
—c{b, §ic|(@} + bdjp;({a, c}) + b8y (@)8}q) (€) 4 badip 81| (C)
— bép (€)8c|(@) — bcdp8ic) (@) — {a, c}Sjac) (b) — adjq) (€)Sjac| (D)
+ C8)c(@)8ac| (D).
Using the Jacobi identity

_{aa {bv C}} + {{as b}» C} + {bv {a’ C}} = 07
(E2.1.1) and (E2.1.2), we can simplify

_<a! (b! C)) + <<C’ b)7a> + (b’ (a’ C))

to

p({_a _}s 5; a, bv C)'
Therefore, (—, —) satisfies the Jacobi identity when p(§; a, b, c) = 0. (3) follows. The consequence is clear. O

Definition 2.5. Let § := {; | g € G} be a Poisson twisting system of a G-graded Poisson algebra A. Then the new Poisson
algebra (A, (—, —)) given in Theorem 2.4 is called the twist of A by § and denoted by A°.

Example 2.6. Let A =k[x, y] be the Z-graded Poisson algebra defined by {x, y} = x2. Let ¢ be the derivation sending x — —x
and y — y — x. Let §; =n¢. It is easy to see that

dr (@) (%, y) = =p (1, YD) + X, $)} + {$(0, ¥}
=—¢(A) +{x,y —x} + (=X, y} =2x* £0,
which implies that ¢ is not a Poisson derivation.
We claim that § := {8y} is a Poisson twisting system. Let f be the derivation of A determined by

f)=0, and f(y)=-x.
It is easy to verify that f is a Poisson derivation. By Remark 2.2(4), f’:={nf | n € Z} is a Poisson twisting system, and by
Theorem 2.4, A" is equipped with a Poisson structure such that

(% y) =%y} +xf(y) —yf () =x* —x* —0=0.

Therefore A/ has trivial Poisson structure. Let g be the Poisson derivation of A" determined by

gx)=—x, and g(y)=y.

Let g’ ={ng|n e Z}. By Remark 2.2(4), g’ is a Poisson twisting system of Af" and the Poisson structure of (AS)& is
determined by, for all homogeneous elements a, b € A,

{a, b}new : = (a, b) + |alag(b) — |b|bg(a)
={a, b} + |alaf (b) — |b|bf (@) + |alag(b) — |blbg(a)
={a,b} + ah|a‘(b) — bh|b|(a)

where h, =nf +ng for all n € Z. Since f + g is a derivation of A, by Theorem 2.4, h’ := {h, | n € Z} is a Poisson twisting
system of A. It is clear that § =h’. So § is a Poisson twisting system.

Since § is a Poisson twisting system, by Remark 2.2(3), ¢ is a graded semi-Poisson derivation. By the first paragraph, ¢
is not a Poisson derivation.

Lemma 2.7. Suppose G is cyclic. Then, the set of Poisson twisting systems of A is a k-vector space.

Proof. Let § and ¢ be two Poisson twisting systems. It is clear that c§ is a Poisson twisting system for all ¢ € k. It remains
to show h :=§ + ¢ is a Poisson twisting system.
Since G is cyclic, h, =nhy. So (E2.1.1) is clear. Now (E2.1.2) and (E2.1.3) hold as these are “linear” in terms of §. O

9
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Remark 2.8. If G is Z2, then the set of Poisson twisting systems of (k[x1,X2,x3],0) with degx; = degx, = (1,0) and
degxsz = (0,1) is not a k-vector space. To see this, we consider two graded Poisson derivations §; and ¢; that do not
commute (for example, &1 : X1 = x1,x2 — 0,X3 — 0 and ¢1 : X1 — X2,X2 = 0,x3 — 0). Let 8;,m) =ndy and ¢u,m) =mer. It
is easy to see that both § and ¢ are twisting systems of the G-graded Poisson algebra (k[x1, X2, X3], 0). We define § + ¢ by
(6 + @) (n,my =nd1 +m¢ for all (n,m) € Z2. Since 81 and ¢7 do not commute, we see that (E2.1.1) fails for § + ¢.

As noted before, a derivation § of A is Poisson if and only if d}, (8) = 0. By Definition 0.4, a graded derivation § of a
Z-graded Poisson algebra A is semi-Poisson if E A d}, (6)=0.

Next, we show that the Poisson twisting systems induce an equivalence relation. Let A be a G-graded commutative
algebra. Two graded Poisson structures 7w and 7’ on A are called equivalent if (A, ') is a graded twist of (A, ). In this
case we write (A, ) ~ (A, ’).

Proposition 2.9. Suppose G is cyclic and A is a G-graded commutative algebra. Then, ~ is an equivalence relation.

Proof. It is clear that (A, w) ~ (A, ) by taking the trivial Poisson twisting system §. So, ~ is reflexive.

To prove the symmetry of ~, we suppose that (A,7’) is a graded twist of (A, ) by §. We claim that —§ is a Poisson
twisting system of (A, 7). Once proved, then it is obvious that (A, w’)~% = (A, ) as desired. It remains to show that —§
satisfies (E2.1.1), (E2.1.2) and (E2.1.3). The first two are easy. For the last one, we compute

81a({b, €)) — (8jaj(b), c) — (b, 8)q)(C))

= 8)q/({b, c} + b8y (c) — cbi¢ (b))
— [{8}a)(b), €} + 81q (B8} () — C8)¢|B1q) (D)]
— [{b, 81| (©)} + b3 81q) (€) — 81a) (€)8)¢| (D)]

=d)q/({b, c}) — {81q)(b), c} — {b, §jq)(0)}
+ 81q) (D)8} (€) + bB)q) 81| (€) — 81a) (€)¢| (b) — €81 )¢ (B)
— 81q) (b)31p| (€) + €B)c|8jaj (b) — bB|p|81q|(C) + &g/ (€)S)c| (D)

=d)q/({b, c}) — {81q)(b), c} — {b, 8ja(0)}

which implies that

p((_! _>s _85 a, b7 C) = p({_7 _}a _87 a, b, C) =0.

Therefore —§ is a Poisson twisting system of A% and (A%)~% = A. So, ~ is symmetric.

To prove the transitivity of ~, we use the idea given in Example 2.6. Suppose § is a Poisson twisting system of A and ¢
a Poisson twisting system of A°. Let o := {0g:=8g+¢g | geG}

Since G is cyclic, o, =nop by definition for all n € G. Therefore (E2.1.1)-(E2.1.2) are obvious. Define

{a, bYnew = {a, b} + aoq(b) — boyy (@) = (a, b) + apq|(b) — by (a).

Then {—, —}new is the Poisson bracket of (A%)?. By Theorem 2.4, o is a Poisson twisting system of A and A% = (A%)?.
Therefore ~ is transitive. 0O

Remark 2.10. Let G be Z? and A = k[xo, X1, X2, x3] with degx; = (1,0) for i =0, 1,2 and degx3 = (0, 1). We claim that ~
is not an equivalence relation among the Poisson structures on A. We use Y for the Z2-graded Poisson algebra with trivial
Poisson structure.

Let 81 be the Poisson derivation of Y sending xo — 0, X1 — X2, X2 — 0, and x3 — 0. Let ¢1 be the Poisson derivation of
Y sending xo — 0, X1 — X1, X — 0 and x3 — 0. We define two Poisson twisting systems as follows. Let & := {§(;,m) = nd1}
and ¢ := {¢u,m) = me¢1}. Since §; and ¢ are Poisson derivations, it is easy to verify that §, —§ and ¢ are Poisson twisting
systems. By Theorem 2.4, X := Y~ is a Poisson algebra and by the first part of the proof of Proposition 2.9, § is a Poisson
twisting system of X and Y = X%, So we have X ~ Y. Let Z =Y?. Then Y ~ Z. We claim that X * Z. Suppose, on the
contrary, that X ~ Z. Then Z = X" for some Poisson twisting system h of X. Applying (E2.3.1) to pairs of elements of the
form (x;, x;) for all 0 <i, j <3, we see that h =6 + ¢. But it is clear that (E2.1.1) fails for § + ¢ as 81¢1 # ¢161. Therefore,
there is no Poisson twisting system h such that Z = X" as desired.

This example suggests that there should be a more general definition of twisting systems that induce an equivalence
relation ~.

We conclude this section with more examples.

10
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Example 2.11. Here are two examples of twists of graded Poisson algebras.
(1) Let A be the Poisson polynomial ring Kk[x1, ..., X,] with trivial Poisson bracket. Consider A as a Z"-graded algebra
with degx; =e; where

ei=(0,...,0,1,0,...,00 e Z"

with 1 in the ith position. Let {p;; | 1 <i < j <n} be a subset of k. For each i, define a Z"-graded Poisson derivation §; by

piixi j>i,
Sitxp) =477 0
0 j<i.
For each (a1,...,an) € Z", let 8qy,...ap) = Z?=1 a;8;. Since each 8(q,,....q,) IS @ graded Poisson derivation of A, it is easy to
see that

8:=1{8a....an | (@1,...,an) € Z"}
is a twisting system of A. By (E2.3.1), the Poisson bracket of the new Poisson algebra A’ is determined by
(Xi, Xj) =x;6;(xj) — xj8j(x;) = pjjxix; foralli< j.

(2) Let A be the Poisson polynomial ring k[x1,...,X,] with trivial Poisson bracket. Consider A as a Z-graded algebra
with degx; =1 for all i. Let §; be a Poisson derivation of A determined by

—Xji_1 i>1,
§1(xi) =
10 =14 i=1.

Let § := {84 :=d81 | Vd € Z}. Since §; is a graded Poisson derivation, § is a twisting system of A. By (E2.3.1), the Poisson
bracket of the new Poisson algebra A% is determined by

(Xi,Xj) =x6(xj) —xj6(x;)) = —xiXj_1 +xjx;—1 foralli < j.
When n = 2, the Poisson bracket of A® is determined by

(x2,%1) =X7.
3. Proofs of Theorem 0.2 and Corollary 0.3

For the rest of the paper we assume that char k = 0. Let A be a commutative Poisson k-algebra of Krull dimension d.
First, we recall the definition of divergence of a skew-symmetric k-derivation for k > 0 [20, Sect. 4.4.3]. A special case is
given in Definition 1.1. For P € XP(A), the internal product tp is defined at the beginning of Section 1.

Let v be a volume form of A. Then v € Q%(A), where Q4(A) # 0 and Q¥(A) =0 for k > d. The form v is also called a
d-form. We define the star operator

x4 X*(A) > QI7*(A)
as follows: for each k > 0 and Q € X¥(A), we set
*AQ :=1lqV.

So 4 is a k-linear map from X¥(A) to Q47¥(A) for each k. It follows from (E1.0.2) that 4 is an A-linear map. We simply
write x4 as  if no confusion arises.

Lemma 3.1. Let B be a smooth affine domain of dimension n with volume form v. Then, g is an isomorphism.

Proof. To prove that * is an isomorphism, it suffices to show that xg ®p By, is an isomorphism for all maximal ideals m
of B. Let A be the local ring By,. Then A is a regular local ring of global dimension, Krull dimension, and transcendence
degree n. Since all the operations commute with the localization,

*g ®B By =% ®p A =x%4.

Now we assume that A is local with maximal ideal m generated by {x, ..., x;}. Then Q!(A) is a free module of rank n.
Write Q1(A) = EB?:]Adxi. Then for each k> 0, Q¥(A) is a free A-module with basis

{diy,... iy =dxj; Ao Adx |1 <ip <. <ip <n}

11
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and that, via (E1.0.1), X*(A) is a free A-module with basis as in (E1.0.1)
{0 = 9 A A 9 [1<i ir <n}
. ;o= P —_ < e < .
1yeeey 17 aXil 8X1'k =h k=

Recall that v =ady 3, ., for an invertible element a € A. By definition,

*Ai ...y = Loy,

= Y sgn(o)ad... ilXo s Xodld; | T S

............... n

SO VIR PPN

where +1 =sgn({i1,...,ix, 1,...,i1,...,1k, ..., Nn}). Therefore, x4 is an isomorphism as desired. O

Definition 3.2. We say A is a standard Poisson algebra if A is an affine smooth Z-graded Poisson domain with a homoge-
neous volume form v (with degv not necessarily zero) and « is an isomorphism.

Note that every polynomial Poisson algebra k[x1, ..., X;] is standard (even when char k > 0). Lemma 3.1 provides another
class of such algebras. Now we assume that A is standard of dimension n. By [20, Sect. 4.4.3], the divergence operator with
respect to the volume form v is a graded k-linear map of degree —1,

div: X*(A) — X°71(A),
which makes the following diagram commutes
XA —— Q"*(A)
o |
x1(A) — Qretl(A).

Since A is standard, the star operator  is an A-linear isomorphism. Now we have the following lemmas proved in [20,
Sect. 4.4.3].

Lemma 3.3. [20, Proposition 4.16] Suppose (A, 1) is standard with volume form v. Let § and ¢ be two derivations of A. Then
div(§ A ¢) =div(¢)s — div(§)e — [§, P].
The following lemma gives another proof of Lemma 0.1.

Lemma 3.4. [20, Proposition 4.17] Suppose (A, ) is standard with volume form v. Let m be the modular derivation of A. Then
m = —div(m).
Consequently, the divergence of m is zero.

Question 3.5. It is not clear how to handle nonaffine smooth domain A as the proof of Lemma 3.1 uses the fact A is affine.

Theorem 3.6. Suppose (A, i) is standard with volume form v. Let § be a graded semi-Poisson derivation of A. Let m (resp. n) be the
modular derivation of A (resp. A%). Then

n=m+ (divE)$§ — (divé)E.

Proof. Let v’ be the Poisson structure of A%. By (E2.3.1),
7' =mw +EANAS.
By Lemmas 3.3 and 3.4, we have
n=—div(r') = —div(mw) — div(E A §)
=m+ div(E)s — div(§)E — [, E].

The assertion follows as [§, E] =0 for each graded derivation §. O

12
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Proof of Theorem 0.2. Let A be a Z-graded Poisson algebra k[xq,...,x,] with each x; homogeneous. By Lemma 1.2(5),
div(E) =degv =Y ! ; degx; =: I. Now the assertions follow from Theorem 3.6. O

Remark 3.7. There is a different proof of Theorem 0.2 without using Theorem 3.6 (details are omitted). In fact, the different
proof does not use the hypothesis that char k = 0.

The following result is an immediate consequence of Theorem 3.6.

Theorem 3.8. Suppose (A, i) is standard with a volume form v € Qd(A). Assume that div(E) € k is nonzero. Let m be the modular

derivation of A and let § = —div;(E)m. Then (A%, ') is unimodular and

m=n'"+——EAm
+ i)

In particular, we have Ls(a) = 0 where a = %7’ is the closed differential (d — 2)-form associated with the unimodular Poisson
structure 7’ on A.

Proof. Let n be the modular derivation of (A%, ’). By Theorem 3.6 and the fact § = —#(E)m,
n=m + div(E)§ — div(§)E = —div(§)E =0
where the last equation follows from div(m) = 0 [Lemma 0.1]. Therefore (A%, ') is unimodular. By (E2.3.1), for all a, b € A,
7'(a,b) = (a,b) = {a. b} + adja (b) — bdjp (@)
=7 (a,b) + |alad(b) — |blbs(a) = 7 (a, b) + E(a)d(b) — S(a@)E(D).
As a result, we have that
w'=m +EAS,
which is equivalent to the above assertion. Finally by [20, Proposition 3.11(2)] we have
Ls(ot) =Ls (L' (V) =t (Ls(V)) + L[5,7715 (V)
=ty (div(B)V) + t[5,7215 (V) = L[5,7115 (V).

One can easily check that § is also a Poisson derivation of (A%, "). So [8, w']s = —d/(8) =0 and we get Ls(o) =0. O

Proof of Corollary 0.3. Let A be a Z-graded Poisson algebra k[xq,---,X;] with each x; homogeneous. By Lemma 1.2(5),
[=)"1,degx;. Now the assertions follow from Theorem 3.8. O

4. Rigidity of graded twisting

Let A be a Z-graded Poisson algebra. Recall that the set of graded semi-Poisson derivations (resp. graded Poisson deriva-
tions) of A with degree 0 is denoted by Gspd(A) (resp. Gpd(A)). We first prove Theorem 0.5.

Lemma 4.1. Let A be a Z-graded Poisson algebra k[x1, ..., x,] with degx; > 0 for every i. Suppose that A is unimodular and that
[:=Y"" , degx; is a nonzero element in k. If § is a graded semi-Poisson derivation of A, then § is a Poisson derivation of A. Namely,
Gspd(A) = Gpd(A).

Proof. Since degx; > 0 for all i, by Lemma 1.2(1,3), both div(§) and [ = div(E) are in k. Let B be the twist A® with modular
derivation n. By Theorem 0.2,

n=m+ 6 —div(§)E = [§ — div(§)E.

Since n and E (and div(§)E) are Poisson derivations of B, we have that [§ (and hence §) is a Poisson derivation of B. Let
(—, =) (resp. {—, —}) be the Poisson structure of B (resp. A). By (E2.3.1), we have

{(— =} =(——) —EAS.
Then, for all homogeneous elements a, b € A,

13
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5 (a,b}) ~(6(@). b} — (@, 5())

=5 ((a,b)) = (5@, b) — (@.5))

—38((EAS)la,b]) + E AS[8(a), bl + E Ad[a, 5(b)]
—0— 8 (|ajas(b) — |b|bs(a))

+ (las@3) — bibs*(@) ) + (1alas® ) — b8 B)S(@)
= —l|a|8(a)8(b) — |alas®(b) + |b|8(b)s(a) + |b|bs?(a)

+ (lals@3() ~ blbs*(@) ) + (1alas® b) — bIsB)S(@)
=0.

Therefore § is a Poisson derivation of A. O
Lemma 4.2. Let B be a twist of A. Then Gspd(A) = Gspd(B).

Proof. Write B = A® for some graded semi-Poisson derivation § of A. So B= A as a commutative algebra. Let 7 (resp. ')
be the Poisson bracket of A (resp. B).

Let ¢ be a graded derivation of A with degree zero. Then we have [E, ¢]s = [E, ¢] = 0. For any two graded derivations
¢1, ¢ of A with degree zero, we have

[EA@1, EAd2ls ==L[E,EAd2ls A1 £ EN[P1, EAls
== ([E, Els A2 £ [E, p2ls AE) A ¢y
L EA([¢1, Els A2 £[¢1, ¢2]s AE)
=0.
Let ¢ be a graded semi-Poisson derivation of A with degree zero. By definition,
[EAn¢,m]s =0.
Then
[EAng, T'ls=[EA@,T+EANS]s
=[EAn¢,]s+[EAP,ENS]s
=0.
Therefore, ¢ is a graded semi-Poisson derivation of B with degree zero. O
Proof of Theorem 0.5. Part (1) is Lemma 4.1 and part (2) is Lemma 4.2.
(3) By Corollary 0.3 and part (2), we may assume that A is unimodular. By part (1), Gspd(A) is the k-vector space of

graded Poisson derivations A. It is well-known that it is a Lie algebra. Let ¢ be any Poisson derivation of A. It is clear that
¢ is determined by {¢ (x;)}{_,. Therefore Gspd(A) is finite-dimensional. O

One of the main definitions in this paper is the following.
Definition 4.3. Let A be a Z-graded Poisson algebra.

(1) The rigidity of graded twisting (or simply rigidity) of A is defined to be

rgt(A) =1 — dimy Gspd(A).
(2) We say A is rigid if rgt(A) =0.
(3) We say A is (—1)-rigid if rgt(A) = —1.

Note that this notion of rigidity is different from the rigidity defined in [9, Definition 0.1] and other papers.
It follows from Lemma 4.2 that

rgt(A) =rgt(A®) (E431)

for every graded semi-Poisson derivation § of A.
Other basic facts about rgt(A) are listed in the following lemma.

14
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Lemma4.4. Let A be a Z-graded Poisson algebra with A; # 0 for some i # 0. In parts (2)-(6), we further assume that A isk[x1, ..., Xn]
with degx; > 0 for all i.

(1) Suppose that rgt(A) = 0. Then every graded twist of A is isomorphic to A.

(2) If A 'is not unimodular, then rgt(A) < —1.

(3) Ifrgt(A) =0, then A is unimodular.

(4) Ifrgt(A) # 0, then dimy Gspd(A) > dimy Gpd(A) > 2.

(5) Ifrgt(A) = —1, then dimy Gspd(A) = dimy Gpd(A) = 2.

(6) Let {A(a)}qek be a family of Poisson polynomial algebras such that (i) A(a) is a Poisson twist of A(a) for all a, a’ € k and that (ii)
there is an ag such that A(ag) is unimodular. If dimy Gpd(A(ap)) = 2, then rgt(A(a)) = —1 for all a.

(7) Ifrgt(A) =0 and A is a connected graded domain, then every Poisson normal element of A is Poisson central.

(8) Ifdimy Gpd(A) =1 and div(E) # 0, then rgt(A) =0.

Proof. (1) Since A; # 0 for some i, the Euler derivation E is not zero. Since rgt(A) =0, Gspd(A) =KkE. Let B be a graded
twist of A. Then B = A% where § € Gspd(A). Let (—, —) be the Poisson bracket of B. Since § =« E for some « €k, one sees
from (E2.3.1) that (a, b) = {a, b} where {a, b} is the original Poisson bracket of A. The assertion follows.

(2) Since A is not unimodular, the modular derivation m is not in kE, as div(E) = Y I, degx; # 0 and div(m) =0
[Lemma 0.1]. Therefore dimy Gspd(A) > 2. The assertion follows.

(3) This is equivalent to (2).

(4) By definition, it is clear that dimy Gspd(A) > dimy Gpd(A). It remains to show dimy Gpd(A) > 2. If A is unimodular,
then, by Lemma 4.1,

dimy Gpd(A) = dimy Gspd(A) =1 —rgt(A) > 2.

Now we assume that A is not unimodular with nonzero modular derivation m. Since div(E) # 0 and div(m) = 0, the k-
dimension of Gpd(A) is at least 2 as desired.

(5) By definition, dimy Gspd(A) =1 —rgt(A) = 2. The assertion follows from part (4).

(6) It follows from Lemmas 4.1 and 4.2 that we have

rgt(Aa)) =rgt(A(ap)) =1 — dimy Gspd(A(ap)) =1 — dimy Gpd(A(ap)) = —1.

The assertion follows from (4).

(7) We only need to consider a homogeneous Poisson normal element f of positive degree. Note the log-Hamiltonian
derivation LHy := f~Yf,—} is a Poisson derivation of degree 0. Suppose f is not central. Then LHf(f) #0. Note that LHy
is clearly not the Euler derivation. Therefore rgt(A) < —1, yielding a contradiction. The assertion follows.

(8) We know Gpd(A) is spanned by the Euler derivation E, which is not the modular derivation by Lemma 0.1. This
implies that A is unimodular and the result follows by Lemma 4.2. O

Examples of rgt(A) will be given in the next 2 sections.
5. Examples and comments

Note that the graded twists in the associative algebra setting has an important property, namely, a graded algebra R and
its twist have isomorphic corresponding graded module categories [39]. The following example shows that a similar result
does not hold in the Poisson setting.

Example 5.1. Let A be the Poisson algebra k[x1, x3] with trivial Poisson structure. Let § be the Poisson derivation of A
determined by

§(x1)=0 and J8(x2) =x3.
Let B be the graded twist of A by 8, namely, B = A®. By definition, B is a Poisson algebra k[xi, x2] with Poisson bracket
determined by

{x1, X2} = x1%2.

Let U(A) denote the Poisson enveloping algebra of A [3]. Since A has the trivial Poisson structure, U(A) is the commuta-
tive polynomial ring k[x1, X2, ¥1, y2]. Let U(B) be the Poisson enveloping algebra of B. We claim that U(B) is not a graded
twist of U(A) in the sense of [39].

Suppose on the contrary that U(B) is a graded twist of U(A) in the sense of [39]. Then, by [39, Theorem 1.1],

GrMod-U (A) = GrMod-U (B). (E5.1.1)
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Let D(A) (resp. D(B)) be the degree zero part of the graded quotient ring of U(A) (resp., U(B)). Then it follows from (E5.1.1)
that D(A) = D(B). Since U(A) is commutative, D(A) is commutative. Thus D(B) is commutative. Next we prove that D(B)
is not commutative, so we obtain a contradiction. By [3, Theorem 2.2], U(B) is generated by four elements x1, X, 61, 2 and
subject to 6 relations

X1X2 = X2X1,

81x1 = X141,

81X2 = X281 + X1X2,

d2X1 = X182 — X1X2,

82X) = X202,

6201 = 6162 + X201 + X162

Leta= )qxz_l and b = Bzxz_l which are elements in D(B). It follows from the six relations that

ba=ab —a.

So D(B) is not commutative, yielding a contradiction. Therefore U(B) is not a graded twist of U(A).
As a consequence, the category of graded Poisson modules over A’ denoted by GrPMod-A? is not equivalent to the
category of graded Poisson modules over A, denoted by GrPMod-A. That is,

GrPMod-A® 2 GrPMod-A.

Remark 5.2. When A is a connected graded Poisson algebra with A; # 0 for some i > 0, PH'(A) is also graded. Since
(PH'(A))o = Gpd(A), we have rgt(A) <1 — dimg(PH'(A))o. If dimyx(PH!(A))o =1, then rgt(A) =0 by Lemma 4.4(8).
Therefore we can obtain information about rgt(A) from PH!(A).

Remark 5.3. Let A =Kk[Xg, X1, X2, x3] be the polynomial algebra with the Poisson bracket defined by

2
{Xi, Xit1} = Xip2Xiv3 — A7XiXiy1,
2 2
{Xi, Xip1} = A(Xiq — Xi43),

for some A € k with indices i =0, 1, 2,3 (modulo 4). Then A can be considered the semiclassical limit of the 4-dimensional
Sklyanin algebra. The Poisson (co)homologies of A have been computed in [27, p.1154]. By the Poincaré duality, both PHO(A)
and PH!(A) have Hilbert series ﬁ By Remark 5.2, rgt(A) =0. Further, since hpy14)(t) = hpyoca) () =hz(t) =
where Z denotes the Poisson center of A, A is PH!-minimal in the sense of Definition 7.3(1).

Note that the Poisson (co)homologies of the quadratic Poisson algebra A =Kk[x, y, z] of Sklyanin type were computed in
[28,29,35]. An argument similar to the above shows that rgt(A) =0 and A is PH'-minimal. We will give an elementary
and direct computation of this rgt(A) in Example 6.6(Case 3).

1
(1-t2)2’

Remark 5.4. For n > 2 and a € C. Let A(n,a) = C[x1, ..., x,] be the family of Poisson polynomial algebras studied in [21].
The Poisson bracket on A(n, a) is defined as follows:

(X, Xj} =zjXi1Xj — ziXj1X
where z; =a + j and x_; = 0. One can check for each fixed n > 2 the family {A(n, a)la € C} satisfies all the assumptions

stated in Lemma 4.4(6) with ap = % such that rgt(A(n,a)) = —1. Computations are omitted. In particular for any

a,a’ € C, A(n,a) is a Poisson twist of A(n,a’), which is a Poisson version of [21, Theorem 4.2].
We will compute rgt for some classes of Poisson algebras. Here is a warm-up.

Example 5.5. Let A =k[x, y, z] with deg(x) = 1, deg(y) =2 and deg(z) = 3. Let 2 = x% + y> + z% 4+ Axyz where A € k. Define
a Poisson structure on A :=Kk[x, y, z] by

Q  fx &
{f.g):=det| Qy fy gy
Q, f; &

for all f, g € A. It is easy to see that
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{x, ¥y} = Q; =2z + Axy, (E5.5.1)
{x,2) = —Qy = —3y* + Ax2), (E5.5.2)
(y,2) =Qx =6x> + Ayz (E5.5.3)

and that A is unimodular. If 18 # 63, then Asing 1= A/(Q%, Ry, Q) is finite dimensional. In this case,  has an isolated
singularity. Let § be a graded Poisson derivation of degree zero. Then

§(x) = c1X,
8(y) = cay + 3%,
8(2) = C4z + C5%° + CoXY.

Subtracting by c1E, we may assume that c; = 0. Applying § (with ¢; =0) to (E5.5.1), we obtain that

22z + Axy) =2(caz+ C5x3 + cexy) + Ax(c2y + C3X2),
which implies that ¢; =c4, cg =0, and 2¢5 + Ac3 = 0. Applying § (with ¢; =0 and cg = 0) to (E5.5.2), we obtain that

—c4(3y% + Axz) = —6Y(C2y + €3x%) — Ax(Caz + C5%°),

which implies that ¢; = ¢3 = ¢4 = ¢5 = 0. Therefore § = 0. This means that rgt(A) = 0. By Lemma 4.4(1), A has no non-trivial
twists.

In general, when Q has an isolated singularity, the fact that rgt(A) = 0 also follows from the Poisson cohomology
computation given in [29, Proposition 4.5] (after matching up the notations). The same idea applies to the algebra in
Example 6.6(Case 3).

6. Some computations of rgt

In this section, we compute rgt for all quadratic Poisson structures on A =Kk[x, y, z] with deg(x) = deg(y) = deg(z) = 1.
Some of the computations have been done by other researchers in different language (for example, some are hidden inside
in Poisson cohomology computation), but we provide all details of computations of rgt for completeness. The classification
of all quadratic Poisson structures on k[x, y, z] were given in [8,7,22].

First we fix some notations. Let k be an algebraically closed field of characteristic zero (one might assume k = C if
necessary). Let V = A =kx + ky + kz and let {—, —} be a quadratic Poisson bracket of A :=k[x, y,z] =k[V]. Let f be a
graded Poisson derivation of (A, {—, —}). Let W ={V, V}. It is clear that

fW)=F{V. V) CS{f(V), VI+{V, f(V)}CS{V,V}=W. (E6.0.1)
Write

fx)=a1x+axy +asz, f(y) =bix+bay+bsz, f(z) =c1x+ 2y + c32. (E6.0.2)
After replacing f by f —a;E, we can further assume that

ap in (E6.0.2) is zero. (E6.0.3)

Note that, for any given polynomial €2 € A, one can define a Poisson bracket on A as follows:
x.y) = Q2 (y.2) = a2 (z.x) = Q2
ay_azv Y7 _axa k) _ay-

Such a bracket is called a Jacobian Poisson bracket and 2 is called a potential. If {—, —} is unimodular, it comes from a
potential 2 € As. One can classify cubic € as follows: (a): € is a product of three linear terms, (b): € is a product of a
linear term and an irreducible polynomial of degree 2, and (c): € is irreducible of degree 3. This classification is well-known
(e.g., [5,19,34]); we list them below for the reader’s convenience (Table 1).

Table 1
Classification of cubic potential & in k[x, y, z].

Reducible Irreducible

@ X, X2y, xyzxy(x+y)
(b)  xyz+x3, xy? +x%z
(c) X +y2%z, 3 +x%z24 Yz
1+ +2%) +axyz, 23 #£ -1

The following four examples deal with the first case, namely, Q is a product of three linear terms. Define Asj;g to be
A/(Sx, Qy, Q7).
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Example 6.1. Let Q = x3. Then
{x,y}=Q;=0,
{z,x} =Qy =0,
{(y, 2} = Qy = 3x°.
It is clear that Kdim(Aing) = 2. Let f be a graded Poisson derivation of A. By (E6.0.1)
2xf (0 = f(x*) € (W) S W =kx’.

Then f(x) = ax for some a € k. By (E6.0.3), we may assume that f(x) = 0. Retain the notations in (E6.0.2). Applying f to
{y,z} = 3x2 implies that by 4+c3 = 0 with by, b3, c1, ¢2 free. Therefore rgt(A) = —5. One can check that every Poisson normal
element of A is Poisson central.

Example 6.2. Let Q =x2y. Then
{x,y} =€, =0,
(z,x} = Q) =x%, (E6.2.1)
{y, 2} = Q= 2xy.
It is clear that Kdim(Aing) = 2. Let f be a graded Poisson derivation of A. By (E6.0.1), we have
kx* +kxy =W 2 f(W) =k 2xf (%) + k (f Xy +xf ().
Then f(x)y does not have terms y% and yz. So f(x) = ax for some a € k, and by (E6.0.3), we may assume that f(x) = 0.
Using the notations in (E6.0.2), then (E6.2.1) implies that by = b3 = c3 = 0 with by, cq, ¢z free. Therefore rgt(A) = —3.

Example 6.3. Let Q2 = xyz. Then
{x, y} =z =xy,
{z,x} =Qy =xz, (E6.3.1)
{y.z}=Qx=yz.

As before we assume that a; = 0. Note that W :=kxy + kyz + kxz which does not contain term x? and y2. By (E6.0.1), we
have

(@x+ a2y +azz)y + (b1x+ b2y +b3)x= f)y +xf(y) = f(xy) e W

which implies that a, = by = 0. Similarly, using f(xz), f(yz) € W, we obtain that a3 =c; = b3z =c; =0. Thus f(x) =0,
f(y) =b2y and f(z) = c3z. Therefore rgt(A) = —2.
One can check that Kdim(Asjpg) = 1.

Example 6.4. Let Q =xy(x + y). Then
{x,y}=,=0,
{z,x) = Qy = x* + 2xy, (E6.4.1)
.2} =Qx=2xy + y*.
Again we may assume that a; = 0. By (E6.0.1), we have
FOE +2xy) =2xf (0 + 2xf () +2yf (0 € k(x* + 2xy) + k(2xy + y*) = W,
F@xy + ) =2xf (y) + 29f (%) + 2yf (y) € k(¥ + 2xy) + k(2xy + y?).

As a consequence, both f(x) and f(y) do not have a z term, namely, a3 = b3 = 0. Furthermore, by the above and a little bit
of linear algebra, we have

b1 =b2 = —daj.

Now we can write f(x) =ay and f(y) = —axx —ayy. Applying f to the second equation of (E6.4.1), we obtain that c3 =0
and ap; = 0 with ¢ and c; free. Therefore rgt(A) = —2.
One can check that Kdim(Asjpg) = 1.
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Next we consider the second case. Some linear algebra details will be omitted in the next two examples.

Example 6.5. Case 1: = xyz + x3. In this case, the Poisson bracket of A is determined by

X, y}=Q;=xy,
{z,x} =Qy =xz, (E6.5.1)
(y.2) = Qx = yz + 3%°.
One can check that Kdim(Asjng) = 1. Recall that W is {V, V} =kxy +kxz + k(yz + 3x2) which does not involve either yZ or
z2. By the second equation of (E6.5.1), we have
f@z+xf(z2) eW

which implies that f(x) does not have the z term, or az = 0. Similarly, b3 = 0 by the third equation of (E6.5.1). By using the
first equation of (E6.5.1), we obtain that a, = 0. By (E6.0.3), we can assume that f(x) = 0. Now the first equation of (E6.5.1)
implies that {x, f(y)} = xf(y). So f(y) eky or f(y) =bzy.

Using the second equation of (E6.5.1), one can show that ¢; = ¢ = 0. By using the third equation of (E6.5.1) and the
fact that W does not contain the term y2, we obtain that c; = 0. So f(z) = c3z. From this we can derive that by + c3 =0.
Therefore rgt(A) = —1.

Case 2: Q =xy? +x?z. Then we have

{Xsy}:QZ:sz
{z.x} =y =2xy, (E6.5.2)
(.2} = Qx = y* + 2xz.
One can check that Kdim(Aig) = 1. By definition W = kx? + kxy + k(y? + 2xz), and it does not contain terms z2 and yz.
Using the third equation of (E6.5.2), we have
F? +2x2) =2y (y) + 2xf (2) +22f () e W.

Therefore f(x)z does not contain a z? term. So f(x) = a;x+ay and with (E6.0.3) we can assume that f(x) =ayy. Now we
apply f to the first equation of (E6.5.2), we obtain that b, =0 and b3 = —ay. (Some calculations are omitted.) Applying f
to the second equation of (E6.5.2), we obtain that a, =0, c3 =0 and ¢, = —2b;. Finally applying f to the third equation of
(E6.5.2), we obtain that c; =0 with by free. Therefore rgt(A) = —1.

The final example deals with the irreducible cubic €.

Example 6.6. Suppose 2 is an irreducible cubic function in x, y, z. By classification (see, for example, [19, Theorems 1 and
2] and [5, Theorem 2.12]), there are following two singular ones and one non-singular.
Case 1: Q@ =x3+ y?z. Then we have
xy) ==y
{z.x} =y =2yz, (E6.6.1)
{y.2) = Q=34
So W :=ky? +kyz + kx? does not have terms z2, xy and xz. Then f(x%) = 2xf(x) € W implies that f(x) € kx. By (E6.0.3),
we have f(x) = 0. Applying f to the first equation of (E6.6.1), we obtain that f(y) = 0. Applying f to the last two equations

of (E6.6.1), we obtain that f(z) =0. So rgt(A) =0.
One can check that Kdim(Asj,g) = 1. By a Grobner Basis argument, one sees that the Hilbert series of Agjng is ai—r) +

2 +t—1.
Case 2: Q= x> + x>z + y?z. Then we have

Xy = =% 4%,
{z,x} = Qy =2yz, (E6.6.2)
{y,2} =Qx = 3x% 4 2xz.

So W does not have terms z2 and xy. By the second equation of (E6.6.2), we have

FO=yf@ +zf(y) eW
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which implies that f(y) has no z term and f(z) has no x term. By the third relation of (E6.6.2), we obtain that f(x) has no
z term. By (E6.0.3), one can assume that f(x) =ay. Applying f to the first equation, we obtain that b, =0 and by = —a;
(namely, f(x) =ay and f(y) = —ayx). Applying f to the second equation, we obtain that c; =a; =0 (so f(x) = f(y) =0).
Then applying f to the third equation of (E6.6.2) yields that f(z) = 0. Therefore rgt(A) =0.

One can check that Kdim(Asing) = 1. By a Grobner Basis argument, one sees that the Hilbert series of Asjyg is (lzj +
22 4—1.

Case 3: @ = (> + y* + 2%) + Axyz where A3 # —1 (which is the Hesse normal form given in [5, Theorem, 2.12]).
One can check that Agjpg is finite dimensional or Kdim(Asi,g) = 0. Consequently,  has an isolated singularity at zero. As
mentioned at the end of Example 5.5, we have rgt(A) = 0 which follows from the Poisson cohomology computation given
in [29, Proposition 4.5] (and [35, Theorem 5.1]). Here we will give a direct computation. By definition,

{x,y}=Q;= 72 + AXY,
(z,x} = Q) = y* + axz, (E6.6.3)
(y,2) = Qu=x>+Ayz.

Note that W = k(z% 4+ Axy) + k(y% + Axz) + k(x* + Ayz). This means that in W, z2 (respectively, y2 and x?) appears together
with Axy (respectively, xz and yz). By the first equation of (E6.6.3), we have f(z2+ Axy) € W. Using the notation in (E6.0.2),
we compute

F@ +xy) =22f (@) + 1 (XF (¥) + ¥f (%)
=2z(c1x+ 2y +¢32) + Ax(b1x+ by + b32) + y(@1x+ azy + a32)]
= 201Xz + 202YZ + 2c3(—AxYy) + A[b1(—Ayz) 4+ baxy + b3xz
+aixy +ax(—Axz) +az3yz] mod W
= (2c1 + Abs — A2ap)xz + (23 — A%by + Aa3)yz
+ (—2Ac3 + Aby + Aa1)xy mod W.
So we have
2c1 + Abs — Azaz =0,
2c3 + Aaz — A%by =0,
—2Ac3 + Aby 4+ 1a1; =0.

From now on we assume that A # 0 (if A =0, the proof is slightly simpler and is omitted to save the space). With this
assumption, we can remove X from the third equation of the above system. Similarly, by working with the last two equations
in (E6.6.3), we obtain the following

2b1 + Acy — A%a3 =0,
2bz + Aay — A2C1 =0,
—2by +c34+a1 =0,
2a) + Acp — )\.2b3 =0,
2a3 + Aby —2%c; =0,
—2ay +by +c3=0.
By (E6.0.3), we may assume that a; = 0. Then by the three equations involving a;, we obtain that b, = c3 = 0. Applying f
to three equations in (E6.6.3) with some linear algebra computations, we obtain that f(x) = f(y) = f(z) =0 (but this is
true only if A3 £ —1). Therefore rgt(A) = 0.
Since {Q2, Qy, 2} is a regular sequence, the Hilbert series of Asig is (14 t)3.
Based on the above examples, we have the following classification.

Corollary 6.7. Let A be a quadratic Poisson polynomial ring k[x, y, z].

(1) Suppose A is unimodular. Then (A, 2, rgt(A)) is listed as follows up to isomorphisms.

Q o[ [xy |xyz [xyx+y)|xyz+x3 [xy? +x%z
rgt(A)|—8|—5 -3 -2 -2 -1 -1
Ex 6.1|Ex. 6.2|Ex 6.3|Ex. 64  |Ex 6.5(1)|Ex. 6.5(2)
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Q [¥+y [+ +y2[ 3+ + D) +axyz, 23 £ -1
rgt(A)|0 0 0
Ex. 6.6(1)|Ex. 6.6(2) Ex. 6.6(3)

(2) Gpd(A) is one-dimensional if and only if A is unimodular with 2 in the second table.
Definition 6.8. A Poisson derivation ¢ of a Poisson algebra A is called ozone if ¢ (z) =0 for all z in the Poisson center of A.
By Definition 1.3(1), the modular derivation m is always ozone.

Lemma 6.9. Let A be the quadratic Poisson algebra in Example 6.6(1) with 2 = x3 + y2z. Then every ozone derivation of A is Hamil-
tonian.

Proof. By definition,

x. ¥} =y (E6.9.1)
{z,x} =2yz, (E6.9.2)
{y. 2} =3x% (E6.9.3)

We define a new grading on the polynomial ring A =kI[x, y, z]. Let G be Z and define deg; x =0, deg; y =1 and deg; z =
—2. For example, deg; ©2 = 0. Every element f € A can be written as ) ;. fq) where f(; is homogeneous of G-degree i.
Then f = f(; if and only if f is homogeneous of G-degree i. By (E6.9.1) and (E6.9.2) the Hamiltonian derivation Hy has
G-degree 1.

Claim 1: If f is homogeneous of G-degree i, then Hyx(f) =ify.
Proof: Let f be a linear combination of monomials x?y?z¢. Since deg. f =i, we have b — 2c =i. Then
Hy(xyP2%) = bxTyP=1y22 4 exyb 251 (—2y2)
=(b—-20)(x"y’ ")y =i(x"y’2")y.
So the claim follows.
Let ¢ denote an ozone Poisson derivation of A.
Claim 2: Up to a Hamiltonian derivation, ¢ (x) = yw ) where deg; w) =0.

Proof: Since € is Poisson central, ¢ (©2) = 0. Then

0=¢() =3¢ () +2y26(y) + y*¢ (). (E6.94)
This implies that y | ¢(x). Let ¢(x) = yw where w =} ;.7 wq) where deg; w( =i. By Claim 1, HZX_#O “Twg) x) =
HX(ZHéo %W(U) = Zi#o wjy. After replacing ¢ by ¢ — Hzi%0 Sl We obtain that ¢(x) = yw(g) as required.
Claim 3: If deg; w =0, then w is a polynomial in x and €.
Proof: Since w has G-degree 0, w =Y, ;.o a; jx'y?/zl. The assertion follows after replacing y*z by @ — x°.
From now on, we assume that ¢(x) = ywq).

Claim 4: degg{¢ (%), y} =3 or {¢ (%), ¥y} ={¢ (), ¥}3)-
Proof: Write ¢ (x) = ¥ 3" =0 i kX' Q2. We compute

By} =1y | D i@ |yt =y | D ainix ' y*Q*

i,k>0 i,k>0
=y* | D anix 'R,
i,k>0
which has G-degree 3.
Claim 5: y3 | ¢ (x).

21



X. Tang, X. Wang and J.J. Zhang Journal of Geometry and Physics 207 (2025) 105344

Proof: By Claim 2, ¢(x) =y Y"; o i kX' y?¥ 2K, If atj o # 0 for some i, we have a nonzero term yxi*2 in 3x?¢(x). But yxi+2
cannot appear in 2yz¢ (y) + y2¢(z) for any i, which contradicts (E6.9.4). Therefore ajo=0 forall i and ¥ o (x).

Claim6: y | ¢ (y).
Proof: This follows from (E6.9.4) and Claim 5.
It follows from (E6.9.4), Claim 5 and Claim 6 that

Pp(x) =yw) =y3zv(). (E6.9.5)
o) =yf, (E6.9.6)
¢(2) = —2zf — 3x%yzv () (E6.9.7)

where vo has G-degree 0 and f € A. Next we will apply ¢ to the relations given in (E6.9.1) and (E6.9.2). We compute

0=¢ (I, y) = ¥?) = (0¥, ¥} + (X 60} — 2y$ ()
={yw. ¥} + % yf} =2y (y)
=y(wo, vl + ¥ f+yix fI = 2y*f

=y(wo). Y@ — ¥ (Z f(i)) +yix Y fo)

ieZ ieZ
=yiwo. Vi) — ¥ (Z f(i)) +y? (Z if(i))
ieZ ieZ
=y{wo), Y} + ¥ (Z(i - 1)f(i)> .
ieZ
Therefore
f=fa and {w(q),y}=0. (E6.9.8)

As a consequence, f = yqq) where deg; q() = 0. So we have ¢(y) = yzq(o) and ¢ (2) = —2yzq) — 3x2yzv(0).
Applying ¢ to (E6.9.2), we have

0=¢{z,x} —2y2) ={¢(2). X} + {2, ()} = 20 (¥)Z2 — 2y$(2)
= (—2q(o) - 3x2v(o)) yz.x} +2vo){z. ¥’} — 2y*q0)2 — 2y (—ZJ’Z%) - 3X2yZV(0))
= (—2q(0) - 3x2v(0)> ¥2z +2v(0) (=92 y?) — 2y%q(0)z + 4y*2q(0) + 6x° Y2V o)
= —6x2yzzv(o).

Therefore vy =0 and

$(x)=0, (E6.9.9)
() = y*q00), (E6.9.10)
¢ (2) = —2yzq ). (E6.9.11)

Write qo) = Y_; k=0 a; X QK. Let q/(o) =) ik=0 Bi X'k where By = f;’—’{ It is easy to check that H’“IEO) = ¢. Therefore ¢ is
Hamiltonian as desired. O

Lemma 6.10. Let A be the quadratic Poisson algebra in Example 6.6(2) with potential Q = x> +x%z+ y?z. Then every ozone derivation
of A is Hamiltonian.

Proof. The Jacobian Poisson structure on A =Kk|[x, y, z] is explicitly given by

(x, ) =x*+y% {y,2) =3x* + 2xz, {z,x} = 2yz.

We show that every ozone derivation of A is Hamiltonian, which is based on a tedious computation. Since A is graded, it
suffices to check every graded Poisson derivation ¢ of degree n vanishing on the Poisson center Z is Hamiltonian. So we
can write
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n+1
P (x)= Z ¢ix' € k[, y, z] of degree n + 1 with ¢; € k[y, Zln11-i.
i=0

Claim 1: By subtracting a Hamiltonian derivation Hg = {g, —} from ¢ for some suitable g € k[x, y, z];, we can assume that
¢i ek[Z1P y3z(klz, y*z]) forall 0<i<n—1.
Proof: For simplicity, we denote the k-linear map Ty, : k[y, zlm — k[, zZlm+1 by

B
Tm(f):= 2yza—£ -y af for any m > 0.

It is clear to check that

e ker(Tm) =0 if 3{m and ker(Ty) = lk(yzz)% if 3|m;
e img(Tm) P y(ker(Tm)) = y(k[Yy, zlm). In particular y(yzz)% gimg(Ty) if 3 |m.

For any homogeneous polynomial g = Zgixi e k[x, y, z], with g; e k[y, z],_i, we get
g g g g
(g.x) =g {yx)+ 3o (z.x) = ——<x2 + ¥+ 5-@2y2)

:_agn—l S 08n—2 X+ Ti(gn1) — 08n-3 N1
ay ay ay

+<Tn z(gz)——y)x + Tn_1(g1)x + Tn(g0).

Hence by choosing go, g1, ..., gx—1 for the coefficients of X0 x1, .. X1 inductively, we can achieve Claim 1.

Claim 2: Modulo a Hamiltonian derivation, we can set
o (x) = xzf (x, 2) + yzg(x, y*2),
3 3
o) =GRy +yDf 2D+ Gy =Xy’ D8, y*2) + (¢ +y)p,

¢(2) = —(3x2+22°) f (x. 2) — 3y°28(x, y*2) — 2y2p
where f(x,2) € k[x, zln—1, (X, y22) € k[x, y?z]a—3 and p € k[x, y, z]n_1. Furthermore, we can assume p does not contain
X1

Proof: By Claim 1, up to a Hamiltonian derivation, we can write

d(x) =xzf (x, 2) + y3zg(x, y?2) + 2"t + bx"y + cx" T

for some coefficients a, b, c € k. One can directly check that k[2] C Z. Therefore, we have

¢ () = (3%* + 2x2)p (%) + 2yzd (y) + (X* + ¥ (2) =

By comparing degrees (of x, y, z), we see that xz™*2 is not a summand of 2yz¢(z) and (x* + y?)¢(y). Hence, the coefficient
of xz"*2 in ¢(Q) is 2a. It follows that a = 0. If ¢ # 0, then by considering y-degree we have that ¢(z) contains the summand
—3cx™ 1, But then the coefficient of x**1y? is —3c. Thus, ¢ = 0. A similar argument shows that b = 0. So we can write ¢ (x)
as in Claim 2, and the expressions of ¢ (y) and ¢ (z) follow immediately. Finally, by further subtracting {ax", —} from ¢, we
can replace p with p —anx"~1. So, by choosing a suitable scalar a, we can assume p does not contain x"~1.
Claim 3: We have
8f(x Z) K *2

X

dg(x, y’z

_ 2xy322 g(x,y°2)
ax 3(y%2)

Proof: A long and tedious calculation yields Claim 3.

{p,x}=—-Q2z+ %x)f(x, 2) — (3xz +27%)
+ (3y3 —2xy2)g(x, yzz) + y3zM

Now we write

L3]
f Zaxnlll and g= berz 31(}/2)'1
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for some a;, b; € k where we set a; =0 if i ¢[1,n] and b; =0 if i &[1, L%J]. Define

. 3 .
=(n—3i)a; — (5 +3i)ai41.-
Then Claim 3 can be rewritten as
L5]
{p X} ZC ZI n— 1+Z(3biy21+12171)xn731

i=1
3 L5

— Z(Zib 27131 ((n _ 3i)biy21+1zz>xn—l—31.
‘ i=1

Write p = Z?:_Ol pixt with p; e k[y, zln_1—i and py_1 =0. As in Claim 1, we get

n—1
Dna i\ .
p.x}=>)_ <Ti(pn717i)_ %) X1

i=—1

where we set T_1 =0 and p_, = p_1 = pp, = 0. Hence we have

0Pn—s3i

T3i_1(pn-3i) — Ty =325 4 3b;y¥H1ZT
0Pn—1-3i
T3i2(Pnt1-3i) — % csim1z22 1 = 2iby* 17, (E6.10.1)
dPn—3-3i i ) i1 i
T3i(Pn—1-3i) — % = 314122+ (n — 3i)b;yH 17

for all 1 <i < |}] together with — 2522 =

=3 = ¢qz. In particular, if n =2 (mod 3), then T,_1(po) = cn2".
Claim 4: We have f =0.

Proof: We show that cg = --- = ¢, =0, which implies that a; = --- = a, = 0. By the above equations, it suffices to show that
Tn—i—1(pi) — "p‘ 2 e yK[y, z] for 0 <i <n. We claim that p; € ]k[y ,z] for 0 <i<n. It is clear when i = 0. Suppose it works
for p; for all i 5 m. Then inductively, the above equations imply that Tp_;_2(pms1) € span,{y?+1z/ |for all possible i, j}.
Note that ker(Tp_m—2) € k[y2,z]. Our claim follows by the definition of Ty_m_2. Since img(T,_i_1) € (¥), we get
Toio1(pi) — B2 € ykly,z] for 0<i <n.

Claim 5: We have g =0.

Proof: By Claim 4, we can take f = 0. We will only treat the case n =0 (mod 3) here and other cases will follow in a
similar manner. We write n = 3s and group the equations (E6.10.1) into s 4+ 1 parts named by (Ei) with 0 <i <s. In details,
(EO) is given by

Tn—1(po) = 3bsy* 12571, (E0.1)
Tn_2(p1) = —2sbsy* "2, (E0.2)
p 15—
Tn-3(p2) — a—y" =3bs_1y* 7127 (E0.3)
For 1 <i <s—2, (Ei) is given by

p3i—2 2041 s—ie .

Tn—3i—1(133i)—ﬁz%s—i}/zS 2l gs—i-l, (Ei.1)
p3i— .

Tn3i—2(P3it1) — 3;/ L= 2(s — i)bs_sy® 271257, (Ei.2)
aps3i . 25—2i—1_s—i—1 ;

Th—3i-3(P3it2) — by (Bs—3(s—i—1)bs_i1y z . (Ei.3)

Moreover, (E(s-1)) and (Es) are given by
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0Pn—s
ay
0Pn—4
T1(pn—2) — % =—-2byyz,
0pn—3
ay
0pn—2
ay

T2(Pn—3) — =3b1y3,

Journal of Geometry and Physics 207 (2025) 105344

(E(s-1).1)

(E(s-1).2)

(E(s-1).3)

(Es)

As in Claim 4, we know p; € k[y2, z],_1_i. Assign the lexicographic order with y > z on all monomials in k[y, z]. We

prove the following statement inductively for all 0 <i <s — 2 with n=3s:

3 . .
pa3i= _Ebs—i(yz)s_lzs_l_l + lower terms in k[y?, zlp—3i_1,
p3ir1 =i (y?) 12 + lower terms in k[y?, z]n—3i_2,
p3iv2 = Bi(yH* 1277 + lower terms in k[y?, z]n—3i—3

for some «j, Bi €k and (i + 1)bs_;_1 = (s — i)bs_;. When i =0, we use (E0.1) and (E0.2) to get

2551 2525

P0=——b y and pi1 = —sbsy

for T,_1 and T,_, are injective. So (E0.3) implies that

1 e apo 1 e
Tn—3(p2) = 3bs_1y*17° 1+W=3<bsfl — shy)y® 12571

Since 3 |n — 3, we have ker(T,_3) =ky?~225"1 and y*>~12571 ¢ img(T,_3). We get bs_; = sbs and py = Boy*~2z°"! for
some B € k. Suppose the statement holds for ps;, p3j+1 and ps3;i42. Then (E(i+1).1) implies that

Thn—3i—4(P3i+3)

. . 9
— 3b5,,',1y25_2’_]zs_‘_2 +—
dy
2s—2i—1_s—i-2

=3bs_i_1y z + lower terms in y(k[yz, Zln_3i_4).

Since T,_3i_4 is injective, we get

3 o
P33 =—5bs i1 (v 127172 + lower terms in k[y?, Z]n—3i—4

Similarly from (E(i+1).2), we get

P3ita = aip1(yH)* 722771 + lower terms in k[y?, z]n—3i—s

for some o1 € k. Finally, (E(i+1).3) implies that
Tn-si—6(P3i45) = (35 —3(s —i — 2)) bs_j_py* 2377172
d
ay

=3((i+2)bs—ip — (s —i — Dbs_j_q) y* 4377172

+ lower terms in y(k[yz, Zln—3i—6)-

(ai(y Y1257 4 lower terms in k[y?, Z]h_3i— )

3 A .
— <_§bs_i_1 (y*)* 7712772 4 lower terms in k[ y?, Z]n_g,-_4>

Note that ker(Tp_si_g) = ky2~2~4z5-1=2 and y25—2-375-1-2 & img(T,_3;_g) for 3 |n —3i — 6. So we get (i + 2)bs_j_p =

(s —i—1)bs_j_1 and we can write

D3iss = Bir1(¥?)* 22712 4 lower terms in k[y?, Z]n_3i_6

for some B;;1 € k. This completes our induction argument. From the above result, we have

Pn_5 = P3(s—2)+1 = Us_2y*z*> + lower terms in k[y?, z]4.
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From (E(s-1).1): T2(pn—3) — 3%55 =3b1y3, we get pp_3 = —3b1y? + 122 for some A € k. Moreover, (E(s-1).3): —2’%4};3 =0
implies that by = 0. Again from the above statement, we have all b; =0 and g =0.
Finally, we can show that ¢ is Hamiltonian. By all the above claims, up to a proper Hamiltonian derivation, we can take

a Poisson derivation ¢ of degree n as

d(0) =0, ¢(y)=&+yHp, @) =-2yzp

for some p € k[x, y, zln—1. From {¢(x), y} + {x,¢(¥)} = ¢(x* + y?), we get {p,x} =0 or (x* + y*)py = 2yzp,. We show
that p = p(x, 2) by induction on the degree of f. It is clear that we can write py, =2yzq and p, = (%% + y?)q for some
q €k[x, y, z] of degree deg(p) — 3. Then p,y = py, implies that x? + yz)qy = 2yzq;. So our induction hypothesis implies
that g = q(x, ). Take any polynomial h(x, ) such that % =q. An easy calculation shows that hy = p, and h, = p,. So
p — h € k[x]. This proves our claim. Now take any Q (x, 2) such that % = p(x, 2). Then one checks that ¢ ={Q, —}
and ¢ is Hamiltonian. O

Remark 6.11. If A is a non-unimodular quadratic Poisson polynomial algebra k[xi,---,xs], then by Corollary 0.3, A% is
unimodular for some graded Poisson derivation § of A (in fact § = mm). By (E4.3.1), rgt(A) = rgt(A%). If one can
calculate rgt for all unimodular quadratic Poisson structures on k[xq,---,xp], then the above formula provides a way of
computing rgt(A) when A is not unimodular.

Note that all 13 classes of non-unimodular quadratic Poisson structures on k[x1, X2, x3] were listed explicitly in [8] (also
see [7,22]). For each class, the modular derivation m is easy to compute. Therefore rgt can be calculated by the method
mentioned in the above paragraph.

7. Rigidity, H-ozoneness, and P H!-minimality

In this section we will study some connections between rigidity of graded twisting, ozone derivations and the first
Poisson cohomology.

Let A be a general Poisson algebra with Poisson center Z. Let Pd(A) be the Lie algebra of all Poisson derivations of A and
let Hd(A) be the Lie ideal of Pd(A) of all Hamiltonian derivations. Recall from (E1.5.4) that the first Poisson cohomology of
A is defined to be

PH'(A) := Pd(A)/Hd(A). (E7.0.1)
If A is Z-graded, then so is PH!(A). Part (1) of the following definition is Definition 6.8.

Definition 7.1. Let A be a Poisson algebra.

(1) A Poisson derivation ¢ of A is called ozone if ¢(z) =0 for all z€ Z.
(2) Let Od(A) denote the Lie algebra of all ozone Poisson derivations of A.
(3) We say A is H-ozone if 0d(A) = Hd(A), namely, if every ozone Poisson derivation is Hamiltonian.

It is clear that Od(A) is a Lie ideal of Pd(A) and

Hd(A) € 0d(A) C Pd(A).

In general, not every ozone Poisson derivation is Hamiltonian.

For the rest of this section, we only consider locally finite connected N-graded Poisson algebras A with A; # 0 for
some i > 0. Later we will only consider A =KkI[x, y, z] where deg(x) = deg(y) = deg(z) = 1. In this case, the Euler derivation
defined in (E0.0.2) is a nonzero Poisson derivation.

Lemma 7.2. Let A be a connected graded Poisson algebra with center Z. Suppose Z is a domain. Then ZE N 0d(A) =0 if Z # k. As
a consequence, ZE N Hd(A) = 0 and the canonical map ZE — PH'(A) sending zE to the coset zE + Hd(A) is a graded injective
Z-module map.

Proof. Let f be any homogeneous element in Z. It is easy to check that fE is a Poisson derivation. So ZE is an abelian Lie
subalgebra of Pd(A). Moreover, one can check that Pd(A) is a Z-module.

Next we assume that Z # k. Let ¢ be in ZE N 0d(A) and we can write it as ¢ = fE for some f e Z. Let ze Z be a
nonzero element of positive degree. Then ¢(z) =0 as ¢ € 0d(A). Since ¢ = fE, we obtain that 0 = f(degz)z. This implies
that f =0 or ¢ =0. Hence ZE N 0d(A) =0.

Since Hd(A) C 0d(A), ZEN Hd(A) = 0. So the map

ZE — Pd(A)/Hd(A) =: PH'(A)
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is injective.
Finally if Z =k, then ZE =KkE. It is trivial to see that ZE N Hd(A) =0 for E ¢ Hd(A). O

By the above lemma, the minimal possibility of PH'(A) is ZE. This motivates the following definition.

Definition 7.3. Let A be a nontrivial connected graded Poisson algebra with Poisson center Z. Suppose Z is a domain.

(1) We say A is PH!-minimal if PH!(A) = ZE.
(2) We say A has an Euler-ozone decomposition if

Pd(A) = ZE x 0d(A).

(3) We say A has an Euler-Hamiltonian decomposition if

Pd(A) = ZE x Hd(A).

By Remark 5.3, if A is the Poisson polynomial algebra being the semiclassical limit of the 4-dimensional (resp. 3-
dimensional) Sklyanin algebra, then it is PH!-minimal. Note that the dimension of Gpd(A) is the constant term of hpaca)(0).
So A is rigid of graded twisting if and only if the constant term of hpg(a)(t) is 1 [Remark 5.2]. Therefore we have

Ais PH'-minimal = rgt(A)=0. (E7.3.1)

Proposition 7.4. Let A be a connected graded Poisson algebra. Then the following are equivalent.

(i) Ais PH'-minimal.
(il) hpyi(ay(t) = hz(¢t) provided Z is a domain.
(iii) hpacay(®) =ha(t).

Proof. (i) < (ii) The equivalence follows from the definition.
(ii) < (iii) It is clear that the map A — Hd(A) sending a — H, is surjective. The kernel is the center Z. So hyga)(t) =
ha(t) —hz(t). By (E7.0.1), hpy1a)(t) = hpaa) () — hnaca)(t). Therefore
hpgcay (&) —ha(t) = hpyi(a) () + hyda) @) —ha(®)
=hpyia(®) +hat) —hz(t) —ha(t)
The assertion follows. O
Let A be the Poisson algebra in Example 6.6(Case 3). This Poisson algebra can be considered as the semiclassical limit of

the 3-dimensional Sklyanin algebra. The potential Q has an isolated singularity. By [29, Proposition 4.5] (and [35, Theorem
5.1]), PH!(A) = ZE. Consequently, A is PH!-minimal.

Lemma 7.5. Let A be a connected graded Poisson algebra. Assume that Z is a non-trivial domain. If A is PH'-minimal, then A is
H-ozone and has an Euler-Hamiltonian decomposition.

Proof. Since A is PH'-minimal, ZE = PH!(A) = Pd(A)/Hd(A). This implies that Pd(A) = ZE x Hd(A). So A has an Euler-
Hamiltonian decomposition.
For a graded Poisson derivation ¢ of degree d, by the Euler-Hamiltonian decomposition, we have

¢ = fE+ Hy.

Let z be a nonzero central element of positive degree. Then ¢ (z) = |z|fz + Hq(z) = |z|fz. If ¢ is ozone, 0 = ¢(2) = |z|fz
which implies that f =0 and ¢ = H, as desired. O

Lemma 7.6. Let A be a connected graded Poisson domain. Suppose A is H-ozone.

(1) Every Poisson normal element in A is Poisson central.
(2) Suppose A is a Poisson polynomial ring. Then A is unimodular.
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Proof. (1) Let x be a nonzero Poisson normal element. Then it is the sum of homogeneous Poisson normal elements. So we
can assume that x is homogeneous. Let ¢ be the log-Hamilton derivation x~!Hy. Since Hy(z) =0 for all z in the center Z,
¢ is ozone. By the hypothesis, ¢ is Hamiltonian, namely, ¢ = Hy for some element y. Since ¢ has degree 0, degy =0 (or
y € k) and consequently, ¢ = 0. This implies that x is central.

(2) Let m be the modular derivation of A. It follows from the definition that it is ozone. Since degm = 0, by the
hypothesis, m = H, for some element y of degree 0. Hence y € k and consequently, m = 0. The assertion follows. O

By far we have proved the following diagram

Ais PH'-minimal ™73 Ais H-ozone
(E7.31 )J lLemma 7.6(2)
rgt(A)=0 —— > Aisunimodular.
Lemma 4.4(3)

Next we show that some of the conditions are equivalent under extra hypotheses.

Lemma 7.7. Suppose A is a connected graded Poisson algebra such that Z = k[z] where z is homogeneous with degz > 0.

(1) If Pd(A)<—1 =0, then A has an Euler-ozone decomposition.
(2) Suppose A is H-ozone. Then rgt(A) = 0.

Proof. (1) Let ¢ be a Poisson derivation of A of degree i. By the hypothesis, i > 0.

Case 1: degz | i. Since ¢(z) is central, ¢(z) = az" for some a €k and n > 0. Then ¢’ :=¢ —
So ¢’ is ozone. Therefore ¢ = Iz‘z" TE+¢.

Case 2: degzti. Since ¢(z) is central, it must be 0. Therefore ¢ is ozone.

Combining these two cases, every Poisson derivation is the sum of fE for some f € Z and an ozone derivation.

(2) By Lemma 4.4(4), it sufﬁces to show that dimy Gpd(A) =1, or equivalently, Gpd(A) =KkE. Let ¢ € Gpd(A) and ¢ (2) =
az for some a € k. Let § be ¢ — 7 2 E. Then & € Gpd(A) is ozone. By the hypothesis, § is Hamiltonian, say § = H for some
homogeneous element f € A. Since degd =0, deg f = 0. Since A is connected graded, H =0 and consequently, § = 0. Thus
¢ = ‘Z‘E and Gpd(A)=KkE. O

IZI 2" 1E satisfies ¢/(z) =

Now we are ready to prove Theorem O0.6.

Proof of Theorem 0.6. (1) = (2): Since rgt(A) =0, every graded Poisson derivation § is of the form cE. Then E A § =0. By
(E2.3.1), (a, b) = {a, b}. So A = A®. The assertion follows.

(2) = (1): By Corollary 0.3, there is a Poisson derivation § such that A? is unimodular. Since A% = A for all §, A is uni-
modular. Suppose to the contrary that A is not rigid. Then there is a Poisson derivation § not in ZE. Thus, by Theorem 0.2,
the modular derivation of A? is

3
n=0+ (Z degxi> 8§ —div(8)E

i=1

which cannot be zero as div(8) € k [Lemma 1.2(3)]. Therefore A% is not isomorphic to A, yielding a contradiction.

(5) < (6): Under the hypothesis of (5), A is PH!-minimal. One implication follows by Lemma 7.5 and the other is clear.

(6) = (7): See the proof of Lemma 7.5.

(7) = (1): This is Lemma 7.7(2).

(3) < (5): This is Proposition 7.4.

(1) < (8): This is Corollary 6.7.

(8) = (6,7): If @=1(x> + y* +z%) + Axyz with 23 # —1, then by the comments before Lemma 7.5, A is PH'-minimal,
Hence A is H-ozone since (5) < (6). If  is x3 4+ y%z or x> + x2z + y2z, it follows by Lemmas 6.9 and 6.10 that A is
H-ozone. In all three cases in Example 6.6, one can check easily that Pd(A)<_1 =0. By Lemma 7.7(1), A has an Euler-ozone
decomposition. Since A is H-ozone, A has an Euler-Hamiltonian decomposition.

(5) = (1): The assertion follows from Remark 5.2.

(4) = (1): The assertion follows from Remark 5.2

(8) = (4): In all three cases, Z is k[2] (this is a well-known fact and a special case of it is [26, Lemma 1], also see
Lemmas 7.8 and 7.9 later), which has Hilbert series # The assertion follows from (5) since (5) is equivalent to (8).

(4) < (9): It follows from (E15.5) that hpys ) (6) —hppyza) () = hpgo a) (6) = hp i a)(t) +7>. We know that PHO(A) = Z
So the assertion follows from the fact that hpyi4)(t) =hpyoa) () = ﬁ if and only if hpysa) () — hpy2aa)(t) = t3. o
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Before we prove Corollary 0.7, we will need to calculate the Hilbert series of PHo(A) for A in the first two cases of
Example 6.6. By definition and [28, p.2357], the Oth Poisson homology of the Poisson polynomial algebra k[x, y, z] is

A A
{A, A} (Hx(A) + Hy(A) + Hz(A))

PHp(A) =

Case 1: = x> + y%z. We use the G-grading introduced in the proof of Lemma 6.9, namely, deg. x = 0, degc y =1 and
deg; z=—2. Let

ai,j,o,rzxiyjzoﬂ’, i,j,1>0,
biori=xy°ZQl, i, 1>0k=>1,
Ci 1kl :xiyszl, i,>0,k>1,
A={aijo1li, j,1 >0}
B :={bjok|i,1>0,k>1},
C:={ci1k11i,1=0,k>1}.

If X is a subset of elements in A, we use kX to denote the k-linear span of X.

Lemma 7.8. Retain the above notations.

(1) AUuBUC is ak-linear basis of A.

(2)
Hx(ai j,0,0) = jdi j+1,0,1,
Hyx(bi,ok,) = (=2K)Ci 1 k.1,
(1 —2k)(bi 0 k—1,1+1 — bix3,0k-1,) k>1,
Hy(ci1 k) = - o 2.0
(1 = 2k)(ai,0,0,14+1 — Gi+3,0,0,)) k=1.
(3) .
Hy(aj j0,0) = (—1)ai—1,j1+2,0,0
) =Dbictok—1041 + G+ 30)bi20k—11 k>1,
Hybioxr) = . :
(=Dai—1,0,0,1+1 + (i + 3)di12,0,0.1 k=1,
=Dk + @+ 3K)ci2 1610 k> 1,
Hy(ci1 k1) = . :
(=Daj—1,1,04+1 + ( +3)ai12,1,0 k=1.
(4)

2ia;_1,j—1,0,41 + (=20 = 3j)@j12 j—1,01 J>0,
Hz(aijon=1-. " " * e .
2ici—1,1,1,1 j=0,
Hz(biok,D) = 2iCi—1,1,k+1,1>
H(ci1,k,1) = 2ibi_1,0 k141 + (=3 — 2D)biy2 0k -

(5) A/(Hx(A) + Hy(A) 4 H;(A)) has a k-linear basis

{0,0,0,0, 41,0,0,0} U {do,1,0.1}1=0 YU {a1,1,0.1}10 U {bo,0.k,0}k=1 Y {b1,0.k,0}k=1-
(6) The Hilbert series of PHo(A) is
(a+0’
1—t3°
(7) The Hilbert series of PHO(A) = hz (t) is

1
1183

Proof. This follows from a tedious and direct computation. O
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The proof of the above lemma is routine and long, but very elementary, only using easy linear algebra arguments. To
save space the details are omitted here. Note that Lemma 7.8(7) is a well-known fact.

Case 2: 2 = x> +x2z+ y2z. We need to prove a lemma similar to Lemma 7.8. We use the same notations as in Case 1
except that Q is x> + x2z + y2z instead of x> + y2z.

Lemma 7.9. Let A be as in Example 6.6(Case 2) with potential Q@ = x3 + x*z + y?z.

(1) AUuBUC is ak-linear basis of A.

(2)
Hx(aj j0,) = jai jy1,00 + jdit2,j-1,0
Hx(bi,o,k,1) = (—2k)Ci 1,k.1,
A =2k (bi0k-1,04+1 = bir30k-1,1) +2kbit20k1 k>1,
Hy(Ci1 k) =
—(@i,0,0,1+1 — Gi+3,0,0,) +2bit2.0,1. k=1.
(3) ) )
Hy(aj jo0,) = (=Dai_1,j42,0,0 + (—=aiy1,j,0,
_ J(=Dbi—10k-1141 + ( +3K)bit2 0 k—1.1+ 2kbiy1.0k1 k> 1,
Hy(bi o) = ) ,
(=1)aj—1,0,0,141 + (i +3)ai12,0,0,1 + 2biy1,0,1,1 k=1,
) EDeim k=141 + G+ 302 1 k10 + 2KCi 1100 kK> T,
Hy (i) = . .
(=D)ai—1,1,0,1+1 + (0 +3)Aiy2.1,01 + 2Ciy1,1,1.1 k=1.
(4) . .
2ici—1,1,1,1 ji=0,
2iai_1,0,0,1+1 + (=20 = 3)@i32,0,01 + (=2i = 2)biy1011 Jj=1,
Hz(a;i jo1) = | 2iai_1,1,0,41 + (=20 = 6)aiy2 1,01 + (=21 —DCit1,1,11 J=2,
2iaj_1,j—1,0,141 + (=21 = 3))aiy2,j—1,0,
+(—2i — 2j)xit1yi~12z0! j>3,

Hz(biok,1) = 20Ci—1,1,k+1,1>
HZ(Ci1,k,1) = 2ibi_1,0,k,141 + (=3 — 2D)bj2.0. k1 + (=2 — 2D)bj1,0 k41,
(5) A/(Hx(A) + Hy(A) 4 H;(A)) has a k-linear basis

{0,0,0,0. 41,0,0,0} Y {a3i.1,0.0}iz0 U {@143i.1,0,0}i=0 Y {bo,0.k,0}k=1 U {b1,0 k.0 k=1
(6) The Hilbert series of PHo(A) is
(1+1)?
1-¢3°
(7) The Hilbert series of PHO(A) = hz(t) is

1
113

Proof. This follows from a tedious and direct computation. 0O

Similar to Lemma 7.8, the proof of Lemma 7.9 is routine and long (even longer than the proof of Lemma 7.8), but still
very elementary. To save space the details are omitted here. Note that Lemma 7.9(7) is a well-known fact.
Finally we prove Corollary 0.7.

Proof of Corollary 0.7. (1) This is clear since Z =k[2] by Lemmas 7.8 and 7.9.

(2) It follows from Theorem 0.6((8)=>(4)).

(4) By the Poincaré duality [23, Theorem 3.5], hpp3(4)(t) = t‘3th0(A). Then the assertion follows from Lemmas 7.8 and
7.9.

(3) It follows from Parts (1,2,4) and (E1.5.5). O
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