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Abstract—Robust continual learning (CL) poses fundamental
challenges and is essential for developing reliable and adaptable
intelligent systems. Learning models must sustain a robust
performance as they adapt to dynamically evolving environ-
ments through sequential learning, effectively overcoming the
catastrophic forgetting problem. This paper proposes a novel,
trustworthy CL framework based on the Bayesian variational
uncertainty learned during training on each task. We integrate
the Bayesian inference and propagate the first two moments
of the variational posterior distribution over the probabilistic
model’s parameters. The variational moments (mean and co-
variance matrix) are learned simultaneously during training on
each task and then used to estimate the predictive distribution.
The covariance matrix of the variational posterior distribution
captures the variational uncertainty in the learned parameters
(particularly critical in the context of sequential learning within
dynamic real-world settings). We develop an adaptive evidence
lower bound (ELBO) loss function that supports managing the
stability-elasticity dilemma. The variational continual optimiza-
tion minimizes the expected log-likelihood of the data given the
model’s parameters and the Kullback–Leibler (KL) divergence
between the variational distributions learned from the current
and previous tasks weighted by an uncertainty-based metric.
Moreover, we advance an architecture-based CL technique that
masks important network parameters learned from each task
based on their variational uncertainty. The proposed Bayesian
regularization and architecture-based CL approaches prevent
significant changes in the parameters of the learning models to
preserve representations of previous tasks. The experiments on
benchmark datasets demonstrate the robustness of the proposed
framework when learning in continual scenarios compared to the
stat-of-the-art CL homologs.

Index Terms—Robust and trustworthy continual learning,
variational uncertainty, and mean-covariance propagation.

I. INTRODUCTION

Unlike humans, who possess a remarkable natural ability
to continuously learn new skills and knowledge and develop
the capacity for self-doubt, deep neural networks (DNNs)
lack this ability when it comes to making decisions. Humans
have a natural cognitive intuition for probabilities and can
develop an inherent uncertainty surrounding their choices
unless these decisions can be cross-verified against a known
ground truth. In contrast, contemporary deep learning models
are typically deterministic, yielding outputs that are singular
point estimates [1]. The lack of inherent uncertainty in models’
parameters and predictions presents a significant challenge
when it comes to placing complete trust in DNNs’ decisions.

This is particularly important when learning from dynamically
changing environments in domains such as medical diagnosis,
autonomous driving, and national security [2]. DNNs should
be designed to accumulate knowledge, adapt to changing data
distributions, and incrementally acquire new skills without
forgetting previously learned information. The concept of
trustworthy continual learning (CL) revolves around building,
maintaining, and ensuring confidence and reliability in the
performance of DNNs when continuously learning in non-
stationary environments. Thus, we can rely on decisions
generated by these models. To ensure trustworthiness, one of
the crucial considerations is the quantification of uncertainty
associated with DNNs’ parameters and predictions.

Recently, continual learning has been an active area of
research among deep learning communities. Traditional learn-
ing methods have shown a drastic degradation of accuracy
when a model learns a new task, which overwrites knowledge
learned from previous tasks, also known as Catastrophic For-
getting [3]. For instance, self-driving cars face the formidable
challenge of continuously acquiring knowledge about their
dynamic surroundings as they navigate through various sce-
narios. It is computationally demanding, making it impractical
to completely retrain the models every time a new object or
situation is encountered. Autonomous systems must possess
the ability to adapt and expand their understanding of the
environment over time. The lack of adaptability can lead
to serious accidents involving human lives, an undesirable
outcome that must be prevented at all costs.

The Bayesian theory of learning provides a probabilistic
principle for reasoning and making decisions, supplying an
inherent ability to mitigate catastrophic forgetting [4]. The
Bayesian inference facilitates incorporating beliefs and per-
forming inference in the presence of uncertainty. The available
data is employed to derive the posterior distribution over
the parameters, which is used for determining the predictive
distribution of new data points by marginalizing the model’s
parameters. The variance of the predictive distribution provides
a quantitative measure of uncertainty in each prediction [5].
Due to the high dimensional parameter space of DNNs, the
exact computation of the posterior distribution is infeasible
mathematically [6]. Variational Inference approximates the
posterior distribution efficiently, and it is compatible with the
backpropagation optimization [6], [7].



In this paper, we propose novel Bayesian CL with Architec-
ture Initiative and Regularization (CLAIR)-based approaches
that quantify uncertainty and improve robustness when contin-
uously learning new tasks without completely forgetting old
tasks. The main contributions are summarized as follows:
■ Develop an adaptive (AdaCLAIR) optimization by defining

a new evidence lower bound (ELBO) loss function that min-
imizes the Kullback–Leibler (KL) divergence between the
variational distributions over the parameters learned from
the current and previous tasks. The proposed AdaCLAIR
prevents considerable changes in the variational parameters
to preserve knowledge learned from previous tasks and
mitigate the problem of catastrophic forgetting.

■ Preserve important parameters learned from previous tasks
by weighing the KL divergence term in the AdaCLAIR
ELBO loss by an uncertainty-defined metric based on the
variational posterior variance learned from the previous
task. This AdaCLAIR loss supports managing the stability-
elasticity dilemma.

■ Advance an uncertainty-based mask (MasCLAIR) to sup-
port efficient management of network resources and miti-
gate catastrophic forgetting. MasCLAIR freezes parameters
with high confidence (low uncertainty) from previous tasks
while updating parameters with low confidence for the
upcoming tasks.

■ Demonstrate superior and reliable performance (less for-
getting) in CL scenarios compared to the state-of-the-art
models using benchmark datasets.

The paper is organized as follows. Section II briefly recalls
recent state-of-the-art CL methods. In Section III, we elabo-
rately explain the proposed CLAIR frameworks. Section IV
presents the experiments and evaluation results. We discuss
and analyze the performance of the proposed methods in
Section V. Section VI is the conclusion.

II. RELATED WORKS

The problem of catastrophic forgetting in the CL literature
is addressed roughly by the three learning paradigms: dynamic
network architecture, regularization-based methods, and dual
memory system-based architectures, according to the compre-
hensive survey in [8].

The dynamic architectural strategies involve making struc-
tural modifications to the neural network architecture, which
can include expanding, trimming, or locking specific compo-
nents of the network to suit various tasks [9]–[14]. Applying
these techniques helped mitigate forgetting to some extent;
however, the computational complexity remained a bottleneck
— especially in real-world scenarios where computational or
memory constraints exist.

In regularization-based methods, the knowledge learned
from previous tasks is restricted from being drastically up-
dated during training on new tasks, which can be done by
regularizing the objective function [15]–[20]. However, due to
the extra loss term in the objective function, the model could
suffer from extra computational overhead [21]. In addition,
the regularization was applied to all parameters regardless

of which parameters held important information from the
previous tasks. In the dual memory-based approach, the rep-
resentative samples of earlier tasks are partially stored to be
used later during training for new tasks [22], [23]–[26].

The Bayesian framework of learning has been studied in the
literature for a few decades, including Laplace approximation
[27], Hamiltonian Monte Carlo [28], variational inference (VI)
[29], and probabilistic backpropagation [30]. Nguyen et al.
introduced Variational Continual Learning (VCL) [4] where
new posterior distribution was obtained by multiplying the
previous posterior with the likelihood of the data in the new
task. They also posited that by introducing a small core set
from the previous task, the model experiences less forgetting.
Ebrahimi et al. used the uncertainty associated with the
weights to update the learning rate during training. [31].

Although a few methods in the literature considered the
Bayesian inference to address continual learning challenges,
these state-of-the-art techniques relied on frequentist proba-
bility or sampling approaches to quantify uncertainty [31]–
[33]. They follow Monte Carlo (MC) sampling by drawing one
random sample from the variational distribution and passing
it forward through the network layers. One random sample is
not a sufficient representative of the variational distribution.
The moments of the distribution are generally not propagated
through the networks’ architecture and various operations
within the Bayesian CL framework. Estimating the uncertainty
in the models’ predictions required performing multiple passes
(MC samples) through the model layers and computing the
sample variance of different predictions. Moreover, such mea-
sures of uncertainty in CL models have not been analyzed
under CL scenarios to show how uncertainty changes when
learning a sequence of tasks.

In contrast, we propose the CLAIR framework that prop-
agates the mean and covariance of the variational posterior
distribution to simultaneously learn predictions along with the
predictive uncertainty. In the proposed framework, we develop
a new adaptive ELBO loss function and design a masking
technique that controls how parameters are updated for the
new tasks based on the variational parameters’ uncertainty. The
parameters’ uncertainty learned from the previous tasks is used
to filter out the less important parameters during the training on
the current task to balance the stability-plasticity dilemma—
an act of learning to adapt to new tasks while preserving the
trusted knowledge from previous tasks.

III. ADAPTIVE CONTINUAL LEARNING BASED ON
VARIATIONAL INFERENCE (ADACLAIR) FRAMEWORK

In this section, we formalize the mathematical notations for
the AdaCLAIR framework considering a convolutional neural
network (CNN) with a total of C convolutional layers and
L fully connected layers. A non-linear activation function is
introduced after every convolutional and fully connected layer.
There is a max-pooling layer after every convolution opera-
tion. The network’s learnable parameters—weights with biases
augmented in the weight matrices—are represented by W ={
{{W(k)}Kc

k=1}Cc=1, {U(l)}Ll=1

}
, where {{W(k)}Kc

k=1}Cc=1 is



the set of Kc kernels in the cth convolutional layer, and
{U(l)}Ll=1 is the set of weight matrices in L fully-connected
layers. We consider an input image X ∈ RI1×I2×I3 , where
I1, I2, and I3 represent the image height, width, and number
of channels respectively.

A. Notations and Review of Variational Inference

We define a prior probability distribution over the model pa-
rameters, W ∼ p(W). We impose the independence assump-
tion between the probabilistic convolutional kernels within and
across layers. This independence assumption makes sense and
can be beneficial, as it (1) extracts uncorrelated features within
and across layers and (2) develops a feasible optimization
problem, as estimating the joint distribution of all kernels
and all layers is mathematically intractable in large DNN
models [5]. After observing training samples D = {Xi,yi}Ni=1

and using the prior distribution p(W), we approximate the
true unknown posterior distribution, p(W|D), with a simpler
parametric variational distribution qϕ(W). The optimal param-
eters ϕ∗ of this variational approximation are estimated by
minimizing the KL divergence between the variational and the
true posterior distributions, KL [qϕ(W)∥p(W|D)]. The loss is
known as the evidence lower bound (ELBO), L(ϕ;D) [7].

L(ϕ;D) = −Eqϕ(W) {log p(D|W)}+ KL [qϕ(W)∥p(W)] .
(1)

The first term in the ELBO loss is the log-likelihood expecta-
tion of the training data given the weights. The second term
serves as a regularizer on the variational parameters of every
convolution and fully connected layer and is simplified as,

KL [qϕ(W)∥p(W)] =
C∑

c=1

Kc∑
k=1

KL[qϕ(W(k))∥p(W(k))]

+
L∑

l=1

KL[qϕ(U(l))∥p(U(l))].

(2)

We assume the initial variational distribution has a diagonal
covariance matrix and use the first-order Taylor series to
approximate the expected log-likelihood in (1) as follows,

Eqϕ{log p(D|W)}≈ −1

2N

N∑
i=1

log(
∏

σ2
ŷi
)+∥yi − µŷi

∥22⊙
1

σ2
ŷi

(3)
where N refers to independently and identically distributed
(iid) data points for a specific task, yi is the ground truth
output of the ith data sample, µŷi

and σ2
ŷi

are the mean
and variance of the predicted output ŷi and

∏
is a product

for σ2
ŷi

entries. The regularization term in (2) is the KL-
divergence between two multivariate Gaussian distributions,
i.e., the variational posterior distribution and the prior distri-
bution, defined over the network parameters for all convolution
and fully connected layers [34].

B. Uncertainty Propagation

We propagate the moments of the variational distributions,
qϕ(W), i.e., the mean and covariance matrix, through all

layers of the proposed CLAIR models considering the original

ELBO loss in Equation 1, named PlaCLAIR, and the proposed
AdaCLAIR and MasCLAIR following [5]. All the learnable
parameters, including the convolutional filters, units in fully
connected layers, and activation maps, are probabilistic. The
propagation through linear operations, such as convolution,
matrix multiplication, and inner product, is done using closed-
form mathematical relations. We adopt the first-order Taylor
approximation to propagate the mean and covariance matrix
of the variational distributions through non-linear activation
functions in the Bayesian CLAIR models. Let z = f(x),
where z and x are vectorized feature maps before and after the
non-linear activation function, f , for any layer in the CLAIR
models. The mean and covariance matrix of x propagate
through f to z using the first-order Taylor approximation.
Thus, µz and Σz are derived as follows,

µz ≈ f(µx), Σz ≈ Σx ⊙ (∇f(µx) ∇f(µx)
T ), (4)

where ∇ represents the gradient of the function f with respect
to x evaluated at µx and ⊙ represents the Hadamard product.
The results presented in Equation 4 hold true for any non-
linear activation function, including hyperbolic tangent (Tanh),
sigmoid, or rectified linear unit (ReLU). The variational
uncertainty is measured by the variance of the variational
distribution over the probabilistic parameters. By propagating
the variational moments through all layers, we obtain the
moments of the predictive distribution, p(ŷ|X̂,D). The mean
of p(ŷ|X̂,D), i.e., µŷ, represents the prediction, while the
variance, σ2

ŷ, reflects the prediction uncertainty.

C. Adaptive Optimization with Bayesian Continual Learning

Suppose there are {1, . . . T} CL tasks. Each task t consists
of Nt data samples, Dt = {(Xi,yi)}Nt

i=1. The datasets of
each task are assumed to be iid from their corresponding
distribution. In the Bayesian setting, the variational distribution
is qϕt(Wt), where ϕt represents the variational parameters
for the tth task. We develop a new adaptive evidence lower
bound (ELBO) loss function, where the second term computes
the KL divergence between the variational distributions over
the parameters learned from the current and previous tasks,
i.e., KL[qϕt(Wt)||qϕt−1(Wt−1)]. In the case of the first task,
the prior distribution is set to a zero-centered Gaussian dis-
tribution. In addition, we multiply the updated KL term with
an uncertainty-defined metric (referred to as κt−1) based on
the variational variance learned from the previous task. The
adaptive ELBO loss is then derived as the following.

L(ϕt,Dt)=−Eqϕt
[log p(Dt|Wt)]+ κt−1KL[qϕt ||qϕt−1 ]. (5)

The variational parameters at task t are given as
ϕt =

{
{{µkt

,Σkt
}Kc

k=1}Cc=1, {{µht
,Σht

}Hl

h=1}Ll=1

}
, where

µkt and Σkt are the mean and covariance matrix of the kth

kernel in the cth convolution layer, and µht and Σht are the
mean and covariance matrix of the hth weight vector in the lth

fully connected layer. The covariance matrices are assumed
Σkt

= σ2
kt
I, and Σlt = σ2

lt
I, where I is an identity matrix.



KL[qϕt
∥qϕt−1

]=κkt−1

C∑
c=1

Kc∑
k=1

∥µkt−1
−µkt

∥22+dk(
σ2
kt

σ2
kt−1

+log(
σ2
kt

σ2
kt−1

))+κht−1

L∑
l=1

Hl∑
h=1

∥µht−1−µht∥22+dh(
σ2
ht

σ2
ht−1

+log(
σ2
ht

σ2
ht−1

)).

(6)

Thus, the adaptive weighted KL regularization term is updated
according to Equation 6, where dk is the dimension of the kth

kernel in the cth convolution layer and dh is the dimension
of the hth weight vector in the lth fully connected layer.
The uncertainty-defined metrics for the convolution and fully
connected layers are κkt−1

= 1
σ2
kt−1

and κht−1
= 1

σ2
ht−1

,

respectively.
In the proposed adaptive ELBO loss (Equations 5 and 6),

we penalize drastic changes in the variational parameters when
training on a new task based on the uncertainty learned from
the previous task. If the uncertainty learned from the previous
task is high, σ2

kt−1
≫ 0 or σ2

ht−1
≫ 0, then 0 <κkt−1

≪ 1
or 0 <κht−1

≪ 1, respectively. In this case, the adaptive KL
regularization will play less of a role in the optimization,
allowing the parameters to learn from the new task. Con-
versely, suppose the uncertainty learned from the previous
task is low. In that case, then κkt−1

≫ 1 or κht−1
≫ 1, and

the adaptive KL regularization will preserve those parameters
with low uncertainty by penalizing significant changes in their
values. Thus, the uncertainty in the parameters, learned from
the previous task and measured by the variational variance,
decides the important parameters to preserve and irrelevant
parameters to update when learning a new task. The proposed
adaptive ELBO loss supports managing the stability-elasticity
dilemma.

D. Static Uncertainty-based Mask—MasCLAIR

Learnable parameters (weights and biases) in DNNs are
not all at the same level of importance—some parameters are
more important for inference than others [35]. Especially in
the CL scenario, it is very crucial to track the parameters’
level of importance while the model is trained on sequential
tasks, which can cause interference during inference time.
Identifying the level of importance of the network parameters
enables managing network resources while continuously learn-
ing new tasks. Thus, we can preserve the previously learned
information and make use of less important parameters for
learning new tasks.

We design an uncertainty-based mask (M) that depends on
the variational variance of the learned parameters. Parameters
with lower variance are more important and need to be
prevented from being updated during training for the new
tasks. The uncertainty mask is a binary matrix, where the
zeros correspond to the parameters with low variance (highly
important parameters) and the ones correspond to the param-
eters with high variance (irrelevant parameters). The degree
of importance of the DNN’s parameters is defined based on a
threshold, i.e., the 90th percentile of the variational variance
histogram per layer. The parameters with the variance values
less than 90th percentile are considered highly important
parameters. The mask then multiplies the gradient during
gradient descent optimization for each task, and the zeros in

the mask preserve important parameters. In contrast, the ones
in the mask release irrelevant parameters to efficiently learn
from new tasks.

µ
(i)
k,t = µ

(i−1)
k,t −Mt−1 ⊙ γ∇L(ϕt,Dt), (7)

where µ
(i)
k,t is the variational mean for the kth kernel at task t

and ith iteration of gradient descent and γ is the learning rate.

E. Multi Head vs Single Head Setting

In CL literature, there are two main strategies for performing
inference for each task: the single-head and the multi-head
settings. In the multi-head setting, a separate, fully connected
layer or “head” is used for each task. Each head is responsible
for learning and retaining knowledge related to its specific
task [21]. The models with the multi-head setting need to
know the task ID for each input sample during both training
and inference. Thus, during inference time, the output layer
corresponding to a specific task is used to make predictions
about input samples from that task. On the other hand, the
single-head CL models have a single output layer that is shared
across all tasks [21]. The models in the single-head setting do
not need to know which task the input sample belongs to make
a prediction. The models can learn to make predictions for all
tasks without a task ID. The single-head CL models are simple
and efficient but more prone to catastrophic forgetting [4].
The multi-head models are less prone to forgetting but more
complex and computationally expensive [21]. In our proposed
CLAIR models, we adopt the single-head setting to train the
models on each task.

F. Computational Complexity

The trade-off between accuracy and robustness versus com-
putational complexity is well-known in Bayesian models.
However, in the proposed CLAIR models, the number of learn-
able parameters is comparable to its deterministic variants.
The diagonal covariance assumption for the prior distribution
allows for adding a single parameter (the variance) for every
kernel in the convolution layers and every weight vector in
the fully connected layers. This assumption helps moderate
the computational complexity of our proposed model. For
example, suppose a CNN with C = 10 convolutional layers
where each convolution layer has (Kc = 32) kernels of size
5× 5. The network also has one fully connected layer (L=1)
with (H = 10 the size of the output vector). The number of
additional parameters in this case is equal to C∗Kc+H=330.
The total number of parameters for the deterministic model is
(10 ∗ 5 ∗ 5 ∗ 32 + 4, 608 ∗ 10 = 54, 080), assuming the size of
the feature map of the last convolution layer is 12 ∗ 12 ∗ 32.
On the other hand, the total number of parameters for the
corresponding Bayesian model is (10 ∗ 5 ∗ 5 ∗ 32 + 10 ∗
32 + 4, 608 ∗ 10 + 10 = 54, 410). Therefore, the increase in



the number of parameters for the CLAIR models is ≈ 0.6%
compared to the deterministic counterpart.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

In this section, we evaluate the performance of the pro-
posed CLAIR frameworks compared to the Elastic Weight
Consolidation (EWC) [15], Bayes-By-Backprop (BBB) [6]
and Variational Continual Learning (VCL) [4]. We adopt the
adaptive momentum (ADAM) optimization algorithm with the
polynomial decay as a learning rate scheduler for training the
models on each task [36]. We evaluate the models’ perfor-
mance on each task using the task-wise average classification
accuracy. The output predictive variance (i.e., the diagonal
element of the predictive covariance matrix that corresponds
to the predicted class) is also reported to show the model
uncertainty when learning new tasks sequentially. Moreover, to
assess the learning stability, we evaluate the forgetting measure
(FM) and backward transfer (BWT) defined in Section IV-B.

In our experiments, we consider the proposed CLAIR model
with the original ELBO loss in Equation 1, named PlaCLAIR,
and compare it to BBB. We also compare the proposed
AdaCLAIR and MasCLAIR with the state-of-the-art Bayesian
models, including EWC and VCL. The network architecture
for the models contains one convolutional layer (32 kernels
with size 5 × 5), a rectified linear unit (ReLU) activation
function, a max-pooling layer, and a fully connected layer
followed by a softmax layer. We adopt two CL scenarios
using the benchmark MNIST dataset, i.e., split MNIST and
permuted MNIST [37]. For the split MNIST experiment, we
train the models for 10 epochs with an initial learning rate
of 0.001. For the permuted MNIST experiment, we train the
models for 5 epochs with an initial learning rate of 0.001.
The difference in these sets of hyperparameters is due to the
nature of the classification task and varying data distribution in
each experiment. The training and validation of the proposed
CLAIR models and the comparison against other state-of-the-
art models are performed using the A100 GPU computing
cluster provided by RIT Research Computing [38] and RTX
A6000 Ada Generation workstation.

B. Evaluation Metrics

1) Average Accuracy (At): To balance the stability and
plasticity of the proposed models compared to state-of-the-
art models and make a fair comparison, we average the test
accuracy of each model on the current and previous tasks. Let
at,j ∈[0, 1] denote the classification accuracy evaluated on the
test set of the jth task after sequential learning of the tth task
(j ≤ t). Then, the average test accuracy of the model trained
on task t and tested on task t and t−1 is computed as follows:

At =
1

2
(at,t + at,t−1). (8)

2) Forgetting Measure (FM): The forgetting measure (FM)
denotes how much of learned knowledge is lost while learning
new tasks. The forgetting rate for task j, when learning task

t, i.e., fj,t, given that j < t, is calculated by the difference
between the model’s maximum performance obtained in the
past and its current performance [8].

fj,t = max
i∈{1,...,t−1}

(ai,j − at,j), ∀j < t. (9)

FM for the tth task is the average forgetting of all old tasks.

FMt =
1

t− 1

t−1∑
j=1

fj,t. (10)

3) Backward Transfer (BWT): The backward transfer
(BWT) refers to the average influence of learning a new task
(t) on previously learned tasks (1, · · · , t−1), where j < t [8].

BWTt =
1

t− 1

t−1∑
j=1

|at,j − aj,j |. (11)

4) Total Average Accuracy: Assume all test data of all T
tasks are available for evaluation, and the average test accuracy
of task t after training on t − 1 sequential tasks is At. The
average task accuracy is then given as,

Aavg =

∑T
t=1 At

T
. (12)

C. Image Classification: Split MNIST
In this experiment, we divide MNIST dataset samples into

5 non-overlapping sequential tasks corresponding to binary
image classification problems, i.e., digits (0 - 1), (2 - 3),
(4 - 5), (6 - 7), and (8 - 9). Table I presents the average
test accuracy per task, At, the forgetting measure (FM), and
the backward transfer (BWT) of the split MNIST experiment
for the proposed CLAIR models compared to the state-of-the-
art EWC, BBB and VCL models. We show that the learned
knowledge is significantly retained when using the adaptive
ELBO loss in the AdaCLAIR model and the uncertainty
mask in the MasCLAIR model. The proposed AdaCLAIR
and MasCLAIR models demonstrate higher accuracy and
less catastrophic forgetting compared to other probabilistic
homologs. Figure 1 shows the average variance (uncertainty)
of the proposed CLAIR models compared to the BBB and
VCL models’ MC sample variance. The average variance is
collected for every task in the split MNIST experiment.

D. Image Classification: Permuted MNIST
In the permuted MNIST experiment, the original MNIST

dataset is modified by randomly rearranging pixels within
each image. Thus, the classification tasks of MNIST images
become more challenging for machine learning models [39].
All models are trained and validated for five different permu-
tations with random seeds of 1, 2, 3, 4, and 5 as sequential
CL tasks. Table II shows the average test accuracy per task,
At, the forgetting measure (FM), and the backward transfer
(BWT) for the proposed CLAIR models compared to the
state-of-the-art EWC and VCL models. Figure 2 shows the
average uncertainty measured by the predictive variance of
the proposed CLAIR models compared to the MC sample
variance of the BBB and VCL models. The average variance
is collected for every task in the permuted MNIST experiment.



TABLE I
RESULTS OF THE SPLIT MNIST EXPERIMENT. THE ACCURACY, THE

FORGETTING MEASURE (FM), AND THE BACKWARD TRANSFER (BWT)
ARE COMPUTED USING EQUATIONS 8, 10 AND 11, RESPECTIVELY.

Evaluation Task 1 Task 2 Task 3 Task 4 Task 5
Metrics 0-1 2-3 4-5 6-7 8-9

EWC Accuracy 99% 89.5% 90.5% 92% 90.5%
FM - 9.5 8.5 7 8.5

BWT - 9.5 4.5 3.33 2.25
BBB Accuracy 99% 86.5% 81% 83.5% 93%

FM - 12.5 12 7.67 9.8
BWT - 12.5 6.75 8 1.88

VCL Accuracy 99% 89% 81.5% 88.5% 93%
FM - 10 17.5 10.5 4

BWT - 10 8.75 5.5 3.5
Proposed Accuracy 96% 90.5% 93.8% 90.5% 88%

PlaCLAIR FM - 5.5 3.8 6.3 5.8
BWT - 5.5 1.13 2.92 1.88

Proposed Accuracy 99% 91% 86.5% 94% 93%
AdaCLAIR FM - 8 12.5 5 6

BWT - 8 6.25 3.68 3.75
Proposed Accuracy 99% 91.8% 95.8% 97.4% 96.2%

MasCLAIR FM - 7.2 2.4 1.27 1.25
BWT - 7.2 0.1 0.8 2.1

V. DISCUSSIONS AND ANALYSIS

We observe from Table I that the proposed CLAIR models,
i.e., PlaCLAIR, AdaCLAIR, and MasCLAIR, maintain higher
accuracy on the sequence of tasks. We highlight the highest
accuracy across all models for each task. For example, the
accuracy values of the MasCLAIR on tasks 1 to 5, respectively,
are 99%, 91.8%, 95.8%, 97.4%, and 96.2%. In comparison,
the accuracy values of the VCL model on tasks 1 to 5
are 99%, 89%, 81.5%, 88.5%, and 93%, respectively. The
proposed MasCLAIR model provides accuracy values that are
at least 2.8% higher as compared to other models. Similarly,
we observe higher accuracy of the PlaCLAIR and AdaCLAIR
models compared to the accuracy of the EWC, BBB, and VCL
models. We also notice that the FM and BWT values of the
proposed models are smaller than those of the EWC, BBB, and
VCL models. For example, the BWT values of the PlaCLAIR
for tasks 2 to 5, respectively, are 5.5%, 1.13%, 2.92%, and
1.88%. In comparison, the BWT values of the BBB model on
tasks 2 to 5, respectively, are 12.5%, 6.75%, 8%, and 1.88%.

By observing Table II using the permuted MNIST experi-
ment, we notice that the proposed AdaCLAIR and MasCLAIR
models outperform all other models on the sequential CL
tasks. The accuracy values of the MasCLAIR on tasks 1 to
5 are 96%, 93%, 93.5%, 93.8%, and 93.8%, respectively.
On the other hand, the VCL accuracy values on tasks 1 to
5 are 98%, 91.5%, 80.5%, 74%, and 80%, respectively. The
VCL model’s accuracy degrades ≈ 24% compared to ≈ 3%
for the MasCLAIR model and ≈ 4.8% for the AdaCLAIR
model. Similarly, the FM and BWT values are much smaller
for the proposed MasCLAIR and AdaCLAIR than for all other
models. The highest accuracy values and the lowest FM and

TABLE II
RESULTS OF THE PERMUTED MNIST EXPERIMENT WITH FIVE DIFFERENT
PERMUTATIONS. THE ACCURACY, THE FORGETTING MEASURE (FM), AND
THE BACKWARD TRANSFER (BWT) ARE COMPUTED USING EQUATIONS 8,

10, AND 11, RESPECTIVELY.

Evaluation Task 1 Task 2 Task 3 Task 4 Task 5
Metrics Perm 1 Perm 2 Perm 3 Perm 4 Perm 5

EWC Accuracy 95.4% 86.2% 78.5% 84% 87%
FM - 9.18 18.86 11.36 8.36

BWT - 9.18 8.93 6.12 5.34
VCL Accuracy 98% 91.5% 80.5% 74% 80%

FM - 6.5 17.5 24 18
BWT - 6.5 8.75 9.6 9.5

Proposed Accuracy 97% 86.5% 89.3% 90.3% 89.9%
PlaCLAIR FM - 10.5 5.25 3.82 2.86

BWT - 10.5 2.45 1.65 1.48
Proposed Accuracy 97.1% 92.5% 92.8% 92.3% 93.2%

AdaCLAIR FM - 4.6 4.35 4.85 3.95
BWT - 4.5 2.18 1.96 1.73

Proposed Accuracy 96% 93% 93.5% 93.8% 93.8%
MasCLAIR FM - 3 1.5 0.9 0.6

BWT - 3 1.5 1.07 0.7

BWT values are highlighted in the table for each task. It is
noteworthy that, initially, all the models (in the split MNIST
and permuted MNIST experiments) exhibited good perfor-
mance on the first task. However, once the models are trained
on new tasks, the proposed CLAIR models maintain robust
behavior and mitigate the catastrophic forgetting phenomenon
as compared to other state-of-the-art models.

Table III shows a comparison between the proposed CLAIR
models and the current state-of-the-art models, including
Incremental Classifier and Representation Learning (iCaRL)
[40], Learning to Prompt (LP) [41], Gradient Episodic Mem-
ory (GEM) [42], Riemannian Walk (RWalk) [18], Robust
Continual Learning through a Comprehensively Progressive
Bayesian Neural Network (RCL-CPB) [21]), EWC and VCL
using the total average accuracy (Equation 12) for both split
and permuted MNIST. The proposed CLAIR models (and
particularly MasCLAIR) demonstrate dominant accuracy over
the state-of-the-art CL models. In the split MNIST experiment,
MasCLAIR achieves 96.1%, and in the case of permuted
MNIST, it achieves 94%. In addition to this superior accuracy,
the proposed models capture the uncertainty associated with
the predictions, measured by the predictive variance, bolstering
the trustworthiness of the proposed models.

A. Trustworthiness of the CLAIR Models

By conducting exhaustive experiments, we demonstrate the
ability of the proposed Bayesian CL with Architecture Initia-
tive and Regularization (CLAIR)-based models to sequentially
acquire and preserve knowledge from a sequence of tasks.
The CLAIR models effectively mitigate the adverse impacts
of forgetting, as compared to the state-of-the-art model in the
literature. The predictive variance associated with each model
prediction quantifies the inherent uncertainty, thus cautioning



TABLE III
THE TOTAL AVERAGE ACCURACY OF THE CLAIR MODELS COMPARED TO
THE STATE-OF-THE-ART MODELS ON THE SPLIT AND PERMUTED MNIST.

Models Total Average Accuracy (A˙avg)
Split MNIST Permuted MNIST

iCarL 55.8% [21] –
LP 61.2% [21] 82.0% [21]

GEM 94.3% [21] 93.1% [21]
RWalk 82.5% [21] 91.7% [21]

RCL-CPB 83.8% [21] 92.7% [21]
EWC 86.2% 92.3%
VCL 90.2% 84.8%

PlaCLAIR (ours) 91.8% 90.6%
AdaCLAIR (ours) 92.7% 93.6%
MasCLAIR (ours) 96.1% 94%

against unwarranted trust in the model’s output, which is
particularly important in mission-critical scenarios.

We notice from Figures 1 and 2 that the prediction variance
(uncertainty) of the proposed models is higher than the MC
variance of the BBB and VCL models. In the split MNIST
experiment, the average predictive variance of PlaCLAIR,
AdaCLAIR, and MasCLAIR starts with low values as we
train and validate the models on the same task. Later, when
we introduce new tasks, the average variance values increase
gradually, highlighting the fact that the model establishes
some uncertainty with the previous tasks after learning new
tasks. Even though the proposed CLAIR models adapt well
to new tasks and provide high accuracy, the predictive vari-
ance increases when introducing new tasks. We interpret the
variance behavior as the model builds higher confidence for
the current tasks (low uncertainty) and lower confidence for
the previous tasks (higher uncertainty) due to the change of
the data distribution of different digits in the split MNIST
experiment. We expect the variance to decrease if we introduce
samples from previous tasks while learning new tasks.

In the permuted MNIST experiment, the average variance
starts at high levels when training on the first permutation
of MNIST as the first task. Then, the variance values de-
crease with incoming tasks as the models adapt to the data
distribution resulting from different permutations in the new
tasks. We will explore the variance (uncertainty) behavior of
the proposed CLAIR models with more continual learning
experiments in the future to understand the robustness and
adaptability to sequentially streaming data.

VI. CONCLUSIONS

In this paper, we introduce an innovative Bayesian CL
with Architecture Initiative and Regularization (CLAIR)-based
models, i.e., AdaCLAIR and MasCLAIR, for facilitating con-
tinual learning by leveraging the principles of the variational
uncertainty propagation. We adopt the Bayesian theory of
learning and propagate the moments of the variational pos-
terior distribution through the layers of the convolutional
neural network (CNN) to learn uncertainty over the parameters
measured by the variance of the variational distribution. We

Fig. 1. Average predictive variance (uncertainty) of the proposed PlaCLAIR,
AdaCLAIR, and MasCLAIR models compared to the Monte Carlo sampling
variance of the BBB and VCL models for the split MNIST experiment.

Fig. 2. Average predictive variance (uncertainty) of the proposed PlaCLAIR,
AdaCLAIR, and MasCLAIR models compared to the Monte Carlo sampling
variance of the BBB and VCL models for the permuted MNIST experiment.

develop a new adaptive evidence lower bound (ELBO) loss
function that penalizes considerable changes in the variational
parameters by minimizing the KL divergence between the
variational posterior distributions learned from the current and
previous tasks weighted by an uncertainty-defined metric. The
newly formulated ELBO objective function effectively serves
as a mechanism to impede drastic changes in important pa-
rameters and preserve knowledge learned from previous tasks
based on the uncertainty associated with those parameters. We
also advance an uncertainty-based mark to freeze parameters
with high confidence (or low uncertainty) from previous
tasks while learning new tasks. The proposed CLAIR models
inherently addressed the common challenge of catastrophic
forgetting in sequential learning scenarios. The experimental
results, conducted on both split MNIST and permuted MNIST
datasets, demonstrate a notable improvement in the trustwor-
thiness and reliability of the proposed models compared to
state-of-the-art models.
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