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ABSTRACT

From 2013 to 2022, 1671 derailments have been reported
by the Federal Railroad Administration (FRA), 8.2% of which
were due to journal bearing defects. The University
Transportation Center for Railway Safety (UTCRS) designed an
onboard monitoring system that tracks vibration waveforms over
time to assess bearing health through three analysis levels.
However, the speed of the bearing, a fundamental parameter for
these analyses, is often acquired from Global Positioning System
(GPS) data, which is typically not available at the sensor
location. To solve this issue, this paper proposes to employ
Machine Learning (ML) algorithms to extract the speed and
other essential features from existing vibration data, eliminating
the need for additional speed sensors. Specifically, the proposed
method tries to extract the speed information from the signatures
that are embedded in the Power Spectral Density (PSD) plot,
which enables rapid real-time analysis of bearings while the
train is in motion. The rapid extraction of data could be sent to
a cloud accessible by train dispatchers and railcar owners for
assessment of bearings and scheduling of replacements before
defects reach a dangerous size. Eventually, the developed
algorithm will reduce derailments and unplanned field
replacements and afford rail stakeholders more cost-effective
preventive maintenance.

Keywords: machine learning, power spectral density,
feature extraction

1. INTRODUCTION

In recent years the railway industry has experienced a
number of railcar derailments predominantly due to failure of
bearing and wheel assemblies. Hence, safety, reliability,
efficiency, and performance of bearings have become the main
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concerns in the industry. Condition monitoring and fault
diagnosis of railcar bearings have become very important but are
often complex, time-consuming, and labor-intensive [1]. Hot-
Box Detectors (HBDs) and the Trackside Acoustic Detection
System (TADS™) are the current bearing condition monitoring
systems. HBDs use non-contact infrared sensors to detect
abnormal temperatures of the bearings as they pass over the
detector. Bearings with temperatures around 94°C above
ambient conditions are removed for inspection. However, from
2010 to 2018, 124 defective bearings were not detected by HBDs
[2]. TADS™ uses microphones to detect high-risk bearings by
listening to its acoustic sound vibrations, but they are not very
reliable since there are less than 30 active systems in the U.S and
derailments may occur before encountering any of these systems
[2]. The University Transportation Center for Railway Safety
(UTCRS) over the past years have carried out research to solve
the issues of bearing failure by determining the best indicators of
bearing health.

An advanced algorithm has been developed by researchers
at the UTCRS that monitors bearings via temperature and
vibration measurements. The vibration measurements are
recorded by accelerometers on the bearing adapters to determine
if the bearing is defective, the location of the defect and the
approximate size of the defect [2]. However, research has shown
that vibration signals collected and processed by on-board
sensors are often contaminated by noise and sometimes unusable
for vibration analysis of the bearing. Properties such as the
frequency, amplitude and harmonics of these signals can go
undetected without the help of special techniques [1].

Feature extraction is a process in machine learning (ML)
and signal processing where relevant and important information
is selected, identified, or transformed from raw data. In the
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context of detecting machine faults from vibration signals,
feature extraction techniques play a pivotal role in enhancing the
signal-to-noise ratio. While there are experimental or physics-
driven methods to carry out vibrational analysis, inherent errors
in these calculations can arise, stemming from sensor faults,
material wear, fouling, slipping, defects, or excessive noise in
vibration data. To overcome these challenges, data-driven
methods leveraging real-time sensor data have emerged as
effective tools. These methods involve constructing statistical
models using abundant vibration data captured every few
seconds through data acquisition systems such as the onboard
condition monitoring sensor module. At UTCRS, researchers
have recognized the potential of harnessing this wealth of data,
particularly in extracting features such as speed from vibration
signals. This exploration has prompted research focusing on
vibration feature extraction techniques within the frequency
domain using ML techniques.

Motivated by the universality of kernel methods in function
approximation, in this study, we propose to use the kernel-based
methods, specifically, Kernel Ridge Regression (KRR), to
extract the speed feature from the vibration signals [3]. The
kernel function utilized in this framework is the polynomial
kernel that is frequently used in many kernelized algorithms such
as Support Vector Machines (SVMs) [4]. We formulate the
feature extraction process as an optimization problem in which
we use KRR to approximate a nonlinear function that describes
the relationship between the speed and the vibration data.
Notably, compared with neural networks [5], another popular
method in ML areas, kernel methods work well for smaller
datasets with a moderate number of features and offer more
interpretability.

This paper seeks to offer a new approach to finding feature
extraction methods that make it possible to extract the speed of
railroad bearings from the vibration signals. This would be a
departure from the conventional methods of carrying out
vibrational analysis on railroad bearings.

2. PRELIMINARY WORK

The UTCRS has designed an onboard monitoring system
that uses sensors to track vibration waveforms over time, to
obtain a direct and more accurate indicator of bearing health [2].
The resulting advanced Defect Detection Algorithm (DDA) is
shown in FIGURE 1. The data collected by the onboard sensors
is used for Level 1, 2 and 3 analyses of the bearings. Level 1
analysis determines whether the bearings are defective or healthy
based on the root mean square (RMS) of the vibration data being
greater or less than the average threshold for defect-free
bearings. Level 2 analyzes the power spectral density (PSD) plot
that is generated, to identify the defect type. Level 3 determines
the defect size using a library of previously measured defects.
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(4 seconds of data at 5 kHz)
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FIGURE 1: DEFECT DETECTION ALGORITHM [2]

Specifically, DDA uses frequency-domain analysis and relies on
the rotational speed of the bearings w, through the vibration
signals generated by the onboard sensor module while the train
is in motion. Using Eq. (1), the PSD plots can be created, in
which a faulty component will exhibit a power spike at the
corresponding defect frequency, while a healthy bearing will
exhibit no significant power changes. In order to correctly
classify the sort of defect found within the bearing, certain
frequencies are essential, which can be tracked based on the
rotational speed of the bearings, as shown in Eq. (2) — Eq. (7),
among which, Eq. (5) - (7) represent three different tapered roller
bearings defect frequencies related to faulty outer rings, inner
rings, and rollers, respectively. Examples of each kind of bearing
condition, along with the matching defect frequency and its
harmonics, are displayed in Figure 2 [2]. The notations used in
DDA are given in TABLE 1.

TABLE 1: NOTATIONS FOR DDA.

SYMBOL DEFINITION
X(f) Frequency Function (Hz)
W, Rotational speed (rad/s)
Weone Rotational frequency of cone (Hz)
Weage Rotational frequency of cage (Hz)
Win Defect frequency of cone (Hz)
Wout Defect frequency of cup (Hz)
Wroldef Defect frequency of roller (Hz)
Riotter Roller Radius (m)
R one Cone Radius (m)
Reup Cup Radius (m)
Dy otier Roller Diameter (m)

[ee)

PSD = f X(F)2df )

—00
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Wcone = Wo (2)
Rcone
Weage = (m Weone (3)
Rcone
Wroller = (D I >wcone 4)
roller
Woyt = 23wcage (5)
Win = 23(wcone - wcage) (6)
Rcu
— p
wrolldef - (R I >wcage (7)
roller

Noticeable, Eq. (5) — Eq (7) show that the defect frequencies are
all functions of the rotational speed w,. In current practice, the
rotational speed is often acquired from Global Positioning
System (GPS) data, which is typically not available at the sensor
location. Hence, if we can extract w, we would subsequently be
able to find all other frequencies and identify the corresponding
defects.

3. METHODOLOGY

3.1 Dataset

The dataset used for training the model was obtained from
[2]. Over a million data samples were used to train the model,
each sample contains three features (i.e., frequency (Hz), PSD
(g*/Hz), and Load (%)) and one label (i.e., the Speed (rpm)).
Table 2 shows some exemplary data samples. The data samples
were obtained from experiments where the bearings were
healthy, cone-defective, and cup-defective bearings. There were
minimal data points for roller defects since the roller is the
hardest component of the bearing assembly, and it hardly
develops spalls. The objective is to train a ML model that can be
used to predict the speed (dependent variable) from the input
feature (independent variables), i.e., frequency, PSD, and load.

3.2 Data preprocessing

The most important element with regards to training ML
models is the data, hence, data preprocessing is a very crucial
step for programmers to acquire good results.
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The data was first filtered to take out rows with missing
values. We then use the mean normalization to normalize the
data to restrict all features in a similar scale to prevent certain
features with larger magnitude from dominating the model. A
random shuffle step was also adopted to prevent similar speeds
from dominating the sets to give some variation. The data was
then split into training and test sets in ratio of 70% and 30%,
respectively.

TABLE 2: DATASET WITH INPUT FEATURES (FREQUENCY,
LOAD, PSD) AND TARGET VALUE (SPEED)

Frequency PSD Load (%) Speed

[Hz] [g*/Hz] (RPM)
0 2.72E-34 100 234
0.678168 3.06E-06 100 234
1.356337 4.60E-06 100 234
822.618273 0.000509075 100 514
823.296441 0.000165492 17 514
823.974609 0.000162635 17 514
824.652778 0.00036822 17 514

3.3 Model Training

The model used to train this data sample is a linear kernel
method. To help understand KRR, let us consider a dataset
{x;, yi}i=, with x; € R™ represents the features with i-th data
sample y; denotes the output values. Let y = [y, ..., V] € R"
and X = [x;..;x,] € R™™. Assuming there is a linear
relationship between y and X such that
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y=XB, (8)

where y = [¥3, ..., ¥n] € R™ represents the predicted output and
B € R™ is the vector of coefficients. The traditional ridge
regression solves the following optimization problem:

. 2 2
ming |1y — XBI> + 2181 0)
Here A is the coefficient that controls overfitting.

However, it is usually not practical to have linear
assumptions in practice. To combat this problem, we seek to find
a nonlinear model that best describes the relationship between
each data pairs utilizing the kernel methods. To be specific, we
are trying to find a nonlinear function that can be represented by
the weighted kernel expansion over the data samples as follows:

) =) ak(x,2) = aTky () (10)

where ky(x) € R™ collects all k(x;,x) and &« € R" is the new
parameter to be learned. In our paper, we use a linear kernel,
which is a special case of a polynomial kernel with degree =1
and coefficient = 0 (homogeneous). If x; and x; are column
vectors, their linear kernel is:

k(x,:,x]') = xiTx]' . (11)

Kernel ridge regression is thus a nonlinear case of traditional
ridge regression that utilizes the functional mapping capabilities
of kernel methods. The optimization function (9) thus becomes.

ming |ly — Kel|; + 2|la"Kal|_, (12)

with K collecting all k(xi, x]-) for the data samples that we use
to train the model.

4. RESULTS AND DISCUSSION

We utilize linear kernel method to train the model and Table
3 shows a comparison of the Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) for the train and test data.
RMSE and MAE are both metrics used to evaluate the
performance of regression models, but they measure the errors
between predicted values and actual values differently.

RMSE is calculated by taking the square root of the average
of squared differences between predicted and actual values. It
gives higher weight to larger errors because of the squaring
operation. RMSE is sensitive to outliers as it squares the errors,
making it more influenced by large deviations between predicted
and actual values. The equation below shows how the RMSE is
calculated.

1 ~
RMSE = |- %L, (i = 9%

(13)

where y; is the actual value, y;is the predicted value, and n is the
number of samples.

The MAE is calculated by taking the average of the absolute
differences between predicted and actual values. It treats all
errors equally and is less sensitive to outliers compared to
RMSE.

(14)

1 ~
MAE = ;Z?q lyi — i |

The model shows consistency (results are same for both
train and test sets) in the performance due to the same values of
RMSE and MAE for both train and test data. This indicates that
the model is not overfitting or underfitting badly. The model is
producing similar results from seen and unseen data. The RMSE
=102.4167 from TABLE 3 indicates that the average error of the
predictions is approximately 102 units, considering the scale of
the target variable. The MAE = 57.9806 from Table 3 suggests
that, on average, the predicted values have an absolute difference
of approximately 58 units from the actual values. In practical
terms, the model’s predictions deviate by approximately 58 units
from the actual values in the test set.

TABLE 3: TRAIN AND TEST DATA LOSS COMPARISON

Metric Train Test
RMSE 99.7125 102.4167
MAE 56.0269 57.9806

In order to get a better understanding of the RMSE values
we can scale them down using the formula:

RMSE, = RMSE (15)
scaled = GPEEDyax — SPEEDyn

where RMSE = 102.4167
SPEED,,x = 618
SPEEDy,y = 234

This gives a RMSE 4.4 = 0.2667, that shows that the
predicted values show an error of 26.7% from the expected
values. The relatively high RMSE and MAE is because of the
sharp deviations in speed values in our train and test set as shown
in Figure 3.

Initially, it is observed that the linear kernel method does
well in predicting the pattern of the expected values but shows
an error in prediction when there is a peak in values expected.
This is because the linear kernel method is unable to capture the
non-linear behavior present in the dataset. With speed values
ranging from 234 to 618 rpm there are likely several of these
deviations in our dataset resulting to a relatively high value for
RMSE and MAE.

Copyright © 2024 by ASME

20z Jequisidag og uo sasn ABojouyoa ] JO sinpsu| Je}sayooy Aq 4pd-Gr00E L-¥20Zo4-E1L0BL0N.00A/00L6YEL/ELOV LOLLOOA/9LLL8/YZ0ZIYr APd-sBuIpes0Id/OY /B0 dwWsE  UONDB|0o|E)BIPaLSE//:dRy WOl papeojumoq



Actual values and predicted data for the first 50 timesteps
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FIGURE 3: COMPARISON BETWEEN EXPECTED AND
PREDICTED VALUES OF THE SPEED (RPM)

5. CONCLUSION

In summary, the model shows consistency between train and
test performance. The range of speed values in rpm for trains
(234 -618rpm) is relatively bigger than that in mph (25 — 66mph),
hence training the model with speed values in mph with more
features will result in a better prediction and a smaller RMSE and
MAE values. Additionally, further exploration with different
models such as Recurrent Neural Network (RNN) and
Convolutional Neural Network (CNN) will be carried out to
compare their performances to the Linear kernel method.
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