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ABSTRACT 
From 2013 to 2022, 1671 derailments have been reported 

by the Federal Railroad Administration (FRA), 8.2% of which 
were due to journal bearing defects. The University 
Transportation Center for Railway Safety (UTCRS) designed an 
onboard monitoring system that tracks vibration waveforms over 
time to assess bearing health through three analysis levels. 
However, the speed of the bearing, a fundamental parameter for 
these analyses, is often acquired from Global Positioning System 
(GPS) data, which is typically not available at the sensor 
location. To solve this issue, this paper proposes to employ 
Machine Learning (ML) algorithms to extract the speed and 
other essential features from existing vibration data, eliminating 
the need for additional speed sensors. Specifically, the proposed 
method tries to extract the speed information from the signatures 
that are embedded in the Power Spectral Density (PSD) plot, 
which enables rapid real-time analysis of bearings while the 
train is in motion. The rapid extraction of data could be sent to 
a cloud accessible by train dispatchers and railcar owners for 
assessment of bearings and scheduling of replacements before 
defects reach a dangerous size. Eventually, the developed 
algorithm will reduce derailments and unplanned field 
replacements and afford rail stakeholders more cost-effective 
preventive maintenance. 

Keywords: machine learning, power spectral density, 
feature extraction 

1. INTRODUCTION
In recent years the railway industry has experienced a

number of railcar derailments predominantly due to failure of 
bearing and wheel assemblies. Hence, safety, reliability, 
efficiency, and performance of bearings have become the main 

concerns in the industry. Condition monitoring and fault 
diagnosis of railcar bearings have become very important but are 
often complex, time-consuming, and labor-intensive [1]. Hot-
Box Detectors (HBDs) and the Trackside Acoustic Detection 
System (TADSTM) are the current bearing condition monitoring 
systems. HBDs use non-contact infrared sensors to detect 
abnormal temperatures of the bearings as they pass over the 
detector. Bearings with temperatures around 94°C above 
ambient conditions are removed for inspection. However, from 
2010 to 2018, 124 defective bearings were not detected by HBDs 
[2]. TADSTM uses microphones to detect high-risk bearings by 
listening to its acoustic sound vibrations, but they are not very 
reliable since there are less than 30 active systems in the U.S and 
derailments may occur before encountering any of these systems 
[2]. The University Transportation Center for Railway Safety 
(UTCRS)  over the past years have carried out research to solve 
the issues of bearing failure by determining the best indicators of 
bearing health.  

An advanced algorithm has been developed by researchers 
at the UTCRS that monitors bearings via temperature and 
vibration measurements. The vibration measurements are 
recorded by accelerometers on the bearing adapters to determine 
if the bearing is defective, the location of the defect and the 
approximate size of the defect [2]. However, research has shown 
that vibration signals collected and processed by on-board 
sensors are often contaminated by noise and sometimes unusable 
for vibration analysis of the bearing. Properties such as the 
frequency, amplitude and harmonics of these signals can go 
undetected without the help of special techniques [1].  

Feature extraction is a process in machine learning (ML) 
and signal processing where relevant and important information 
is selected, identified, or transformed from raw data. In the 
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context of detecting machine faults from vibration signals, 
feature extraction techniques play a pivotal role in enhancing the 
signal-to-noise ratio. While there are experimental or physics-
driven methods to carry out vibrational analysis, inherent errors 
in these calculations can arise, stemming from sensor faults, 
material wear, fouling, slipping, defects, or excessive noise in 
vibration data. To overcome these challenges, data-driven 
methods leveraging real-time sensor data have emerged as 
effective tools. These methods involve constructing statistical 
models using abundant vibration data captured every few 
seconds through data acquisition systems such as the onboard 
condition monitoring sensor module. At UTCRS, researchers 
have recognized the potential of harnessing this wealth of data, 
particularly in extracting features such as speed from vibration 
signals. This exploration has prompted research focusing on 
vibration feature extraction techniques within the frequency 
domain using ML techniques.  

Motivated by the universality of kernel methods in function 
approximation, in this study, we propose to use the kernel-based 
methods, specifically, Kernel Ridge Regression (KRR), to 
extract the speed feature from the vibration signals [3]. The 
kernel function utilized in this framework is the polynomial 
kernel that is frequently used in many kernelized algorithms such 
as Support Vector Machines (SVMs) [4]. We formulate the 
feature extraction process as an optimization problem in which 
we use KRR to approximate a nonlinear function that describes 
the relationship between the speed and the vibration data. 
Notably, compared with neural networks [5], another popular 
method in ML areas, kernel methods work well for smaller 
datasets with a moderate number of features and offer more 
interpretability. 

This paper seeks to offer a new approach to finding feature 
extraction methods that make it possible to extract the speed of 
railroad bearings from the vibration signals. This would be a 
departure from the conventional methods of carrying out 
vibrational analysis on railroad bearings.  
                
2. PRELIMINARY WORK 

The UTCRS has designed an onboard monitoring system 
that uses sensors to track vibration waveforms over time, to 
obtain a direct and more accurate indicator of bearing health [2]. 
The resulting advanced Defect Detection Algorithm (DDA) is 
shown in FIGURE 1. The data collected by the onboard sensors 
is used for Level 1, 2 and 3 analyses of the bearings. Level 1 
analysis determines whether the bearings are defective or healthy 
based on the root mean square (RMS) of the vibration data being 
greater or less than the average threshold for defect-free 
bearings. Level 2 analyzes the power spectral density (PSD) plot 
that is generated, to identify the defect type. Level 3 determines 
the defect size using a library of previously measured defects. 

 

 
FIGURE 1: DEFECT DETECTION ALGORITHM [2] 

Specifically, DDA uses frequency-domain analysis and relies on 
the rotational speed of the bearings 𝜔௢ through the vibration 
signals generated by the onboard sensor module while the train 
is in motion. Using Eq. (1), the PSD plots can be created, in 
which a faulty component will exhibit a power spike at the 
corresponding defect frequency, while a healthy bearing will 
exhibit no significant power changes. In order to correctly 
classify the sort of defect found within the bearing, certain 
frequencies are essential, which can be tracked based on the 
rotational speed of the bearings, as shown in Eq. (2) – Eq. (7), 
among which, Eq. (5) - (7) represent three different tapered roller 
bearings defect frequencies related to faulty outer rings, inner 
rings, and rollers, respectively. Examples of each kind of bearing 
condition, along with the matching defect frequency and its 
harmonics, are displayed in Figure 2 [2]. The notations used in 
DDA are given in TABLE 1. 
 
TABLE 1: NOTATIONS FOR DDA. 

SYMBOL DEFINITION 
𝑋(𝑓) Frequency Function (Hz) 

𝜔௢ Rotational speed (rad/s) 
𝜔௖௢௡௘  Rotational frequency of cone (Hz) 
𝜔௖௔௚௘ Rotational frequency of cage (Hz) 
𝜔௜௡  Defect frequency of cone (Hz) 
𝜔௢௨௧ Defect frequency of cup (Hz) 

𝜔௥௢௟௟ௗ௘௙  Defect frequency of roller (Hz) 
𝑅௥௢௟௟௘௥  Roller Radius (m) 
𝑅௖௢௡௘  Cone Radius (m) 
𝑅௖௨௣ Cup Radius (m) 

𝐷௥௢௟௟௘௥  Roller Diameter (m) 
 
 

𝑃𝑆𝐷 =  න |𝑋(𝑓)|ଶ𝑑𝑓

ஶ

ିஶ

 (1) 
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𝜔𝑐𝑜𝑛𝑒 = 𝜔𝑜 (2) 
 
 

𝜔௖௔௚௘ = ቆ
𝑅௖௢௡௘

𝑅௖௢௡௘ + 𝑅௖௨௣

ቇ 𝜔௖௢௡௘  (3) 

 
 

𝜔𝑟𝑜𝑙𝑙𝑒𝑟 = ቆ
𝑅𝑐𝑜𝑛𝑒

𝐷𝑟𝑜𝑙𝑙𝑒𝑟
ቇ 𝜔𝑐𝑜𝑛𝑒 (4) 

                          
𝜔௢௨௧ = 23𝜔௖௔௚௘                            (5) 

 
 

𝜔௜௡ = 23൫𝜔௖௢௡௘ − 𝜔௖௔௚௘൯ (6) 
 

                            

𝜔𝑟𝑜𝑙𝑙𝑑𝑒𝑓 = ቆ
𝑅𝑐𝑢𝑝

𝑅𝑟𝑜𝑙𝑙𝑒𝑟
ቇ 𝜔𝑐𝑎𝑔𝑒 (7) 

 
                            

Noticeable, Eq. (5) – Eq (7) show that the defect frequencies are 
all functions of the rotational speed ωo. In current practice, the 
rotational speed is often acquired from Global Positioning 
System (GPS) data, which is typically not available at the sensor 
location. Hence, if we can extract ωo, we would subsequently be 
able to find all other frequencies and identify the corresponding 
defects. 
 
 
3. METHODOLOGY 

 
3.1 Dataset 

The dataset used for training the model was obtained from 
[2]. Over a million data samples were used to train the model, 
each sample contains three features (i.e., frequency (Hz), PSD 
(g2/Hz), and Load (%)) and one label (i.e., the Speed (rpm)). 
Table 2 shows some exemplary data samples. The data samples 
were obtained from experiments where the bearings were 
healthy, cone-defective, and cup-defective bearings. There were 
minimal data points for roller defects since the roller is the 
hardest component of the bearing assembly, and it hardly 
develops spalls. The objective is to train a ML model that can be 
used to predict the speed (dependent variable) from the input 
feature (independent variables), i.e., frequency, PSD, and load. 

 
3.2 Data preprocessing 

The most important element with regards to training ML 
models is the data, hence, data preprocessing is a very crucial 
step for programmers to acquire good results.  

 

 
FIGURE 2: FREQUENCY SPECTRUM PLOTS (0-1000 Hz) OF (a) 
A DEFECT-FREE BEARING, (b) OUTER RING DEFECT, (c) INNER 
RING DEFECT, AND (d) A ROLLER DEFECT 

The data was first filtered to take out rows with missing 
values. We then use the mean normalization to normalize the 
data to restrict all features in a similar scale to prevent certain 
features with larger magnitude from dominating the model. A 
random shuffle step was also adopted to prevent similar speeds 
from dominating the sets to give some variation. The data was 
then split into training and test sets in ratio of 70% and 30%, 
respectively. 
 
TABLE 2: DATASET WITH INPUT FEATURES (FREQUENCY, 
LOAD, PSD) AND TARGET VALUE (SPEED) 

Frequency 
[Hz] 

PSD  
[g2/Hz] 

Load (%) Speed 
(RPM) 

0 2.72E-34 100 234 
0.678168 3.06E-06 100 234 
1.356337 4.60E-06 100 234 

822.618273 0.000509075 100 514 
823.296441 0.000165492 17 514 
823.974609 0.000162635 17 514 
824.652778 0.00036822 17 514 

 
 
3.3 Model Training 

The model used to train this data sample is a linear kernel 
method. To help understand KRR, let us consider a dataset 
{𝒙௜ , 𝑦௜}௜ୀଵ

௡  with 𝑥௜ Є ℝ௠ represents the features with i-th data 
sample 𝑦௜  denotes the output values. Let y = [𝑦ଵ , … , 𝑦௡] Є ℝ௡ 
and X = [𝒙ଵ; … ; 𝒙௡] Є ℝ௡×௠. Assuming there is a linear 
relationship between y and X such that  
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𝒚ෝ = 𝑋𝜷, (8) 

where 𝒚ෝ = [𝑦ොଵ, … , 𝑦ො௡] Є ℝ௡ represents the predicted output and 
β Є ℝ௠ is the vector of coefficients. The traditional ridge 
regression solves the following optimization problem: 

𝑚𝑖𝑛ఉ ห|𝒚 − 𝑋𝜷|ห
ଶ

ଶ
+  𝜆ห|𝜷|ห

ଶ

ଶ
 . (9) 

Here 𝜆 is the coefficient that controls overfitting.  

However, it is usually not practical to have linear 
assumptions in practice. To combat this problem, we seek to find 
a nonlinear model that best describes the relationship between 
each data pairs utilizing the kernel methods. To be specific, we 
are trying to find a nonlinear function that can be represented by 
the weighted kernel expansion over the data samples as follows: 

𝑓(𝒙) = ෍ 𝛼௜𝑘(𝒙௜ , 𝒙) = 𝜶ୃ𝒌௑(𝒙) (10) 

 

where  𝒌௑(𝒙) ∈ ℝ௡ collects all 𝑘(𝒙௜ , 𝒙) and 𝜶 ∈ ℝ௡ is the new 
parameter to be learned. In our paper, we use a linear kernel, 
which is a special case of a polynomial kernel with degree =1 
and coefficient = 0 (homogeneous). If 𝒙௜  and 𝒙௝ are column 
vectors, their linear kernel is: 

𝑘൫𝒙௜ , 𝒙௝൯ = 𝒙௜
்𝒙௝  . (11) 

Kernel ridge regression is thus a nonlinear case of traditional 
ridge regression that utilizes the functional mapping capabilities 
of kernel methods. The optimization function (9) thus becomes.  

𝑚𝑖𝑛𝜶 ห|𝒚 − 𝑲𝜶|ห
ଶ

ଶ
+  𝜆ห|𝜶்𝑲𝜶|ห

ଶ

ଶ
 , (12) 

with 𝑲 collecting all 𝑘൫𝒙௜ , 𝒙௝൯ for the data samples that we use 
to train the model.  

 
4. RESULTS AND DISCUSSION 

We utilize linear kernel method to train the model and Table 
3 shows a comparison of the Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE) for the train and test data. 
RMSE and MAE are both metrics used to evaluate the 
performance of regression models, but they measure the errors 
between predicted values and actual values differently.  

RMSE is calculated by taking the square root of the average 
of squared differences between predicted and actual values. It 
gives higher weight to larger errors because of the squaring 
operation. RMSE is sensitive to outliers as it squares the errors, 
making it more influenced by large deviations between predicted 
and actual values. The equation below shows how the RMSE is 
calculated. 
  

𝑅𝑀𝑆𝐸 =  ට
ଵ

௡
∑ (𝑦௜ − 𝑦ො௜)ଶ௡

௜ୀଵ  ,             (13) 

 
where 𝑦௜ is the actual value, 𝑦

௜̂
is the predicted value, and n is the 

number of samples. 
The MAE is calculated by taking the average of the absolute 

differences between predicted and actual values. It treats all 
errors equally and is less sensitive to outliers compared to 
RMSE. 

𝑀𝐴𝐸 =  
ଵ

௡
∑ |𝑦௜ − 𝑦ො௜

௡
௜ୀଵ |     .                       (14) 

 
The model shows consistency (results are same for both 

train and test sets) in the performance due to the same values of 
RMSE and MAE for both train and test data. This indicates that 
the model is not overfitting or underfitting badly. The model is 
producing similar results from seen and unseen data. The RMSE 
= 102.4167 from TABLE 3 indicates that the average error of the 
predictions is approximately 102 units, considering the scale of 
the target variable. The MAE = 57.9806 from Table 3 suggests 
that, on average, the predicted values have an absolute difference 
of approximately 58 units from the actual values. In practical 
terms, the model’s predictions deviate by approximately 58 units 
from the actual values in the test set.  

 
TABLE 3: TRAIN AND TEST DATA LOSS COMPARISON 

Metric Train  Test  
RMSE 99.7125 102.4167 
MAE 56.0269 57.9806 

 
In order to get a better understanding of the RMSE values 

we can scale them down using the formula: 

𝑅𝑀𝑆𝐸௦௖௔௟௘ௗ =  
𝑅𝑀𝑆𝐸 

𝑆𝑃𝐸𝐸𝐷ெ஺௑ − 𝑆𝑃𝐸𝐸𝐷ெூே

 (15) 

where 𝑅𝑀𝑆𝐸 =  102.4167 

𝑆𝑃𝐸𝐸𝐷ெ஺௑ = 618 

𝑆𝑃𝐸𝐸𝐷ெூே = 234 

This gives a 𝑅𝑀𝑆𝐸௦௖௔௟௘ௗ = 0.2667, that shows that the 
predicted values show an error of 26.7% from the expected 
values. The relatively high RMSE and MAE is because of the 
sharp deviations in speed values in our train and test set as shown 
in Figure 3. 

Initially, it is observed that the linear kernel method does 
well in predicting the pattern of the expected values but shows 
an error in prediction when there is a peak in values expected. 
This is because the linear kernel method is unable to capture the 
non-linear behavior present in the dataset.  With speed values 
ranging from 234 to 618 rpm there are likely several of these 
deviations in our dataset resulting to a relatively high value for 
RMSE and MAE. 
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FIGURE 3: COMPARISON BETWEEN EXPECTED AND 
PREDICTED VALUES OF THE SPEED (RPM)       

5. CONCLUSION 
In summary, the model shows consistency between train and 

test performance. The range of speed values in rpm for trains 
(234 -618rpm) is relatively bigger than that in mph (25 – 66mph), 
hence training the model with speed values in mph with more 
features will result in a better prediction and a smaller RMSE and 
MAE values. Additionally, further exploration with different 
models such as Recurrent Neural Network (RNN) and 
Convolutional Neural Network (CNN) will be carried out to 
compare their performances to the Linear kernel method. 
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