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We study the tensor-on-tensor regression, where the goal is to connect
tensor responses to tensor covariates with a low Tucker rank parameter ten-
sor/matrix without prior knowledge of its intrinsic rank. We propose the Rie-
mannian gradient descent (RGD) and Riemannian Gauss–Newton (RGN)
methods and cope with the challenge of unknown rank by studying the ef-
fect of rank over-parameterization. We provide the first convergence guar-
antee for the general tensor-on-tensor regression by showing that RGD and
RGN respectively converge linearly and quadratically to a statistically opti-
mal estimate in both rank correctly-parameterized and over-parameterized
settings. Our theory reveals an intriguing phenomenon: Riemannian opti-
mization methods naturally adapt to over-parameterization without modifi-
cations to their implementation. We also prove the statistical-computational
gap in scalar-on-tensor regression by a direct low-degree polynomial argu-
ment. Our theory demonstrates a “blessing of statistical-computational gap”
phenomenon: in a wide range of scenarios in tensor-on-tensor regression for
tensors of order three or higher, the computationally required sample size
matches what is needed by moderate rank over-parameterization when con-
sidering computationally feasible estimators, while there are no such benefits
in the matrix settings. This shows moderate rank over-parameterization is es-
sentially “cost-free” in terms of sample size in tensor-on-tensor regression of
order three or higher. Finally, we conduct simulation studies to show the ad-
vantages of our proposed methods and to corroborate our theoretical findings.

1. Introduction. The analysis of tensor or multiway array data has emerged as a very ac-
tive topic of research in statistics, applied mathematics, machine learning, and signal process-
ing (Kolda and Bader (2009)), along with many important applications, such as neuroimaging
analysis (Zhou, Li and Zhu (2013)), latent variable models (Anandkumar et al. (2014)) and
collaborative filtering (Bi, Qu and Shen (2018)). This paper studies a general class of prob-
lems termed tensor-on-tensor regression, which aims to characterize the relationship between
covariates and responses in the form of scalars, vectors, matrices, or high-order tensors:

(1) Yi =
〈
Ai,X

∗〉
∗ + Ei, i = 1, . . . , n.

Here, Ai ∈ R
p1×···×pd , i = 1, . . . , n are the known order-d (or d-way) tensor covariates.

Yi,Ei ∈ R
pd+1×···×pd+m are both order-m tensors and are observations and unknown noise,

respectively. X ∗ ∈R
p1×···×pd×pd+1×···×pd+m is an order-(d +m) tensor parameter of interest.

〈·, ·〉∗ is the contracted tensor inner product defined as 〈Ai,X
∗〉∗ ∈ R

pd+1×···×pd+m ,

(〈
Ai,X

∗〉
∗
)
[j1,...,jm] =

pl∑

kl=1,
l=1,...,d

Ai[k1,...,kd ]X
∗
[k1,...,kd ,j1,...,jm].
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Throughout the paper, we consider d and m to be fixed constants. We also stack all responses
and errors to Y , E ∈ R

n×pd+1×···×pd+m , where Y[i,:,...,:] = Yi and E[i,:,...,:] = Ei . Then the
tensor-on-tensor regression model can be written succinctly as Y = A (X ∗) + E , where A :
R

p1×···×pd+m → R
n×pd+1×···×pd+m is a linear map such that

(2) A
(
X ∗)

[i,:,...,:] =
〈
Ai,X

∗〉
∗ for i = 1, . . . , n.

Our goal is to estimate X ∗ based on (Y,A ).
Tensor-on-tensor regression model was proposed and studied in Raskutti, Yuan and Chen

(2019), Lock (2018). The generic tensor-on-tensor regression covers many special tensor
regression models in the literature, such as:

• scalar-on-tensor regression (Zhou, Li and Zhu (2013), Mu et al. (2014)): m = 0;
• tensor-on-vector regression (Li and Zhang (2017), Sun and Li (2017)): d = 1;
• scalar-on-matrix regression (or matrix trace regression) (Recht, Fazel and Parrilo (2010)):

m = 0, d = 2.

There is a great surge of interest in tensor-on-tensor regression for its applications (Lock
(2018), Gahrooei et al. (2021), Llosa and Maitra (2022)). Specific examples include:

• Neuroimaging data analysis. Studies in neuroscience are greatly facilitated by a variety of
neuroimaging technologies. Tensor-on-tensor regression provides interpretable analysis of
such datasets (Zhou, Li and Zhu (2013), Li and Zhang (2017)). For example, tensor-on-
vector regression has been applied to compare MRI scans across different autism spectrum
disorder groups (Sun and Li (2017)), which has helped evaluate the effectiveness of a
potential drug. Scalar-on-tensor regression has been used to predict neurological diseases,
such as attention deficit hyperactivity disorder, and reveal regions of interest in the brain
that affect the progression of diseases (Zhou, Li and Zhu (2013)).

• Facial image data analysis. Attributes prediction from facial images is popular in social
data analysis. Oftentimes, each facial image is labeled only with the name of the indi-
vidual, often a celebrity, while people are interested in inferring more features from that.
Tensor-on-tensor regression and tensor-variate analysis of variance have been proposed
to predict describable attributes from a facial image (Lock (2018)) and distinguish facial
characteristics related to ethnic origin, age group and gender (Llosa and Maitra (2022)).

• Longitudinal relational data analysis. Longitudinal relational data among a set of objects
can be represented as a time series of matrices, where each entry of the matrices represents
a directed relationship involving pairs of objects at a given time. The relation between one
pair of objects may have an effect on the relation between members of another pair, an
effective tensor-on-tensor regression model has been developed to estimate such effects
(Hoff (2015)).

Meanwhile, tensor datasets are often high-dimensional, that is, the ambient data dimen-
sion is substantially bigger than the sample size. It is thus crucial to exploit the hidden low-
dimensional structures from the datasets to facilitate the follow-up analyses. In tensor data
analysis, low-rankness is among the most commonly considered structural assumptions. In
this paper, we assume the target parameter X ∗ has an intrinsic low Tucker (or multilinear)
rank r∗ = (r∗

1 , . . . , r∗
d , r∗

d+1, . . . , r
∗
d+m), that is, all fibers1 of X ∗ along mode-k lie in a r∗

k -
dimensional subspace of Rpk for k = 1, . . . , d + m.

1Fibers are bar-shaped vectors and are counterpart of matrix columns and rows in a tensors (Kolda and Bader
(2009)).
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1.1. Central questions. A natural question on low-rank tensor-on-tensor regression is:

QUESTION 1. Can we develop fast and statistically optimal solutions for the general
low-rank tensor-on-tensor regression?

Various algorithms were proposed in the literature to solve specific instances of tensor-
on-tensor regression with provable guarantees, such as variants of gradient descent methods
(Rauhut, Schneider and Stojanac (2017), Yu and Liu (2016), Chen, Raskutti and Yuan (2019),
Ahmed, Raja and Bajwa (2020), Han, Willett and Zhang (2022), Hao, Zhang and Cheng
(2020), Tong et al. (2022)), alternating minimization (Zhou, Li and Zhu (2013)), Bayesian
Markov chain Monte Carlo (Guhaniyogi, Qamar and Dunson (2017)) and Riemannian opti-
mization methods (Kressner, Steinlechner and Vandereycken (2016), Luo and Zhang (2023))
for scalar-on-tensor regression; regularized rank constrained least squares (Rabusseau and
Kadri (2016)), alternating minimization (Sun and Li (2017)) and envelope method (Li and
Zhang (2017)) for tensor-on-vector regression. The theoretical guarantees of these methods
were developed case-by-case under the assumption that the intrinsic tensor rank is known.
In addition, Hoff (2015) proposed a Bayesian approach to solve the tensor-on-tensor regres-
sion when the mode numbers of the predictor and the response are equal. Lock (2018), Liu,
Liu and Zhu (2020) proposed alternating least squares procedures for solving the general
tensor-on-tensor regression, and a numerical study on the effect of rank misspecification was
performed in Lock (2018) without theoretical exploration. Asymptotic analysis for the com-
putationally intensive maximum likelihood estimator is provided in Llosa and Maitra (2022)
for different low-rank tensor formats with known intrinsic ranks. The convex relaxation meth-
ods for tensor-on-tensor regression, including the computationally infeasible tensor nuclear
norm relaxation, were studied in Raskutti, Yuan and Chen (2019). In summary, despite a
great amount of effort in the literature, a general, fast and statistically optimal framework for
tensor-on-tensor regression is still underdeveloped.

Moreover, the intrinsic rank r∗ is usually unknown in practice, while tuning rank is even
more challenging for tensors than matrices as (d + m) parameter values need to be tuned
simultaneously. Thus, an important question is:

QUESTION 2. Can we solve tensor-on-tensor regression robustly without knowing the
intrinsic rank?

To this end, we adopt a rank over-parameterization scheme: we introduce a conservative
guess of rank r := (r1, . . . , rd+m) ≥ (r∗

1 , . . . , r∗
d+m) and solve the following tensor-on-tensor

regression under the possibly over-parameterized regime:

X̂opt = arg min
X∈Rp1×···×pd+m

f (X ) := 1

2

∥∥Y − A (X )
∥∥2

F,

subject to Tucrank(X ) ≤ r.

(3)

Here, Tucrank(X ) is the Tucker rank of X (see formal definition in the notation and pre-

liminaries section). In most of the aforementioned literature, the ranks were assumed to be
correctly specified and the results do not directly apply to the possibly over-parameterized
scenario in (3). We will illustrate later that Riemannian optimization is an ideal scheme to
treat rank-constrained optimization like (3). However, under the over-parameterized regime,
the classic convergence theory of Riemannian optimization does not apply since the true pa-
rameter X ∗ is merely a boundary point of the Riemannian manifold consisting of tensors
with incorrectly specified rank.
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In addition, tensor problems often exhibit statistical-computational gaps (Hillar and Lim
(2013), Richard and Montanari (2014)). For example, in scalar-on-tensor regression, that is,
m = 0, and suppose p1 = · · · = pd = p and r∗

1 = · · · = r∗
d = r∗ is known and the design

is Gaussian ensemble (to be formally introduced in Section 3), it has been shown that rank
minimization recovers X ∗ with �(pr∗ + r∗d) samples (Mu et al. (2014)); but the rank min-
imization is generally NP-hard to compute (Hillar and Lim (2013)). On the other hand, all
existing polynomial-time algorithms require at least �(pd/2r∗ + r∗d) samples to guarantee
recovery (Han, Willett and Zhang (2022)). So when d ≥ 3, there exists a significant gap on the
sample complexities between what can be achieved information theoretically and by existing
polynomial-time algorithms. Xia, Zhang and Zhou (2022) leveraged this hypothetical gap to
claim there is no need to debias in scalar-on-tensor regression inference. Intriguingly, this
gap seems to close when d = 2, that is, in the matrix case, since pd/2r∗ + r∗d = pr∗ + r∗d .
So we ask:

QUESTION 3. Is there a statistical-computational gap in tensor-on-tensor regression?
What is the difference between tensor and matrix settings?

In the era of big data, Riemannian optimization and over-parameterization have become
a common remedy for nonconvexity in high-dimensional statistics and machine learning,
where the statistical-computational gap is a prevalent phenomenon. As these ingredients
nicely gather in tensor-on-tensor regression, a more open-ended question is:

QUESTION 4. Is there any interplay among Riemannian optimization, over-parameteri-
zation and statistical-computational gap?

1.2. Our contributions. We aim to answer the four questions above. Our specific contri-
butions include:

(Over-parameterization, algorithms, convergence theory and statistical optimality). We ad-
dress the unknown intrinsic rank through the rank over-parameterization scheme in (3). We
introduce the Riemannian gradient descent (RGD) and Riemannian Gauss–Newton (RGN)
algorithms for tensor-on-tensor regression and develop the corresponding convergence guar-
antees. We specifically show with proper initialization, RGD and RGN respectively converge
linearly and quadratically to the true parameter X ∗ up to some statistical error. Especially
in the noiseless setting, that is, E = 0, RGD and RGN respectively converge linearly and
quadratically to the exact parameter X ∗. Our convergence theory for over-parameterized
Riemannian optimization algorithms is novel, covers the rank under-parameterized cases as
well, and cannot be inferred from the standard convergence theories in the Riemannian op-
timization literature, since the true parameter X ∗ only lies on the boundary of the working
Riemannian manifold consisting of tensors with incorrectly specified rank. We further show
the estimation error achieved by RGD and RGN matches the minimax risk lower bound
under the Gaussian ensemble design. To our best knowledge, this is the first algorithmic
convergence result for tensor-on-tensor regression with optimal statistical error guarantees.
In the specific over-parameterized matrix trace regression setting, our results yield the first
linear/quadratic convergence guarantee for RGD/RGN. Compared to the existing results on
factorized GD in the over-parameterized matrix trace regression (Zhuo et al. (2024), Zhang,
Fattahi and Zhang (2021)), our second-order algorithm RGN and the corresponding theory
are novel, which improve the results in literature in many ways.

Our convergence theory reveals an intriguing phenomenon: in tensor-on-tensor regression,
Riemannian optimization algorithms adapt to over-parameterized scenarios without modifi-

cations. This is significantly different from the classic factorized gradient descent algorithm



TENSOR-ON-TENSOR REGRESSION 2587

TABLE 1
Riemannian gradient descent (RGD), Riemannian Gauss–Newton (RGN) versus factorized gradient descent

(Factorized GD), preconditioned factorized GD for over-parameterized matrix trace regression

Algorithm Statistical
error rate

Convergence
rate

Require tuning Parameter
matrix type

RGD (this work) optimal linear no general
RGN (this work) optimal quadratic no general
Factorized GD (Zhuo et al.
(2024))

optimal sublinear yes PSD

Preconditioned Factorized GD
(Zhang, Fattahi and Zhang
(2021))

suboptimal linear yes PSD

where preconditioning is needed. Table 1 compares our results with the existing ones on
over-parameterized matrix trace regression.

Although developing proper initialization for all cases of tensor-on-tensor regression is
difficult, we introduce spectral methods that yield adequate initializations for both RGD and
RGN in four prominent instances, scalar-on-tensor regression, tensor-on-vector regression,
matrix trace regression, and rank-1 tensor-on-tensor regression under Gaussian ensemble
design.

(Statistical-computational gap and sample size requirement). In this paper, we establish
rigorous evidence on the statistical-computational gap in scalar-on-tensor regression via low-
degree polynomials methods. Our argument shows n = �(pd/2) samples are necessary for
any polynomial-time method to succeed. Existing hardness evidence from low-degree poly-
nomials is often established for statistical problems with the simple “signal + noise” struc-
ture. Such a structure enables the decoupling of signal and noise that simplifies the analysis.
To our best knowledge, our low-degree hardness evidence is the first one for problems with
complex correlated structures.

Based on the computational lower bounds and algorithmic upper bounds developed in this
paper, we draw Figure 1 to illustrate the sample size requirements in over-parameterized
matrix trace regression with d = 2 (Panel (a)) and scalar-on-tensor regression, a prominent
instance of tensor-on-tensor regression, with d ≥ 3 (Panel (b)). When the input rank r is
greater than

√
p, that is, in the heavily over-parameterized regime, we show that an extra

sample complexity is needed for RGD and RGN to converge in both regressions. When the
input rank r is between r∗ and

√
p, that is, in the moderately over-parameterized regime,

FIG. 1. Comparison of sample size requirements in over-parameterized matrix trace (Panel (a)) and scalar-on-

tensor regressions (Panel (b)) under Gaussian ensemble design. Here the red line denotes the sample size (n)
requirements for the RGD and RGN to succeed with input rank r and spectral initialization and the black line

(ncomp) is the sample complexity of the computational limit, that is, the minimum sample size requirement for any

efficient algorithms. For simplicity, we assume p1 = · · · = pd = p, r1 = · · · = rd = r , r∗
1 = · · · = r∗

d = r∗, d and

r∗ are some fixed constants, E = 0 and X
∗ is well-conditioned.
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extra sample complexity is still required in matrix trace regression (Figure 1(a)). On the other
hand, in scalar-on-tensor regression (Figure 1(b)), no larger sample size is required to account
for the inflated input rank, as the red line is flat in the “no extra cost” regime in Figure 1(b).

This alludes to an important message, moderate rank over-parameterization is cost-free

in terms of sample size for a computationally feasible optimal estimator in scalar-on-tensor

regression. The computational barrier, although being a tough scenario and is often referred
to as the “curse of computability,” becomes a “blessing” to over-parameterization here, as no
extra samples are required if this large but essential sample size condition is met to guarantee
that the computationally feasible estimator is achievable!

(New technical tools). We introduce a series of technical tools for theory development in
this paper, including a tangent space projection error bound, a tensor decomposition per-
turbation bound under the over-parameterized setting, and a simple formula for computing
expected values of Hermite polynomials on correlated multivariate Gaussian random vari-
ables while developing low-degree polynomials lower bounds. See Section 6 for a summary
of our technical contributions.

(Implementation details and numerical experiments). Finally, we discuss the implementa-
tion details of RGD and RGN for tensor-on-tensor regression in Section 7. We specifically
find a reduction from computing RGN update to solving (m + 1) separate least squares.
This reduction yields a fast implementation of RGN. We conduct numerical studies to show
the convergence and required sample size of our proposed algorithms match our theoretical
findings. We also compare the numerical performance of our algorithms with existing ones.
The results show the proposed algorithms have significant advantages in both rank correctly-
specified and overspecified tensor-on-tensor regression.

1.3. Related prior work. This work is related to several lines of research on over-
parameterization, Riemannian optimization and computational barriers in tensor problems.

First, over-parameterization has attracted much attention in modern data science due to
the great success of deep learning. The concept of over-parameterization generally refers to
the scenario when learning problems include more model parameters than necessary. Recent
studies show that over-parameterization brings both computational and statistical benefits
when solving complex problems (Soltanolkotabi, Javanmard and Lee (2019), Bartlett et al.
(2020), Belkin et al. (2019)). There is a vast amount of literature on studying the role of over-
parameterization to demystify deep learning (Bartlett, Montanari and Rakhlin (2021), Belkin
(2021)). This paper focuses on the effect of over-parameterization specifically in the rank-
constrained tensor-on-tensor regression problem. In particular, we consider a special type of
over-parameterization where the input rank to the model is overspecified.

Second, Riemannian manifold optimization methods have been powerful in solving opti-
mization problems with geometric constraints (Absil, Mahony and Sepulchre (2008)). Many
progress in this topic were made for the low-rank matrix estimation (Keshavan, Montanari
and Oh (2010), Boumal and Absil (2011), Wei et al. (2016), Meyer, Bonnabel and Sepul-
chre (2011), Mishra et al. (2014), Vandereycken (2013), Huang and Hand (2018), Luo et al.
(2024), Hou, Li and Zhang (2020)). Moreover, Riemannian manifold optimization methods
under various Riemannian geometries have been explored in many tensor problems, such as
tensor decomposition (Eldén and Savas (2009), Savas and Lim (2010), Ishteva et al. (2009),
Breiding and Vannieuwenhoven (2018)), scalar-on-tensor regression (Kressner, Steinlechner
and Vandereycken (2016), Luo and Zhang (2023)), tensor completion (Kasai and Mishra
(2016), Dong et al. (2022), Kressner, Steinlechner and Vandereycken (2014), Heidel and
Schulz (2018), Xia and Yuan (2019), Steinlechner (2016), Wang, Chen and Wei (2023), Cai,
Li and Xia (2022)), and robust tensor PCA (Cai, Li and Xia (2023)).
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Third, many high-dimensional tensor problems exhibit the statistical-computational gaps,
that is, the gap between different signal-to-noise ratio thresholds that make the prob-
lem information-theoretically solvable versus polynomial-time solvable. Rigorous evidence
for such gaps has been provided to tensor completion (Barak and Moitra (2016)), tensor
PCA/SVD (Zhang and Xia (2018), Brennan and Bresler (2020), Dudeja and Hsu (2021),
Choo and d’Orsi (2021)), tensor clustering (Luo and Zhang (2022), Han et al. (2022)) and
tensor-on-tensor association detection (Diakonikolas et al. (2023)). This work provides a rig-
orous piece of evidence for the statistical-computational gap in scalar-on-tensor regression
under the low-degree polynomials framework.

Finally, a special case of our setting, over-parameterized matrix trace regression, has
attracted much attention recently. The results along this line include two categories: (1)
r ≥ r∗ and n = O((p1 + p2)r): the problem is over-parameterized and identifiable Zhuo
et al. (2024), Zhang, Fattahi and Zhang (2021), Ding et al. (2021a); (2) r ≥ r∗ and n =
O((p1 + p2)r

∗): as the sample size is smaller than the number of free parameters in the
model, there can be infinitely many solutions to (3) and the model is unidentifiable. One im-
portant finding in Category (2) is that with small magnitude initialization, vanilla gradient
descent under the factorization formulation tends to implicitly bias towards a low-rank solu-
tion (Gunasekar et al. (2017), Li, Ma and Zhang (2018), Li, Luo and Lyu (2020), Fan, Yang
and Yu (2023), Stöger and Soltanolkotabi (2021), Ma and Fattahi (2023), Jiang, Chen and
Ding (2023)). Our work provides a unified simple Riemannian optimization framework to
solve the general tensor-on-tensor regression problem under the setting in Category (1). The
implication of our results in over-parameterized matrix trace regression is further discussed
in Remarks 6 and 8.

1.4. Organization of the paper. After a brief introduction of notation and preliminaries
in Section 1.5, we introduce our main algorithms, Riemannian gradient descent and Rieman-
nian Gauss–Newton in Section 2. The convergence results of RGD and RGN in the general
tensor-on-tensor regression and applications in specific examples are discussed in Sections 3
and 4, respectively. Computational limits are discussed in Section 5. Technical contributions
are summarized in Section 6. Implementation details of RGD/RGN and numerical studies
are presented in Sections 7 and 8, respectively. Conclusion and future work are given in
Section 9. Additional algorithms, numerical studies and all technical proofs are collected in
Supplements 1–10.

1.5. Notation and preliminaries. Let [r] = {1, . . . , r} for any positive integer r . Low-
ercase letters (e.g., a), lowercase boldface letters (e.g., u), uppercase boldface letters (e.g.,
U) and boldface calligraphic letters (e.g., A) denote scalars, vectors, matrices and order-
3-or-higher tensors, respectively. We use bracket subscripts to denote subvectors, subma-
trices and subtensors. For any matrix D ∈ R

p1×p2 , let σk(D) be the kth largest singular
value of D. We also denote SVDr(D) = [u1 · · ·ur ] and QR(D) as the subspace composed
of the leading r left singular vectors and the Q part of the QR decomposition of D, re-
spectively. Ir represents the r-by-r identity matrix. Let Op,r = {U ∈ R

p×r : U
U = Ir}
and for any U ∈ Op,r , denote PU = UU
. The matricization operation Mk(·) unfolds
an order-d tensor along mode k to a matrix, say A ∈ R

p1×···×pd to Mk(A) ∈ R
pk×p−k ,

where p−k = ∏
j �=k pj and its detailed definition is provided in Supplement 2. The Frobe-

nius norm of tensor A is defined as ‖A‖F = (
∑

i1,...,id
A2

[i1,...,id ])
1/2. The Tucker rank of

an order-d tensor A, denoted by Tucrank(A), is defined as a d-tuple r := (r1, . . . , rd),
where rk = rank(Mk(A)). Any Tucker rank-(r1, . . . , rd) tensor A admits the following
Tucker decomposition (Tucker (1966)): A = �S;U1, . . . ,Ud� := S×1 U1 ×· · ·×d Ud , where
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S ∈ R
r1×···×rd is the core tensor and Uk = SVDrk (Mk(A)) is the mode-k top rk left sin-

gular vectors. Here, the mode-k product of A ∈ R
p1×···×pd with a matrix B ∈ R

rk×pk , de-
noted by A ×k B, is a p1 × · · · × pk−1 × rk × pk+1 × · · · × pd -dimensional tensor, and
its definition is provided in Supplement 2. The following abbreviations are used to denote
the tensor-matrix product along multiple modes: A ×d

k=1 Uk := A ×1 U1 × · · · ×d Ud ;
A ×l �=k Ul := A ×1 U1 × · · · ×k−1 Uk−1 ×k+1 Uk+1 × · · · ×d Ud . For any order-d tensor
Z ∈ R

p1×···×pd and a d-tuple r = (r1, . . . , rd), let Zmax(r) := Z ×d
k=1 PÛk

be the best Tucker
rank r approximation of Z in terms of Frobenius norm, where (Û1, . . . , Ûd) is the solution to
arg maxUk∈Opk,rk

,k=1,...,d ‖Z×d
k=1 PUk

‖F (De Lathauwer, De Moor and Vandewalle ((2000b),
Theorem 4.2)). Throughout the paper, let c(d) be a constant that depends on d only, whose
actual value varies from line to line; c1(m), c2(d,m) are noted similarly. Finally, we denote
A

∗ as the adjoint of the linear operator A .

2. Riemannian optimization for tensor-on-tensor regression. Riemannian optimiza-
tion concerns optimizing a real-valued function f whose domain is a Riemannian manifold
M (Absil, Mahony and Sepulchre (2008)). The continuous optimization on the Riemannian
manifold often requires calculations on the tangent space due to its common nonlinearity. A
typical procedure of a Riemannian optimization method includes three steps per iteration:
1. find the tangent space of M; 2. update the point on the tangent space; 3. map the point
from the tangent space back to the manifold, that is, retraction. A pictorial illustration for
the three steps in Riemannian optimization is presented in Figure 2. The readers are also re-
ferred to Absil, Mahony and Sepulchre (2008) and Boumal (2023) for more discussions on
Riemannian optimization.

2.1. Geometry of low Tucker rank tensor manifolds. Denote the collection of (p1, . . . ,

pd ,pd+1, . . . , pd+m)-dimensional tensors of Tucker rank r := (r1, . . . , rd , rd+1, . . . , rd+m)

by Mr = {X ∈R
p1×···×pd+m,Tucrank(X ) = r}. Then Mr forms a {∏d+m

j=1 rj +∑d+m
j=1 rj (pj −

rj )}-dimensional smooth submanifold embedded in R
p1×···×pd+m (Uschmajew and Vander-

eycken (2013)). Recall in the general over-parameterized scenario, r may be different from
r∗, the actual rank of the tensor of interest. Suppose X ∈ Mr has Tucker decomposition
�S;U1, . . . ,Ud ,Ud+1, . . . ,Ud+m�. Define Vk = QR(Mk(S)
), which corresponds to the
row space of Mk(S), and for k = 1, . . . , d + m, define

(4) Wk := (Ud+m ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1)Vk ∈ Op−k,rk ,

where p−k = ∏d+m
j=1,j �=k pj . By the tensor matricization formula provided in Supplement 2,

Uk , Wk correspond to the subspaces of the column and row spans of Mk(X ), respectively.
Koch and Lubich (2010) provided the explicit formulas for the tangent space of Mr at X ,
denoted by TXMr (see Supplement 2 for the expression). We equip Mr with the Riemannian
metric induced by the natural Euclidean inner product 〈·, ·〉. Under this metric, the following

FIG. 2. Pictorial illustration of steps in Riemannian optimization.
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operator PTX projects any tensor Z ∈ R
p1×···×pd+m onto the tangent space TXMr,

(5) PTX (Z) := Z ×d+m
k=1 PUk

+
d+m∑

k=1

Tk

(
PUk⊥Mk(Z)PWk

)
,

where Tk(·) denotes the mode-k tensorization, that is, the reverse operator of Mk(·).

2.2. Riemannian gradient descent and Gauss–Newton for tensor-on-tensor regression.
The Riemannian gradient of a smooth function f : Mr → R at X ∈ Mr is defined as
the unique tangent vector gradf (X ) ∈ TXMr such that 〈gradf (X ),Z〉 = Df (X )[Z],
∀Z ∈ TXMr, where Df (X )[Z] denotes the directional derivative of f at point X along
direction Z . We can calculate the Riemannian gradient for the tensor-on-tensor regression as
follows.

LEMMA 1 (Riemannian gradient). For f (X ) in (3), gradf (X ) = PTX (A ∗(A (X ) −
Y)), where A

∗ is the adjoint operator of A .

By Lemma 1, a natural idea of RGD update is X t+0.5 = X t − αtPT
X t A

∗(A (X t ) −Y),
where the stepsize αt is chosen as the local steepest descent direction with a closed form as

αt := arg min
α∈R

1

2

∥∥Y − A
(
X t − αPT

X t A
∗(

A
(
X t ) −Y

))∥∥2
F

=
‖PT

X t (A
∗(A (X t ) −Y))‖2

F

‖A PT
X t (A

∗(A (X t ) −Y))‖2
F

.

(6)

As illustrated in Figure 2, the updated iterate X t+0.5 may not be on the Riemannian manifold
Mr. We can apply two types of computationally efficient retractions to bring X t+0.5 back
to Mr: truncated high-order singular value decomposition (T-HOSVD) (De Lathauwer, De
Moor and Vandewalle (2000a)) or sequentially truncated high-order singular value decompo-
sition (ST-HOSVD) (Vannieuwenhoven, Vandebril and Meerbergen (2012)). The pseudocode
of T-HOSVD and ST-HOSVD are given in Algorithms 1 and 2 in Supplement 1, respectively.

Moreover, the first-order methods, such as RGD described above, can suffer from slow
convergence and low precision in large-scale settings. A natural remedy is to apply second-
order methods, such as the Newton algorithm. For tensor-on-tensor regression, the Rieman-
nian Newton relies on the construction and inversion of Riemannian Hessian, which is ana-
lytically difficult to develop and computationally intensive. Alternatively, the following Rie-
mannian Gauss–Newton update is a nice approximation of the Riemannian Newton for the
nonlinear least squares objective (Absil, Mahony and Sepulchre ((2008), Section 8.4.1)):

(7) −gradf
(
X t ) = PT

X t

(
A

∗(
A (η)

))
where η ∈ TX tMr.

Gauss–Newton has a similar per-iteration complexity as first-order methods but requires
much fewer iterations to converge in several other tensor decomposition problems (Sor-
ber, Van Barel and De Lathauwer (2013)). The direct calculation of (7) is still complicated.
Surprisingly, we can show the Gauss–Newton equation (7) for tensor-on-tenor regression is
equivalent to the following least squares equation.

LEMMA 2. For f (X ) in (3), suppose the current iterate is X t . Then the Riemannian
Gauss–Newton update is ηRGN = arg minη∈T

X t Mr

1
2‖Y − A PT

X t (X
t + η)‖2

F.
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Algorithm 1 Riemannian gradient descent/Gauss–Newton for (over-parameterized) tensor-
on-tensor regression

1: Input: Y ∈ R
n×pd+1×···×pd+m,A1, . . . , An ∈ R

p1×···×pd , tmax, input Tucker rank r and
initialization X 0 of Tucker rank r.

2: for t = 0,1, . . . , tmax − 1 do

3: (RGD Update) Compute X t+0.5 = X t −αtPT
X t A

∗(A (X t )−Y), where αt is given
in (6).

(RGN Update) Solve the least squares problem

(8) X t+0.5 = arg min
X∈T

X tMr

1

2

∥∥Y − A PT
X t (X )

∥∥2
2.

4: Update X t+1 = Hr(X
t+0.5). Here Hr(·) is the retraction map onto Mr, for example,

ST-HOSVD and T-HOSVD.
5: end for

6: Output: X tmax .

As we will discuss in Section 7 that under some mild condition on A , the least squares
problem in (8) has a unique solution and can be implemented and solved efficiently via solv-
ing (m + 1) separate least squares based on Lemma 2. The pseudocode of the overall RGD
and RGN procedures are summarized in Algorithm 1.

REMARK 1 (Riemannian optimization for bounded rank constraint). The classic RGD/
RGN methods are designed to optimize on smooth manifolds. This corresponds to minimiz-
ing the objective function in (3) with the fixed Tucker rank constraint Tucrank(X ) = r since
Mr is a smooth manifold. Note that {X : Tucrank(X ) ≤ r} is not a smooth manifold while
such bounded rank constraint is essential to handle over-parameterization, the classic the-
ory no longer applies. Regardless, we propose to continue using Algorithm 1 even with the
bounded rank constraint.

3. Theory of RGD/RGN in tensor-on-tensor regression. For technical convenience in
the convergence analysis of RGD and RGN, we first introduce the tensor restricted isometry
property (TRIP).

DEFINITION 1 (Tensor restricted isometry property (TRIP)). Let A : Rp1×···×pd+m →
R

n×pd+1×···×pd+m be a linear map. For a fixed (d + m)-tuple r = (r1, . . . , rd+m) with 1 ≤
rk ≤ pk , define the r-tensor restricted isometry constant to be the smallest number Rr such
that (1 − Rr)‖Z‖2

F ≤ ‖A (Z)‖2
F ≤ (1 + Rr)‖Z‖2

F holds for all Z of Tucker rank at most r.
If 0 ≤ Rr < 1, we say A satisfies r-tensor restricted isometry property (r-TRIP).

TRIP can be seen as a tensor generalization of the popular restricted isometry property
(RIP) (Candès and Plan (2011)). TRIP was used in various tensor inverse problems (Rauhut,
Schneider and Stojanac (2017)). The next Proposition 1 shows A satisfies TRIP with high
probability when A is generated from a sufficient number of sub-Gaussian measurements.

PROPOSITION 1 (TRIP under sub-Gaussian). Suppose A is defined as (2) and each entry

of Ai is independently drawn from mean zero variance 1/n sub-Gaussian distributions. There

exists universal constants C,c > 0 such that for any Tucker rank r = (r1, . . . , rd+m) and

0 ≤ Rr < 1, as long as n ≥ C(
∑d

i=1(pi − ri)ri + ∏d
i=1 ri) log(d)/R2

r , A satisfies the TRIP

with r-TRIP constant Rr with probability at least 1 − exp(−c(
∑d

i=1 pi)).
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Now, we are ready to present the convergence theories for RGD and RGN.

THEOREM 1 (Convergence of RGD). Assume the tensor rank of X ∗ is r∗ and the in-

put rank to Algorithm 1 is r ≥ r∗. Suppose A satisfies 2r-TRIP, and the initialization X 0

satisfies ‖X 0 − X ∗‖F ≤ R2r
(d+m)(1+R2r+r∗−R2r)

λ, where λ := mink=1,...,d+m σr∗
k
(Mk(X

∗)) is

the minimum of least singular values at each matricization of X ∗. In addition, we assume

R2r ≤ 1
8(

√
d+m+1)+1

and λ ≥ 2(1+R2r+r∗−R2r)(
√

d+m+1)(d+m)

R2r(1−R2r)
‖(A ∗(E))max(2r)‖F. Then for all

t ≥ 0,
∥∥X t −X ∗∥∥

F

≤ 2−t
∥∥X 0 −X ∗∥∥

F + 2(
√

d + m + 1)

1 − R2r

∥∥(
A

∗(E)
)
max(2r)

∥∥
F.

(9)

Recall (A ∗(E))max(2r) denotes the best Tucker rank 2r approximation of the tensor A
∗(E).

Especially if E = 0, {X t } converges linearly to X ∗:
∥∥X t −X ∗∥∥

F ≤ 2−t
∥∥X 0 −X ∗∥∥

F ∀t ≥ 0.

THEOREM 2 (Convergence of RGN). Assume the tensor rank of X ∗ is r∗ and the input

rank to Algorithm 1 is r ≥ r∗. Suppose A satisfies 2r-TRIP and the initialization X 0 satisfies

‖X 0 −X ∗‖F ≤ 1−R2r

4(d+m)(
√

d+m+1)(1+R2r+r∗−R2r)
λ. Then for all t ≥ 0,

∥∥X t −X ∗∥∥
F

≤ 2−2t ∥∥X 0 −X ∗∥∥
F + 2(

√
d + m + 1)

1 − R2r

∥∥(
A

∗(E)
)
max(2r)

∥∥
F.

Especially if E = 0, {X t } converges quadratically to X ∗:
∥∥X t −X ∗∥∥

F ≤ 2−2t ∥∥X 0 −X ∗∥∥
F ∀t ≥ 0.

Theorems 1 and 2 show that with proper assumptions on A and initialization, iterates
of RGD and RGN converge linearly and quadratically to the ball of center X ∗ and radius
O(‖(A ∗(E))max(2r)‖F), respectively. If E = 0, that is, in the noiseless case, X t generated
by RGD/RGN converges linearly/quadratically to the exact X ∗. These results show the con-
vergence of RGD and RGN are both robust against rank over-parameterization. We note that
the error bound O(‖(A ∗(E))max(2r)‖F), which is achievable by RGD and RGN, depends on
the input rank r and will increase as r increases. This is confirmed by the simulation study
in Section 8.2, indicating that selecting an appropriate input rank r remains crucial for the
accuracy of the estimators.

One challenge in establishing Theorems 1 and 2 is to show the contraction of the iterates
in the rank overspecified scenario. Standard analysis will result in a condition which requires
λ′ := mink=1,...,d+m σrk (Mk(X

∗)) to be larger than some positive threshold. However, it can
never be satisfied since λ′ is zero in the rank overspecified scenario. Instead, we show via
a refined analysis that lower bounding λ is still enough. One such example is Lemma 3 in
Section 6, where we obtain a projection error bound proportional to λ rather than λ′ even in
the rank overspecified scenario.

REMARK 2 (General input rank and under-parameterization). Suppose r is a general
input rank (possibly under-parameterized, e.g., rk < r∗

k for some k), we can rewrite (1) into
Yi = 〈Ai,X

′〉∗ + E ′
i , where X ′ is the best rank r approximation of X ∗ and E ′

i = Ei +
〈Ai,X

∗ − X ′〉∗. Similar results to Theorems 1 and 2 hold if Ei is replaced by E ′
i . We have
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the following contraction error bounds for RGD and RGN for general input rank and under-
parameterized cases:

∥∥X t −X ′∥∥
F ≤ ‖X 0 −X ′‖F

2t
+ 2(

√
d + m + 1)

1 − R2r

∥∥(
A

∗(
E ′))

max(2r)

∥∥
F,

‖X t −X ′‖F ≤ ‖X 0 −X ′‖F

22t + 2(
√

d + m + 1)

1 − R2r

∥∥(
A

∗(
E ′))

max(2r)

∥∥
F.

REMARK 3 (Convergence guarantees under over-parameterized scenario compared with
literature). When E = 0, the convergent point X ∗ of RGD and RGN has Tucker rank r∗,
which falls out of the manifold Mr when r > r∗, that is, the over-parameterized scenario. Be-
cause of this, the standard convergence theory of RGD/RGN does not imply the convergence
results in Theorems 1 and 2 to our best knowledge. Especially in the low-rank matrix trace
regression setting, (Barber and Ha ((2018), Theorem 4.1)) established a local convergence
result of RGD with a bounded rank constraint for a general objective f satisfying restricted
strong convexity and smoothness. However, the local convergence radius implied by their
theory shrinks to 0 in our setting and does not directly apply. Also see more discussions
on the convergence of various Riemannian optimization algorithms with bounded rank con-
straints in Schneider and Uschmajew (2015), Levin, Kileel and Boumal (2023), Olikier and
Absil (2023).

REMARK 4 (Conditions). We impose the mild condition λ ≥ �(‖(A ∗(E))max(2r)‖F)

while analyzing RGD. Since the forthcoming Theorem 4 shows �(‖(A ∗(E))max(2r)‖F) is
the essential statistical error, λ ≤ O(‖(A ∗(E))max(2r)‖F) can be a trivial case from a statis-
tical perspective because the initialization X 0 is already optimal and no further refinement
is needed in such the scenario. Another key condition on initialization will be discussed in
Section 4.

Next, we show in two ways that the statistical error O(‖(A ∗(E))max(2r)‖F) achieved by
RGD and RGN is essential. First, in Theorem 3, we show the estimators with small loss, such
as the global minimizer of the loss function (3), achieve the same error rate.

THEOREM 3 (Upper bound for estimators with small loss and global minimizers). Sup-

pose A satisfies 2r-TRIP with TRIP constant R2r (Definition 1). Let X̂ be any estimator such

that Tucrank(X̂ ) ≤ r and ‖Y − A (X̂ )‖2
F ≤ ‖Y − A (X ∗)‖2

F, that is, the loss function value

of X̂ is no bigger than X ∗. Then ‖X̂ −X ∗‖F ≤ 2
1−R2r

‖(A ∗(E))max(2r)‖F.

Second, we focus on the Gaussian ensemble design, which has been widely considered
as a benchmark-setting in the literature on compressed sensing, and matrix/tensor regres-
sion (Candès and Plan (2011), Raskutti, Yuan and Chen (2019)). In Theorem 4, we establish
the minimax estimation error rate under Gaussian ensemble design, which demonstrates the
statistical optimality of RGD and RGN when d and m are constants.

DEFINITION 2 (Tensor-on-tensor regression under gaussian ensemble design). We say
the tensor-on-tensor regression (1) is generated from the Gaussian ensemble design if
{Ai}ni=1 and {Ei}ni=1 are generated independently, Ai has i.i.d. N(0,1/n) entries, and Ei

has i.i.d. N(0, σ 2/n) entries.

THEOREM 4 (Error bound under Gaussian ensemble and minimax risk upper and lower
bounds). Consider the tensor-on-tensor regression problem (1) under Gaussian ensemble

design (Definition 2) and let df = ∑d+m
i=1 ri(pi − ri) + ∏d+m

i=1 ri .
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• (Upper bound) When n ≥ C(
∑d

i=1(pi − ri)ri + ∏d
i=1 ri) log(d) for some large posi-

tive constant C, with probability at least 1 − exp(−c1(d,m)p), ‖(A ∗(E))max(2r)‖F ≤
c2(d,m)σ

√
df
n

for some c1(d,m), c2(d,m) > 0, where p := minj pj . Furthermore, for

X̂ in Theorem 3, we have E‖X̂ −X‖F ≤ C2(d,m)σ

√
df
n

.
• (Lower bound) Consider the parameter space of all p1 × · · · × pd+m-dimensional tensors

of Tucker rank at most r = (r1, . . . , rd+m):

Fp,r :=
{
X ∈ R

p1×···×pd+m,Tucrank(X ) ≤ r
}
.

Suppose mink rk ≥ C′ for some absolute constant C′. Then there exists a absolute constant

c > 0 that does not depend on r and p such that infX̂ supX∈Fp,r
E‖X̂ −X‖F ≥ cσ

√
df
n

.

4. Applications, initialization and guarantees in specific scenarios. The convergence
theory in Theorems 1 and 2 rely on a good initialization. As it is challenging to develop a
universal initialization algorithm that handles all settings of tensor-on-tensor regression with
provable guarantees, we focus on the four most representative cases appearing in applications
and literature, scalar-on-tensor regression, tensor-on-vector regression, matrix trace regres-

sion and rank-1 tensor-on-tensor regression to show various spectral methods yield adequate
initializations.

4.1. Scalar-on-tensor regression. The scalar-on-tensor regression corresponds to the
general tensor-on-tensor regression model (1) with m = 0. It can be written as

(10) y = A
(
X ∗)

+ ε, or yi =
〈
Ai,X

∗〉
+ εi, i ∈ [n].

Here, y ∈ R
n are observations, ε ∈ R

n are unknown noise, and X ∗ ∈ R
p1×···×pd is an order-d

Tucker rank r∗ tensor that links response yi to tensor covariates Ai , which is the parameter
of interest. A (X ∗) = (〈A1,X

∗〉, . . . , 〈An,X
∗〉)
. We propose the following Algorithm 2

on initialization.

THEOREM 5 (Initialization and overall guarantees in scalar-on-tensor regression). Con-

sider the over-parameterized scalar-on-tensor regression under Gaussian ensemble design.

Denote df = ∑d
i=1(pi − ri)ri + ∏d

i=1 ri and suppose n ≥ c(d)(
(‖X ∗‖2

F+σ 2)

λ2 ((
∏d

i=1 pi)
1/2 +

df )) for some constant c(d). Then with probability at least 1 − p−C for some C > 0:

• X 0 returned from Algorithm 2 satisfies the initialization conditions in Theorems 1 and 2;

• consider RGD and RGN initialized with X 0, then as long as tmax ≥ log(
λ
√

n/df
c1(d)σ

) ∨ 0 for

RGD or tmax ≥ log log(
λ
√

n/df
c2(d)σ

) ∨ 0 for RGN, we have the output of RGD or RGN satisfies

‖X tmax −X ∗‖F ≤ c3(d)σ

√
df
n

.

Algorithm 2 Initialization for (over-parameterized) scalar-on-tensor regression

1: Input: yi ∈ R, Ai ∈R
p1×···×pd for i = 1, . . . , n and input Tucker rank r = (r1, . . . , rd).

2: Calculate Ũ0
k = SVDrk (Mk(A

∗(y))), k = 1, . . . , d .
3: For k = 1 to d , apply one-iteration HOOI, that is, calculate

Ũ1
k = SVDrk

(
Mk

(
A

∗(y) ×j<k

(
Ũ0

j

)
 ×j>k

(
Ũ0

j

)
))
.

Recall SVDr(·) returns the matrix composed of the leading r left singular vectors of
matrix “·".

4: Output: X 0 = A
∗(y) ×d

k=1 Ũ1
k(Ũ

1
k)


.
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In establishing Theorem 5, we introduce a new perturbation bound for over-parameterized
tensor decomposition. See Theorem 10 in Section 6 for more details. Compared with RGD,

RGN only requires a double logarithmic number of iterations to achieve the same O(σ

√
df
n

)

error rate.

REMARK 5 (Sample complexity for over-parameterized scalar-on-tensor regression).
Suppose ‖X ∗‖2

F ≥ Cσ 2 for some C > 0, κ := λ̄/λ = O(1) where λ̄ = maxk=1,...,d σ1 ×
(Mk(X

∗)) and p1 = p2 = · · · = p, r1 = r2 = · · · = r , r∗
1 = r∗

2 . . . = r∗, then the overall
sample complexity for RGD/RGN in over-parameterized scalar-on-tensor regression with
spectral initialization is �(r∗(pd/2 + pr + rd)). Compared to the sample complexity re-
quired for the global minimizer (see Theorem 3) in this example, that is, �(pr + rd) proved
in Theorem 4, there is a significant gap between what can be achieved by the inefficient
global minimizer and efficient RGD/RGN algorithms. Rigorous evidence for this statistical-
computational gap will be provided in Section 5.

4.2. Tensor-on-vector regression. In this section, we consider the tensor-on-vector re-
gression model:

(11) Yi =X ∗ ×1 a

i + Ei for i = 1, . . . , n,

where Yi,Ei ∈ R
p2×···×pm+1 are the observation and noise, X ∗ ∈ R

p1×···×pm+1 is the param-
eter tensor of interest with Tucker rank r∗ and ai ∈ R

p1 is the covariate vector. We can also
write the model compactly as Y = X ∗ ×1 A + E where Y,E ∈ R

n×···×pm+1 , Y[i,:,...,:] = Yi ,
E[i,:,...,:] = Ei and A = [a1, . . . ,an]
 ∈ R

n×p1 is the collection of covariate vectors. We pro-
pose the following Algorithm 3 for initialization and its guarantee is provided in Theorem 6.

THEOREM 6 (Initialization and overall guarantees in tensor-on-vector regression). Con-

sider the over-parameterized tensor-on-vector regression under Gaussian ensemble design.
Denote df = ∑m+1

i=1 (pi − ri)ri + ∏m+1
i=1 ri . Suppose

n ≥ c(m)

(((
m+1∏

i=1

pi

)1/2

+ df

)
σ 2/λ2 + p1

)

for some constant c(m). Then with probability at least 1 − exp(−cp) for some c > 0:

• X 0 returned from Algorithm 3 satisfies the initialization conditions in Theorems 1 and

2;

Algorithm 3 Initialization for (over-parameterized) tensor-on-vector regression

1: Input: Yi ∈ R
p2×···×pm+1 , ai ∈ R

p1 for i = 1, . . . , n and input Tucker rank r =
(r1, . . . , rm+1).

2: Compute the QR decomposition of A and denote it by QARA.
3: Calculate Ũ0

k = SVDrk (Mk(Y ×1 Q

A)), k = 1, . . . ,m + 1.

4: For k = 1 to m + 1, apply one-iteration HOOI, that is, calculate

Ũ1
k = SVDrk

(
Mk

((
Y ×1 Q


A

)
×j<k

(
Ũ0

j

)
 ×j>k

(
Ũ0

j

)
))
.

5: Compute �X 0 = (Y ×1 Q

A) ×m+1

k=1 Ũ1
k(Ũ

1
k)


.
6: Return X 0 = �X 0 ×1 R−1

A .
7: Output: X 0.



TENSOR-ON-TENSOR REGRESSION 2597

• moreover, consider RGD and RGN initialized with X 0, then as long as tmax ≥
log(

λ
√

n/df
c1(m)σ

) ∨ 0 for RGD or tmax ≥ log log(
λ
√

n/df
c2(m)σ

) ∨ 0 for RGN, we have the output

of RGD or RGN satisfies

∥∥X tmax −X ∗∥∥
F ≤ c3(m)σ

√
df

n
.

4.3. Matrix trace regression. In this model, we observe

(12) yi =
〈
Ai,X∗〉

+ εi, i = 1, . . . , n; or y = A
(
X∗)

+ ε,

where y,ε ∈R
n are observations and unknown noise and X∗ ∈R

p1×p2 is a rank r∗ parameter
matrix of interest.

In matrix trace regression, we can take the retraction map Hr in RGD and RGN as the
best rank r matrix projection operator: Pr(B) = U[:,1:r]�[1:r,1:r]V


[:,1:r], where B = U�V
 is
the SVD. Different from the low-rank projection for tensor of order 3 or higher, Pr can be
computed efficiently by truncated SVD. Moreover, suppose Xt has economic SVD Ut

�
tVt
,

then the projection of Z ∈R
p1×p2 onto the tangent space TXtMr can be written succinctly as

PTXt (Z) = PUt ZPVt + PUt
⊥

ZPVt + PUt ZPVt
⊥

.
We have the following corollary on the guarantees of RGD and RGN in over-parameterized

matrix trace regression.

COROLLARY 1 (Convergence of RGD/RGN in matrix trace regression). Consider the

(over-parameterized) matrix trace regression model in (12) with r ≥ r∗. Let Hr be the rank

r truncated SVD. Suppose A satisfies 2r-RIP.
(RGD) Suppose the initialization X0 satisfies ‖X0 − X∗‖F ≤ R2r

(1+R2r+r∗−R2r )
σr∗(X∗). In

addition, we assume R2r ≤ 1
17 and σr∗(X∗) ≥ 4(1+R2r+r∗−R2r )

R2r (1−R2r )
‖(A ∗(ε))max(2r)‖F. Then {Xt }

generated by RGD satisfy for all t ≥ 0,

∥∥Xt − X∗∥∥
F ≤ 2−t

∥∥X0 − X∗∥∥
F + 4

1 − R2r

∥∥(
A

∗(ε)
)
max(2r)

∥∥
F.

(RGN) If the initialization X0 satisfies ‖X0 − X∗‖F ≤ 1−R2r
8(1+R2r+r∗−R2r )

σr∗(X∗). Then {Xt }
generated by RGN satisfy for all t ≥ 0,

∥∥Xt − X∗∥∥
F ≤ 2−2t ∥∥X0 − X∗∥∥

F + 4

1 − R2r

∥∥(
A

∗(ε)
)
max(2r)

∥∥
F.

Especially if ε = 0, ‖Xt −X∗‖F ≤ 2−t‖X0 −X∗‖F for RGD and ‖Xt −X∗‖F ≤ 2−2t ‖X0 −
X∗‖F for RGN.

An efficient initialization for the matrix trace regression is X0 = Pr(A
∗(y)). The guaran-

tee of X0 and overall performance of RGD and RGN in matrix trace regression are given in
Theorem 7.

THEOREM 7 (Initialization and overall guarantees in over-parameterized matrix trace re-
gression). Consider the over-parameterized matrix trace regression under Gaussian ensem-

ble design. Denote df = (p1 + p2 − r)r and suppose n ≥ C(σ 2+‖X∗‖2
F)

σ 2
r∗ (X∗)

df for some C > 0.

Then with probability at least 1 − exp(−cp):
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• X0 = Pr(A
∗(y)) satisfies the initialization conditions in Corollary 1;

• moreover, consider RGD and RGN initialized with X0, then as long as tmax ≥ log(
σr∗ (X∗)

c1σ
×√

n
df

)∨ 0 for RGD or tmax ≥ log log(
σr∗ (X∗)

c2σ

√
n
df

)∨ 0 for RGN, we have the output of RGD

or RGN satisfies

∥∥X tmax −X ∗∥∥
F ≤ c3σ

√
df

n
.

REMARK 6 (Comparison with existing results on over-parameterized matrix trace regres-
sion). Recently, Zhuo et al. (2024), Zhang, Fattahi and Zhang (2021) studied the local con-
vergence of factorized gradient descent (GD) in the same setting as ours. In particular, Zhuo
et al. (2024) showed the convergence rate of the original factorized GD slows down to being
sublinear when the input rank r is greater than the actual rank r∗. Zhang, Fattahi and Zhang
(2021) proposed to overcome that by preconditioning the factorized GD; they showed that the
convergence rate of preconditioned factorized GD can be boosted back to linear for all r ≥ r∗.
However, the preconditioning step in Zhang, Fattahi and Zhang (2021) requires a carefully
chosen damping parameter in each iteration and such the choice depends on the unknown
noise variance. In contrast, our proposed RGD and RGN algorithms are easy to implement,
tuning-free and are unified in both rank correctly-specified and overspecified settings. In ad-
dition, in terms of the theoretical guarantees, the estimation error bound in Zhang, Fattahi
and Zhang (2021) is suboptimal in the noisy setting, while our bound is minimax optimal as
shown in Theorem 4. Finally, our result is also more general since our X∗ can be a general
rank r∗ matrix while existing works only focus on positive-semidefinite X∗. The readers are
referred to Table 1 for a summary of comparisons.

Meanwhile, to satisfy r-RIP, we need n = �((p1 + p2)r), so our theory is still based on
the “sample size (n) ≥ parameter degree of freedom (df )” scenario. A follow-up question is
whether the “implicit regularization” phenomenon discussed in the related prior work section
appears in Riemannian formulated matrix trace regression in the highly over-parameterized
regime, that is, “df > n,” as such phenomenon was recently observed in factorized gradient
descent (Gunasekar et al. (2017), Li, Ma and Zhang (2018)). In fact, the direct application
of RGD proposed in this paper does not enjoy implicit regularization in the highly over-
parameterized regime because when the input rank r is equal to p1 ∧ p2, RGD reduces to
gradient descent in the whole p1-by-p2 matrix parameter space, which does not enjoy im-
plicit regularization as it will converge to the minimum Frobenius norm solution in this over-
parameterized setting with near origin initialization (Gunasekar et al. (2017)). Our theory so
far does not cover the highly over-parameterized regime and further investigation is left as
future work.

4.4. Rank-1 tensor-on-tensor regression. For the general tensor-on-tensor regression
model, although E(A ∗(Y)) = X ∗ is low-rank, the noise structure of A

∗(Y) − X ∗ is com-
plicated that significantly deviates from the commonly studied additive tensor PCA model
in the literature. It is thus challenging to provide an optimal theoretical guarantee for the
initialization schemes T-HOSVD and ST-HOSVD in general.

In this section, we introduce a modified initialization scheme with theoretical guarantees
for general d and m when X ∗ is a rank-1 tensor and input rank is also 1. For simplicity, we
assume n is even. Suppose X ∗ = λu1 ◦ u2 ◦ · · · ◦ ud+m ∈ R

p1×···×pd+m , where “◦” denotes
the outer product of vectors. Then in this special setting, the model (1) can be rewritten as

(13) Yi = λ〈Ai,u1 ◦ · · · ◦ ud〉ud+1 ◦ · · · ◦ ud+m + Ei .
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Algorithm 4 Initialization for rank-1 tensor-on-tensor regression

1: Input: Yi ∈ R
pd+1×···×pd+m , Ai ∈ R

p1×···×pd for i = 1, . . . , n.
2: Calculate ũ0

k = SVD1(Mk−d+1(Y
1)), k = d + 1, . . . , d + m.

3: Compute y′
i = 〈Yi, ũ0

d+1 ◦ · · · ◦ ũ0
d+m〉 for i = n/2 + 1, . . . , n.

4: Calculate ũ0
k = SVD1(Mk(

∑n
i=n/2+1 y′

iAi)), k = 1, . . . , d .
5: For k = 1 to d + m, apply one-iteration HOOI, that is, calculate

ũ1
k = SVD1

(
Mk

(
A

∗(Y) ×j<k

(
ũ0

j

)
 ×j>k

(
ũ0

j

)
))
.

6: Output: X 0 = A
∗(Y) ×d+m

k=1 ũ1
k (̃u

1
k)


.

Let Y1 and Y2 collect Yis in the first and second halves of the data: Y1
[i,:,...,:] = Yi and

Y2
[i,:,...,:] = Yn/2+i for i = 1, . . . , n/2. We propose an initialization procedure in Algorithm 4

and provide its theoretical guarantee in Theorem 8. The high-level idea for Algorithm 4 is as
follows: we use the first half of the data Y1 to get estimates ûk for k = d + 1, . . . , d + m and
then use the second half of the data Y2 to estimate uk for k = 1, . . . , d after projecting the
data to the subspace spanned by {̂uk}d+m

k=d+1; finally, a one-iteration HOOI is applied to obtain
the initialization.

THEOREM 8 (Initialization and overall guarantees in rank-1 tensor-on-tensor regression).
Consider the rank-1 tensor-on-tensor regression under Gaussian ensemble design (13). De-

note df = ∑d+m
i=1 pi and suppose λ > C′σ for some C′ > 0. If n ≥ c(d,m)(

(λ2+σ 2)

λ2 ×
((

∏d
i=1 pi)

1/2 + p̄) + σ 4

λ4 (
∏d+m

i=d+1 pi + p̄)) for some constant c(d,m) depending on d and m

only, where p̄ = maxk=1,...,d+m pi . Then with probability at least 1 − p−C for some C > 0:

• X 0 returned from Algorithm 4 satisfies the initialization conditions in Theorems 1 and 2;

• Considering RGD and RGN initialized with X 0, as long as tmax ≥ log(
λ
√

n/df
c1(d,m)σ

) ∨ 0 for

RGD or tmax ≥ log log(
λ
√

n/df
c2(d,m)σ

)∨ 0 for RGN, we have the output of RGD or RGN satisfies

‖X tmax −X ∗‖F ≤ c3(d,m)σ

√
df
n

.

5. Computational limits. In this section, we provide rigorous evidence for the compu-
tational barrier in scalar-on-tensor regression via the low-degree polynomials method. With-

out loss of generality, we assume εi
i.i.d.∼ N(0, σ 2) with 0 ≤ σ 2 < 1, Ai

i.i.d.∼ N(0,1) and
‖X ∗‖F + σ 2 = 1 in establishing the computational lower bound for scalar-on-tensor regres-
sion (10) (see Supplement 7.1 for a proof). We also consider the setting p1 = · · · = pd = p

and r∗
1 = · · · = r∗

d = r∗ throughout this section.
We consider a canonical hypothesis testing formulation of scalar-on-tensor regression:

H0 :
{(

yi,vec(Ai)
)}n

i=1
i.i.d.∼ N(0, I1+pd ),

H1 :
{(

yi,vec(Ai)
)}n

i=1: X ∗ =
√

1 − σ 2x∗⊗d ,

x∗ =
(
x∗

1 , . . . , x∗
p

)
, x∗

j

i.i.d.∼ Uniform
({

p−1/2,−p−1/2})
;

for i ∈ [n],Ai
i.i.d.∼ N(0,1),yi is i.i.d. generated

via yi =
〈
X ∗,Ai

〉
+ εi, εi

i.i.d.∼ N
(
0, σ 2)

.

(14)
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Since we aim to develop a lower bound, the hardness result for (14) also implies the hardness
result for a bigger class in the sense of minimax. The idea of using low-degree polynomials
to predict the statistical-computational gaps is recently developed in a line of work (Hopkins
and Steurer (2017), Hopkins (2018)). In comparison to sum-of-squares (SOS) computational
lower bounds, the low-degree polynomials method is simpler to establish and appears to
always yield the same results for natural average-case hardness problems. Low-degree poly-
nomials computational hardness results have been provided to a number of problems, such
as the planted clique detection (Hopkins (2018), Barak et al. (2019)), community detection
in stochastic block model (Hopkins and Steurer (2017), Hopkins (2018)), the spiked ten-
sor model (Hopkins et al. (2017), Hopkins (2018), Kunisky, Wein and Bandeira (2022)), the
spiked Wishart model (Bandeira, Kunisky and Wein (2020)), sparse PCA (Ding et al. (2024)),
spiked Wigner model (Kunisky, Wein and Bandeira (2022)), clustering (Löffler, Wein and
Bandeira (2022), Davis, Diaz and Wang (2021), Lyu and Xia (2023)), planted vector recov-
ery (Mao and Wein (2021)), certifying RIP (Ding et al. (2021b)) and random k-SAT (Bresler
and Huang (2022)). It is gradually believed that the low-degree polynomials method is able
to capture the essence of what makes sum-of-squares algorithms succeed or fail (Hopkins
(2018), Kunisky, Wein and Bandeira (2022)). Our results on the computational hardness of
distinguishing between H0 and H1 in scalar-on-tensor regression based on low-degree poly-
nomials are given below.

THEOREM 9 (Low-degree hardness for ccalar-on-tensor regression). Consider the hy-

pothesis test (14). For any 0 < · < 1, if n ≤ (p/dD)d/2·

2(1−σ 2)
, we have

(15) sup

polynomial f :
deg(f )≤D

EH0f ({yi ,Ai}ni=1)=0,

VarH0f ({yi ,Ai}ni=1)=1

EH1f
(
{yi,Ai}ni=1

)
≤ ·

1 − ·
.

It has been widely conjectured in the literature that for a broad class of hypothesis testing
problems: H0 versus H1, there is a test with runtime nÕ(D) and type I + II error tending to
zero if and only if there is a successful D-simple statistic, that is, a polynomial f of degree at
most D, such that EH0f (X) = 0, VarH0(f

2(X)) = 1 and EH1f (X) → ∞ (Hopkins (2018),
Kunisky, Wein and Bandeira (2022)). Therefore, by setting D = C logp for any C > 0, The-
orem 9 provides firm evidence for the statistical-computational gap when n = O(pd/2−¸) for
any ε > 0. Compared to the sample size requirement in the upper bound mentioned in Re-
mark 5, the computational lower bound established in Theorem 9 is sharp when r∗ = O(1),
r ≤ √

p. Our Theorem 9 answers the question raised by Rauhut, Schneider and Stojanac
(2017) on the sample complexity requirement for efficient estimators in scalar-on-tensor re-
gression. We note the first computational hardness evidence for scalar-on-tensor regression
was provided recently in Diakonikolas et al. (2023) in the statistical query model. We com-
plement their results by providing a direct low-degree polynomials argument and figuring
out the explicit dependence of the sample complexity on the degrees tolerated in low-degree
polynomials. Finally, we also show in the Supplement 7.4, Proposition 3, that the hardness of
testing H0 versus H1 implies the hardness of estimating X ∗.

REMARK 7 (Proof ideas and comparison with existing arguments). Here we briefly dis-
cuss the proof idea of Theorem 9 and the key technical novelty therein. A detailed proof and
preliminaries of low-degree polynomials are provided in Supplement 7. First, it has been es-
tablished in Hopkins (2018), Kunisky, Wein and Bandeira (2022) that the left-hand side of
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(15) is equal to the norm of the truncated likelihood ratio under the null:

sup
polynomial f : deg(f )≤D
EH0f ({yi ,Ai}ni=1)=0,

VarH0f ({yi ,Ai}ni=1)=1

EH1f
(
{yi,Ai}ni=1

)
=

√√√√EH0

((
pH1({yi,Ai}ni=1)

pH0({yi,Ai}ni=1)

)≤D

− 1
)2

,
(16)

where pH0 and pH1 denote the likelihood under the null and alternative, respectively, and
f ≤D is the projection of a function f to the linear subspace of degree-D polynomials,
where the projection is orthonormal with respect to the inner product induced under H0.
A standard trick to bound the right-hand of (16) is to evaluate it separately under the or-
thogonal basis functions {fj }j≥1 under the null, and then the argument boils down to bound∑D

j=1(EH1fj ({yi,Ai}ni=1))
2, which is the sum of second moments of the orthogonal basis

functions under the alternative. See (36) in Supplement 7.2 for details. There have been many
successes in bounding

∑D
j=1(EH1fj ({yi,Ai}ni=1))

2 when the testing problem under H1 has
the “signal + noise” structure (Hopkins (2018), Kunisky, Wein and Bandeira (2022)). Such
a structure simplifies the analysis as the noise part and signal part are decoupled. In contrast,
there is little low-degree polynomial hardness evidence when the problem under H1 has cor-
related structures, such as the regression problem considered in this paper. One of our main
technical contributions in tackling this challenge is a formula for computing the expectation
of Hermite polynomials for correlated multivariate Gaussian random variables (Lemma 4 in
Section 6). With this key technical tool, we can bound

∑D
j=1(EH1fj ({yi,Ai}ni=1))

2 under the
H1 in (14) to prove the result. See Supplement 7.3 for the detailed calculation.

REMARK 8 (Comparing rank overspecification in matrix trace regression and scalar-on-
tensor regression). Suppose r∗ = O(1). In matrix trace regression, the sample size require-
ment of the “spectral initialization + local refinement” estimation scheme is O(pr), where r

is the input rank. Thus, the sample complexity increases linearly as the input rank r increases.
Meanwhile, the sample complexity of the scalar-on-tensor regression under the same estima-
tion scheme is O(pd/2) when r ≤ √

p (see Remark 5). Due to the computational lower bound
of scalar-on-tensor regression in Theorem 9, the sample complexity �(pd/2) is essential for
any polynomial-time algorithm to succeed under proper assumptions. Therefore, no extra
samples are needed for efficient estimators in moderate over-parameterized scalar-on-tensor
regression; while such a phenomenon does not exist in its matrix counterpart. See Figure 1
for a pictorial illustration of this distinction.

In addition to the “spectral initialization + local refinement”, random initialization + re-
finement by some simple local methods is another effective approach for solving matrix and
tensor problems. Such a “random initialization + local refinement” scheme has been shown
to be effective in over-parameterized matrix trace regression, where only O(pr∗2) samples
are needed (Li, Ma and Zhang (2018)). However, initialization with a small enough magni-
tude and the factorization formulation seem to be critical there. Due to the space limit, we
leave a thorough comparison of these two popular approaches for over-parameterized tensor-
on-tensor regression problems as future work.

6. Technical contributions. We develop several technical tools to establish the theoret-
ical results in this paper. We summarize them in this section.

Tackle over-parameterization in the convergence analysis. In the proof of Theorems 1 and
2, we first observe that for any k ∈ [d + m], the mode-k singular subspace of X t , denoted
by Ut

k , can be decomposed as Ut
k = [�Ut

k Ǔt
k] where �Ut

k is composed of the first r∗
k columns
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of Ut
k and Ǔt

k is composed of the rest of the (rk − r∗
k ) columns of Ut

k . Then the projection
operator onto Ut

k⊥, the orthogonal complement of Ut
k , satisfies

(17) PUt
k⊥

= Ipk
− PUt

k
= Ipk

− P�Ut
k
− P

Ǔt
k
= (Ipk

− P
Ǔt

k
)(Ipk

− P�Ut
k
).

This implies ‖(Ipk
−PUt

k
)Z‖ ≤ ‖(Ipk

−P�Ut
k
)Z‖ for any matrix Z with compatible dimension.

Based on this property, we can focus on the first r∗
k columns of Ut

k and establish the following
lemma, which plays a key role in establishing the convergence of RGD and RGN.

LEMMA 3 (An over-parameterized projection error bound). Suppose X t ∈ R
p1×···×pd+m

is an order-(d + m) Tucker rank r := (r1, . . . , rd+m) tensor and X ∗ ∈ R
p1×···×pd+m is an

order-(d + m) Tucker rank r∗ := (r∗
1 , . . . , r∗

d+m) tensor with r∗ ≤ r. Then we have

∥∥P(T
X t )⊥X

∗∥∥
F ≤ 2(d + m)‖X t −X ∗‖2

F

λ
,

where P(TX )⊥ := I − PTX is the orthogonal complement of the projector PTX (5) and λ :=
mink=1,...,d+m σr∗

k
(Mk(X

∗)). Especially in the matrix setting, that is, d + m = 2, a sharper

upper bound holds: ‖P(TXt )⊥X∗‖F ≤ 2‖Xt−X∗‖2
F

σr∗ (X∗) .

Initialization guarantees for scalar-on-tensor regression and tensor-on-vector regression.
A key step of Algorithms 2 and 3 is the one-iteration HOOI (OHOOI) algorithm (Algorithm 5
below). Such one loop update improves the dependence of r∗ in sample complexity compared
to the vanilla T-HOSVD based initialization in both scalar-on-tensor and tensor-on-vector re-
gressions. In the proofs of Theorems 5 and 6, we develop the following deterministic tensor
perturbation bound for OHOOI in the over-parameterized regime.

THEOREM 10 (Perturbation bound for over-parameterized tensor decomposition). Sup-

pose T̃ ,T ∈ R
p1×···×pd , T is of Tucker rank r∗ = (r∗

1 , . . . , r∗
d ) with Tucker decomposi-

tion B ×1 U1 × · · · ×d Ud , where B ∈ R
r∗
1 ×···×r∗

d and Uk ∈ Opk,r
∗
k

for k = 1, . . . , d . Let

Z = T̃ −T . Suppose the inputs of the OHOOI algorithm are T̃ , Tucker rank r = (r1, . . . , rd)

with r ≥ r∗ and initializations Ũ0
k ∈ Opk,rk for k = 1, . . . , d . If the initialization error satis-

fies maxk=1,...,d ‖Ũ0

k⊥Uk‖ ≤

√
2

2 . Then the output of Algorithm 5, T̂ , satisfies ‖T̂ − T ‖F ≤
(2

d+1
2 · d + 1)‖Zmax(r)‖F.

Low-degree polynomials evidence for problems with correlated structures. As we have men-
tioned in Remark 7, the main task in the proof of Theorem 9 is to compute the norm of the
truncated likelihood ratio. See Supplement 7.2 for a preliminary of low-degree polynomials
method. Since the data are i.i.d. Gaussian under the null hypothesis of (14), the main chal-
lenge boils down to computing the expected Hermite polynomials on correlated multivariate
Gaussian. In the following Lemma 4, we provide a simple formula for that. This lemma can be

Algorithm 5 One-iteration higher-order orthogonal iteration (OHOOI)

1: Input: T̃ ∈ R
p1×···×pd , initialization Ũ0

k ∈ Opk,rk , k = 1, . . . , d , input Tucker rank r =
(r1, . . . , rd).

2: For k = 1 to d , update Ũ1
k = SVDrk (Mk(T̃ ×j<k (Ũ0

j )

 ×j>k (Ũ0

j )

)).

3: Output: T̂ = T̃ ×d
k=1 PŨ1

k
.
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useful in establishing low-degree polynomial hardness evidence for other problems with com-
plex structures. Let {hk}k∈N be the normalized univariate Hermite polynomials hk = 1√

k!Hk

where {Hk}k∈N are univariate Hermite polynomials which are defined by the following recur-
rence: H0(x) = 1, H1(x) = x, Hk+1(x) = xHk(x) − kHk−1(x) for k ≥ 1.

LEMMA 4 (Expected Hermitian polynomials on correlated multivariate Gaussian). Sup-
pose w is a positive integer, Y ∈ R, X = (X1, . . . ,Xw) ∈ R

w are random variable and ran-
dom vectors, respectively, and (Y,X) ∼ N (0, [ 1 u


u Iw
]) with u = (u1, . . . , uw). For any integers

α,β1, . . . , βw ≥ 0, E(hα(Y )
∏w

j=1 hβj
(Xj )) =

√
α!∏w

j=1 βj ! · ∏w
j=1 u

βj

j 1(α = ∑w
j=1 βj ), where

1(·) in the indicator function.

7. Implementation details of RGD and RGN. In this section, we complement the im-
plementation details of RGD and RGN proposed in Section 2.2.

Implementation of RGD. First, by the definition of the adjoint map, A
∗ :

R
n×pd+1×···×pd+m → R

p1×···×pd+m satisfies 〈A (Z1),Z2〉 = 〈Z1,A
∗(Z2)〉 for any Z1 ∈

R
p1×···×pd+m , Z2 ∈R

n×pd+1×···×pd+m . Simple manipulation yields:

A
∗(Z2)[k1,...,kd ,j1,...,jm] =

n∑

i=1

Z2[i,j1,...,jm]Ai[k1,...,kd ].

Combining this with the formula of projection PT
X t in (5), we can calculate X t+0.5 = X t −

αtPT
X t A

∗(A (X t ) −Y) and implement the RGD update.

Implementation of RGN. To illustrate the implementation details of RGN, we first introduce
the following lemma.

LEMMA 5 (Spectrum of PT
X t A

∗
A PT

X t ). Suppose X t is of Tucker rank at most r and
the linear map A satisfies the 2r-TRIP. Then for any tensor Z ∈ TX tMr,

(18) (1 − R2r)‖Z‖F ≤
∥∥PT

X t A
∗
A PT

X t (Z)
∥∥

F ≤ (1 + R2r)‖Z‖F,

and

(19)
‖Z‖F

1 + R2r

≤
∥∥(

PT
X t A

∗
A PT

X t

)−1
(Z)

∥∥
F ≤ ‖Z‖F

1 − R2r

.

Lemma 5 shows the linear operator PT
X t A

∗
A PT

X t , which is a mapping from TX tMr to
itself, is provably invertible under TRIP condition, which further implies the least squares in
RGN update, X t+0.5 = arg minX∈T

X t Mr

1
2‖Y − A PT

X t (X )‖2
F, has a unique solution. In the

following Proposition 2, we show that the RGN update can be reduced to solving (m + 1)

least squares, which renders a fast implementation of RGN.

PROPOSITION 2 (Efficient implementation of RGN update). Suppose X t has Tucker de-

composition S t ×d+m
k=1 Ut

k . Then the RGN update, that is, X t+0.5 = arg minX∈T
X tMr

1
2‖Y −

A PT
X t (X )‖2

F, is equal to X t+0.5 = Bt ×d+m
k=1 Ut

k + ∑d+m
k=1 S t ×k Ut

k⊥Dt
k ×j �=k Ut

j , where:

• (Bt , {Dt
k}dk=1) is the solution of the following least squares with design matrix size

n
∏d+m

l=d+1 rl × (
∏d+m

k=1 rk + ∑d
k=1 rk(pk − rk)):

(
Bt ,

{
Dt

k

}d
k=1

)
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= arg min
B∈Rr1×···×rd+m ,

Dk∈R(pk−rk)×rk ,k=1,...,d

n∑

i=1

∥∥∥∥∥Yi ×m
l=1 Ut


l+d −
〈
Ai ×d

j=1 Ut

j ,B

〉
∗

−
d∑

k=1

〈
A×k Ut


k⊥ ×j �=k Ut

j ,S t ×k Dk

〉
∗

∥∥∥∥∥

2

F

= arg min
B∈Rr1×···×rd+m ,

Dk∈R(pk−rk)×rk ,k=1,...,d

n∑

i=1

∑

jl∈[rd+l],l=1,...,m

(
(
Yi ×m

l=1 Ut

l+d

)
[j1,...,jm] −

〈
Ai ×d

j=1 Ut

j ,B[:,...,:,j1,...,jm]

〉
−

−
d∑

k=1

〈
Ut


k⊥Mk

(
Ai ×j �=k Ut


j

)(
Mk

(
S t

[:,...,:,j1,...,jm]
))


,Dk

〉
)2

• for k = d + 1, . . . , d + m,

Dt

k = arg min

D

k ∈Rrk×(pk−rk)

∥∥Yki − AkiD


k

∥∥2
F,

where

Aki =
(
Mk−d

(〈
Ai ×d

j=1 Ut

j ,S t 〉

∗
))
 ∈ R

∏d+m
l=d+1,l �=k rl×rk ,

Yki =
(
Mk−d

(
Yi ×l �=k−d Ut


l+d

))

Ut

k⊥ ∈R

∏d+m
l=d+1,l �=k rl×(pk−rk).

In the tensor-on-vector regression (d = 1), the update of RGN has a cleaner and fully
closed expression as follows.

LEMMA 6 (RGN update in tensor-on-vector regression). Consider the RGN for tensor-
on-vector regression in (11). Suppose A
A is invertible where A is the collection of covari-
ate vectors and the iterate at iteration t is X t = �S t ;Ut

1,Ut
2, . . . ,Ut

m+1�. Then the solution
X t+0.5 in (8) has a closed-form expression:

X t+0.5 =Bt ×1+m
k=1 Ut

k +
1+m∑

k=1

S t ×k Ut
k⊥Dt

k ×j �=k Ut
j ,

where

M1
(
Bt ) =

(
Ut


1 A
AUt
1
)−1

Ut

1 A


·
(
M1(Y) ⊗2

j=(1+m) Ut
j

− AUt
1⊥Ut


1⊥
(
A
A

)−1
A
M1(Y)Wt

1Vt

1

)
;

M1
(
S t ×1 Ut

1⊥Dt
1 ×j �=1 Ut

j

)
= Ut

1⊥Ut

1⊥

(
A
A

)−1
A
M1(Y)Wt

1Wt

1 ;

and

Mk

(
S t ×k Ut

k⊥Dt
k ×j �=k Ut

j

)

= Ut
k⊥Ut


k⊥Mk

(
Y ×1 A
)

Wt
k

(
Vt


k

(
⊗i �=k,

i �=1
Iri ⊗

(
Ut


1 A
AUt
1
))

Vt
k

)−1
Wt


k

for k = 2, . . . , (1 + m). Recall Vt
k = QR(Mk(S

t )
) and Wt
k is defined in (4).
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8. Numerical studies. We conduct simulation studies to investigate the numerical per-
formance of RGD/RGN in tensor-on-tensor regression and to verify our theoretical findings.
In each simulation, we generate Ei with i.i.d. N(0, σ 2) entries, Ai with i.i.d. N(0,1) en-
tries, {Uk}d+m

k=1 uniformly at random from Op,r∗ for some to-be-specified p and r∗, and
S ∈ R

r∗×···×r∗
with i.i.d. N(0,1) entries; then we form X ∗ = S ×1 U1 × · · · ×d+m Ud+m

and generate Yi for i = 1, . . . , n. The input rank of RGD and RGN is set to be r = (r, . . . , r)

and r ≥ r∗. In the simulation study, we will experiment with various values of r . Additionally,
r can be chosen by a data-driven approach. See Supplement 3 for details. For simplicity, we
mainly focus on two examples: scalar-on-tensor regression and tensor-on-vector regression.
In the scalar-on-tensor regression, we consider d = 3; in the tensor-on-vector regression, we
consider m = 3. Spectral initializations discussed in Section 4 are applied in both examples.

Throughout the simulation studies, the error metric we consider is the relative root mean
squared error (Relative RMSE) ‖X t − X ∗‖F/‖X ∗‖F. The algorithm is terminated when it
reaches the maximum number of iterations tmax = 300 or the corresponding error metric is
less than 10−13. Unless otherwise noted, the reported results are based on averages of 100
simulations and on a computer with Intel Xeon E5-2680 2.5 GHz CPU.

8.1. Numerical performance of RGD and RGN. In this simulation, we examine the con-
vergence rate of RGD/RGN in over-parameterized scalar-on-tensor regression and tensor-on-
vector regression. We set σ ∈ {0,10−6,10−2}, p = 30, r∗ = 3 and r = 10. In scalar-on-tensor
regression, we choose n such that n

p3/2r∗ ∈ {8,10}; in tensor-on-vector regression, we let
nλ2

p2 ∈ {2,4} where λ = mink σr∗(Mk(S)). The convergence performance of RGD and RGN
in scalar-on-tensor regression and tensor-on-vector regression are presented in Figures 3 and
4, respectively. In both examples, we find the estimation error of RGD converges linearly to
the minimum precision in the noiseless setting and converges linearly to a limit determined
by the noise level in the noisy setting. In scalar-on-tensor regression, we find RGN converges
quadratically and in tensor-on-vector regression, we observe RGN converges with almost one
iteration. We tried several other simulation settings and observed the similar phenomenon.

8.2. Effect of input rank and sample size on the performance of RGD and RGN. We also
examine the effect of input rank r and sample size n on the convergence of RGD and RGN
and we focus on the scalar-on-tensor regression example. We let p = 30, r∗ = 3, σ = 10−6,
n ∈ [500,8000] and input rank r ∈ {3,6,9,12,15}. The performance of RGD and RGN in
this simulation study is given in Figure 5. We can see that for both RGD and RGN, the
sample size requirement for convergence increases as the input rank r increases. For a fixed
n, the relative RMSE attainable by RGD and RGN increases as the input rank increases.

FIG. 3. Convergence performance of RGD/RGN in over-parameterized scalar-on-tensor regression with spectral

initialization. Here, p = 30, r∗ = 3, r = 10.
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FIG. 4. Convergence performance of RGD/RGN in over-parameterized tensor-on-vector regression with spectral

initialization. Here p = 30, r∗ = 3, r = 10.

In addition, the phase transition on the sample complexity for the failure/success in RGN
is sharper than the one in RGD. This is because RGN enjoys a higher-order convergence
compared to RGD and RGD converges slowly when the number of samples is around the
threshold. This matches our main theoretical results in Sections 3 and 4. Moreover, our results
suggest that the number of samples needed for the convergence of RGD and RGN increases
at the scale of rd for large r (here d = 3) and this is indeed suggested in Figure 6 after we
plot the cubic root of the sample size with respect to Relative RMSE.

8.3. Scalar-on-tensor regression versus matrix trace regression under over-parameter-

ization. In this simulation, we compare the sample size requirements to ensure successful
recovery in over-parameterized scalar-on-tensor regression and matrix trace regression with
an increasing input rank via RGD. We focus on the noiseless setting, that is, σ = 0. We say an
algorithm achieves successful recovery if the averaged relative root mean squared error (Rel-
ative RMSE) ‖X t − X ∗‖F/‖X ∗‖F is smaller than 0.01. In scalar-on-tensor regression, we
set p = 90, r∗ = 1, r ∈ [1, . . . ,8], n = [800,900, . . . ,3500] and in the matrix trace regres-
sion, we set p = 100, r∗ = 1, r ∈ [1, . . . ,8] and n = [200, . . . ,3000]. For every input rank
r , we increase the sample size by 100 at each time from the one that ensures the successful
recovery with input rank r − 1 until RGD succeeds.

Figure 7 shows as the input rank increases, the line of triangles for the sample size require-
ment of successful recovery in scalar-on-tensor regression is flat at the beginning stage while
increases for large input r . In contrast, the sample size requirement for successful recovery
of RGD in the matrix trace regression always increases linearly as input rank increases. This
matches our theoretical findings in Section 5 that a “free lunch” on the sample complexity
appears in over-parameterized scalar-on-tensor regression, but not in the matrix trace regres-
sion. Meanwhile, Figure 7 shows when the input rank is equal to r∗, the phase transitions

FIG. 5. Convergence performance of RGD/RGN in over-parameterized scalar-on-tensor regression with spectral

initialization. Here p = 30, r∗ = 3, n ∈ [500,8000], r ∈ {3,6,9,12,15}.
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FIG. 6. Rescaled plot for the convergence performance of RGD/RGN in over-parameterized scalar-on-tensor

regression with spectral initialization. Here p = 30, r∗ = 3, n ∈ [500,8000], r ∈ {3,6,9,12,15}.

on sample complexity for the failure/success of RGD in matrix trace regression and scalar-
on-tensor regression appear around n = 300 ≈ 2pr∗ and n = 1000 ≈ p3/2r∗, respectively.
This matches the results in Section 5 that there is a statistical-computational gap in scalar-
on-tensor regression and �(pd/2) (here d = 3) samples are needed for any polynomial-time
algorithm to succeed.

8.4. Comparison of Riemannian optimization methods with existing algorithms. In the
second simulation, we compare RGN with other existing algorithms, including alternat-
ing minimization (Alter Mini) (Zhou, Li and Zhu (2013)), projected gradient descent
(PGD) (Rauhut, Schneider and Stojanac (2017)), gradient descent (GD) (Han, Willett and
Zhang (2022)) and scaled gradient descent (Tong et al. (2022)), in both exact and over-
parameterized scalar-on-tensor regression. While implementing PGD, GD and scaled GD,
we evaluate five choices of step size, 1

n
· {0.1,0.25,0.5,0.75,1}, then choose the best one

following Zheng and Lafferty (2015). We set p = 30, r∗ = 3, r ∈ {3,10}, n = 8p3/2r∗ and
consider the noiseless case (σ = 0). Figure 8 shows RGN converges quadratically in both set-
tings, while the other baseline algorithms converge at a much slower linear rate. Moreover,
when we go from exact-parameterization (Panel (a)) to over-parameterization (Panel (b)), the
convergence rate of all baseline algorithms slows down significantly while RGN maintains
its robust and fast second-order convergence performance.

9. Conclusion and discussions. In this work, we propose Riemannian gradient descent
and Riemannian Gauss–Newton methods for solving the general tensor-on-tensor regres-
sion. We provide optimal statistical and computational guarantees for these algorithms in
both rank correctly-specified and overspecified settings and discover an intriguing blessing

FIG. 7. Comparison of successful recovery of RGD under over-parameterized matrix trace regression (Panel

(a)) and scalar-on-tensor regression (Panel (b)).
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FIG. 8. Panel (a): r = 3; Panel (b): r = 10. Relative RMSE of RGN (this work), alternating minimization (Alter

Mini), projected gradient descent (PGD), gradient descent (GD) and scaled gradient descent (ScaledGD) in

noiseless scalar-on-tensor regression.

of the statistical-computational gap in the over-parameterized scalar-on-tensor regression.
Our current initialization and computational results are established for several representative
examples. It is of great interest to see whether these results can be extended to the general
tensor-on-tensor regression problem. Moreover, the rank overspecification studied in this pa-
per falls in the moderate over-parameterized regime in the sense that the model still includes
more samples than the degree of freedom of parameters. It is interesting to consider the highly
over-parameterized regime and study the analogy of implicit regularization effect (Gunasekar
et al. (2017), Li, Ma and Zhang (2018)) in factorization formulated tensor problems. Some
progress has been made recently in the tensor decomposition setting (Razin, Maman and
Cohen (2021), Ge et al. (2021)).
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