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A B S T R A C T

Objective: Sepsis is one of the most serious hospital conditions associated with high mortality. Sepsis is
the result of a dysregulated immune response to infection that can lead to multiple organ dysfunction and
death. Due to the wide variability in the causes of sepsis, clinical presentation, and the recovery trajectories,
identifying sepsis sub-phenotypes is crucial to advance our understanding of sepsis characterization, to
choose targeted treatments and optimal timing of interventions, and to improve prognostication. Prior studies
have described different sub-phenotypes of sepsis using organ-specific characteristics. These studies applied
clustering algorithms to electronic health records (EHRs) to identify disease sub-phenotypes. However, prior
approaches did not capture temporal information and made uncertain assumptions about the relationships
among the sub-phenotypes for clustering procedures.
Methods: We developed a time-aware soft clustering algorithm guided by clinical variables to identify sepsis
sub-phenotypes using data available in the EHR.
Results: We identified six novel sepsis hybrid sub-phenotypes and evaluated them for medical plausibility. In
addition, we built an early-warning sepsis prediction model using logistic regression.
Conclusion: Our results suggest that these novel sepsis hybrid sub-phenotypes are promising to provide
more accurate information on sepsis-related organ dysfunction and sepsis recovery trajectories which can be
important to inform management decisions and sepsis prognosis.

1. Introduction

Sepsis is a life-threatening organ dysfunction syndrome secondary
to a dysregulated host response to infection, and the primary cause of
death from infection, especially if not recognized and treated promptly
[1]. A hallmark of sepsis is the heterogeneity of its presentation and its
prognosis, due to the variability in pathogen and immune host response
interactions.

In 2016, a consensus conference provided an updated definition
of sepsis, with septic shock representing a subset of sepsis in which
particularly profound circulatory, cellular, and metabolic abnormalities
lead to substantially increased mortality [1].

The consensus definition emphasized the importance of timely
recognition and prompt management of sepsis [2]. Available therapies
and management for patients with sepsis remain limited to source
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control, administration of antibiotics, and supportive care [3]. Accu-
mulated evidence suggests that the intrinsic heterogeneity of sepsis
and variable stage at presentation posed challenges not only to clinical
care but also to the conduct of clinical trials assessing interventions
for sepsis. Therefore, identifying its sub-phenotypes is crucial for in-
forming prognostic assessment and developing and evaluating effective
treatment plans.

A prior study identified sepsis phenotypes at the time of patient pre-
sentation to the emergency department, using only routinely available
Electronic Health Record (EHR) data in the clustering models [4]. The
phenotypes were derived from a large observational cohort to ensure
generalizability. This important study, however, did not account for
the temporal registration and the rapidly evolving changes in patient
physiological and laboratory values. Information acquired in the early
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course of sepsis can substantially enrich the clinical phenotypes, enable

the identification of sub-phenotypes, and increase prognostic accuracy.

Other studies have captured the dynamic nature of the clinical course

in patients with sepsis using the change in the Sequential Organ Failure

Assessment (SOFA) score that assesses the severity of organ dysfunction

in ICU patients [5]. However, these scores have been used primarily as

outcome measures to evaluate the overall course of organ dysfunction

and to predict mortality.

To further advance the classification of sepsis, and identify potential

subgroups, we incorporated medical context and temporal biomarker

characteristics into the sepsis classification algorithms, early after sepsis

onset.

Researchers have been studying disease phenotyping with the help

of machine learning techniques and Electronic Health Records (EHRs)

[6–10], which contain large amounts of patient-level information, in-

cluding demographics, vital signals, lab tests, medications, and diag-

nosis. However, in recent review papers, Yang et al. and He et al.

[11,12] pointed out that most existing literature used purely data-

driven approaches and seldom considered real-world medical use cases

and corresponding medical interpretations. Limited work considers

temporal information in the EHR longitudinal data. In addition, few

existing studies perform non-overlapping clustering, i.e., each patient

is commonly assigned to only one group (sub-phenotype).

Sepsis may initially be associated with dysfunction of one organ

system and progress to involve multiple organ systems. Because of the

involvement of multiple systems, a patient may exhibit more than one

sub-phenotype. We thus develop a soft clustering method that allows

each patient to be assigned to more than one sub-phenotype. At the

same time, we take biomarker temporal information into account and

incorporate clinical information into the soft clustering algorithm. By

applying transformations to the soft clustering results, we obtain six

novel sepsis hybrid sub-phenotypes. We evaluate the plausibility of

the results by providing a biological explanation. Additionally, built

upon the soft clustering results, we train and validate a sepsis early-

warning model to predict the novel sepsis hybrid sub-phenotypes. The

results suggest the newly identified hybrid sub-phenotypes provide

characterizations of different sepsis progressions.

Summary Description
Problem Due to the heterogeneity of sepsis,

there are limitations on current sepsis
characterization and subsequent
patient treatment and management
plans. Identifying novel sepsis
sub-phenotypes is thus crucial for
tackling these limitations.

What is Already Known Limited literature on disease
phenotyping using the EHR data
considers temporal data. Additionally,
they use a data-driven approach
without accounting for medical
context and make clinically arguable
assumptions on the relationships
between the sub-phenotypes.

What this Paper Adds This study proposes a novel pipeline
that combines computational models
with temporal biomarker data and
clinical context, which has not yet
received much attention in the field of
disease phenotyping. Additionally, this
framework can be easily extended for
other disease phenotyping.

2. Background and significance

2.1. Disease sub-phenotyping using EHR

With the growing resource of EHR availability, researchers began to
identify disease sub-phenotypes using EHR to better characterize the
diseases and provide insights for subsequent treatment plans. Wang
et al. [13] proposed an algorithm that is built upon Latent Dirichlet
Allocation for topic modeling to identify latent patient subgroups from
three patient cohorts. Ibrahim et al. [14] utilized hierarchical clustering
to identify sepsis sub-populations. Oh et al. [15] applied agglomerative
hierarchical clustering to identify COVID-19 sub-phenotypes. Seymour
et al. [4] discovered four novel sepsis clinical phenotypes by applying
consensus K-Means clustering. However, none of the prior work utilizes
the temporal information contained in the EHR. They typically used
representative values at a certain time point within a defined time
range, failing to capture changes in feature patterns through time.

There is a limited amount of work that considers temporal in-
formation. For instance, Xu et al. [16] transformed acute kidney in-
jury (AKI) EHR longitudinal data into vector representations using
memory networks and performed K-Means clustering after applying
dimensional reduction to the transformed data. They identified three
novel AKI sub-phenotypes with distinct characteristics. Lasko and Mesa
[17] transformed longitudinal EHR data into continuous space and
applied independent components analysis to identify sub-phenotypes
of liver diseases. Smith et al. [18] proposed an algorithm to detect
sepsis patients using longitudinal EHR data via Jensen–Shannon Diver-
gence. Estiri et al. [19] transformed medication and diagnosis records
into vectors and performed semi-supervised learning for phenotyping.
Lee and Schaar [20] developed a dynamic clustering algorithm using
deep learning for phenotyping. However, they utilized data-driven
approaches and did not incorporate medical context into the designed
models. We thus propose a soft clustering algorithm integrated with
medical context to better characterize disease sub-phenotypes.

2.2. Soft clustering algorithms

Clustering is an important group of unsupervised learning algo-
rithms that groups data samples based on similarity with a wide range
of applications, such as biomedical data analysis, anomaly detection,
and building recommendation systems [21]. Conventional clustering
algorithms, such as K-Means clustering [22], hierarchical clustering
[23] and DBSCAN [24], assign one sample to exclusively one cluster.
Such algorithms are termed hard clustering.

Correspondingly, another category of algorithms that allows one
sample to be assigned to multiple clusters is termed soft clustering
algorithms. For instance, Fuzzy C-Means (FCM) clustering [25] is an
algorithm that is built upon the K-Means clustering that assigns each
sample with a degree of membership to each cluster. The degree of
memberships to all clusters adds up to one. Cleuziou [26] proposed
overlapping K-Means (OKM) clustering that assigns one sample to
multiple clusters. Rather than expressing cluster assignment as degrees
of memberships, OKM uses a set to indicate cluster assignment to each
sample, where the sample is either a non-member or a member of
the cluster. However, both FCM and OKM are sensitive to cluster cen-
troid initialization and can be easily affected by outliers. Zhang et al.
proposed K-Harmonic Means (KHM) clustering [27] that utilizes the
harmonic average to address the algorithm instability due to different
cluster centroid initialization. There exist many other soft clustering
methods that are introduced in the survey from Ferraro and Giordani
[28]. To the best of our knowledge, there is no work that utilizes soft
clustering methods to tackle sepsis sub-phenotyping using EHR data.
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Fig. 1. Overall framework of the proposed method. Pink squares indicate data, blue hexagons represent algorithms/models, and circles in green and gold describe the outcome at
the training and prediction stages, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Materials and methods

In this section, we provide a description of the datasets utilized in
this study and the data selection/preprocessing steps. We next explain
in detail each module of the proposed method for sepsis phenotyping
illustrated in Fig. 1. We develop a time-aware soft-clustering algorithm
followed by post-soft clustering analysis to identify potential novel
sepsis sub-phenotypes. After careful evaluation, the resulting novel
sub-phenotypes are utilized for sepsis early-warning prediction.

3.1. Data

3.1.1. Medical Information Mart for Intensive Care (MIMIC)-IV database
The MIMIC-IV database contains de-identified medical information

on over 40,000 patients admitted to the intensive care units (ICU) of
the Beth Israel Deaconess Medical Center (BIDMC) from 2008 to 2019.
It contains information from many aspects, such as demographics,
admissions, vital signs, laboratory tests, diagnosis, and treatments.

3.1.2. eICU collaborative research database
The eICU database contains medical records of over 200,000 pa-

tients admitted to the ICU in the continental US collected in 2014 and
2015. Similar to the MIMIC-IV database, the eICU includes informa-
tion about patient demographics, admissions, diagnosis, medications,
laboratory tests, etc.

3.2. Cohort selection and preprocessing

We extracted patient data based on Diagnosis Related Group (DRG)
Codes [29], which are classified based on the International Classifica-
tion of Diseases (ICD) diagnosis [30], age, sex, surgical procedures,
discharge status, and comorbidity. We selected patients with DRG
codes 870 (septicemia or severe sepsis with mechanical ventilation
>96 h), 871 (septicemia or severe sepsis without mechanical ventilation
>96 h with major complication or comorbidity), and 872 (septicemia
or severe sepsis without mechanical ventilation >96 h without major
complication or comorbidity). Since the eICU dataset does not contain
DRG codes, we used the corresponding ICD codes that are mapped to
the DRG codes according to [31]. Based on the characteristics of the
sepsis [32], we chose records of the first 120 h of the last ICU stay

from each patient. We chose variables included in or that contribute to
the SOFA score because the third international consensus definitions
for sepsis and septic shock (Sepsis-3) considers changes in SOFA as
an indicator of sepsis progression [1]. We thus selected the following
features: Arterial Blood Pressure systolic, Base Excess, Creatinine, Heart
Rate, International Normalized Ratio of Prothrombin Time (PT-INR),
Lactate, and Respiratory Rate.

We format the data into the form of a tensor ò * R
Ċ×Č×Đ , where

Ċ is the number of subjects, Č is the number of clinical features, and
Đ is the number of time steps in hours. Since the raw data contains a
large amount of missing data, we conduct missing data imputation by
introducing a novel method that uses a combination of low-rank matrix
completion [33] and EHR timeline registration from our prior work
[34]. We formulate data imputation as an alternating minimization
problem. The goal is to find đ * R

Ċ×Ĉ, Ē * R
ČĐ×Ĉ, and Ā, such that the

following objective function in Eq. (1) is minimized:

min
đ,Ē ,Ā

Ċ
1

ÿ=1

ČĐ
1

Ā=1

ýÿĀ ç

(

ĀĀ [ÿ, Ā] − đ[ÿ,∶]Ē
¤
[Ā,∶]

)2

. (1)

Here, Ĉ is the matrix rank, Ā is the discrete amount of time shift and
ý * R

Ċ×ČĐ is the indicator for the missing data. The alternating
minimization contains two steps: (1) Obtain đ and Ē from low-rank
matrix completion on ĀĀ * R

Ċ×ČĐ while Ā is fixed. Note that ĀĀ

is a matrix with ò shifted by Ā and reshaped into the dimension of
R
Ċ×ČĐ . (2) Find optimal shift Ā while đ and Ē are fixed. We repeat

the above steps until convergence. The final imputed data tensor ò is
approximated by đ ç Ē Đ , reshaped to a tensor of dimension R

Ċ×Č×Đ .

3.3. Time-aware soft clustering

We developed a time-aware soft clustering algorithm for EHR data
inspired by the work of Khanmohammadi et al. [35]. It is based
on a hybrid of the harmonic K-Means clustering algorithm and the
overlapping K-Means clustering algorithm. This hybrid algorithm is less
sensitive to the initial cluster centroids selection and thus has improved
algorithm stability.

We present the proposed soft clustering algorithm in Algorithm 1
(see Appendix). We denote all data records from the selected cohort
as Ā = {Ďÿ, ÿ = 1,& , Ċ}, where Ďÿ * R

Č×Đ represents data of each
subject ÿ of the Ċ total subjects (equivalent to ò[ÿ, ∶, ∶]). To represent
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clinical context, we denote Ĉ as a collection of binary vectors Ăÿ * R
3,

where each element in Ăÿ indicates the existence of an organ dysfunction
type on subject ÿ. For sub-phenotyping, we selected organ dysfunctions
representing the lung, liver, and kidney based on their contribution to
the SOFA score computation. We create Ĉ based on groups of ICD-
9 codes for the three types of organ dysfunction: liver (570.∗–573.∗),
kidney (580.∗–589.∗), and lung-related (510.∗–519.∗) diseases [30]. For
instance, if subject ÿ is diagnosed with ICD-9 codes 573.9 and 584.9 but
none from 510.∗ to 519.∗, the corresponding Ăÿ is (1, 1, 0)

Đ .
According to Basu et al. [36], labeled data used to develop initial

cluster centroids and cluster constraints effectively enhances the quality
and stability of the clustering result. We thus initialized ć cluster cen-
troids {ĊăăĆā, ā = 1,& , ć} using the average of subjects with each of
the single types of organ dysfunction (i.e., one cluster centroid for each
of the liver, kidney, and lung-only dysfunction subject groups). We then
perform cluster assignments to each subject according to Algorithm
2 (see Appendix) based on the overlapping K-Means clustering. We
compute the distance between the subject ÿ and each cluster centroid
and assign the subject to its nearest cluster centroid. Subsequent clus-
ter assignments depend on Ā(Ďÿ), the average of the assigned cluster
centroids to subject ÿ, and Ā(Ďÿ)

2, the average of the assigned centroids
and the nearest candidate centroid to subject ÿ. If the subject is closer
to Ā(Ďÿ)

2 than to Ā(Ďÿ), the individual is then assigned to the nearest
candidate cluster centroid. After obtaining cluster assignments {ă(0)

ÿ
, ÿ =

1,& , Ċ}, where each ă
(0)

ÿ
is a set of cluster membership indicators, we

update the cluster centroids by applying transformations shown in Step
2 of the Algorithm 1. We iteratively update the cluster centroids and
cluster assignments until convergence.

To incorporate clinical context into the algorithm, we employ semi-
supervised learning that calibrates cluster centroids after updating
cluster assignments at each iteration based on the ICD group informa-
tion Ĉ = {Ăÿ, ÿ = 1,& , Ċ} of each subject shown in Algorithm 3 (see
Appendix). We compute a weighted sum of distances ċĄĉċĆĈąĉĉ for all
subjects which is built upon the objective function of the fuzzy C-Means
algorithm [25]. Additionally, we compute ĉċĆĈąĉĉ to enforce each
subject with a single ICD group label to be closer to the targeted cluster
centroid and further away from the non-targeted cluster centroids.
Note that we assume each cluster centroid represents a designated
organ dysfunction type. We use scalar hyperparameters Ā1 and Ā2 to
adjust the strength of the constraint within ĉċĆĈąĉĉ. Ā1 controls ĊĈąĉĉ,
the degree to which each subject’s (with a single ICD group labeled)
distance to the targeted cluster centroid ĊăăĆĂ*Ăÿ

. Ā2 adjusts ĄĊĈąĉĉ,
the degree to which each subject’s distance to the non-targeted cluster
centroids {ĊăăĆĂ+Ăÿ}. Finally, we calibrate cluster centroids by applying
the stochastic gradient descent (SGD) to the ĊąĊĈąĉĉ.

After the iterative updates and calibrations of the cluster centroids
reach convergence, we output a distance matrix {Ăÿā} * R

Ċ×ć , where
each element Ăÿā indicates the distance between the subject ÿ to the
cluster centroid ā. Note that when computing the distance of each
subject to a cluster centroid, we only consider the first 24 h of data in
the ICU for features including systolic blood pressure, base excess, and
respiratory rate since the effects of treatments may affect subsequent
data patterns for different phenotypes. The resulting distance for each
above-mentioned feature was multiplied by five to ensure the computed
distance for each feature having the same scale. We used entire 120-
hour data to compute distance for the rest of the features. We then
compute cluster membership matrix {ąÿā}, where each element denotes
the degree of membership of subject ÿ in relation to the cluster centroid
ā shown in Step 5 of the Algorithm 1.

3.4. Post-soft clustering analysis

As described in the previous section, we now obtain a cluster mem-
bership vector đÿ = (ąÿ1, ąÿ2,& , ąÿć )

Đ for each subject ÿ. Considering
the temporal statistical heterogeneity of the time series clinical data,

i.e., two subjects with different sepsis sub-phenotypes may have oppo-
site trends in a given time range but can still be grouped into the same
cluster, we introduce an additional indicator to quantify this temporal
data heterogeneity, which, in this context, pertains to similarity with
the cluster centroids (sub-phenotypes). We term this indicator ABM and
define it in Eq. (2) as follows:

ýþĉÿ = 1 −
ăÿĄ(Ăÿ1, Ăÿ2,& , Ăÿć )

ĂÿĉĊ

1

3

(2)

where ĂÿĉĊ = ăÿĎ({Ăÿā}), which is computed across all subjects. The
value of ABM ranges from 0 to 1, and the smaller the value, the further
away it is from the cluster centroids (sub-phenotypes). We hypothesize
that in datasets utilized in this study, a lower ABM value indicates
increased severity of the health condition, and we further explain the
hypothesis in Section 5. By combining the cluster membership vector
đÿ and the indicator ABM, we obtain a final representation of the
soft clustering result Ďÿ for each subject ÿ, where we denote as Ďÿ =

(ąÿ1, ąÿ2,& , ąÿć , ýþĉÿ)
Đ . Intuitively, this representation captures the

composition of clinical sub-phenotypes of each patient as a mixture of
the three primary organ dysfunction phenotypes and the severity of the
patient’s health condition due to the disease.

We next use the K-Medoids clustering [37] to group all Ďÿ to identify
potential sepsis hybrid sub-phenotypes for a better classification of
the soft clustering result. Note that these hybrid sub-phenotypes are
combinations of the cluster centroids (sub-phenotypes) from the soft
clustering results. We evaluate the quality of the clustering results by
computing the mean Silhouette score [38] across all data samples and
via clinical interpretation. The Silhouette score ĉÿ for a single data
sample ÿ is computed according to Eq. (3), where ÿÿ is the average
distance of data sample ÿ to every other samples within the assigned
cluster, and Āÿ is the average distance of data sample ÿ to all samples in
cluster that is the closest to the assigned cluster.

ĉÿ =
Āÿ − ÿÿ

ăÿĎ(ÿÿ, Āÿ)
(3)

To optimize the post-soft clustering analysis using K-Medoids clus-
tering, we computed the Silhouette scores for clustering results using
different cluster numbers ranging from 2 to 20. Besides choosing the
cluster number from the purely data-driven perspective, we also con-
sidered the medical interpretability of the data, i.e., the cluster number
should be greater than 3, considering that the resulting clusters should
be combinations of the clusters from the soft clustering.

3.5. Early-warning prediction

After obtaining the results of the K-Medoids clustering, we treat the
resulting cluster assignment of each subject as a ground truth label
of the sepsis hybrid sub-phenotype. We utilize the first 12, 24, and
48 h of the ICU data to predict the sepsis hybrid sub-phenotype of
the subjects as an early-warning model. We follow the work of Lipton
et al. [39] to derive statistical features from the time-series data and to
compute the validation metrics. Specifically, we select seven different
time windows (explained in Section 4.1) for each feature of the patient
and then compute the mean, standard deviation, maximum, minimum,
and skewness. Logistic regression (LR) is used for sepsis early-warning
prediction due to its robustness on EHR classification tasks based on
our prior work [34].

3.6. Experimental setting

We formatted all subject’s data as Ā * R
Ċ×Č×Đ , where Ċ is the

number of subjects, Č is the number of features, and Đ is the number
of hours recorded since the ICU admission. Normalization was applied
to each of the features. We set the number of clusters ć = 3 for soft
clustering, where the cluster centroids correspond to the liver, kidney,
and lung dysfunction type. We selected Ā = 2, Ā1 = 10, Ā2 = 0.01 and
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Fig. 2. Soft clustering centroids per feature after smoothing obtained from the MIMIC-IV dataset. The red centroid is initialized with the liver dysfunction type; the yellow centroid
with the kidney dysfunction type; and the green centroid with the lung dysfunction type. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

conducted the iterative clustering for 200 epochs. We selected Ā = 2

in alignment with the convention in the literature [28], and we tested
Ā1 in the range of [1 × 10−2, 10] and Ā2 in [1 × 10−3, 10]. We chose
the combination that yields the best Silhouette score in the post-soft
clustering analysis. The SGD utilized for cluster centroids calibration
was performed at a learning rate of 1 × 10−5. The K-Medoids clustering
was performed with the number of clusters equal to six. All experiments
were conducted using the PyTorch library [40].

We computed features for sepsis early-warning prediction based on
the work of Lipton et al. [39], where the maximum, minimum, mean,
standard deviation, and skewness were computed for seven different
time windows from each of the features: the entire feature sequence,
the first 10%/25%/50%, and the last 10%/25%/50% of the feature
sequence. Note that all features were computed from the imputed data.
We applied logistic regression (LR) using the default settings for the
prediction using the Scikit-learn library [41].

3.7. Evaluation metrics

We assess the clustering results by computing the average Silhouette
score ranging from −1 to 1, shown in Eq. (4). The higher the score,
the better the cluster quality. ÿÿ represents the mean distance between

subject ÿ and other subjects within the cluster (intra-cluster distances),
and Āÿ represents the mean distance between subject ÿ and subjects
from other clusters (inter-cluster distances). We compute individual
Silhouette scores ĉÿ and obtain the average value.

ĉÿ =
Āÿ − ÿÿ

ăÿĎ(ÿÿ, Āÿ)
(4)

In addition, we evaluate the sepsis hybrid sub-phenotype early-
warning prediction using accuracy, precision, recall, and Area Under
Precision–Recall Curve (AUPRC) following the work of Gao et al. [42].

4. Results

4.1. Evaluation on soft clustering centroids

We first present and evaluate the centroids of the three clusters
obtained from the MIMIC-IV dataset shown in Fig. 2, where each
of them was initialized as an organ dysfunction type and was then
iteratively updated to a novel sepsis sub-phenotype after reaching con-
vergence. In a certain sense, all results of the soft clustering algorithm
can be regarded as a mixture of these three sub-phenotypes. Fig. 2
visualizes patterns of the three cluster centroids per feature. Note that
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Table 1
K-Medoids cluster (hybrid sub-phenotype) centroids obtained from the MIMIC-IV dataset (left) and eICU dataset (right).

MIMIC-IV ą1 (liver) ą2 (kidney) ą3 (lung) ABM eICU ą1 (liver) ą2 (kidney) ą3 (lung) ABM

Hybrid sub-phenotype 1 0.33 0.32 0.35 0.47 Hybrid sub-phenotype 1 0.33 0.34 0.33 0.36
Hybrid sub-phenotype 2 0.44 0.28 0.28 0.58 Hybrid sub-phenotype 2 0.4 0.32 0.28 0.49
Hybrid sub-phenotype 3 0.24 0.37 0.39 0.61 Hybrid sub-phenotype 3 0.24 0.35 0.41 0.51
Hybrid sub-phenotype 4 0.55 0.24 0.21 0.70 Hybrid sub-phenotype 4 0.48 0.3 0.22 0.63
Hybrid sub-phenotype 5 0.36 0.35 0.29 0.71 Hybrid sub-phenotype 5 0.31 0.35 0.34 0.63
Hybrid sub-phenotype 6 0.18 0.46 0.36 0.71 Hybrid sub-phenotype 6 0.17 0.37 0.46 0.66

Fig. 3. Cluster number selection for K-Medoids clustering using the MIMIC-IV dataset.

Table 2
Mortality rate of each sepsis hybrid sub-phenotype group from the MIMIC-IV and the
eICU datasets.

MIMIC-IV mortality (%) eICU mortality (%)

Hybrid sub-phenotype 1 78.71 42.73
Hybrid sub-phenotype 2 75.77 26.51
Hybrid sub-phenotype 3 71.78 12.45
Hybrid sub-phenotype 4 53.1 7.39
Hybrid sub-phenotype 5 56.15 13.74
Hybrid sub-phenotype 6 55.02 7.32

cluster centroids visualization using the eICU dataset is provided in
Supplement Fig. C.13.

4.2. Post-soft clustering analysis

Fig. 3 shows the average Silhouette score computed using each
cluster number. We observe that at cluster number equals 6, the cluster
quality is optimal, yielding the highest Silhouette score. We thus chose
6 to be the cluster number for post-soft clustering analysis. We made the
same observation using the eICU dataset from Supplement Fig. C.14.

We present in Table 1 the resulting 6 cluster centroids obtained
from the MIMIC-IV and the eICU datasets, respectively, which indicate
6 potential sepsis hybrid sub-phenotypes. We rank sepsis hybrid sub-
phenotypes based on the severity of patient health conditions from the
most to the least severe as indicated by the ABM value. We also show
the median and the interquartile range (IQR) of the clusters per feature
in Figs. 4 and 5. Separate figures of feature values per hybrid sub-
phenotype using the MIMIC-IV and the eICU datasets are provided in
the Supplement.

In addition, we further summarize the patient outcome of each
hybrid sub-phenotype group in terms of mortality rate in Table 2 to
evaluate the discovered hybrid sub-phenotypes.

Table 3
Early-warning prediction results using the MIMIC-IV dataset. Precision, recall, and
AUPRC are computed by the average of the ‘‘one-vs-rest’’ setting.

Hours Precision Recall Accuracy AUPRC

12 0.609 0.601 0.621 0.618
24 0.661 0.65 0.668 0.671
48 0.598 0.587 0.61 0.615
120 0.546 0.519 0.552 0.54

Table 4
Early-warning prediction results using the eICU dataset. Precision, recall, and AUPRC
are computed by the average of the ‘‘one-vs-rest’’ setting.

Hours Precision Recall Accuracy AUPRC

12 0.505 0.509 0.524 0.508
24 0.569 0.565 0.576 0.565
48 0.557 0.558 0.567 0.565
120 0.531 0.531 0.54 0.547

4.3. Early-warning prediction

As mentioned in Section 3.5, we developed a sepsis hybrid sub-
phenotype early-warning prediction model using the post-soft cluster-
ing results as ground truth labels. We present the results in terms of
accuracy, precision, recall, and AUPRC in Tables 3 and 4 obtained
from the MIMIC-IV and the eICU datasets, respectively. We compare
the results with the result of using the whole 120-hour ICU data.

5. Discussion

As can be seen from Fig. 2, the three sub-phenotypes are different
from each other, suggesting that the proposed semi-supervised soft clus-
tering algorithm can generate a clear separation between the clusters.
The cluster centroid in red features an elevated lactate level and a
low base excess level. The cluster centroid in green exhibits elevated
creatinine and INR(PT) levels. We observe that the characteristics of
each of the cluster centroids do not necessarily match their patterns
from the original initialization.

We observe that patients in hybrid sub-phenotype 1 obtained from
both datasets exhibit the most severe health condition indicated by the
lowest ABM value. The corresponding even degrees of membership to
primary sub-phenotypes 1–3 (ą1 − ą3 in Table 1) suggest that subjects
in the group may experience multiple organ failures, reflected by the
lowest base excess level, the highest creatinine, INR(PT), and lactate
levels compared to patients in other hybrid sub-phenotype groups.

Patients in hybrid sub-phenotypes 2 and 3 obtained from both
datasets have moderate-severity health conditions. Hybrid sub-
phenotype 2 subjects from both datasets have a higher degree of
membership to sub-phenotype 1 (ą1), suggesting that the subjects align
more closely with liver-related characteristics, reflected by moderately
high levels of lactate and INR (PT). Hybrid sub-phenotype 3 subjects
from the MIMIC-IV dataset have high degrees of membership to sub-
phenotypes 2 and 3 (ą2 and ą3), with characteristics aligned more
with kidney and lung-related diseases, reflected by the moderately high
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Fig. 4. Comparisons of feature values between sepsis hybrid sub-phenotypes using the MIMIC-IV dataset.

Fig. 5. Comparisons of feature values between sepsis hybrid sub-phenotypes using the eICU dataset.

creatinine level. However, we do not observe an abnormal respiratory
rate. Hybrid sub-phenotype 3 subjects in the eICU dataset feature
lung-related dysfunction indicated by the high degree of membership
to sub-phenotype 3 (ą3). Similarly, we do not observe an abnormal
respiratory rate in the group.

Patients in hybrid sub-phenotypes 4, 5, and 6 obtained from both
datasets experience a health condition of less severity. Hybrid sub-
phenotype 4 subjects yield a high degree of membership to sub-
phenotype 1 (ą1), reflected by an elevated lactate level, which is
consistent across both datasets.

Hybrid sub-phenotype 5 subjects from the MIMIC-IV dataset align
more closely with sub-phenotypes 1 and 2 (ą1 and ą2), reflected by
slightly elevated lactate and creatinine levels. Hybrid sub-phenotype
5 subjects from the eICU dataset do not show significant organ dys-
function, implied by the combination of even degrees of membership
to all three types of primary sub-phenotypes and a higher ABM value.
Hybrid sub-phenotype 6 subjects from the MIMIC-IV dataset obtain a
high degree of membership to sub-phenotype 2 (ą2), with a slightly
elevated creatinine level. Hybrid sub-phenotype 6 subjects from the
eICU dataset may exhibit lung-related dysfunction implied by the high
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degree of membership to sub-phenotype 3 (ą3). However, we do not
observe an abnormal respiratory rate.

We find consistent patient characteristics of the hybrid sub-
phenotypes 1, 2, and 4 across the MIMIC-IV and the eICU datasets.
Discrepancies in hybrid sub-phenotypes 3, 5, and 6 can be attributed
to the heterogeneity of patient cohorts between the MIMIC-IV and
the eICU datasets. The similar findings across two distinct patient
cohorts suggest that our proposed method could provide medically
meaningful sepsis sub-phenotypes if given consistent datasets, which
will be assessed in our future work.

We observe that hybrid sub-phenotype 1 with subjects highly as-
sociated with all three organ dysfunctions has the lowest ABM, and
we notice patients in a cluster with a lower ABM, such as hybrid
sub-phenotype 2, yield more abnormal feature values (e.g., creatinine
and lactate levels) compared to patients in a cluster with a higher
ABM, such as hybrid sub-phenotype 4. We thus hypothesize a potential
association between the ABM value that is derived from a data-driven
perspective with the severity of the patient’s health condition based on
feature values. Further exploration with other hospital data is necessary
to test this hypothesis.

We observe that in the MIMIC-IV dataset, hybrid sub-phenotype 1
group exhibits the highest mortality; hybrid sub-phenotypes 2 and 3
have relatively lower mortality; hybrid sub-phenotypes 4–6 yield the
lowest mortality among all the groups. This observation in mortality
aligns with the ABM indicator shown in Table 1 that a lower ABM value
corresponds to a higher mortality of the group. In the eICU dataset, the
hybrid sub-phenotype 1 group shows the highest mortality; patients
in the hybrid sub-phenotype 2 have moderate mortality; hybrid sub-
phenotypes 3 and 5 exhibit low mortality; hybrid sub-phenotypes 4 and
6 yield the lowest mortality. We notice that the ABM values of hybrid
sub-phenotypes 3 and 5 in the eICU dataset do not align with mortality
well.

We obtain mixed results using early-hour ICU data for sepsis hy-
brid sub-phenotype prediction. The best prediction performance occurs
when using the first 24-hour ICU data with an accuracy of 0.668 and
an AUPRC of 0.671 using the MIMIC-IV dataset. Similarly, we obtain
the best performance using the first 24-hour ICU data with an accuracy
of 0.576 and an AUPRC of 0.565 using the eICU dataset.

The current study has some limitations. We did not include car-
diovascular dysfunction as part of the clinical context of the proposed
algorithm because this would also involve incorporating treatment
information on vasopressor use. We plan to further evaluate the car-
diovascular component as we further extend and integrate treatment
information into our model. Additionally, to prove the generalizabil-
ity of the proposed method, further evaluations need to be done on
databases utilizing coding systems other than the ICD codes. Other
improvements to consider include validation of the proposed method
using private hospital data and consideration of the changes in the
assigned sub-phenotypes over time. Note that phenotyping on non-ICU
patients is out of the scope of this study given the wider time range
and higher sparsity of the records compared to ICU data. Different
approaches targeting non-ICU data will be investigated in our future
work.

6. Conclusion

Sepsis sub-phenotyping is a crucial but complex area of research.
To advance the classification of sepsis sub-phenotypes and incorporate
temporal changes over time, we proposed a novel soft clustering algo-
rithm that incorporates temporal and medical context using EHR data.
Our results suggest the newly discovered six hybrid sub-phenotypes
are medically plausible. The sepsis early-warning prediction model we
created that builds upon our sub-phenotyping findings yields promising
results.
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