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A viable model for the dense matter equation of state above the nuclear saturation density includes a
hadron-to-quark phase transition at densities relevant to compact objects. In this case, stable hybrid hadron-
quark stars can arise. An even more interesting scenario is one where the hadron-to-quark phase transition
results in the emergence of a third branch of stable compact objects (in addition to white dwarfs and neutron
stars). Inherent to the presence of a third family of compact stars is the existence of twin stars—hybrid stars
with the same mass as the corresponding neutron stars but with smaller radii. Interestingly, the neutron star—
twin star scenario is consistent with GW170817. If twin stars exist in nature, it raises a question about the
mechanism that leads to their formation. Here, we explore gravitational collapse as a pathway to the
formation of low-mass twin stars. We perform fully general relativistic simulations of the collapse of a
stellar iron core, modeled as a cold degenerate gas, to investigate whether the end product is a neutron star
or a twin star. Our simulations show that, even with unrealistically large perturbations in the initial
conditions, the core bounces well below the hadron-to-quark phase transition density, if the initial total rest
mass is in the twin star range. Following cooling, these configurations produce neutron stars. We find that
twin stars can potentially form due to mass loss, e.g., through winds, from a slightly more massive hybrid
star that was initially produced in the collapse of a more massive core, or if the maximum neutron star mass
is below the Chandrasekhar mass limit. The challenge in producing twin stars in gravitational collapse, in
conjunction with the fine-tuning required because of their narrow mass range, suggests the rarity of twin

stars in nature.
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I. INTRODUCTION

One of the most important open questions in nuclear
physics research is the state of matter above the nuclear
saturation density, p; ~ 2.7 x 10'* gcm™. The equation of
state (EOS) of cold neutron-rich matter is reasonably well
understood at densities below ~2p, [1-3] (see also [4—13]).
Uncertainties exist even for finite-temperature dense
nuclear matter; see, e.g., [14—16]. Theoretical understand-
ing at these densities is aided by laboratory experiments
involving heavy-ion collisions; see, e.g., [17-23].
However, the dense-matter cold EOS remains highly
uncertain at densities of ~2—-40p, because of limitations
in theoretical or lattice quantum chromodynamic (QCD)
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approaches; see, e.g., [3,24-27]. As a result, a plethora of
theoretical possibilities for how matter behaves at densities
higher than 2p, is currently allowed. In this work, we focus
on the possibility that a quark deconfinement phase
transition can take place at densities encountered inside
compact objects.

One of the fundamental consequences of QCD is color
confinement. In the absence of strong medium effects,
quarks and gluons are confined inside hadrons. Quark
confinement can be violated at high temperatures or high
densities, leading to the formation of a new state of matter
known as quark-gluon plasma [28,29]. It is currently unclear
whether quark deconfinement can take place in the deep
interiors of compact objects, but this possibility has been
considered by a number of works (see, e.g., [30-50].

If quark deconfinement takes place at astrophysically
relevant densities, an interesting scenario arises when the
phase transition occurs such that a “third family” of
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FIG. 1. Mass-central density plot for a sequence of TOV stars based on the EOS detailed in Table I. Both rest mass and gravitational

(ADM) mass are illustrated. Stars with a fixed rest mass My = M,

~ M, are designated by labels A, B, C, D, and E. The inset

enlarges the twin star part of the curve. More details on this plot are provided in Sec. II.

compact objects (in addition to white dwarfs and neutron
stars) emerges [51-63]. Compact objects in this third
family are hybrid hadron-quark stars or hybrid stars—
configurations with a quark core enveloped by a hadronic
shell. The stable third family of compact stars is separated
from the branch of stable neutron stars (NSs) by an unstable
branch of compact objects, just like stable NSs are
separated from stable white dwarfs (WDs) by an unstable
branch. Figure 1 depicts these branches on a mass versus
central density plot (further details on this plot are dis-
cussed in Sec. II). As a result, there exists a set of stable
hybrid stars (HSs) that have the same mass as NSs but
smaller radii. These HSs are typically referred to as twin
stars (TSs) [54,64—71]. A number of recent works suggest
that current experimental and multimessenger observations
of NSs are either consistent with or provide evidence in
favor of the existence of hadron-to-quark phase transitions
in their cores [72-77], but some works do not favor this
possibility [78,79]. The third family of compact objects
with potentially low-mass TSs has been shown to be
consistent with a number of experiments and observations
[34,67,80-85]. Twin stars are particularly interesting,
because proof of their existence would provide valuable
insights into the quark-gluon phase diagram.

The third family can arise when the EOS features a
strong hadron-quark phase transition (i.e., characterized

by a sufficiently large jump in energy density at a roughly
fixed pressure) which is first order (meaning that the first
derivative of free energy with respect to a thermodynamic
variable is discontinuous) [53]. Alternatively, hybrid EOSs
with mixed pasta phases can also lead to the formation
of the third family; see, e.g., [86]. What determines the
nature of the phase transition is the surface tension
between the quark and hadron phases [87,88]. If the
tension between these phases is low, a mixed phase of
quark and nucleonic matter forms in between purely
nuclear and quark matter phases. By contrast, if the tension
is high, a sharp transition boundary is favorable. Both
possibilities are theoretically allowed, because the surface
tension is not known accurately.

Given the large number of works suggesting that
hybrid and twin stars are compatible with observations,
an important question arises: If these stars exist, how
can they form? We begin to tackle this question in
this work.

Stellar gravitational collapse appears to be a natural
pathway for the formation of HSs. One might expect this,
given that WDs and NSs are end points of stellar
evolution; see, e.g., [89,90]. However, forming TSs
through gravitational collapse faces an important chal-
lenge; if one imagines the collapse of the stellar core at
approximately constant rest mass, following cooling, the
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configuration would contract and encounter first the
branch of stable NSs, and then the branch of TSs,
assuming further contraction. Thus, it is unclear whether
there exists a natural pathway during stellar collapse that
would prefer to form TSs over NSs. In fact, the work of
[91] treated the evolution of configurations in the TS
mass range that are initially on the unstable branch and
found that these stars naturally transition to the stable NS
branch. Thus, Ref. [91] concluded that it would be
challenging to form TSs through gravitational collapse,
because in a quasiadiabatic, constant rest-mass contrac-
tion of a proto-NS that is on its way to forming a TS, it
would have to go through the unstable branch first, which
appears to favor NSs.

The primary objective of this paper is to explore whether
HSs and, in particular, TSs can form as a result of the
gravitational collapse of a stellar core. To investigate this
pathway toward HS formation, we perform three-
dimensional hydrodynamic simulations of unstable WDs
in full general relativity by considering several types of
initial perturbations differing in the degree of violence of
the collapse. The advantage of considering a WD for our
initial conditions is that it models two distinct channels to
forming neutron or hybrid stars: (i) the collapse of a
degenerate iron core of a massive star and (ii) the accre-
tion-induced collapse of a WD [92]. Here, we do not treat
detailed microphysics or neutrino effects. Instead, we focus
on treating properly relativistic gravitation, which is critical
when compact objects arise.

Our simulations demonstrate that, for a type of EOS
which gives rise to a third family of compact objects, the
gravitational collapse of a WD in the twin star mass
regime prefers the formation of NSs and not TSs, even
under extreme initial perturbations. The only pathway to
forming TSs that we were able to identify is as follows:
First, a massive core should collapse to a slightly more
massive stable HS, which may subsequently lose a small
amount of mass, for example, in the form of winds or due
to rotation or a “grazing” collision with a black hole, to
ultimately settle as a T'S. The results of our simulations, in
conjunction with the narrow mass range over which twin
stars exist, suggest that twin stars should be rare. Thus, ifa
HS star was involved in GW 170817, then it likely was not
a twin star.

The paper is structured as follows. In Sec. II, we
construct the EOS that we employ in this work based on
a realistic EOS with a hadron-to-quark phase transition. In
Sec. III, we discuss our initial data and evolution methods
along with the numerical scheme employed in the simu-
lations. Results of various simulations exploring the for-
mation of HSs under different conditions are presented and
discussed in Sec. IV. We conclude in Sec. V, where we
summarize our main findings. Unless specified otherwise,
throughout this paper we adopt geometrized units where
¢ = G =1, with ¢ being the speed of light in vacuum and
G representing the gravitational constant.

II. EQUATIONS OF STATE

There exists a broad range of possibilities for the EOS in
the deep interior of a NS. Numerous studies have explored
different hadronic models, quark models, and hybrid
hadron-quark models. For comprehensive reviews, readers
are referred to [27,93-95]. Apart from microscopic, so-
called realistic EOSs, the EOS can also be treated phe-
nomenologically, e.g., by giving the pressure or sound
speed as a function of rest-mass or energy density; see, e.g.,
[72,96-98]. Here, we restrict our discussion to the astro-
physical implications of EOSs that are based on realistic
models but treated phenomenologically. The EOSs we
consider give rise to a third family of stable compact stars.
However, to simulate the collapse of a stellar iron core or a
WD, the EOSs we construct must encompass a wide range
of densities, spanning the entire range from below neutron
drip to the supranuclear regime. Here, we describe how we
construct the phenomenological EOSs we adopt.

The EOS below the nuclear saturation density down to
WD densities is reasonably well understood. Our base
phenomenological EOS selected for this density regime is
derived from the six-parameter piecewise polytropic EOS
introduced in [99]. For the high-density regime, the EOS
needs to incorporate a phase transition so that a stable HS
branch exists. The high-density EOS that we adopt here is
based on the T9 EOS of [91], which is a piecewise
polytropic representation of the T9 EOS used in [36],
which was, in turn, based on the ACS-II with £ = 0.90 EOS
of [34]. This EOS describes zero-temperature matter in beta
equilibrium. Its hadronic part is derived from [100], the
quark phase builds upon the MIT bag model [101-104],
and the low-density crust component is added from the
models in [105,106]. The quark phase of the original EOS
adopts the constant sound speed parametrization

P(e) = {P“

Ptr =+ 63(6 - €tr)

€, S € < €y,

(1)

€ 2> €y,

where ¢ is the energy density, P, = P(e,) = P(e,) is the
pressure of the hadronic matter in the transition region
€€ [e,. €], and ¢, denotes the sound speed.

Given that the original T9 EOS is provided in tabulated
form, we represent the high-density EOS, similar to the
low-density regime, as a piecewise polytrope of the form

P = kiﬂgi’ (2)
where py is rest-mass density and pg; < pg < po;aq 1 the
density range of each polytropic segment. Piecewise poly-
tropes are frequently employed in the context of the NS
EOS, as many proposed tabulated, realistic nuclear EOSs
can be well fitted by them; see, e.g., [7,96,98,107].

The next step is to merge these two EOSs into one that
can describe the entire range of densities relevant to
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compact objects. The low-density and high-density EOSs
represented as P = P(p,) intersect at a matching density.
The combined EOS should initially follow the low-density
EOS and transition to the high-density EOS as the density
increases beyond the matching density. To ensure a smooth
transition below and above the matching density, in the
density range of approximately 10''-10'2 gecm™, we
linearly interpolate between the two regimes using loga-
rithmic pressure and density. This step yields a base EOS
that covers a wide range of densities, extending from the
crust of a WD to the dense core of a HS.

After we join the low- and high-density EOSs, we solve
the Tolman-Oppenheimer-Volkoff (TOV) equations [89]
for determining general relativistic hydrostatic equilibrium
stellar configurations. We then make small modifications to
the EOSs by fine-tuning the free parameters of the EOS to
satisfy the following set of conditions.

(1) A third family of compact objects is present.

(2) A 2M [108-112] compact object should be al-

lowed by the EOS.

(3) The Chandrasekhar mass My, = 1.44M, is the
maximum WD mass, assuming a mean molecular
weight of electrons y, = 2.

(4) For the range of densities in our simulations, the
sound speed should be subluminal. The sound speed
for a piecewise polytropic EOS is calculated as [96]

dP I.P
L= — = U 3
Cs Vde Ve+P (3)

(5) In the phase transition region, the sound speed
should not be zero, because the equations of hydro-
dynamics would be only weakly hyperbolic (see
[91] and discussion therein).

(6) The dominant energy condition should be satisfied
for all densities. In the case of a perfect fluid, this
implies [113]

€ > |P|. (4)

Following small modifications to the piecewise poly-
tropic parameters of our EOS such that all aforementioned
conditions are met, we constructed the EOSs presented in
Table I. The EOS designated as “EOS I” in the table is
used throughout most of this study. “EOS II,” on the other
hand, is used only in one our simulations of gravitational
collapse to a hybrid star above the twin star mass range. In
EOS 1I, the maximum mass of the NS branch is slightly
lower than My, while the other characteristics are almost
identical to those of EOS I. For the remainder of this
paper, we always refer to EOS I in Table [ unless EOS I is
explicitly specified. A plot of these EOSs is provided in
Appendix A.

The choice of piecewise polytropic parameters is not
unique, but there is not much room for changing these

TABLE I. The two families of piecewise polytropic EOS that
are adopted in this work, presented as eight-branch piecewise
polytropes with 16 free parameters (I';, po;, and k). Setting
M = 1, the first coefficient is k; = 20.7, and the values of k; for
the other segments are determined by continuity at p ;, as given

by Eq. (5).

EOS I EOS 11

i T log i po.i[M57] T 10g19 po.i[M5’]
1 1.5000 S 1.5000 e

2 1.3350 —9.8833 1.3350 —9.8833

3 1.1386 —7.4573 1.1286 —7.4661

4 2.3544 —-3.8475 2.3144 -3.8475

5 3.3458 -3.3199 3.3858 -3.3109

6 0.2576 —-3.0081 2.4957 -3.0126

7 5.1878 —-2.7019 4.1878 -2.7290

8 7.6102 —2.5405 8.1102 —2.5405

parameters while still meeting all aforementioned condi-
tions. Our goal here is not to explore all possible equations
of state, because this is not feasible. However, by adopting
the resulting phenomenological EOSs, we can perform our
point-of-principle calculations.

In geometrized units' with My = 1, the first coefficient
of the EOS in Eq. (2) is k; = 20.7. The value of k; for
i>1 is determined by continuity condition at the
boundary of each two neighboring segments, expressed
as P;(poii1) = Piy1(poy1)- This condition leads to

l—‘i_l—‘i 1
kiyi = kiﬂo,prl+ . (5)

At sufficiently high densities, relevant for the most
massive stellar configurations, the sound speed calculated
by Eq. (3) becomes superluminal. Superluminality for
ultradense matter with realistic EOSs is not uncommon.
For example, it arises in the Akmal-Pandharipande-
Ravenhall EOS [114], and efforts have been made to
explain this behavior of ¢, in high densities, e.g., in [115].
However, we checked that the sound speed never becomes
superluminal in our dynamical spacetime simulations.

During the process of adjusting the EOS, we find that, in
order to have heavy HSs with a maximum mass of at least
2M, the sound speed must be large at densities corre-
sponding to pure quark matter. This behavior aligns closely
with the findings of [25,116—118] on the necessity of sound
speed becoming close to the speed of light in densities of a
few times p,. Physically, this implies that pure quark matter
at intermediate densities is strongly coupled and violates

'"The conversion factor between cgs units and geometrized
units with M, is given by po., = G2 Mgc®pg for density and by
Regs = GM oc7*Rg; for length, where pg and R stand for density
and radius in geometrized units, respectively.
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FIG. 2. A two-dimensional view (top panels) of the matter distribution inside the stable NS configuration C (left) and the HS
configuration E (right). For the HS, the distinct quark core is easily distinguishable by its brighter color, indicative of the sudden
increase in density. The density profile of each star is also displayed in the bottom panels as a function of the radial coordinate r. Red
color in the background stands for the pure hadronic matter, blue represents the pure quark matter, and the narrow purple region in the
plot of the HS density profile denotes the zone containing a mixture of quarks and hadrons.

¢2 = 1/3 predicted for asymptotically free quarks when
po X 40p, [119].

With the EOS available, we solve the TOV equations for
a wide range of central rest-mass densities p, between 10%
and 10'® gcm™3. We show the resulting mass-central
density plot in Fig. 1. The plot displays the total gravita-
tional mass M, also known as the Arnowitt-Deser-Misner
(ADM) mass, and the total rest mass M, of static stars as
functions of their central rest-mass density, with red and
blue curves, respectively. The branches of stable
(dM/dp, > 0) and unstable (dM/dp. < 0) WDs, NSs,
and HSs are explicitly identified based on the turning
point theorem [89].

Our initial data for the collapse simulations are based on
stellar configuration B in Fig. 1, with a rest mass M ; very
close to M, but on the unstable WD branch to help
accelerate the collapse. The mass of this star, 1.44M , falls
right in the mass range of TSs and allows us to perform our
point-of-principle calculations to test for twin star forma-
tion. The TOV solutions with this choice of mass are
labeled on this plot as {A,B,C,D,E}. Configurations

A and B are a stable and an unstable WD, respectively.
Configurations C and E represent a stable NS and a stable
HS in the twin star mass regime, respectively, although,
strictly speaking, TSs have the same gravitational mass and
not the same rest mass. The internal structure of these two
compact stars is illustrated in Fig. 2.

The largest ADM mass is attained in our EOSs is by a
HS. Stars on the unstable branch that separates stable NSs
and stable HSs, such as configuration D (see the inset in
Fig. 1), which we will refer to as unstable TSs, are entirely
in the twin star mass range. Figure 1 can help visualize the
basic question in our work. During the gravitational
collapse of a stellar core or WD along a constant rest-
mass path (dashed green horizontal line in Fig. 1), as the
remnant cools it encounters first the stable NS branch and
then the stable TS branch as it contracts quasiadiabatically.
This begs the following question: If the NS branch is
encountered first, then how can stable twin stars form?

We point out that during the evolution the remnant
entropy changes due to heating; therefore, the actual
evolutionary track that we describe above is not on the
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FIG. 3. Mass-radius relationship based on the EOS used in this

work. Colors and points indicate the same quantities and
configurations as in Fig. 1. Solid, dashed, and dotted curves
stand for stable HS, unstable TS, and stable NS branches,
respectively. The green shaded area represents the mass range
of TSs.

plane of Fig. 1, because that corresponds to zero-entropy
configurations. However, core bounce occurs above the
density of the NS configuration B, and as the remnant cools
and contracts the evolutionary path approaches the one
shown by the horizontal dashed line in Fig. 1.

In addition to mass, the radius is another important
macroscopic property of compact objects. For any given
EOS, solving the TOV equations also determines the radius
of each configuration. Consequently, every EOS has a
unique mass-radius (M-R) relation that can be probed
through multimessenger observations and, subsequently,
impose constraints on the EOS of dense nuclear matter (see,
e.g., [19,27,120-123] for reviews). The M-R relation based
on our EOS is displayed in Fig. 3. The three compact stars
labeled in Fig. 1 are also shown in this plot with the same
labels. We show these stars on the rest-mass versus radius
curve, because M, is conserved during collapse.

III. INITIAL DATA AND EVOLUTION
METHODS

In the M —p, plane of Fig. 1, the unstable WD
configuration B will collapse at constant rest mass, and,
following cooling, it must ultimately migrate toward one of
the two stable configurations with the same rest mass, i.e.,
at points C or E. During its evolution, the star moves
through configurations that cannot be accurately described
by cold equilibrium models, so a priori it is unclear which
of these stable states the star will end up to. To determine
the ultimate fate of the unstable WD, we perform multiple
simulations of gravitational collapse by perturbing con-
figuration B. As the initial configuration contracts, it
heats adiabatically, and via shocks, if the core bounces.
Therefore, to end up on a cold degenerate configuration, the

star has to cool. We adopt a covariant local effective cooling
approach, the details of which we present in Appendix B.
Our cooling model is that of [124] and is characterized by a
single parameter—the cooling timescale ..

Except for the code that builds our tabulated EOS in
Python, and our TOV solver, our computational framework is
based on the Einstein Toolkit [125,126]—Cactus [127] and
Simfactory [ 128], employing Carpet for mesh refinement [129].
Postprocessing of the simulation data is performed using
the KUIBIT Python package [130].

A. Initial data

The initial data are provided by the Einstein Toolkit thorn
RNSID which is based on the RNS code [131,132]. This code
builds (rotating) isolated stellar configurations assuming a
zero-temperature EOS in either tabulated or polytropic
forms. As our EOS is represented by a piecewise polytrope
I, we convert it to a highly sampled table before passing it
to RNSID. For simplicity, we ignore rotation in this work.

To vary the degree of violence of the collapse of our
initial configuration, we consider a set of different initial
perturbations that involve nonzero velocity and/or pressure
perturbations. We also consider mass depletion perturba-
tions. We describe these below. After we impose the initial
perturbations, we do not resolve the Finstein constraints,
but we check in all our cases that the constraint violations
are always small during the evolution.

1. Pressure perturbation

The pressure perturbations are modeled as
P— (1+¢&,)P=P+0oP, (6)

for every point in the configuration. Here, the value of
&, = 0P/ P controls the strength of the perturbation. The
pressure perturbation could be either negative or positive. A
negative 6P corresponds to pressure depletion and, con-
sequently, speeds up the collapse. On the contrary, a
positive pressure perturbation corresponds to heating the
stellar interior that must be radiated away to maintain the
equilibrium. We use the latter to test our implementation of
effective cooling in Appendix C.

2. Velocity perturbation

Our model for velocity perturbation is given by the
following two-parameter function:

i (5) 7 ™

where ¥ is the coordinate 3-velocity, 7 is the radial unit
vector, r is the coordinate radius, R is the coordinate radius
of the star, and &, determines the amplitude of the velocity
perturbation and could be either negative (collapsing star)
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TABLE II. The set of simulations conducted in this study using EOS I is detailed below. For each case, the corresponding
configuration in the M — p. plot for the initial data is listed, along with the perturbation parameters. The last column describes how
cooling is performed during the simulation, if enabled. Further details are provided in Sec. IV. Configuration F represents a stable HS

with My = 1.49M, and is discussed in Sec. IV C. The simulations based on the last two rows are presented in Appendix D.

Description Initial TOV solution ¢ & &, K Cooling
Unstable WD collapse B —-0.01 0.00 0.00 0.0 SI
Unstable WD collapse B —0.01 0.00 0.00 0.0 ST
Unstable WD collapse—perturbed pressure B —0.90 0.00 0.00 0.0 SI
Unstable WD collapse—perturbed pressure B —0.90 0.00 0.00 0.0 SIT
Unstable WD collapse—perturbed velocity B —0.01 0.00 —0.10 0.0

Unstable WD collapse—perturbed velocity B -0.01 0.00 —0.10 0.5 SIT
Unstable WD collapse—perturbed velocity B -0.01 0.00 -0.10 1.0 SII
Unstable WD collapse—perturbed velocity B —0.01 0.00 —0.10 5.0 SII
Unstable WD collapse—highly perturbed B —0.90 0.00 —0.10 0.5 ST
Unstable WD collapse—highly perturbed B —-0.90 0.00 —0.10 1.0 SII
Unstable WD collapse—highly perturbed B —0.90 0.00 —0.10 5.0 SIT
Unstable WD collapse—highly perturbed B -0.90 0.00 -0.30 1.0 SII
Unstable WD collapse—highly perturbed B -0.90 0.00 -0.40 1.0 SII
Stable massive HS F 0.00 0.00 0.00 0.0

Massive HS—mass loss F 0.00 —-0.03 0.00 0.0

Stable NS C 0.00 0.00 0.00 0.0

Stable HS E 0.00 0.00 0.00 0.0

or positive (expanding star). The exponent x controls the
radial profile of the perturbation. The case x =0 is a
particular model with a velocity perturbation independent
of position. The choice of a power-law perturbation model
is made for simplicity and is not unique. We choose x # 0
so the perturbation goes smoothly to zero close to the center
of the star. This is because for £, = O(—0.1) and k = 0 the
star bounces almost immediately and explodes.

3. Mass perturbation

To simulate a configuration that experiences a small
amount of mass loss, e.g., lost due to winds, the initial data
are perturbed such that a low-density shell of the stellar
structure is set to the tenuous atmospheric density we
maintain in our simulations. This perturbation essentially
changes the total rest mass as

My — (14 &,)My = My + 6M,,. (8)

Here, &, = 6My/M, specifies the fraction of rest mass
removed from or added to the original star and, hence, takes
a negative value in the case of mass loss. In practice, this is
done by defining a threshold rest-mass density below which
the rest-mass density of the stars takes the value of the
tenuous atmospheric density until the desired amount of
mass M, is depleted.

The parameters characterizing all simulations performed
in this work are summarized in Table II.

B. Evolution

The spacetime initial data are evolved in the Baumgarte-
Shapiro-Shibata-Nakamura formulation [133,134] as
implemented in the public Lean code [135]. The spacetime
gauge choice adopted here includes the “I 4 log” and the
“I"-driver” conditions [136,137]. The hydrodynamic initial
data are evolved with the publicly available code
llinoisGRMHD  [138,139]. We have implemented in
MlinoisGRMHD the cooling of [124] that we describe in
Appendix B. We also test our implementation of cooling
in Appendix C. The EOS for the evolution is hybrid with a
cold and thermal component:

P = P.yq + P, 9)

where the cold pressure P4 is given by EOS I or II and
Py = (T — ey, with ey, being the thermal energy
density. We employ I'y, = 2.

In the WD collapse simulations, since the radius
of the initial configuration (WD) is about 100 times larger
than that of the final configuration (HS or NS), it is
computationally inefficient to perform the simulation with
the highest resolution necessary to resolve a HS or NS from
the start. Thus, we employ adaptive mesh refinement. The
initial grid structure consists of two refinement levels, with
the finer resolution set to 100 points across the WD.
However, as the radius decreases over time (and the
central density increases), the initial resolution becomes
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inadequate, and we add progressively higher resolution
refinement levels. Based on an estimate of the final central
density as p.;~10Mg* using the equilibrium cold
configurations (see Fig. 1), we construct six refinement
levels that are initially inactive. As the central rest-mass
density rises, these refinement levels are subsequently
activated when the density reaches certain values. When
all the refinement levels are activated, the highest grid
resolution is 166 m. The density range between the initial
central density, p. ;, and p,. ; is divided into six equidistant
logarithmic segments. Consequently, there are seven values
of density, separating these six segments, that we denote

{p1.p2.....p7}, where p; = p.; and p; = p, ;. Every time
the maximum density of the star exceeds p; = (’%)1/ 6 x

pr—1 for k=1{2,3,...,7}, a new refinement level is
activated. In the collapse simulations, the outer boundary
is set to 1.7Rwp =~ 498Mwp (Rwp = 1058.55 km is the
initial WD radius and My its mass). The half-side length
of each new refinement level is half that of the preceding
level and its resolution twice that of the preceding level. For
the other simulations in this work (e.g., starting with a more
massive HS), the grid has the same structure as described
for the stable HS in Appendix D.

As the star collapses, it heats adiabatically, eventually
resulting in a core bounce once the EOS has stiffened and
significant heat has been generated. Without taking cooling
into account, the collapse would stall and the star would not
continue to contract to reach either of the equilibrium
configurations on the TOV sequence. This excess heat is
naturally radiated away in the form of neutrinos.

In the absence of a physically accurate 6 + 1-dimen-
sional neutrino code, we crudely model cooling by locally
removing any excess heat, as described in Appendix B. The
only free parameter that needs to be specified in this model
is the cooling timescale ... The value of 7, has to be chosen
such that we respect the hierarchy of timescales in our
problem while also considering the duration over which the
simulations can be completed. If z.. is much larger than the
dynamical timescale #4y,, the computations will take a very
long time to complete. However, 7. is much smaller than
f4yn» Which would result in rapid cooling, causing signifi-
cant perturbations instead of a smoother transition to the
zero-temperature remnant. As a star collapses, the density
increases. Thus, the dynamical timescale of the star,
defined as 14y, = \/ﬁ, is not constant over time.

We follow two different strategies to activate cooling in
our simulations in order to ensure that our final results are
invariant with the cooling strategy. In the first strategy (SI),
the collapse begins without cooling and subsequently
comes to a halt due to core bounce and heat generation.
When the star settles in this state, we activate cooling with
7, = 3144y, Where 4y, is determined based on the central
density of the settled configuration. In the second strategy
(SII), cooling is activated from the beginning with

7, = 314qy,. However, as the collapse continues, 7. is
updated to track the changing dynamical timescale as
the maximum rest-mass density increases. We update z,.
every time a new refinement level is added to the con-
figuration with the same relation 7, = 314y, Where 74y, is
determined based on the values of {pi,p,,...,p;} dis-
cussed above.

IV. RESULTS

In this section, we present the results of our simulations.
We begin with the simulations of WD collapse, both without
and with strong initial perturbations. Subsequently, we
present the outcomes of the simulation involving a HS with
mass loss. Furthermore, we perform a simulation to explore
the formation of a stable HS with a mass exceeding the mass
range of TSs, arising from the collapse of a WD. We present
how well the constraints are satisfied during the evolution in
Appendix E. We also perform two simulations involving the
stable NS and HS shown in Fig. 2 to demonstrate the code
can reliably evolve stable stars. The results of these
simulations are discussed in Appendix D.

A. White dwarf collapse

A potential pathway to forming TSs is the gravitational
collapse of the iron core of a massive star or the accretion-
induced collapse of a WD. An unstable WD near the
Chandrasekhar limit is an acceptable model for either
scenario. The initial central density and radius of the
unstable WD at configuration B are p.=2.14 x
109 gem™ and Ryp = 1058.55 km. Following cooling,
this configuration is expected to collapse and settle into
configuration C or E, since these are the only stable
configurations that preserve the total rest mass. To speed
up the collapse, we initially deplete 1% of the pressure at
every point inside the WD, that is, £, = —0.01.

Figure 4 shows the outcome of the simulation adopting
the SII cooling strategy with four snapshots of the matter
distribution. The dense core depicted in the final snapshot
of this figure shows the ultimate stable compact star. The
mass in the low-density region surrounding the core is
negligible compared to that of the central compact object.
Figure 5 presents the time evolution of the maximum rest-
mass density inside the star. The horizontal orange and blue
dashed lines display the central rest-mass density of the
stable NS and the stable HS with the same rest mass as
the initial WD, i.e., configurations C and E, respectively.
The black dashed (green) curve shows the evolution of the
maximum rest-mass density in the SI (SII) cooling strategy.

In both scenarios, the initial configuration slowly con-
tracts. After 7 ~ 614y, (here and in Fig. 5, 14y, corresponds to
the dynamical timescale of the initial WD), the collapse
accelerates. Around 7 ~ 6.7014,, a bounce in the density
evolution occurs, halting the rapid collapse. We note that
the evolution until core bounce is insensitive to whether
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FIG. 4. Snapshots of matter distribution within the star at four different times during the collapse in the xy plane. The leftmost panel
shows the unstable WD configuration B, and the rightmost panel shows the stable NS configuration C. The matter left as a low-density
atmosphere around the stable NS gradually falls onto the dense core during the final stages of the collapse, but its total mass is negligible.

Thus, it cannot raise the maximum density, as evidenced in Fig. 5.

cooling is active or not. After the bounce, the evolution of
the maximum rest-mass density depends on the cooling
strategy. In the case where cooling is initially inactive, the
star settles at a density below both stable NS and stable HS.
Note that this configuration does not lie on the TOV
sequence with the underlying cold EOS, because it no
longer has zero entropy. As soon as cooling is activated,
this intermediate configuration undergoes additional col-
lapse and asymptotes to the stable NS configuration C
(orange dashed line). In the SII case, the star continues its
collapse after the bounce, since cooling already had
reduced the thermal pressure. However, the asymptotic
configuration, when most of the heat has been removed, is
again the stable NS configuration C. Thus, the outcome of
the collapse is independent of the cooling strategy adopted
here, and the final cold configuration has a maximum
density that is below the quark-hadron phase transition
region. Therefore, the final configuration is a NS.

1()15_"’:|—’S ””””””””””””””””””””””””””””””
NS —
7
- 1014.
T
g 1013 5 3 x 10"
o0
g 12
0L IR B B a—
& 2 x 101
1011 4
0o 1 2 3 4 5 6 T 8 9
t/ tayn
FIG. 5. Evolution of the maximum density for an unstable WD

under 1% pressure depletion. Here, f4,, = 26.46 ms is the
dynamical timescale of the initial WD. The orange and blue
dashed lines denote the rest-mass density of the stable compact
configurations C and E of Fig. 1, respectively. The black dashed
(green) curve illustrates the evolutionary path in the SI (SII)
cooling strategy. The inset enlarges the bounce.

We note that, in the part of the plot in Fig. 5 where the
green and black curves plateau at the stable NS threshold,
every unit of 7/t4, corresponds to ~170 dynamical time-
scales of that stable NS. Hence, the simulations were long
enough to ensure that the evolution has reached the stable
cold configuration.

We also conducted a simulation with 7z, = 1.574, as
opposed to 7, = 314y, to check if the cooling timescale can
affect the results. We confirmed that faster cooling only
accelerates the collapse while leaving the final outcome
unaffected. Thus, we conclude that the final product of the
collapse of an unstable WD is a stable NS with the same
total rest mass; these initial data do not result in a stable HS,
regardless of the cooling approaches tested.

B. Strongly perturbed initial data

Here, we explore more violent perturbations to inves-
tigate whether the final remnant can be a TS if the strong
bounce can be avoided or happen at a higher density past
the hadron-to-quark phase transition. To cause the bounce
to occur at higher densities, one can potentially think of
more extreme initial conditions for the unstable WD.

1. Large pressure depletion

One of the parameters that could potentially facilitate the
collapse is the strength of the pressure depletion charac-
terized by &,. A very large pressure depletion might result
in a more rapid collapse. We conduct a set of simulations
with SI and SII cooling beginning with configuration B but
¢, =—0.90. While this level of pressure depletion is
unlikely in nature, we use it as an extreme case to determine
if collapse alone can form a TS. Since the WD is basically a
Newtonian object, such a large pressure depletion has a
negligible impact both on the total energy budget of the star
and on the constraints.

The results of these simulations are displayed in Fig. 6.
By comparing Figs. 5 and 6, it can be inferred that an
exceptionally large pressure depletion accelerates the
collapse substantially. In this case, the bounce occurs at
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FIG. 6. The same as Fig. 5, but for the case with 90% of
pressure depletion in the initial data. The line styles and colors are
coded as in Fig. 5, and, similarly, Tayn is the dynamical timescale
of the initial WD.

1 ~2.4214,, almost 3 times earlier. Despite that, the core
still bounces at approximately the same density and halts
the collapse. Following cooling, the remnant eventually
settles into a stable NS configuration. Similar to the
previous set of simulations, the end product is independent
of whether the SI or SII cooling strategy is adopted.

2. Velocity perturbation

Given that the binding energy of the TS is larger than that
of the NS with the same rest mass, it is possible that we
must inject energy into the system to overcome the bounce.
One way to induce a more violent implosion is by
introducing an inward velocity perturbation. This pertur-
bation is modeled with Eq. (7), which consists of two free
parameters &, and k to be specified. We fix &, = —0.1,

which corresponds to an inward velocity at the surface at
10% of the speed of light, and perform simulations with
three different values of «, namely, k = {0.5, 1, 5}. Figure 7
shows the result of these simulations in the evolution plot of
the maximum density, represented by maroon, green, and
magenta colors, respectively.

To explore a more diverse range of initial conditions,
each of these simulations is performed in two cases: £, =
—0.01 (dotted curves) and &, = —0.90 (solid curves). In all
these simulations, cooling is activated from the beginning;
that is, we employ the SII cooling strategy. All these cases
yield the same final result as the previous simulation of the
collapsing WD; the original bounce near the last stages of
the collapse is still unavoidable, and the remaining core is
still a stable NS, regardless of the value of k. Different
values of k can change only the timescale of the collapse.
Among these three choices, k = 0.5 and ¥ = 5 result in the
fastest and the slowest processes, respectively. Moreover,
the combination of the velocity perturbation with a larger
pressure depletion in the initial data leads to a faster
implosion in all cases.

As the last set of simulations for the collapse of an
unstable WD, we also explore velocity perturbations with
larger values of &,,. Figure 8 presents these simulations with
£, =—0.3 (dotted curve) and &, = —0.4 (solid curve).
Given that all choices of k led to the same ultimate result,
we run these simulations only for the case of x = 1. Both
simulations have 90% of pressure depletion, £, = —0.90,
and are conducted in the SII. These represent the most
extreme initial conditions examined in this study. However,
the result is once again the stable NS at configuration C.
The bounce still manifests after the exponential collapse,
although the process is even faster than in the previous
cases. The general outcome of these simulations suggests

1015 ;"""—FS' """""""""""""""""""""""""
NS
10 -
5
QE) 1013 E
o0 ]
£ 10" 5
SY ]
Lot 1 A «

""" — k=05,& =-0.90
....... k=05,& =-001

2 3 4

FIG. 7. Maximum density versus time for the simulations of WD implosion with initial perturbations in both velocity and pressure.
Time is scaled with the dynamical timescale of the initial WD. The colors maroon, green, and magenta designate the three values of
k = {0.5, 1,5}, respectively. The velocity perturbation is fixed at £, = —0.1. Dotted lines correspond to &, = —0.01, while solid lines to
¢, = —0.90. All six simulations employ the SII cooling strategy. The dashed lines designate the central density of the stable NS or HS as

in Fig. 5.
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FIG. 8. The evolution of the maximum density of the collapsing
WD with the most extreme initial conditions in pressure and
velocity. The dotted curve shows the simulation with £, = —0.3,
and the solid curve represents the simulation with &, = —0.4.
Both the cases are performed in SII, with x = 1 and £, = —0.90.
Similar to Fig. 5, the dashed lines show the maximum density of
the stable NS or HS, and 74y, is the dynamical timescale of the
initial WD.

that even extreme pressure and velocity perturbations
cannot change the eventual fate of the collapsing WD.
The outcome is always a NS.

C. Mass loss

In this section, we investigate the scenario where the NS
maximum mass is somewhat lower than the Chandrasekhar
limit so that a stellar core or a WD at the Chandrasekhar
limit collapses to the stable hybrid star branch above the
twin star mass regime. If this initial hybrid star experiences
some mass loss, e.g., due to strong winds, it could settle
into a TS instead of a NS.

To model this scenario, we take the hybrid star configu-
ration F in Fig. 9 and deplete a small fraction of its mass as
described in Eq. (8). The initial rest mass of this configu-
ration is My = 1.49M  and exceeds M ,. The initial central
rest-mass density is p, = 1.63 x 10> gcm™, and the
radius is R = 11.02 km. By setting &,, = —0.033, the rest
mass of the star becomes M ~ M ;, aligning with the rest
masses of stable stars A, C, and E in Fig. 1. This initial
perturbation is fairly strong compared to a slow loss of
mass through winds, but it allows us to get a glimpse into
whether this pathway to forming TSs is viable. We checked
the constraint violations after the mass loss remain small
throughout the simulations we performed (see discussion in
Appendix E).

Figure 10 illustrates the results. Four simulations are
shown in this figure; the stable configurations C, E, and F
(without perturbation) are displayed by the orange, blue,
and violet solid lines, respectively. The black solid
curve represents the evolution of the maximum density
of a star beginning at configuration F but perturbed by

pelg cm ™3
6 x 10M 10% 2 x 10%°
251 —— Rest mass M,
—— ADM mass M
------ Chandrasekhar limit
. 2.07 *  Maximum ADM mass = 2.00 M
§
" E
=
1.0
10-3 2% 107  3x107% 4x 1073

Pe [M52]

FIG. 9. An enlarged view of the NS and HS part of Fig. 1.
Configuration F is a stable HS with a mass higher than the other
three configurations indicated. The green shaded area roughly
denotes the mass range for TSs. The red (blue) curve corresponds
the ADM (rest) mass.

£, = —0.033. Interestingly, this plot demonstrates that the
last scenario successfully ends up with the formation of a
stable HS in the twin star regime. As a result of this large
initial perturbation, two types of oscillations can be seen
around the maximum density of the stable HS shown in
blue. The first type exhibits oscillations with a period of
~t4yn, Which gradually disappears after a few dynamical
timescales. The second type of oscillation has a larger
domain with ~ +10% of deviations around the mean value
of the central rest-mass density of the TS E. The latter type
of oscillation has been seen before in simulations with

e
|

= Configuration F, ¢, = 0.0

ZJD 1015 —— Configuration E, &, = 0.0
'_-gl Configuration C, &, = 0.0

QS —— Configuration F, &, = —0.033

Phase transition
6 x 10"
0 5 10 15 20 25 30

t/ tayn

FIG. 10. Time evolution of the maximum density of configu-
ration F without any perturbation (violet) and with a 3.3% mass
loss (black). The stable NS and HS configurations C and E are
shown in orange and blue, respectively. For each stable star, the
solid line denotes the actual simulation, while the dashed line
represents the initial central density. Furthermore, the shaded area
indicates the density range of the phase transition. In this plot, 74y,
is the dynamical timescale of the initial HS.
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FIG. 11. Rest mass as a function of central density for a sequence of TOV stars with EOS I (dotted line) and EOS II (solid line). The

dashed line represents the Chandrasekhar mass. Notably, there is no TS in EOS II with a rest mass close to M. In the density range
relevant to WDs, the two curves exhibit almost complete overlap. Thus, the initial unstable WD configuration (B) shares similar

characteristics in both EOSs.

EOSs that exhibit a strong phase transition [91,140] and is
likely due to a significant portion of the mass of the star
transitioning in and out of the density range in the hadron-
to-quark phase transition, where the stiffness of the EOS
changes rapidly leading to collapse (EOS softens) and
bounce (EOS stiffens). We expect that a gradual loss of rest
mass would make such oscillations disappear, but the main
result of the final configuration being a TS with the same
rest mass should hold. The important finding here is that the
maximum central density remains above the phase tran-
sition region as shown in Fig. 10, and its mean is that of the
TS with the same rest mass.

D. Hybrid star formation

In the previous subsection, we demonstrated that TSs can
form via mass loss from a more massive HS. However, this
process is plausible only if a massive HS can form in the first
place. In this subsection, we explore the formation of a HS
with a higher mass than TSs through gravitational collapse.

The simulation we perform here is the only one in this
work based on EOS 1I listed in Table I. Figure 11 compares
the M, — p. curves resulting from these two EOSs. The
TOV sequence resulting from EOS 1I has a NS peak lower
than M,. Therefore, there are no TSs with rest mass M .

Starting from an unstable WD with rest mass M, as
initial data, there should be only one stable equilibrium,
cold configuration at higher density. This equilibrium
should correspond to a HS with a central density of p. =
1.75x 10" gem™ and a radius R = 10.35 km. The
results of this simulation are displayed in Fig. 12, where
we show the evolution of the maximum rest-mass density.
The blue line denotes the described stable HS, and the
shaded area shows the range of densities in the phase
transition. As expected, the remnant of the collapse is this

HS, as evidenced by the convergence of the maximum
density to the central density of this star.

The bounce observed in the previous simulations persists
in this simulation as well, due to the stiff EOS. SII cooling
is employed in this simulation, starting at 7. = 314y,. When
the maximum density approaches the phase transition
segment of the EOS, the evolution of the maximum density
becomes very slow. Since we have already confirmed that
the cooling timescale does not affect the outcomes, we
change the cooling timescale to 7, = 1.5¢4y, at t/t4y, ~ 6.7
to accelerate the transition. As the maximum density enters
the segment of the EOS that softens, the configuration

HS
1015.
f"lﬁ_' 10144
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© 10" 2 x 10
ey 18 x 10
§ gl L6x107
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FIG. 12. The evolution of the maximum density of a star
beginning as an unstable WD with a rest mass M, = M ;. The
blue line represents the central density of the stable HS with this
rest mass, and the phase transition range of densities is indicated
by the shaded gray area. Here, ty,, represents dynamical time-
scale of the initial WD. The inset enlarges the final stages of
collapse, indicating the convergence of maximum density to the
central density of the stable HS.
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undergoes fast collapse to the HS formation. The only
perturbation introduced in this simulation is &, = —0.01,
applied solely to speed up the initial collapse.

While not surprising, our simulations here demonstrate
explicitly that forming HSs with masses higher than TSs is
viable.

V. CONCLUSIONS

The exact form of the cold EOS beyond the nuclear
saturation density is still quite uncertain. Cores of NSs are a
common place in nature where neutron-rich matter can be
found in this regime. The properties of compact stars are
intricately linked to the form of the EOS at these densities.
If a strong hadron-to-quark phase transition occurs at these
compact star densities, the EOS can potentially give rise to
a third branch of stable compact objects that consist of a
quark core surrounded by a hadronic shell. These configu-
rations are known as hybrid hadron-quark stars or hybrid
stars. Associated with a third family of compact stars is a
range of masses where for each NS there is a corresponding
HS with the same mass but a smaller radius. These stars are
referred to as twin stars.

In this work, we explored the formation of TSs by
conducting hydrodynamical simulations in full general
relativity. We constructed piecewise polytropic EOSs that
approximate realistic EOSs with a hadron-to-quark phase
transition, and we extended them down to the EOS of a
white dwarf. Using our EOSs, we performed multiple
simulations of the collapse of an unstable WD under
different initial conditions with varying degrees of extrem-
ality of initial perturbations in pressure and/or velocity.
Given that total rest mass is conserved, the ultimate product
of the collapse could be either a stable NS or a stable HS.
The general finding from all our simulations is that the
unstable WD always collapses into a stable NS, regardless
of how extreme the initial conditions are. This overall result
remains the same even under extreme initial perturbations.

If TSs exist, there should be at least one pathway for
them to form. Following the standard theory of NS
formation, a natural path could be the formation of a more
massive HS that subsequently loses a small amount of mass
in the form of winds. Another potential avenue for mass
loss would be a “grazing” collision of a massive HS with a
black hole where the massive HS undergoes an episode of
mass loss and then flies away. Such a scenario might take
place in a dense stellar cluster. Our simulations show that
forming HSs heavier than in the twin star mass regime is
possible and that forming a TS through a heavier HS
experiencing mass loss is a viable path. However, even this
scenario appears that it would require some fine-tuning for
TSs to form, which would place strong limits on the
abundance of TSs. The fine-tuning for the formation of
twin stars results because of the limited range of masses
over which they are predicted to reside by existing EOSs
with hadron-to-quark phase transitions, and, hence, they

should be fairly rare objects. This conclusion and the
challenge in producing TSs as demonstrated by our
simulations suggest that if a HS star was involved in
GW170817, then it likely was not a twin star.

We point out that our work is idealized in several ways and
has a number of caveats. First, we do not treat realistic
neutrino effects or magnetic fields, and the perturbations
studied here represent a simplified version of processes that
may occur inside the dense core of massive stars during the
last stages of their evolution. In particular, scenarios involv-
ing mass loss due to winds and mass gain resulting from the
infall of matter from outer shells of the initial progenitor are
expected to happen in nature. The results of our simulations
indicate that these perturbations play a notable role in the
potential formation of stable TSs, assuming that they exist in
nature. Thus, it is important to treat these self-consistently.
Nevertheless, our conclusion that NSs tend to be the
preferred outcome in the twin star mass range should hold,
not only because this is what our simulations demonstrate,
but also because of the very small range of masses over which
twin stars are predicted to exist by current EOSs, which, in
turn, requires a delicate balance of mass loss and mass gain.

To develop a more comprehensive model for the formation
of TSs, further cases should be studied with a wider range of
parameters. Our simulations were performed using static
configurations. Rotation is another aspect that can be added
with different models to future simulations to study the same
problem. Additionally, these simulations were conducted
considering only one type of EOS. Neutrino effects, nuclear
reaction networks, and a more realistic progenitor are other
ways to increase the realism of these simulations.

The effects of rotation was not treated here, but such
effects on HSs have been studied [55,71,141,142]. The
centrifugal barrier due to rotation is likely to lower the
density compared to a nonrotating configuration for a given
rest mass, thereby making matter stay well below the hadron-
to-quark phase transition density. In addition, for some
hybrid EOSs, rotation has the effect of increasing the neutron
star maximum mass higher than that of the third family [36].
However, these results hold for cold configurations.

Temperature is another quantity that could affect stellar
properties [143]; notably, phase transitions may occur at
finite rather than zero temperature [144]. The EOS we
adopted in this work exhibits a hadron-to-quark phase
transition at zero temperature. One scenario that can
potentially change the results is the possibility of an
EOS with a phase transition at finite temperatures [95].
In this scenario, phase transition occurs at a lower density
when the star is still hot [145]. Therefore, one can also think
about the formation of TSs considering such a EOS with a
finite-temperature phase transition. We will explore this
possibility in future work.

Another potential pathway to forming HSs involves
mergers of binary NSs or WD-NS [124,146,147]
Exploring all these scenarios and including more realistic
physics is left for future work. Most work in the area of TSs
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revolves around either observational constraints on or
properties of the EOS. Our work here points out that there
is another important problem surrounding TSs: their for-
mation and abundance in nature.
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APPENDIX A: EXTENDED EOS INFORMATION

The EOSs used in this work consist of eight segments
and must satisfy the list of conditions in Sec. I
Empirically, we have found that each I'; controls specific
characteristics of the TOV sequence shown in Fig. 1.
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FIG. 13. The relationship between the pressure and the energy

density based on the EOSs constructed in Table I. EOS T is
represented by the solid line, while the dotted line denotes EOS
II. The shaded red, blue, and purple areas correspond to the pure
hadronic, pure quark, and the mixed quark-hadron phases for
EOS 1, respectively. The inset enlarges the phase transition
region.

I'; primarily affects the maximum WD mass, ', alters
the density and mass of the WD peak, I'; for i = {3,4,5}
controls the maximum NS mass, and I’ changes the twin
star mass range. Finally, I'; for i = {7,8} affects the
maximum HS mass. However, it is important to emphasize
that each of the free parameters affects more than just one
characteristic.

The two EOSs listed in Table I exhibit only small
differences, which are mostly noticeable at higher densities.
Figure 13 illustrates the pressure as a function of energy
density € for our EOSs. The shaded red region designates
the density range where matter exists in the hadronic phase,
and the blue region shows the density range where it exists
purely in quark form. The narrower purple range, where the
two regimes overlap (i = 6 branch of the EOS), is where
the phase transition occurs. In this regime, the original
polytropic exponent was I'¢ =0, corresponding to a
first-order phase transition, but we modified it to 'y =
0.2576 to avoid a zero sound speed. This implies that,
instead of a sharp boundary from the hadron to the quark
phase, there exists a mixture of hadrons and quarks in this
narrow region of our EOS. This modification makes the
sound speed of this region ~15% of the speed of light,
which allows for stable numerical integration of the general
relativistic hydrodynamic equations.

APPENDIX B: COOLING FORMALISM

In this appendix, we summarize the cooling formalism
adopted in our work.

In the standard 3 + 1 decomposition formalism to
numerically solve the Einstein equation, the spacetime
metric g,, is written as follows by [148]:

ds? = —a?d* + vij(dx' + pldr)(dx’ + p/dr),  (Bl)

where a, A, and y; ; are the lapse function, shift vector, and
spatial metric, respectively (i and j are spatial indices). For
a perfect fluid with 4-velocity u#, the stress-energy tensor is
written as

T = pohutu® + Pg™. (B2)

Here, the specific enthalpy #/ is related to the specific
internal energy e = pio — 1 through

P
h=1+e+—.

Po (B3)

The evolution equations for general relativistic hydrody-
namics are given by [149]
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atp* + aj(p*”j) =0,
0%+ 0;(a*\/yT" — p,v') = s,

- . 1
atSi + aj (a\/fT]i) = Ea\/?Tﬂyaig;w' (B4)

In these equations, v’ = u’/u® is the coordinate 3-velocity,
and the conservative variables are defined as

P = —\/}7.00’%“”’
S = —=/1Tun'v,

7= \/yT,,n"n"p,, (B3)
where n# = L1 (1,—) is the timelike unit vector normal to
t = const slices.

In Eq. (B4), the first equation corresponds to the baryon
number conservation. The time component of energy-
momentum conservation V,T,* is expressed in the second
equation, where s = —a,/yT*"V,n, is a source term. The
spatial components of the energy-momentum conservation
are encoded in the third equation.

The set of Eq. (B4) also requires an EOS to close. The
general form of the EOS that is assumed to solve this set of
equations is given by Eq. (9) [150], where P4 stands for
the pressure of the zero-temperature matter, and has the
polytropic form introduced in Sec. II. Any additional
pressure due to heating, e.g., by shock heating, is encapsu-
lated in Py,. This term is considered as a I law:

Py = (' — Dpoenn, (B6)
where ey, = e —e.q and e, q 18 the specific internal
energy associated with the cold pressure, which can be
found from the first law of thermodynamics as

1
ecold(ﬂO) == / Pcold<p0)d<_> . <B7)
Po
For the specific case of Eq. (2), this becomes
ki -1
= i : B
€cold Fi _ lp() +a;, ( 8)

where qa; is a constant of integration. Considering €.,q as
the energy density when there is no heat, this constant is
determined as [96]

_ €eold(P0.i) 1 ki

i Do - -1 (Bg)

l—‘ifl
Poi

In the presence of radiation, the conservation of energy-
momentum must be modified to incorporate the radiation
stress-energy tensor R*:

V, (T 4+ R#) = 0, (B10)

The dynamics of the radiation stress-energy tensor is
described by V,R* = —G*, where G" is the radiation
four-force density. Assuming local and isotropic (in a frame
comoving with the fluid) cooling, the resulting energy and
momentum equations are then given by [124]

0% + 0;(a®\/yTY — p,v') = 5 — a*/yu’A,

- . 1
0,Si + aj(a\/fTJ,) = Ea\/?T’“’digﬂy 4 ]/l/ll'A,
(B11)

where we choose the same emissivity A as in [124]

A=y, (B12)

C
Here, 7. is the cooling timescale.
Cooling changes the internal thermal energy over time.

The governing equation in a comoving frame can be written
as [124]

deth .
dr

P (B13)

Fnh—lymo 1}em

where 7 is the proper time. When no adiabatic contraction
or expansion takes place, then p, is constant, and the last
equation describes an exponential evolution of ey as a
function of proper time, that is,

T
e xexp | ——).
TL‘

APPENDIX C: COOLING TESTS

To validate our implementation of cooling, we introduce
a uniform perturbation in pressure everywhere in a test
simulation involving a stable NS. We adopt a cold poly-
tropic function EOS, P = kpg , where I'=2 and
k = 100M%. Equation (9) implies that any positive per-
turbation in pressure adds some Py to the initial cold
pressure. We conduct three different simulations for a stable
NS with the central density p, = 0.001MZ2. In the first
simulation, no pressure perturbation is applied, and cooling
remains inactive. In the second simulation, we impose a
small pressure perturbation with &, = 0.01, which con-
sequently produces heat, but cooling is not active. Finally,
we conduct a simulation that includes the same pressure
perturbation as the second simulation, while cooling is
active with 7z, = 3.1674,. We continue the simulations
for ~3014yy.

Figure 14 shows the result of these simulations for the
absolute value of ey, at four different times. The three

(B14)
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FIG. 14. The value of |eg,| is shown in two-dimensional snapshots of three simulations involving a stable NS governed by a ' = 2
polytropic EOS with constant k = 100M32, and p. = 0.001Mg2. The evolution of each simulation is illustrated in a separate row. The
first row describes a NS without any initial perturbation in pressure and without cooling. The second row corresponds to the case with a
small pressure perturbation in the initial data and no cooling. The bottom row has the same initial data as the second row but cooling is
active. The plot demonstrates that cooling is effective at removing excess heat in the bulk of the stellar matter. The stellar surface
discontinuity generates heat at every time step and would require more aggressive cooling to completely cool. However, the amount of
mass in that hotter region is negligible compared to that of the cold bulk of the star.

simulations are presented in the three rows, respectively.
Even in the first simulation, where there is no additional
thermal pressure in the initial data, small numerical errors
result in the generation of some heat that grows over time.
These numerical errors can also deplete heat, leading to
negative ey, at some points. This is why we show the
absolute value of this quantity. The initial data for this
simulation contain no initial heat, as there is no heat source
of Py at the beginning. In the second simulation, the
perturbation £, = 0.01 results in heat in the initial data.
This excess heat can accumulate alongside the contribution
from the numerical errors over time, resulting in a relatively

hotter configuration. The third simulation starts with the
same amount of initial heat as the second simulation, but
cooling removes the extra heat from the star. As can be seen
in the bottom row of plots in Fig. 14, the initial heat and a
significant portion of the heat arising from numerical errors
are effectively removed after a few dynamical times.

We can also examine the evolution of Py, at the center of
the star in these three simulation, as depicted in Fig. 15. In
the first simulation, Py, increases over time as a result of
numerical error. The value of Py remains constant over
time in the second simulation, as expected. In the last
simulation, the cooling mechanism gradually decreases the
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FIG. 15. The time evolution of Py, /P at the center of the star is

shown for three different simulations. The blue curve corresponds
to a simulation without any perturbation or cooling. The orange
curve has no cooling but incorporates a pressure perturbation
with &, = 0.01. The dark red curve corresponds to the simulation
with &, = 0.01, but cooling is active with 7, = 3.1644y,.

value of Py,. After ~1814y,, the central value of Py, in this
simulation drops below its corresponding value in both the
other simulations, revealing the successful removal of heat
by cooling. The positive 0P also leads to a decrease in
density at every point. This behavior can be seen in Fig. 16.
The positive perturbation induces more pronounced oscil-
lations in quantities such as density, similar to the oscil-
lations that will be discussed in Appendix D for stable stars.
These oscillations remain strong even after many 74y, while
cooling has eliminated the majority of the heat. In this,
cooling drives the maximum density to converge to its
initial value and oscillate around it.

The results of these simulations indicate that cooling is
successfully removing excess heat, restoring the EOS to its
cold state. Having verified the functionality of the code, we
test its accuracy. In other words, cooling should operate as

1.01 1
1.00 4

SIS 0991

< 3]
QU
0.981
0.971
0.96
0 5 10 15 20 25
t / tdyn

FIG. 16. Time evolution of the central density for the three
simulations shown in Fig. 15, with colors having the same
meaning.
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FIG. 17. The evolution of the quantity ey, /e at the center of a
NS during the early times. The green curve represents the
simulation results with £, = 0.01 and 7, = 3.16t4y,. The fitted
model described by Eq. (C2) is shown by dots, with the damping
timescale set t0 Tgqmp = 3.207gyp-

modeled in Appendix B. To design an actual (quantitative)
cooling test, we may focus on the evolution of the quantity
eqn/e at the center over the very early times, for a
simulation with £, = 0.01 and 7, = 3.1614,. If p; is fixed,
the value of ey must be decreasing as an exponential
function with the proper time, as expressed by Eq. (B14).
Unlike the previous plot, the evolving quantity here is
shown as a function of proper time 7 rather than coordinate
time 7. This adjustment is made due to the exponential
behavior being dependent on proper time. To convert the
coordinate time to proper time, the value of the lapse
function is obtained at each time step, and the conversion is
achieved by
dr = adlt. (C1)
Then, the result can be fitted to an exponential function
characterized by a damping timescale 74,y, as

T
€ XEXp | — . .
damp

The solid curve in Fig. 17 shows the simulation results,
and the dots represent the fitted model based on Eq. (C2)
With 7gamp = 3.2074y, to this curve at early times. Note that
To = Tgamp ONly if dpy/dr = 0. Although the density
changes only little in our simulations, it is not constant.
Therefore, we expect that the measured 74,y, Will deviate
slightly from the expected value of z.. In our simulation,
the difference between 7. and 74y, is only ~1%.

(C2)

APPENDIX D: STABLE STARS

In this appendix, we simulate the two stable configu-
rations C and E in Fig. 1, representing a NS and a HS,
respectively. We do this to demonstrate that our code can
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FIG. 18. Evolution of the central rest-mass density for the stable

NS configuration C (orange) and for the stable HS configuration
E (blue). The coordinate time ¢ is scaled with the dynamical
timescale 7qy,, which depends on the initial maximum density
p.(0) and is different for the two stars. The plot demonstrates that
we can accurately evolve stable compact stars with the EOSs we
constructed.

evolve stable stars and since we expect these two con-
figurations to be the end points for a collapsing unstable
WD, i.e., configuration B. Configuration C is the stable
NS with a central density of p, = 6.04 x 10'* gcm™ and
a radius R = 13.78 km. Configuration E, on the other
hand, is a stable HS with a central density of p. = 1.57 x
10" gem™ and a radius R = 11.40 km.

For these simulations, the grid structure consists of
eight and seven refinement levels, respectively. In both
configurations, the finest resolution is set to 100 points
across the initial radius of the stars. The half-side length of
the coarsest box is 134.4R for the stable NS simulation
and 67.2R for the stable HS simulation.

Figure 18 shows the relative deviation of the central
density over time, with respect to its initial value. This
figure indicates that over 874, the stable NS exhibits
density fluctuations of ~0.01% at maximum, while the
largest amplitude of fluctuations for the HS is ~0.1%.
Because of the transition to the more complex part of the
EOS, the density evolution of the stable HS follows a less
predictable pattern.

The primary conclusion drawn from these simulations is
that the stable configurations of the TSs are dynamically
stable indeed, and our code can accurately evolve them.

APPENDIX E: CONSTRAINTS

To ensure the accuracy of the evolution of the Einstein
equations, we monitor the Hamiltonian and momentum

10—11 4

10—13 4
10715 4

10—17 4

Ay [M57?)

10—19 4

10-2 4

FIG. 19. The constraints as a function of time scaled by the
initial dynamical timescale for the Hamiltonian constraint (rep-
resented in red) and X, y, and z components of the momentum
constraint (shown in orange, green, and blue, respectively). Solid
curves stand for the simulation of the stable NS configuration C,
while dotted curves denote the collapsing WD configuration B.
The sudden rise in A, when the initial WD enters rapid collapse is
unavoidable. However, the value of A, remains sufficiently small
throughout the simulation.

constraint equations (see [151] for a detailed discussion on
the 3 4+ 1 decomposition of Einstein’s equations). This is
important because, after perturbing our initial data, we do
not resolve the constraints, so any constraint violations
should remain small. In this appendix, we demonstrate that
this is the case.

The absolute value of the constraint violation averaged
over volume as a function of time is shown in Fig. 19 for
both a stable NS (solid curves) and a collapsing WD with
cooling activated from the beginning (dotted curves). The
constraint violations are denoted by A,. Red corresponds to
the violation of the Hamiltonian constraint 7, while the
momentum constraint violations, M j with j = {x,y,2},
correspond to orange, green, and blue. A; should remain
close to zero at all time steps. As the star undergoes
collapse, the computational errors increase, leading to
larger values of A,. Since A, is a dimensionful quantity,
we also show A, for the stable NS simulation discussed in
Appendix D for comparison. The plot demonstrates that the
constraints remain well satisfied throughout the collapse.
The maximum value of A; remains small even in the
simulations with more aggressive initial perturbations
presented in this work, and it similarly occurs during the
late stages of the collapse. The worst case in our simu-
lations involved the HS with mass loss, where constraint
violations are still A, < 1077MZ2.
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