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Deep neural networks have achieved tremendous success due to their
representation power and adaptation to low-dimensional structures. Their po-
tential for estimating structured regression functions has been recently es-
tablished in the literature. However, most of the studies require the input di-
mension to be fixed and consequently ignore the effect of dimension on the
rate of convergence and hamper their applications to modern big data with
high dimensionality. In this paper, we bridge this gap by analyzing a kth or-
der nonparametric interaction model in both growing dimension scenarios (d
grows with n but at a slower rate) and in high dimension (d& n). In the latter
case, sparsity assumptions and associated regularization are required in order
to obtain optimal rates of convergence. A new challenge in diverging dimen-
sion setting is in calculation mean-square error, the covariance terms among
estimated additive components are an order of magnitude larger than those
of the variances and they can deteriorate statistical properties without proper
care. We introduce a critical debiasing technique to amend the problem. We
show that under certain standard assumptions, debiased deep neural networks
achieve a minimax optimal rate both in terms of (n,d). Our proof techniques
rely crucially on a novel debiasing technique that makes the covariances of
additive components negligible in the mean-square error calculation. In addi-
tion, we establish the matching lower bounds.

1. Introduction. Recent advances in technology have allowed statisticians to collect
data on a large number of explanatory variables to predict outcomes of interest (Goodfellow
et al., 2016; Fan et al., 2020). Often, the relationship between these outcomes and predictors
are highly nonlinear (e.g., image data like MNIST (LeCun, 1998), CIFAR (Krizhevsky et al.,
2009) etc.), yielding a practical need to investigate multivariate nonparametric regression
model

(1.1) Yi = f(Xi) + "i, i= 1, . . . , n,

where Xi’s are explanatory variables, Yi’s are response variables and "i’s are unobserved
errors. The statistical problem here is to recover f under some minimal smoothness assump-
tions. A classical result of Charles Stone (Stone, 1982) shows if f is a d-variate (�,C) smooth
function (precise definition given later), the minimax optimal rate of estimation is of the order
n
� 2�

2�+d , which is referred to as “curse of dimensionality", i.e., large sample size is necessary
to estimate the regression function well. In particular, when � is fixed, it is easily to see that
when d⇣ logn, minimax consistent estimators can not be obtained.

To tackle aforementioned issue, one needs to impose a low-dimensional structure on the
function f (Kpotufe and Dasgupta, 2012; Yang and Dunson, 2016; Yang and Tokdar, 2015),
such as additive regression model (Stone, 1985), projection pursuit regression model (Fried-
man and Stuetzle, 1981), higher order interaction model (Stone, 1994), generalized higher-
order interaction model (Horowitz and Mammen, 2007; Kohler and Krzyżak, 2016), single

Keywords and phrases: Deep neural networks, High dimensional statistics, Non-parametric interaction model,
Minimax rate, Sparse nonparametric components.
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and multi-index models (Hardle et al., 1993), etc.; see Fan and Gijbels (1996) for an overview.
The key idea behind all these simplifications is to reduce the complexity of the underlying
function class and mollify the effect of dimension in the rate of convergence. For example,
Stone (1985) proved that for additive regression model (when f(x) =

P
d

j=1 fj(xj)) with
�-smooth univariate components, the minimax optimal rate of estimation of f in terms of
squared L2(PX) loss is Cdn

� 2�
2�+1 . Fan et al. (1998) demonstrated further the adaptivity of

such an additive structure and Horowitz and Mammen (2007) studied further a general class
of nonparametric regression models with unknown link functions. As each component func-
tion fj is univariate and can be estimated at a rate n

� 2�
2�+1 , the effect of dimension appears

only through the multiplicative constant Cd, not in the power of n. Later, Stone (1994) ex-
tended this result for higher-order interaction model (i.e. when f(x) =

P
J2S fJ(xJ), S is a

collection of subsets of {1, . . . , d} and |J | d
? for all J 2 S) and showed that the minimax

optimal rate of estimation is Cdn
� 2�

2�+d? , where, as before, the effect of d appears through
a multiplicative constant. Again, all of the above results assume that d is finite, which is
inappropriate in many modern data science applications.

In practice, it is not enough just to obtain minimax optimal rates, efficient and easily com-
putable estimators are warranted. Several methods like kernel, spline, and wavelet based
estimators (see Section 2 of Fan and Gijbels (1996) for an overview), backfitting algorithm
(Buja et al., 1989), off-the-shelf nonparametric methods like boosting (Freund et al., 1996),
random forest (Breiman, 2001) have been popularly used. Recently, neural networks have
emerged as an imperative tool for analyzing nonlinear relations between covariates and re-
sponse variables. Deep (or multilayer) neural networks have been the backbone of the in-
credible advances in machine learning that have resulted in massive success in reinforcement
learning, robotics, computer vision, natural language processing, and other statistical predic-
tion tasks (Goodfellow et al., 2016). Leveraging the availability of large amounts of digitized
data, deep learning has enjoyed a plethora of empirical successes. However, most of the
successes are purely human engineered (i.e. achieved after tuning lots of hyperparameters),
lacking theoretical guarantees. As a consequence, researchers are naturally interested in un-
derstanding the statistical properties of such useful and practical estimators. In Kohler and
Krzyżak (2005), the authors established that for the standard nonparametric models as well
as for the higher-order interaction models, deep neural network (henceforth DNN) based es-
timators are minimax rate optimal up to logarithmic factor. Later, the results are extended
for a more general class of functions (namely generalized hierarchical interaction model,
see Bauer and Kohler (2019)) in a series of work byKohler and Krzyżak (2016); Bauer and
Kohler (2019); Schmidt-Hieber (2020); Kohler and Langer (2021); Fan et al. (2022).

The previous research in understanding the rate of convergence of DNN-based estimators
assumes the underlying dimension of covariate d is fixed and consequently ignores the effect
of d in the rate of the estimator. However, in the era of big data, the dimension of underlying
covariates is quite large in many practical problems, often larger than the underlying sam-
ple size n. For example, in a simple image classification problem, a 28 ⇥ 28 image lies in
R784. Similarly, in genome-wide association studies, the number of single nucleotide poly-
morphism (SNP) can be significantly higher than the number of individuals(Novembre et al.,
2008). In that paper, the authors have analyzed a dataset consisting of 1387 individuals and
⇠ 2⇥ 105 SNPs. In such examples, a sharper analysis quantifying the optimal dependence
on d is often necessary.

In this paper, we aim to bridge this gap by analyzing the nonparametric regression model
both in growing dimension (when d grows with n but d= o(n)) and high dimension (when
d & n) setup. The distinction between these two cases lies in whether or not the sparsity
and regularization are required for consistent estimation, in an analogue way to the linear
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model with growing dimension and sparse linear model in high dimension. We analyze the
following k-way interaction model (Stone, 1994):

(1.2) Yi =
kX

l=1

X

(j1<···<jl)2[d]l
fj1,j2,...,jl(Xi,{j1,j2,...,jl}) + ✏i ,

where [d]l is the collection of all ordered subsequence of length l of {1, . . . , d}. As mentioned
before, k = o(logn) is necessary in order to have a consistent estimator. Hence, we will take a
finite k. Such models include the well-studied additive model (Stone, 1985), namely, f(x) =P

d

j=1 fj(xj) and interaction models (Stone, 1994). When d & n, it is necessary to impose
sparsity assumption even in the high-dimensional linear model. We, therefore, consider a
sparse k-way interaction model as follows:

(1.3) Yi =
kX

l=1

X

(j1,j2,...,jl)2Sl

fj1,j2,...,jl(Xi,{j1,j2,...,jl}) + ✏i ,

where Sl ⇢ [d]l with |Sl| ⌧ d
l. When each univariate function is constrained to be linear,

the model (1.3) reduces to a sparse parametric interaction model. When k = 1, the model
(1.3) becomes a sparse additive model which has been well-studied in literature (Lin and
Zhang, 2006; Koltchinskii and Yuan, 2010; Ravikumar et al., 2009; Tan and Zhang, 2019;
Yuan and Zhou, 2016), building upon the recent developments on penalized linear regression.
For example, Tan and Zhang (2019) proposes to doubly penalize each component fj by its
empirical norm and functional semi-norm to estimate the regression function.

When d⌧ n, we estimate the mean function of (1.2) via minimizing squared error loss
(details can be found in Section 2). However, when d& n, we need to penalize explicitly to
enforce sparsity. In previous works on the sparse additive models, researchers typically im-
pose two penalties: i) one to enforce sparsity (e.g. via the summation of L2(Pn) norm on the
component functions) and ii) another to control the complexity of the component functions
(e.g., penalize with respect to RKHS norm if the component functions lie in a RKHS). In
reality, implementing such a doubly penalized estimator is often computationally challeng-
ing. To overcome such difficulty, we introduce a two-step hard thresholding-based estimator,
which is motivated by the seminal work of SURE independent screening (Fan and Lv, 2008;
Fan and Song, 2010) and least square estimation after model selection in high dimensional
linear regression model (Belloni and Chernozhukov, 2013). The idea can be briefly described
as follows: first, we obtain an initial estimator (say f̂

init) of the mean function by only penal-
izing the summation of empirical L2(Pn) norm of the component functions (which can be
implemented by penalizing the last layer of neural network). Analogously, this can also be
thought of as a version of a group lasso penalty, where the neural network corresponding to
each component is a group of variables and we penalize the sum of the norm of each group
(here we take the L2(Pn)) norm) to enforce a component-wise sparsity. Next, we further per-
form a hard thresholding on the non-zero component of f̂ init to weed out the small non-zero
components and estimate the active sets. Finally, we perform an empirical risk minimiza-
tion by minimizing the squared error loss over only the components selected in the previous
step to obtain the final estimator. We prove that under some fairly standard assumptions, the
estimator is minimax rate optimal. We now summarize our contribution as follows.

Contribution: Our main contribution is a rigorous theoretical analysis of k-way interac-
tion model (also known as nonparametric ANOVA model) in both growing and high dimen-
sional setup. To achieve this goal, we also prove several results that may be of independent
interest. We summarise the key contributions below:
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• We analyze the nonparametric k-way interaction model using neural network based esti-
mator both when d= dim(X) increases with n and d= o(n), and when d& n with afore-
mentioned regularization. We show that the neural network-based estimator is minimax
rate optimal up to a poly-log factor.

• We introduce a novel debiasing technique that makes the covariances among additive com-
ponents negligible, which reduces statistical errors.

• We prove an approximation result of smooth function using deep neural network (Theorem
2.7) via a novel debiasing technique, which implies that one can approximate a smooth
function using neural networks at the same rate even under constraints (i.e. marginals of a
multivariate function are 0).

• We establish the minimax lower bound for estimating the high dimensional k-way interac-
tion model, which, to the best of our knowledge, is not present in the literature.

The rest of the paper is organized as follows: In Section 2, we analyze the k way interaction
model when d ⌧ n. We divide the entire analysis into three subsections: Subsection 2.1
bounds approximation error, Subsection 2.2 analyzes the statistical error, and Subsection 2.3
develops the minimax lower bound. Section 3 deals with the analysis when d& n. We broadly
divide our analysis into two parts; Subsection 3.1 contains the analysis for fixed designs and
Subsection 3.2 deals with the case of random designs. Furthermore, in Subsection 3.3, we
establish the minimax lower bound for the sparse nonparametric interaction models.Section
4 provides conclusional remarks. Finally, Section 5 contains the proof of Theorem 2.7. The
remaining proofs can be found in the Appendix.

2. Analysis of DNN in low diverging dimension. In this section, we present our anal-
ysis of the DNN-based estimator of the mean function when the dimension d of X grows
with n but d⌧ n. We consider a k-order interaction nonparametric regression model. For an
input-output pair (X,Y ), where X 2 Rd and Y 2 R, a k-order interaction model is defined
as:

(2.1) Yi =
X

J⇢[d]
|J |k

f0,J(Xi,J) + ✏i .

Here, ✏i’s are assumed to be centered error independent of X and the functions f0,J :R|J | 7!
R. For simplicity of exposition, we henceforth confine ourselves to a 2-order interaction
model. The extension of our analysis from a 2-order interaction model to a general k-order
interaction model is purely technical and the proof ideas will be outlined at the end of the
relevant sections. For k = 2, the the model presented in equation (2.1) simplifies to:

(2.2) Yi =
dX

j=1

f0,j(Xi,j) +
X

j<k

f0,jk(Xi,j ,Xi,k) + ✏i ⌘ f0(Xi) + "i .

where f
0
0,js are univariate functions and f0,jk’s are bivariate functions. We will make the

following assumption on X and ":

ASSUMPTION 2.1. X is supported on [0,1]d and admits a density function p such that
supx2[0,1]d p(x) =: pmax < 1, where pmax is free of d. We assume ✏ is sub-gaussian with
sub-gaussian constant �2✏ .

Assumption 2.1 is a standard assumption in the literature of nonparametric regression. Note
that assuming X has compact support is equivalent to assuming that the support is [0,1]d

via centering and scaling. Many of our results can be extended to the case of unbounded
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X via truncation arguments – we omit such arguments for the sake of the simplicity of our
article. The upper bound assumption on the density is quite natural, as this merely rules out
certain degenerate distributions (i.e. when the density of some region diverges to infinity).
The assumption of sub-gaussianity on the error terms is natural as we aim to analyze the least
square estimate of f based on neural networks. It is well-established in the literature that for
heavy-tailed errors, a least square estimator of a nonparametric function is not minimax op-
timal (e.g., see Han and Wellner (2019)) and one should use a variant of Huber loss function.
We believe most of our analysis can be extended to this heavy-tailed error, but this is out
of the scope of the current paper. The recent article (Fan et al., 2022) sheds some light on
the estimation error of deep neural networks with heavy-tailed error in fixed dimension setup.

In our model (2.2), the component functions of f0 are not identifiable without further as-
sumptions for two reasons:

1. All the functions are identifiable up to shift, i.e. we cannot identify the difference between
(f0,i1i2 , f0,j1j2) and (f0,i1i2 + c, f0,j1j2 � c) for a constant c.

2. The univariate marginals of the bivariate functions are not identifiable. For example,
consider the subcollection of functions C1 = {f0,1, f0,12, f0,13, . . . , f0,1d}. Let gk(x) =R
f0,1k(x, y) dy be the marginal of f0,1k. Then we cannot differentiate between C1 and a

modified collection C2 = {f0,1 +
P

k�2 gk, f0,12 � g2, . . . , f0,1d � gd}.

Therefore, to identify and estimate the non-parametric functions, we need to impose certain
structural conditions which will prevent us from shifting. Toward that end, we assume the
following:

ASSUMPTION 2.2 (Identifiability and boundedness). We assume the following condi-
tions for identifiability purpose and boundedness:

1. All the univariate functions in (2.2) integrates to 0, i.e.
R 1
0 f0,j(x) dx= 0 for 1 j  d.

2. All the bivariate functions have 0 marginals, i.e.
Z 1

0
f0,ij(x, y) dx=

Z 1

0
f0,ij(x, y) dy = 0 .

3. kf0k1 B for some B > 0, where f0 is defined in (2.2).

Note that, the above assumption implies that the total integral of f0,ij is also 0. Assumption
2.2 ensures identifiability of all the functions involved in (2.2). Our next assumption is a
smoothness assumption on the underlying component function:

ASSUMPTION 2.3. The functions {f0,j} and {f0,ij} are assumed to be (�,L)-Holder
smooth, i.e. the functions are b�c times differentiable and b�cth derivative are Holder with
exponent � � b�c and constant L.

The smoothness assumption is standard in the nonparametric regression literature, cf. (Tsy-
bakov, 2004, Chapter 1), as this smoothness assumption controls the complexity of the un-
derlying function class. Another common assumption is that all f0,i and f0,ij belong to a
Reproducing Kernel Hilbert Space(RKHS), e.g, see Raskutti et al. (2012), Koltchinskii and
Yuan (2010) and references therein. It would be interesting to study the analog of our results
under such assumptions.

REMARK 2.4. Assuming that {f0,ij} have a different level of smoothness �ij is equiv-
alent to assuming they all have mini,j �i,j smoothness as long as one is concerned about
estimation error bounds.
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FIG 1. A graphic representation of a deep neural network with 3 hidden layers, one input layer, one output layer.

To estimate the mean function of (2.2) using deep neural networks, we need some properties
of DNNs. A neural network is a parametric function f✓ which maps the input space to output
space, i.e. in our context f✓ maps Rd to R. A two-layer (i.e. one hidden layer) neural network
(often termed as shallow neural network) with N neurons and activation function � is defined
as:

f✓(x) = a+
NX

i=1

bi�(c
>
i x+ di) .

where ✓ = {a, bi, ci, di}. Therefore, f✓ first projects x into RN via a linear transformation
x 7!Cx+ d where c

>
i

’s are the rows of C and di’s are elements of d. Then it applies a non-
linear activation � to all the coordinates of Cx+ d. Finally, it takes a linear combination of
the coordinates using the map x 7! a+ hb, xi. This shallow neural network can be extended
to the deep neural network by adding more hidden layers. A graphical representation of the
flow of neural networks is depicted in Figure 1.

For a neural network, we denote by L the number of hidden layers (termed as depth) and
by N , the maximum number of neurons at the hidden layers (denoted by width). Henceforth,
we denote by FNN (d,N,L,W,o) by the collection of all neural networks with depth L,
width N , the total number of active (non-zero) weights W , input dimension d and output
dimension o. We may sometimes omit the input and output dimensions in the specification
of the class of neural networks when it is clear from the context.

The expressibility of neural networks has been a topic of interest for decades, which started
to flourish at the beginning of 1990s. It was proved in Hornik et al. (1989) that the set of all
shallow neural networks (i.e. with one hidden layer) is dense in the space of all Borel mea-
surable functions and any Borel measurable function f can be estimated within arbitrary
accuracy by increasing the number of neurons in the hidden layer. The degree of accuracy
was quantified by Barron (1993) – if the Fourier transform of the function has a finite first mo-
ment, then the approximation error decreases at a rate 1/

p
N , where N is the number of hid-

den neurons. The error of approximating any smooth function by a multi-layer feed-forward
network was established by Mhaskar (1996) along with a choice of N,L which achieves
the optimal accuracy. Since then, there has been a series of research on the approximation
capability of deep neural networks in terms of their width, height, weights, and activation
function – recently, researchers have obtained precisely bound on the approximation error
of smooth functions in terms of depth and width of neural network cf. Yarotsky (2017); Lu
et al. (2021); Fan and Gu (2022) and references therein. For example, Theorem 1.1 of Lu
et al. (2021) shows that if f : [0,1]d ! R is � times differentiable with bounded derivatives
then there exists a neural network � with width c1N logN and depth c2L logL+ d (c1, c2
are some constants depending on �) with the following approximation error:

kf � �k1 C(NL)�
2�
d ,
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where the constant C depends on (d,�).
A related line of research delves into understanding how DNNs can successfully adapt to

the unknown underlying low dimensional structure of the mean function in nonparametric
regression. Performing nonparametric regression using suitable DNNs and achieving mini-
max optimal error bound (up to some polylog factor) initially started from the pioneering
work of Kohler and Krzyżak (2005). The minimax rate of estimation of a mean function f in
a standard nonparametric regression problem (e.g., additive noise model Y = f(X) + ✏) is
n
�2�/(2�+d) where � is the smoothness index of f (Assumption 2.3) and d is the dimension

of X . The estimation error suffers from the curse of dimensionality, i.e. the rate is very slow
for large d. However, as mentioned in the introduction, it is possible to circumvent this curse
by imposing more structure on f such as additive (see Stone (1985)), or some higher order
interaction model (see Stone (1994)). In Kohler and Krzyżak (2005), the authors show that it
is possible to adapt to the rate n

�2�/(2�+k) using neural network-based estimate if the model
is a k-way interaction model. The key advantage of using a neural network is that we only
need to specify its architecture, i.e. the width and layer, not the exact structure of the mean
function and the estimated NN becomes minimax rate optimal. Recently, in a series of pa-
pers (Kohler and Krzyżak, 2016; Schmidt-Hieber, 2020; Bauer and Kohler, 2019; Kohler and
Langer, 2021; Fan et al., 2022; Fan and Gu, 2022), the authors also establish that it is pos-
sible to estimate the underlying mean function f0 at a rate n

�2�/(2�+k) via neural networks
when f0 belongs to a more general class than k-way interaction model, called generalized
hierarchical interaction model.

All the above analyses assume that the underlying dimension of d is fixed. This is at odds
with many modern applications. Often time the constant in front of the rate of estimation
depends on the dimension of X even for the simple additive model as we need to estimate d

univariate functions. When d is fixed, it is possible to get away with a cruder bound. However,
if d!1, we need new techniques to obtain the optimal dependence on d, which is one of
the primary goals of this paper.

We now briefly describe our estimation procedure. Consider the model in equation (2.2).
We select two neural networks (�̂1, �̂2) via minimizing the squared-error loss:

(2.3)
⇣
�̂1, �̂2

⌘
= argmin�12F1

NN ,�22F2
NN

1

n

nX

i=1

(Yi � �1(Xi)� �2(Xi))
2

and set estimate f̂big := �̂1 + �̂2. Finally set the estimator f̂ := sgn(f̂big)(|f̂big| ^ B), i.e.
truncate the output of f̂ at [�B,B] as we assume kf0k1  B (see point 3 of Assumption
2.2). Here the class of neural networks F1

NN
and F2

NN
are defined as:

F1
NN =FNN

�
d, c1dN1 logN1, c2L1 logL1, c3d(N1 logN1)

2
L1 logL1,1

�
(2.4)

F2
NN =FNN

�
d, c1d

2
N2 logN2, c2L2 logL2, c3d

2(N2 logN2)
2
L2 logL2,1

�
(2.5)

for some constants c1, c2, c3. For example, in F2
NN

, all pairwise interactions are used as
input variables. Note that we are not using a fully connected neural network here. Rather,
we estimate each univariate (resp. bivariate) component function via fully-connected neural
networks of width N1 logN1 (resp. N2 logN2) and depth L1 logL1 (resp. L2 logL2) and
then add them. See Figure 2 for an illustration. With slight abuse of notation, we still use
F1
NN

and F2
NN

to denote these specially structured neural networks. The quantities Ni and
Li typically depend on the sample size n and will be specified later. Like any other non-
parametric estimator, the generalization error of f̂ can be decomposed into two parts:

(2.6) kf̂ � f0kL2(PX)  kf̂ � f
?kL2(PX)| {z }

Statistical error

+kf? � f0kL2(PX)| {z }
Approximation error
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FIG 2. A schematic diagram for the structured deep neural networks that are used to estimate the structured
nonparametric regression with interactions. The first part consists of additive fully connected neural networks for
the univariate predictors and the second component comprises the summation of fully connected bivariate neural
networks for approximating bivariate interaction effects.

Here f
? = �

?
1 + �

?
2 is (approximately) the best approximator of f0 in terms of L2(PX) norm

among the class of neural networks, i.e.

kf? � f0kL2(PX)  inf
�12F1

NN ,�22F2
NN

kf0 � �1 � �2kL2(PX) + ⌧n

for some small tolerance ⌧n to be specified later. The rest of our analysis is divided into two
parts: Subsection 2.1 bounds the approximation error and Subsection 2.2 bounds the statisti-
cal error in terms of (d,Ni,Li, n). Finally, in Subsection 2.3 we choose the architectures of
F1
NN

,F2
NN

to balance the errors. This will prove that the rate obtained by the neural network
is minimax optimal both in terms of (n,d), up to some logarithmic factor.

REMARK 2.5. It is important to note, we are estimating f0 as the sum of two neural
networks with different architectures instead of using a single neural network. To see why
this is necessary, note that the rate of convergence of the estimator is dn

�2�1/(2�1+1) and
d
2
n
��2/(�2+1) (Corollary 2.10) upto a logarithmic factor, where �1 is the smoothness index

of the univariate component and �2 is the smoothness index of the bivariate components
of f0. Now note that if �2 is sufficiently large, then dn

�2�1/(2�1+1) will be dominant rate,
otherwise d

2
n
��2/(�2+1) will be the dominant one. If we only use one neural network, then

the rate obtained is d2(n�2�1/(2�1+1)+n
��2/(�2+1)), which is not minimax optimal (Theorem

2.12) especially when �2 � �1. The trade-off between the error terms is more complicated
as d := d(n)!1 and using two neural networks (one for univariate components and the
other for bivariate components) we can obtain the optimal error bounds.We conjecture that
it is not possible to obtain the minimax error bound by using a single neural network.
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2.1. Approximation error. In this section, we compute the approximation error of mean
estimation in 2-way interaction model (2.2). To this end, we invoke Theorem 1.1 of Lu et al.
(2021), which states any � smooth function f : [0,1]d ! R can approximate f within error
of (NL)�2�/d in L1 norm using a DNN with width O(N logN) and depth O(L logL+ d).
Recall that, by Assumption, 2.2,

R
fj(x)dx = 0 and both the marginal integrals of fijs are

0. As stated in the previous section, we will approximate the fis and fijs by two separate
neural networks with different depths and widths. Before stating our main theorem, we first
quantify a bound on the growth of d in comparison to n in the following assumption:

ASSUMPTION 2.6. We assume that d is growing with n and
✓
dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� �2

�2+1

◆
log4.5 n= o(1) .

The following theorem establishes the approximation error of the mean function via neural
networks:

THEOREM 2.7. Consider the two-way interaction model in the equation (2.2), where all
the univariate components are �1 smooth and all the bivariate components are �2 smooth.
Choose N1L1 = bn1/2(2�1+1)c, N2L2 = bn1/2(�2+1)c Then we have:

inf
�22F1

NN ,�22F2
NN

E
⇥
kf0(X)� �1(X)� �2(X)k2

⇤

C3

✓
d(N1L1)

�4�1 +

✓
d

2

◆
(N2L2)

�2�2

◆
,

where F1
NN

and F2
NN

are same as defined in (2.4) and (2.5). All the constants (C1,C2,C3)
are independent of (d,N1,L1,N2,L2).

The proof of Theorem 2.7 is deferred to Section 5. Here we provide the sketch of the proof.
The key idea in our proof is to construct a neural network that not only approximates f but
also (approximately) satisfies the identifiability constraint Assumption 2.2, i.e. the marginals
of fij’s are 0. This will nullify the effect of the higher-order terms yielding the optimal
rate of approximation. For univariate components, this integral constraint can be satisfied
exactly; consider a function f : [0,1]!R where f satisfies Assumption 2.3 with some � andR 1
0 f(x) dx= 0. Then by (Lu et al., 2021, Theorem 1.1), there exists a neural network � with

width of O(N1 logN1) and depth O(L1 logL1) such that

kf � �k1 C(N1L1)
�2�

where the constant C depends only on � and Sobolev norm of f . Define I� :=
R 1
0 �(x) dx

and define a new neural network �̃= �� I� guaranteeing
R
�̃= 0. As subtracting a constant

from a neural network amounts to changing the bias of the last layer, the architecture of �
and �̃ are the same. Using triangle inequality,

kf � �̃k1  2C(N1L1)
�2�

.

The above idea doesn’t work for the approximation of the bivariate functions fij as we
not only need the integral to be 0 but also the marginals to be 0, i.e.

R
fij(x, y) dx =R

fij(x, y) dy = 0. To address this issue, we devise a debiasing technique summarized as fol-
lows: given any bivariate function f which is � times differentiable with bounded derivatives,
there exists a neural network �(x, y) (using (Lu et al., 2021, Theorem 1.1)) with architecture
O(N2 logN2),O(L2 logL2) that satisfies:

kf � �k1 C(N2L2)
��

.
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Given such a neural network �, we construct �1 (resp. �2) such that �1(x) (resp. �2(y))
is a neural network with width O(N2 logN2) and depth O(L2 logL2) which approximatesR
�(x, y) dy (resp.

R
�(x, y) dx). Our final estimator is of the form �̃ = � � �1 � �2 +RR

�(x, y) dx dy. We show that k�̃� fk1 =O((NL)��) and
R
�̃(x) dx=

R
�̃(x, y) dy =

O
�
(NL)�2�

�
. This smaller approximation error ((N2L2)�2� instead of (N2L2)��) is cru-

cial to obtain the optimal error bounds. Details of the proof can be found in Appendix 5.

2.2. Statistical error and main theorem. In this section, we discuss the techniques to
bound the statistical error of estimation and also present the main theorem that bounds the
out-of-sample prediction error. Statistical error of an estimator typically relies on the number
of samples and the complexity of the underlying class of function. Recall from (2.3) that
we approximate f0 by the sum of two neural networks �̂1 + �̂2 where �̂1 approximates the
univariate component and �̂2 approximates the bivariate component. It is immediate from
the proof of Theorem 2.7 that, the approximation error depends on N and L through their
product NL. Therefore, we work with the neural network with constant depth and optimize
over width. So, F1

NN
and F2

NN
(equation (2.4) and (2.5)) can be revised as:

F1
NN =FNN

�
d, c1dN1 logN1, c2, c3d(N1 logN1)

2
,1
�
,(2.7)

F2
NN =FNN

✓
d, c1

✓
d

2

◆
N2 logN2, c2, c3

✓
d

2

◆
(N2 logN2)

2
,1

◆
.(2.8)

In practice, one estimates �̂1, �̂2 by optimizing over the weights of the neural network through
gradient descent (e.g. see 6.2 of Goodfellow et al. (2016)). Since our problem is highly non-
convex in terms of the weights of the neural network, it is not immediately clear whether
such an algorithm will converge to global minima. To avoid such issues, we work with a
neural network that minimizes empirical risk in our article. Understanding the properties of
the gradient descent-based estimator is left open for future research.

The aim of this section is to bound the variance term, i.e. E[(f̂(X)��?(X))2 | Sn] where
�
? is the best approximator of the mean function f0 and Sn := {(Xi, Yi), i 2 [n]} be the

training sample. The prediction/test error depends on the trade-off between the complexity of
the underlying function class and the number of training samples. If the underlying function
class is too complex compared to the number of samples n, then it may overfit the data
resulting in high generalization error. Therefore, it is imperative to quantify the complexity
of the class of neural networks. The following lemma of Bartlett et al. (2019) establishes a
bound on the VC dimension of the class of neural networks with the number of active weights
W and depth L:

LEMMA 2.8 ((5), Bartlett et al. (2019)). Suppose V (W,L) denotes the largest VC- di-
mension of a ReLU network with W parameters and L layers. There exist constants c1, c2 > 0
such that

c1WL log(WL) V (W,L) c2WL logWL.

Roughly speaking, if we have a fully connected neural network with width N and depth L,
then W ⇠N

2
L and consequently the VC dimension is ⇠N

2
L
2. Once we have a bound on

the complexity of the underlying function class, we can use techniques from empirical pro-
cess theory to obtain the rate of convergence of the generalization error. For a VC-type func-
tion class with VC dimension V , the statistical error is O(

p
V/n) up to logarithmic factors.

To see the necessity of the assumption, consider the rate obtained in Corollary 2.10. Assump-
tion 2.6 ensures the consistency of the estimator. On the other hand, it is also necessary up
to the logarithmic factor as we establish in Section 4 that the rate obtained in Corollary 2.10
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is minimax optimal up to the logarithmic factor (Theorem 2.12). Therefore the assumption
is the weakest possible assumption on the growth of d with respect to n under no further
structural assumption. The following theorem presents a bound on the overall approximation
error, combining both statistical and approximation errors.

THEOREM 2.9 (Main theorem). Under Assumption 2.1 - 2.3 and 2.6, the ERM estimator
f̂ of f0 defined in equation (2.3) satisfies:

E
⇣

f̂(X)� f0(X)
⌘2

| Sn

�
=Op

✓
⇢
2
n +

Vn

n
log3/2 n

◆
,

where

⇢
2
n = approximation error C1

✓
dN

�4�1

1 +

✓
d

2

◆
N

�2�2

2

◆

Vn = complexity C2

✓
dN

2
1 log

2
N1 log (dN1) +

✓
d

2

◆
N

2
2 log

2
N2 log (dN2)

◆
.

The proof of the theorem can be found in Appendix A.1. Now we need to choose the value
N1,N2 carefully to balance both the approximation error and statistical error. This leads to
the following corollary:

COROLLARY 2.10. Choosing N1 = n
1/2(2�1+1) and N2 = n

1/2(�2+1) (take the nearest
integer if they are not integers) in Theorem 2.9, we have:

E
⇣

f̂(X)� f0(X)
⌘2

| Sn

�
=Op

✓✓
dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� �2

�2+1

◆
log4.5 n

◆
.

In the subsequent section, we show that this rate is minimax optimal up to the logarithmic
factor. An immediate question that stems from this analysis is whether we can improve the de-
pendence on the logarithmic factor. The recent article (Fan and Gu, 2022) proposes a slightly
different approximation technique than that of Lu et al. (2021), which might reduce the power
of the logarithmic factor from 4.5. However, the more interesting question is whether we can
completely get rid of the log factor which is still open.

REMARK 2.11. [Extension for k-way interaction model] Our analysis for the two-way
interaction model can also be extended verbatim to the k-way interaction model. Here we
provide a sketch of the extension. For identifiability of the model, we need to assume all
marginals of j-component functions are 0, j � 2. We estimate f0 via the sum of k neural
networks �1 + · · ·+ �k where

�i 2FNN

✓
d, c1

✓
d

i

◆
Ni logNi, c2,

✓
d

i

◆
(Ni logNi)

2
,1

◆
.

Since the debiasing technique used in our proofs rely on the approximation of polynomials
by neural networks, they can be extended to a general k-way interaction model. This in turn
controls the approximation error. The statistical error can be bounded similarly by the VC-
dimension of the neural networks via Lemma 2.8.



12

2.3. Minimax lower bound. In this section, we establish the minimax lower bound for
estimating the non-parametric 2-way interaction model (2.2), when the dimension of the
covariate d= d(n)!1, d= o(n) and satisfies Assumption 2.6. For our estimation problem,
the minimax risk is defined as:

M(n,d,F) = inf
f̂

sup
f2F

X⇠PX

Ef

⇣
f̂(X)� f(X)

⌘2�

Here f(X) =
P

d

j=1 fj(Xj) +
P

i<j
fij(Xi,Xj) and the supremum is taken over all {fj}

and {fij} where the component functions belongs ⌃(�,L) (see Assumption 2.3).

The main difficulty in establishing the minimax lower bound is to incorporate the effect
of growing dimension d. Our problem is certainly harder than the problem of estimating
f1(x1) + f12(x1, x2), assuming all other components are known in advance. The issue is
how other components contribute to the lower bound in the growing d setting. The following
theorem gives a precise answer.

THEOREM 2.12. Consider the two-way interaction model as defined in equation (2.2)
where each component functions {fi}di=1 and {fij}1i<jd belongs to ⌃(�,L) (see As-
sumption 2.3) and denote this collection of mean functions as F . Then the minimax rate
of estimation under Assumptions 2.1-2.3 is:

M(n,d,F) = inf
f̂

sup
f2F

X⇠PX

Ef

⇣
f̂(X)� f(X)

⌘2�
� c

✓
dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� 2�2

2�2+2

◆
.

for some constant C independent of (n,d).

The proof of this theorem can be found in Appendix A.2. A few remarks are in order; first
of all, Theorem 2.12 establishes the fact that neural network-based estimate of the mean
function f0 is minimax rate optimal up to a poly-log factor. This result complements the one
in Kohler and Langer (2021); Schmidt-Hieber (2020) for the non-parametric regression in
a fixed dimension regime. Secondly, Theorem 2.12 is derived under Assumption 2.3, where
we assume all univariate components are �1-smooth and all bivariate components are �2-
smooth. However, our proof can be easily adapted to the setting where each function has
different smoothness and we have to pay the price for the lowest smoothness. See Remark
2.11 where we have pointed out the key steps to prove such extension.

REMARK 2.13. [Extension for k-way interaction model] The proof of the minimax lower
bound for the two-way interaction model can be easily generalized for the general k�way
interaction model by constructing alternatives similarly and using Fano’s inequality. The
optimal rate is given by

inf
f̂

sup
f2F ,X⇠PX

EPX
[(f̂(X)� f(X))2]&

0

@
kX

j=0

✓
d

j

◆
n
� 2�j

2�j+j

1

A

REMARK 2.14. We have studied the effect of dimensionality in the minimax upper and
lower bound for the interaction model in our article. A natural next step is to find Pinsker’s
constant for the k-way interaction model in diverging dimensions, which is left as a future
research direction.
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3. Analysis of DNN when d � n. This section presents our analysis when the under-
lying dimension of X is larger than the sample size. Although simpler parametric models
have been well-studied to avoid the curse of dimensionality, the literature on nonparametric
estimation for k-way interaction model (2.1) in this regime is relatively sparse. In the non-
parametric framework, a significant amount of research has been done on a high dimensional
additive model under sparsity constraint where the model under consideration is as follows:

Yi =
X

j2S
f0,j(Xij) + ✏i

where S ✓ {1, . . . , d} with s= |S|⌧ n. This is a standard assumption in high dimensional
statistical analysis, where the true signal depends on a few covariates, but the active set S is
apriori unknown. The analysis of the sparse additive model in high dimension was initiated in
Lin and Zhang (2006) and later refined in a series of papers literature (Koltchinskii and Yuan,
2010; Ravikumar et al., 2009; Tan and Zhang, 2019; Yuan and Zhou, 2016). Koltchinskii
and Yuan (2010) obtained error bounds under a global boundedness assumption, which was
subsequently removed by Raskutti et al. (2012). Recently, Tan and Zhang (2019) obtained
minimax guarantees when the underlying component functions lie in a reproducing kernel
Hilbert space. All the previous works typically use two penalties for optimal estimation: one
to control the complexity of the underlying function class and the other to control the sparsity.
Yet, it is enough to use only one penalty for inducing sparsity for a neural network-based
estimator, as the complexity can be controlled through the network’s width and depth.

In spite of such extensive works on sparse linear models, the study of the high-dimensional
linear models with k-way interaction (k > 1) is very sparse, letting alone k-way non-
parametric interactions. For some references about the variable selection in high dimensional
linear interaction models, readers may consult Zhao et al. (2009), Bien et al. (2013), Hao
and Zhang (2014) and references therein. In this section, we bridge this gap by studying the
asymptotic properties of the neural network estimator.

As before, we only elaborate on the analysis of the 2-way interaction model and comment
on how to extend our analysis for the general k-way interaction model. The two-way sparse
additive model is defined as follows:

(3.1) Yi =
X

j2S1

f0,j(Xij) +
X

(k,l)2S2

f0,kl(Xik,Xil) + "i ⌘ f0(Xi) + "i,

where S1 ⇢ [d], S2 ⇢ [d] ⇥ [d] with S1, S2 sparse, i.e., si := |Si| ⌧ n for i = 1,2. Define
this class of functions by Fsp. Here also we assume that the univariate components are
�1 smooth and the bivariate components are �2 smooth. From Theorem 2.9, there exists
{�?

j
}j2S1

,{�?
kl
}(j,k)2S2

, j 2 S1, (j, k) 2 S2, such that, �?
j
2FNN,1, �?

jk
2FNN,2 and

kf0,j � �
?

jk1 C1N
�2�1

1 8 j 2 S1 ,

kf0,kl � �
?

klk1 C2N
��2

2 8 (k < l) 2 S2 .

where

FNN,1 =FNN (1, c1N1 logN1, c2, c3N
2
1 log

2
N1,1)(3.2)

FNN,2 =FNN (2, c4N2 logN2, c5, c6N
2
2 log

2
N2,1) .(3.3)

Finally, define

�
? =

X

j2S1

�
?

j +
X

(k<l)2S2

�
?

kl.(3.4)

Following Assumption 2.6, we assume the following growth condition on the sparsity
parameter s1, s2:
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ASSUMPTION 3.1. The sparsity parameters s1, s2 corresponding to the univariate com-
ponents and bivariate components satisfy the following condition:

s1

✓
n
� 2�1

2�1+1 log4 n+
logd

n

◆
+ s2

✓
n
� �2

�2+1 log4 n+
logd

n

◆
= o(1) .

The reason behind Assumption 3.1 is similar for that of Assumption 2.6, i.e. without this
assumption, there will be no consistent estimator (modulo the logarithmic factor) as it is
minimax optimal rate of estimation. The analysis for the high dimensional model is not a
straightforward extension of the techniques used when d= o(n). To understand why, recall
that even in a simple sparse linear model with `1 penalty, it is not possible to obtain a minimax
rate optimal estimator without a form of restricted strong convexity assumption, which is
typically not needed when the dimension grows slower than the sample size. Therefore, for
ease of presentation, we divide the entire analysis into three parts: Section 3.1 establishes the
rate of convergence for the fixed design model, i.e. when Xi’s are some fixed points in Rp.
Section 3.2 deals with the random design, i.e. X is assumed to be a random variable. Finally,
in Section 3.3 we present the minimax lower bound to establish that our neural network-based
estimator is minimax rate optimal up to log factors.

3.1. Analysis of Fixed design model. In this section, we present our analysis for the fixed
design model, where we assume Xi’s to be fixed. Similar to (2.3), we estimate univariate and
bivariate components using neural networks with different architecture, but at the same time,
we use the `1-norm of L2(Pn) penalty to enforce sparsity. See page 966 of Antoniadis and
Fan (2001) and Yuan and Lin (2006) for such an idea in selecting a group of variables. Our
estimator f̂ =

P
j
�̂j +

P
k<l

�̂kl where components are defined as

n
�̂j

o
,

n
�̂kl

o
= argmin

�j2FNN,1

�kl2FNN,2

2

4 1

n

X

i

0

@Yi �
X

j

�j(Xij)�
X

k<l

�kl(Xik,Xil)

1

A
2

+

0

@�n,1
X

j

k�jkn + �n,2

X

k<l

k�klkn

1

A

3

5(3.5)

where FNN,1 and FNN,2 are defined in (3.2) and (3.3) respectively, k ·kn is the L2(Pn) norm
and �n,1,�n,2 to be specified later.

We now make couple of remarks on the estimation procedure. First, although we put
L2(Pn) penalty on the component functions to enforce sparsity, we may use the `1 penalty
on the last layer of the weights (which adds the component neural networks). Such a penalty,
in spite of its computational benefit, is difficult to analyze theoretically. Second, as we do
not necessarily assume �1 = �2, we need two regularization parameters �n,1 and �n,2. We
also need different architectures to adapt to the smoothness as highlighted by Remark 2.5.
Furthermore, for technical simplicity, we assume the following l

1 bound:

(3.6) kfjk1 B, kfjkk1 B.

Consequently, for numerical stability, we truncate the component neural networks (i.e.
�j ,�jk) at level B. The following theorem establishes the rate of convergence.

THEOREM 3.2. Under Assumption 2.1-2.3 and 3.1 along with (3.6), the estimator ob-
tained in (3.5) satisfes

kf̂ � f0k2n =Op

 
s1

 
⇢
2
n,1 + �n,1 +

�
2
n,1

2

!
+ s2

 
⇢
2
n,2 + �n,2 +

�
2
n,2

2

!!
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where ⇢n,1 (resp. ⇢n,2) is the approximation error of the univariate (resp. bivariate) compo-
nents of the mean function by neural networks, bounded by (3.8), provided that

(3.7) �n,1 =C3

r
Vn,1 logn

n
+

2 logd

n
, �n,2 =C4

r
Vn,2 logn

n
+

3 logd

n
,

with Vn,1 =N
2
1 log

3
N1 and Vn,2 =N

2
2 log

3
N2.

Let us try to understand and simplify the rate obtained by Theorem 3.2. Recall from Theorem
2.7, we have:
(3.8) ⇢n,1 C1N

�2�1

1 , ⇢n,2 C2N
��2

2 ,

for some constants C1,C2 > 0. Furthermore, it is revealed in our proof (see (A.19) and
(A.20)) that �n,1 and �n,2 given by (3.7) are the optimal choices, in which Vn,1 and Vn,2 are
the order of VC-dimensions for FNN,1 and FNN,2 respectively. Now, typically �n,i = o(1)
(which holds as soon as Vn,i = o(n/ logn), a condition necessary for consistency) and con-
sequently �2

n,i
= o(�n,i). Hence the rate of convergence in Theorem 3.2 can be simplified

as
kf̂ � f0k2n =Op

�
s1
�
⇢
2
n,1 + �n,1

�
+ s2

�
⇢
2
n,2 + �n,2

��
.

Now we choose N1,N2 to balance ⇢2
n,i

and �n,i, which leads to the following corollary:

COROLLARY 3.3. Choosing N1 = n
1/(2(1+4�1)) and N2 = n

1/(2(1+2�2)) (take the near-
est integer if they are not integers), we obtain:

kf̂ � f0k2n =Op

 
s1

 
n
� 2�1

1+4�1 log2 n+

r
logd

n

!
+ s2

 
n
� �2

1+2�2 log2 n+

r
logd

n

!!
.

cAs we will see in Subsection 3.3, this rate is not minimax optimal. The reason is similar
to that for the high dimensional sparse regression model: if we do not assume any condition
on the curvature of the loss function (e.g. restricted isometry or restricted eigenvalue type
conditions) then it is not possible to obtain any minimax optimal estimator which is com-
putable in polynomial time as proved in Zhang et al. (2014). Hence, we need to assume a
form of Restricted Strong Convexity (RSC) to obtain a minimax optimal error bound. RSC-
type assumptions were popularized by Bickel et al. (2010); Candès and Tao (2007). A similar
assumption is also used in the analysis of the sparse additive regression model, e.g. see (Tan
and Zhang, 2019, Assumption 3). In particular, we assume the following:

ASSUMPTION 3.4. There exist constants 1,2 > 0, such that for any function � =P
j
�j +

P
k<l

�kl that satisfies:

�n,1

X

j2Sc
1

k�j � �
?

jkn + �n,2

X

(k<l)2Sc
2

k�kl � �
?

klkn

 4(s1⇢
2
n,1 + s2⇢

2
n,2) + 3�n,1

X

j2S1

k�j � �
?

jkn + 3�n,2
X

(k<l)2S2

k�kl � �
?

klkn

+ s1�
2
n,1 + s2�

2
n,2(3.9)

also satisfies:

(3.10) 
2
1

X

j2S1

k�j � �
?

jk2n + 
2
2

X

(k<l)2S2

k�kl � �
?

klk2n  k�� �
?k2n

where �? is defined by (3.4), ⇢n,1 and ⇢n,2 are defined in Theorem 3.2 and �n,1 and �n,2 are
defined in (3.7).
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Before going into further details, we first compare our assumption with the standard re-
stricted eigenvalue (RE) condition for the high dimensional linear model Bickel et al. (2009).
Roughly speaking, the RE condition assumes:

(3.11)
X

j2S
(�j � �0,j)

2 . 1

n
kX(� � �0)k22

for any � that satisfies:

(3.12)
X

j2Sc

|�j |.
X

j2S
|�j � �0,j | ,

where S is the true active set. Now consider the nonparametric additive model, where Xj

affects Y through fj(Xj). Furthermore, we typically use the sum of L2(Pn) norm as a penalty
function in place of L1 norm for sparsity. Ignoring the approximation error for the time being
(i.e. assuming true fj belong to the function class over which we optimize), a natural analog
of condition (3.11) is the following:

(3.13)
X

j2S
kfj � f0,jk2n . kf̂ � f0k2n

for all f =
P

j
fj that satisfies (similar to (3.12))

(3.14)
X

j2Sc

kfjkn .
X

j2S
kfj � f0,jkn .

This is precisely what was used in (Tan and Zhang, 2019, Assumption 3) for analyzing ad-
ditive models in high dimensions. Assumption 3.4 is almost the same as this one with some
modification due to the fact we are approximating the component functions through neural
networks and consequently we may have non-zero approximation error. Ignoring the bivari-
ate components, (3.10) is exactly the same as (3.13) with f replaced by � and f0 replaced by
�
?, which is the best approximator of f0 from the class of neural networks. The only differ-

ence is in (3.9), which differs from (3.14) as we need to take into account the approximation
error. This is precisely why the term s1⇢

2
n,1 + s2⇢

2
n,2 appears on the right-hand side of equa-

tion (3.9). The other additional term s1�
2
n,1 + s2�

2
n,2 is due to some mathematical artifact of

the proof and also can be made arbitrarily smaller in order. For simplicity, if we ignore the
bivariate components and this additional term for the time being, then (3.9) simplifies to:

�n,1

X

j2Sc
1

k�j � �
?

jkn  4s1⇢
2
n,1 + 3�n,1

X

j2S1

k�j � �
?

jkn .(3.15)

If the function class is well-specified (as in the case of linear regression or additive models
in Tan and Zhang (2019)), then the first term of the RHS can be removed. Consequently,
cancelling �n,1 from both sides, our condition becomes same as (3.13) as used in Tan and
Zhang (2019). We now state the statistical error theorem:

THEOREM 3.5. Consider the function �̂ defined by (3.5). Then, under the same assump-
tions as that of Theorem 3.2 along with Assumption 3.4, we have:

(3.16) kf̂ � f0k2n =Op

�
s1(⇢

2
n,1 + �

2
n,1) + s2(⇢

2
n,2 + �

2
n,2)

�
.

The proof of this theorem is presented in Appendix A.3. The key difference between the rate
obtained in Theorem 3.2 and Theorem 3.5 is the absence of �n,i, which yields a faster rate
under Assumption 3.4. Similar discussion as that of after Theorem 3.2 is in order; we need
to choose N1,N2 to balance ⇢2

n,i
and �2

n,i
. This leads to the following corollary:
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COROLLARY 3.6. Choosing N1 = n
1/(2(1+2�1)) and N2 = n

1/(2(1+�2)) (take the nearest
integer if they are not integers), we obtain:

kf̂ � f0k2n =Op

✓
s1

✓
n
� 2�1

1+2�1 log4 n+
logd

n

◆
+ s2

✓
n
� �2

1+�2 log4 n+
logd

n

◆◆
.

In Section 3.3, we prove a matching lower bound to obtain that this rate is in fact minimax
optimal up to log factors.

3.2. Random design setting. In the previous section, we have analyzed the fixed design
model, i.e. Xi’s are assumed to be fixed. Here, we extend our analysis to the random design
model, namely when Xi’s are random variables with distribution satisfying Assumption 2.1.
As Xi’s are assumed to be random, we analyze the behavior of an estimator in terms of
expected squared error loss, also known as generalization/out-of-sample error. Let us first
highlight the difference between this subsection and the previous one. In the fixed design
setup, the entire analysis hinges on the given (X1, . . . ,Xn), i.e. we don’t require to evaluate
the performance of the predictor on some unobserved X . However, when we assume X’s
are random, then it is imperative to evaluate the performance on the unseen X’s as there is a
high probability (in fact probability is 1 if some component of X is continuous) that in future
we need to predict on new observations. Hence, in this setup we need to bound the expected
squared error loss, i.e. kf̂ � f0k2L2(PX) instead of empirical squared error loss, i.e. kf̂ � f0k2n.

A key step to bound this generalization error is to control the fluctuation of the corre-
sponding empirical process, which ensures that a predictor, that performs well on the train-
ing samples, also performs well on the previously unobserved test samples. Typically, it is
difficult to achieve such a guarantee using only the L1-norm of the L2(Pn) penalties as this
penalty only controls the complexity of the functions on the observed samples. Although it
might be possible to obtain a minimax optimal estimator by using L1 penalty along with the
L1-norm of the L2(Pn) penalties on the component functions, the optimization procedure
becomes computationally challenging. To circumvent this issue, we propose a computation-
ally efficient two-step procedure, which, at the cost of mildly stronger assumptions, allows
us to estimate the true mean function optimally. We illustrate our estimator via Algorithm 1.

The key idea is as follows: we first split the samples into two (almost) equal halves. Based
on the first half of the sample, we estimate the component functions by the same penalized
procedure used in the fixed design setting (see(3.5)). Next, we use hard thresholding on the
estimators of univariate and bivariate component functions to estimate the active set (Step
3 of Algorithm 1). Denote the estimated active sets by Ŝ1 and Ŝ2 respectively. Note that
our threshold levels are proportional to the penalty applied in (3.5). The constants c1, c2 will
be mentioned explicitly in the proof. Once we have Ŝ1, Ŝ2, then we solve the unpenalized
least square problem only on the active set based on the second half of the data (Step 4 of
Algorithm 1) to obtain the final estimate.

Our algorithm is primarily motivated by SURE independent screening (Fan and Lv, 2008;
Fan and Song, 2010) and the idea of least square regression upon selecting an active set via
LASSO or other penalized regression (Belloni and Chernozhukov, 2013). SURE independent
screening selects the active variables by performing marginal regression for additive models,
whereas for sparse linear regression, Belloni and Chernozhukov (2013) proposes to choose
the active set using LASSO and then perform OLS on the selected subset to reduce bias. We
combine these two ideas in Algorithm 1. First, we estimate the active subset of univariate and
bivariate components Ŝ1, Ŝ2 (step 2-3 of Algorithm 1) and ensure that with high probability:
i) Si ✓ Ŝi and ii) |Ŝi \ S

c

i
|=O(|Si|).

We need i) to avoid any potential bias that may occur by ignoring active components and
ii) to guard against false positives, i.e. we do not select too many inactive variables. To ensure
this, we need the following assumption:
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Algorithm 1: Estimation under random design setting
Input: Constant c1, c2 and penalty parameters �n,1, �n,2.
Output: f̂ : the estimator based on neural network.
Data: Dataset {(X1, Y1), . . . , (Xn, Yn)}.

1 Divide the dataset into two equal halves with n/2 data in each set (if n is odd, then take (n+ 1)/2 data
in the first half and (n� 1)/2 in the second half). Denote the halves by D1 and D2.

2 Using D1, estimate the component functions {�̂init
j

} and {�̂init
jk

} by solving (3.5).

3 Set Ŝ1 = {j : k�̂init
j

kn � c1�n,1} and Ŝ2 = {(j < k) : k�̂init
jk

kn � c2�n,2}.

4 Re-estimate component functions on the estimated active set Ŝ1 and Ŝ2 by minimizing (un-penalized)
squared error loss:

{�̂final
j }

j2Ŝ1
,{�̂final

jk
}
(j,k)2Ŝ2

= argmin �j2FNN,1
�j,k2FNN,2

1
n

X

i

0

B@Yi �
X

j2Ŝ1

�j(Xij)�
X

(j,k)2Ŝ2

�jk(Xij ,Xik)

1

CA

2

.(3.17)

5 Return the final estimate f̂final =
P

j2Ŝ1
�̂final
j

+
P

(j<k)2Ŝ2
�̂final
jk

.

ASSUMPTION 3.7. Assume that all the component functions has minimal signal strength
rn, i.e. minj2S1

kf0
j
k2 � rn, min(j,k)2S2

kf0
j,k
k2 � rn where:

rn &
s✓

s1

✓
n
� 2�1

1+2�1 log4 n+
logd

n

◆
+ s2

✓
n
� �2

1+�2 log4 n+
logd

n

◆◆
.

Note that rn is precisely the rate of convergence obtained in Corollary 3.6. Assumption 3.7
ensures that the signal in the active components is strong enough to be detected with high
probability (ensuring the true active set is a subset of the estimated active set). Furthermore,
by choosing an optimal penalty level �n,i we control the number of false positives. Finally, in
step 4 of Algorithm 1, we optimized squared error loss on the selected subset to produce the
final estimate. The following theorem establishes rate of convergence of the estimator f̂final
obtained via Algorithm 1:

THEOREM 3.8. Assume that the restricted strong convexity assumption (Assumption 3.4)
holds with high probability on {X1, . . . ,Xn}. Then, under Assumption 3.7, the estimator
f̂

final satisfies, upto log-factors,

kf̂ final � f0k22 =Op

�
s1�

2
n,1 + s2�

2
n,2

�
.

where �n,1 and �n,2 are same as in Theorem 3.5.

The proof of the Theorem will be deferred to Appendix A.4.

3.3. Minimax lower bound. In this section, we establish the minimax lower bound on the
rate of convergence of the high dimensional two-way interaction model. As mentioned pre-
viously, our proofs can be extended to a general k-way interaction model. Our main theorem
is as follows:
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THEOREM 3.9. Suppose that we have n observations from model (3.1). Then under As-
sumptions 2.2, 2.1 we have:

inf
f̂

sup
f2Fsp
X⇠PX

kf̂ � fk22 &
 
s1

✓
n
� 2�1

2�1+1 _ log (d/s1)

n

◆
+ s2

 
n
� 2�2

2�2+2 _
log

�
d
2
/s2

�

n

!!

It is immediate from Theorem 3.9 and Theorem 3.8 that our estimator of the mean function
based on neural networks is indeed minimax optimal up to log factors.

Although the proof techniques of Theorem 3.9 and Theorem 2.12 are similar, there are
some important changes in the construction for the alternatives since we need to enforce
sparsity here. We would also like to point out that our proof is different from that of Raskutti
et al. (2012) since we do not assume that the components of the mean function belong to
RKHS. Here we sketch the main idea of the proof briefly: each univariate component function
is assumed to be �1-smooth and each bivariate component function is assumed to be �2-
smooth. We first construct a collection of alternatives for these components and then we take
a sparse combination of them. Finally, constructing alternatives along with a proper choice of
the relevant hyper-parameters yield the lower bound. The proof is deferred to the Appendix.

4. Conclusion. Deep neural networks have achieved tremendous success in nonpara-
metric function estimation. Yet due to the intrinsic difficulty of “curse-of-dimensionality”,
they can only handle nonparametric functions of low-dimension, without excessive restric-
tions on the function classes. This calls for low-dimensional nonparametric interaction mod-
els. At the same time, modern big data applications often involve nonparametric regression
with a large number of predictors. Yet, most statistical theories on neural networks focus
only on finite-dimensional regression. These give rise to the imminent need for the study of
nonparametric interaction models in diverging dimensions and understanding the impact of
dimensionality in such structured nonparametric models.

This paper contributes critically to understanding the performance of neural networks in
low-order interaction models in diverging dimensions. An important conclusion of our study
is that estimated components should have low biases in order to avoid unnecessary error ac-
cumulations and this is achieved by our newly introduced debiasing techniques. For slowly
diverging dimensional problems, no additional regularization is needed. With proper debi-
asing,direct least-squares estimation on the structured neural networks is shown to achieve
a rate of convergence that matches with a newly established minimax low bound, namely,
it is optimal. In a high-dimensional setting, sparsity assumption on the interaction terms is
necessary. We appeal to the penalized least-squares estimation and screening techniques (for
random design) and show that the resulting procedure is minimax optimal by establishing
a matching lower bound. Our results provide a comprehensive view of the performance of
neural networks for the structured nonparametric model in diverging dimensions, which are
critical to modern data science and necessary for neural networks to succeed.

5. Proof of Theorem 2.7. Suppose f : [0,1]d !R is �-smooth, i.e. it is b�c times differ-
entiable with bounded derivatives. Then by Taylor series approximation around some point
x0, we have:

f(x) =
X

|↵|�

1

↵!

@
↵
f(x0)

@x↵
(x� x0)

↵ +
X

|↵|=�

1

↵!

@
↵
f(x0 + �↵x)

@x↵
(x� x0)

↵

:= T (x) +R(x)
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FIG 3. Approximating smooth function by neural network

where we use standard multi-dimensional Taylor series notation: for any ↵= (↵1, . . . ,↵d),
set |↵|=

P
d

j=1↵j . Let @↵/@x↵ denotes @↵1+···+↵d/@x
↵1

1 @x
↵2

2 . . .@x
↵d

d
. For any vector v,

let v↵ denote v
↵1

1 . . . v
↵d

d
. The basic idea of approximating a smooth function by a neural

network involves the following three key steps:

1. Divide the domain [0,1]d into small grids.
2. On each grid, perform Taylor series expansion around some fixed point, say the midpoint

of the corner point of the grid.
3. Approximate the Taylor polynomials by neural networks.

Figure 3 presents a flowchart with these three steps. Following the notations of Lu et al.
(2021), the best neural network approximator can be written as:

(5.1) �(x) =
X

|↵|�

'

✓
�↵ ( (x))

↵!
,P↵(x� (x))

◆

where, (x) maps the point x to the corner point of its grid, �↵ approximates the value of the
derivatives, P↵ approximates the polynomial x↵ and finally ' (the outer function) approx-
imates the operation xy by �(x, y). Next we describe how to perform addition using neural
networks. Given k neural networks each having width N and depth L, we can add them
the following way: first send x to 2k neural networks {�1,�2, . . . ,�k} and {��1, . . . ,��k}.
Then the final output is

P
k

j=1 (�(�j(x))� �(��j(x))). As �(·) is ReLU, we have the iden-
tity �(x) � �(�x) = x. See Figure 2 for a visual description. Therefore, the sum can be
performed using a NN with width 2kN and depth L+ 1. If k is large, then one can perform
the same operation via a neural network of width kN _2k and width L+2. In (5.1) the value
of k is of the order �d which is fixed, so the order of width and depth remains unchanged.

The neural network approximation, as presented in (5.1), has five sources of error (Table
5): i) E1, the error of approximating f by its Taylor approximation on a grid, ii) E2, the
error of approximation of  (x), iii) E3, the error of approximation of �↵, iv) E4, the error
of approximating x↵ by P↵ and finally v) E5, the error of approximating xy by �(x, y).
For any given N and L, suppose we divide [0,1] into K equispaced intervals with length
1/K where K = bN1/dc2bL2/dc. If we use a neural network of width C1N logN and width
C2L logL for some C1,C2 > 0, then we commit the following approximation error: There-
fore for � � 1 and d� 1, the only term where the effect of dimension creeps in is the Taylor
approximation error which is E1. The NN  is a step function, which x to the corner point
of its grid without any error. �↵ is a point fitting function, which maps the corner point of
the grid to its ↵th derivative of f and commits error of the order (NL)�2� which does not
depend on its dimension. P↵ is a neural network which approximates x↵ and has error of the
order (N +1)�7�L and so is the neural network ' which approximates the bivariate function
(x, y)! xy.
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Errors Order

E1 K�� ⇠ (NL)�2�/d

E2 0

E3 2(NL)�2�

E4 9�(N + 1)�7�L

E5 216(N + 1)�7�L

TABLE 1
Approximation error of neural network (cf. (Lu et al., 2021, Table 2))

Step 1: (Approximating one dimensional component) For each one dimensional compo-
nent fj , there exists a neural network �j (by the above mentioned construction) with width
C1N1 logN1 and depth C2L1 logL1 such that, for some C > 0,

kfj � �jk1 C(N1L1)
�2�1 .

Define Ij =
R 1
0 �j(x) dx and another neural network e�j(x) = �j(x)� Ij . As subtracting a

constant tantamounts to changing the bias of the last layer, it does not change the architecture.
Therefore, the width and depth of e�j is same as �j . Furthermore we have:

kfj � e�jk1 =

����fj �
Z 1

0
fj � �j �

Z 1

0
�j

����
1

 2kfj � �jk1  2C(N1L1)
�2�1 .

Step 2: (Approximating two dimensional component) Now consider a two dimensional
function, say f12. As before, following Lu et al. (2021), we can construct a neural network
�12 with width O(N2 logN2) and depth O(L2 logL2) such that

(5.2) kf12 � �12k1 C(N2L2)
��2 .

However, by (5.1), �12 does not approx f12 directly, it only approximates the Taylor expan-
sion T12(x). Hence, there exists some L

?(�)> 0 such that for any L� L
?(�),

(5.3) kf12(x)� �12(x)k1  kT12(x)� �12(x)k1| {z }
O((N1L1)�2�2 )

+ kR12(x)k1| {z }
O((N2L2)��2 )

.

Note that T12(x) is a bivariate polynomial. Although the overall approximation error of the
neural network is O((N2L2)��2), the approximation error of T12 by �12 is much faster and
can be assumed to be faster than (N2L2)�2�2 if L� L

?(�2) for some constant L?(�2) only
depending on �2. If we define T1(x) (resp. T2(y)) as T1(x) =

R 1
0 T12(x, y) dy (resp. T2(y) =R 1

0 T12(x, y) dx), then both T1 and T2 are univariate polynomial of degree  �2�1 and hence
�2 smooth. Consequently, we can construct NN ⇠1 and ⇠2 with width of O(N2 logN2) and
depth of O(L2 logL2) such that:

kT1(x)� ⇠1(x)k1 C(N2L2)
�2�2 ,(5.4)

kT2(y)� ⇠2(y)k1 C(N2L2)
�2�2 .(5.5)

We define the constant I12 =
RR
�12(x, y) dx dy. Finally, we define the estimator by

e�12(x, y) := �(x, y) � ⇠1(x) � ⇠2(y) + I12. Let us comment about the architecture of �̃12.
As mentioned before, adding I12 does not change the architecture. Also as �12, ⇠1, ⇠2 has
width O(N2 logN2) and depth O(L2 logL2), e�12 also has width O(N2 logN2) and depth
O(L2 logL2) (see Figure 2). Next, we show that the L1 distance of e�12 form f12 remains
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of the order (N2L2)��2 . Recall that the marginals of f12 are 0. Using triangle inequality we
have:

kf12 � e�12k1 = kf12 � �12 + ⇠1 + ⇠2 � I12k1

 kf12 � �12k1 +

����
Z 1

0
f12 dy� ⇠1

����
1

+

����
Z 1

0
f12 dx� ⇠2

����
1

+

�����

ZZ

[0,1]2
f12 dx dy� I12

�����
1

 2kf12 � �12k1 +

����T1 +

Z 1

0
R12 dy� ⇠1

����
1

+

����T2 +

Z 1

0
R12 dx� ⇠2

����
1

h
As I12 =

ZZ
�12

i

 2kf12 � �12k1 + kT1 � ⇠1k1 + kT2 � ⇠2k1

+

����
Z 1

0
R12 dy

����
1

+

����
Z 1

0
R12 dx

����
1

 2kf12 � �12k1 + kT1 � ⇠1k1 + kT2 � ⇠2k1 + 2kR12k1

C(N2L2)
��2 + 2C(N2L2)

�2�2 + 2C(N2L2)
��2 = 5C(N2L2)

��2 .

Here the first error follows from equation (5.2), second and third from equation (5.4) and the
last one from equation (5.3).

We next show that
���
R 1
0

⇣
e�12 � f12

⌘
dy

���
1

. (NL)�2� . Since
R 1
0 f12 dy = 0, the claim

is true since
����
Z 1

0

e�12 dy
����
1

=

����
Z 1

0
�12 dy� ⇠1 �

Z 1

0
⇠2 dy+ I12

����
1


����
Z 1

0
(�12 � T12) dy+ T1 � ⇠1

����
1

+

����
Z 1

0
(⇠2 � T2) dy+

Z 1

0
T2 dy� I12

����
1

 k�12 � T12k1 + k⇠1 � T1k1 + k⇠2 � T2k1

+

�����

ZZ

[0,1]2
T12 dx dy�

ZZ

[0,1]2
� dx dy

�����
1

 2k�12 � T12k1 + k⇠1 � T1k1 + k⇠2 � T2k1  4C(N2L2)
�2�2

Here, the first inequality follows from equation (5.3) second and third inequality follows
form (5.4).

Step 3: (Combining all the bounds) Here, we combine the bounds for one dimensional
and two dimensional components to prove Theorem 2.7. Define the function e� as:

e�=
dX

j=1

e�j +
X

k<l

e�kl .
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Ging back to our argument for summing multiple neural network, the width of
P

j
�̃j is

O(dN1 logN1) and depth is O(L1 logL1), the width of
P

k<l
e�kl is O((d(d�1)/2)N2 logN2)

and depth is O(L2 logL2). Furthermore, we have:

E
⇣

f0(X)� e�(X)
⌘2�

 pmax

Z

[0,1]d

⇣
f0(x)� e�(x)

⌘2
dx

= pmax

Z

[0,1]d

0

@
X

j

f0,j(xj) +
X

i<j

f0,ij(xi, xj)�
X

j

e�j(xj)�
X

i<j

e�ij(xi, xj)

1

A
2

dx

 2pmax

Z

[0,1]d

0

@
X

j

f0,j(xj)�
X

j

e�j(xj)

1

A
2

dx+ 2pmax

Z

[0,1]d

0

@
X

i<j

f0,ij(xi, xj)�
X

i<j

e�ij(xi, xj)

1

A
2

dx

= 2pmax

dX

j=1

Z 1

0

⇣
f0,j(xj)� e�j(xj)

⌘2
dxj + 2pmax

X

i<j

Z

[0,1]2

⇣
f0,ij(xi, xj)� e�ij(xi, xj)

⌘2
dxi dxj

+ 2pmax

X

j 6=j0

Z 1

0

⇣
f0,j(xj)� e�j(xj)

⌘
dxj

Z 1

0

⇣
f0,j0(xj0)� e�j0(xj0)

⌘2
dxj0

+ 2pmax

Z

[0,1]4

X

(i,j) 6=(k,l)

⇣
f0,ij(xi, xj)� e�ij(xi, xj)

⌘⇣
f0,kl(xk, xl)� e�kl(xk, xl)

⌘
dxidxjdxkdxl

 2pmax

2

4
dX

j=1

kf0,j � e�jk21 +
X

i<j

kf0,ij � e�ijk21

3

5

+ 2pmax

X

i 6=(k,l)
j 6=(k,l)

Z

[0,1]2
e�ij dxi dxj

Z

[0,1]2
e�kl dxk dxl+

+ 2pmax

X

i,j,k

Z 1

0

✓Z 1

0

e�ij dxj
◆✓Z 1

0

e�ik dxk

◆
dxi

 2C2
pmax


d(N1L1)

�4�1 +

✓
d

2

◆
(N2L2)

�2� +

✓
d

4

◆
(N2L2)

�4� +

✓
d

3

◆
(N2L2)

�4�

�

C3

✓
d(N1L1)

�4�1 +

✓
d

2

◆
(N2L2)

�2�2

◆
,

for some C,C3 > 0 since d
2(N2L2)�2�2 ! 0 by Assumption 2.6. Here the penultimate in-

equality follows by combining the results of Step 1 and Step 2. This completes the proof.
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APPENDIX A: PROOFS

A.1. Proof of Theorem 2.9. We want to invoke (Vaart and Wellner, 1997, Theorem
3.2.5). For any �= �1 + �2 (where �1 2F1

NN
,�2 2F2

NN
), define the population risk func-

tion R(�) (resp. empirical risk R̂n(�)) as

R(�) = E[(Y � �(X))2]

 
resp. R̂(�) =

1

n

X

i

(Yi � �(Xi))
2

!

Since that ✏ is independent of X with mean 0, it is immediate that:

R(�)�R(f0) = E[(f(X)� f0(X))2], d
2(�, f0) .

Define Fn := {� = �1 + �2 : �1 2 F1
NN

,�2 2 F2
NN

} (i.e. Fn = F1
NN

+ F2
NN

) and !n =
d(�?, f0), i.e. the approximation error of the class of neural network. It is immediate that:

Fn ✓FNN

⇣
d, c1

⇣
dN1 logN1 +

�
d

2

�
N2 logN2

⌘
, c2,Wn,1

⌘

with

Wn = c3

✓
d(N1 logN1)

2 +

✓
d

2

◆
(N2 logN2)

2
◆

,

for some constant c1, c2, c3 independent of (n,d). Therefore, VC dimension of Fn is less
than or equal to Vn , c4Wn logWn for some c4 > 0. We use this in the subsequent analysis.
Let ⇣n(�) be such that:

(A.1) E
"

sup
�2Fn:d(�,f0)�

|(Rn(�)�R(�))� (Rn(f0)�R(f0))|
#
. ⇣n(�)p

n
.

This function ⇣n is called the modulus of continuity, which is used to bound the fluctua-
tion of the empirical process around the population process in a neighborhood of the true
function. ⇣n(�) intrinsically depends on the complexity of the underlying function class. We
quantify this dependency through the following maximal inequality (e.g. Theorem 5.2 of
Chernozhukov et al. (2014)), which we state here for the convenience of the readers:

LEMMA A.1 (Theorem 5.2 of Chernozhukov et al. (2014)). Define the operator Gn =p
n(Pn � P ). Consider a collection of functions F with envelope function F . Assume that

F 2 L2(P ). Then:

E
"
sup
f2F

|Gn(f)|
#
. J(r,F , F )kFk2 +

kMk2J2(r,F , F )

r2
p
n

for r = �/kFk2, where

J(⌧, F,F) =

Z
⌧

0
sup
Q

p
1 + logN (✏kFk2,F ,L2(Q))d✏

M = max
1in

F (Xi), �
2 = sup

f2F
Pf

2
.

We use Lemma A.1 to find the function ⇣n(�). For any �, define a function g ⌘ g(�) on the
space of (X, ✏) as:

g(X, ✏) = (f0(X)� �(X) + ✏)2 � ✏
2

= (�(X)� f0(X))2 + 2(�(X)� f(X))✏.(A.2)
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Define the collection of G as G = {g(�) : � 2Fn}. This definition implies:

E
"

sup
�:d(�,f0)�

|(Rn(�)�R(�))� (Rn(f0)�R(f0))|
#
=

1p
n
E
"
sup
g2G�

|Gn(g)|
#
.

Here we G� as the collection of all g(�)’s, such that d(�, f0) �. To apply Lemma A.1, we
need to i) quantify �2, ii) find an envelope of G� and iii) bound the logarithm of covering
number. For i) observe that:

sup
g2G:d(f,f0)�

E[g(X)2] �
2(2 + 8�2✏ ),C�✏�

2
.

Next, to construct an envelope, note that (A.2) implies:

|g(X, ✏)| 9B2 + 6B✏ .

for all (X, ✏). This follows from the fact that k�k1  2B and kf0k1  B. Therefore, we
can take the envelope G as G(X, ✏) = 9B2 + 6B✏. To bound the logarithm of the covering
number of G� , we use Lemma 9.9 of Kosorok (2008). Note that, each g = g1 + g2 + hg3

where g1 = (�� f0)2+, g2 = (�� f0)2�, g3 = 2(�� f0) and h(x, ✏) = ✏. We calculate the VC
dimensions of each class of functions:

• The VC dimension of G1 = {g1(�) : � 2FNN} is  Vn. To see this, write g1(x, ✏) =m1 �
(� � f0) �m2(x, ✏) where m2(x, ✏) = x and m1(x) = x

2
+. As precomposing by a fixed

function �, subtracting a fixed function f0 and post-composing by a monotone function
does not change the VC dimension, the claim follows. Similar argument establishes that
VC dimension of G2 = {g2(f) : f 2F} is  Vn.

• VC dimension of G3, the collection of g3h is . Vn. To see this, note that VC dimension of
g3 is  Vn. As before, g3 = 2(��f0)� as we have already mentioned that pre-composing
by  , subtracting f0 and multiplying by by a fixed function (here 2h) does not change the
VC dimension.

Therefore, we have established that VC-dim of Gi is . Vn. This implies, via Hausslers’s
bound (Van Der Vaart and Wellner, 1996, Theorem 2.6.7)):

sup
Q

logN (✏kGik2,Gi,L2(Q)). logKVn + 2Vn log

✓
2
p
2e

✏

◆
.

As G� ✓ G1 + G2 + G3, we have:

logN (✏kGk2,G�,L2(Q)).
3X

j=1

logN (✏kGik2,Gi,L2(Q))

 3 logKVn + 6Vn log

✓
2
p
2e

✏

◆

 9Vn log

✓
2
p
2e

✏

◆
,

where the last inequality holds as soon as logKVn  Vn and ✏ 2
p

2/e. Therefore, we can
use the last inequality for all small ✏ and for all large enough Vn. Taking r =

p
C�✏�/kGk2

we have:

J(r,G�,G)
Z

r

0

s

1 + 9Vn log

✓
2
p
2e

✏

◆
d✏
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 4
p

Vn

Z
r

0

s

log

✓
2
p
2e

✏

◆
d✏

= 8
p

2eVn

Z
r/2

p
2e

0

s

log

✓
1

✏

◆
d✏

 4r
p

Vn

s

log

✓
2
p
2e

r

◆
.

Here the second inequality holds as long as Vn log (2
p
2/✏)� 1/7, i.e. ✏< 2

p
2exp(�1/(7Vn)).

This holds for all large n as long as r < 1. Hence we conclude via Lemma A.1:

E
"
sup
g2G�

|Gn(g)|
#
. �

s

Vn log

✓
1

�

◆
+

Vnp
n
log

✓
1

�

◆r
E
h
max

i

(1 + 2|✏i|)2
i

. �

s

Vn log

✓
1

�

◆
+

Vn

p
lognp
n

log

✓
1

�

◆
, �n(�) .

Now we establish the rate of convergence. Set rn =
⇣q

Vn

n
log n

Vn

p
logn+ !n

⌘�1
, where

!n = d(�?, f0) is the approximation error defined before. Note that rn satisfies the equation
�n(r�1

n ). r
�2
n

p
n since

r
2
n�n

✓
1

rn

◆
. rn

p
Vn log rn + r

2
n

Vn

p
lognp
n

log rn


p
n

2

4
 
1

2

log n

Vn
� log log n

Vn
� 1

2 log logn

log n

Vn

p
logn

!1/2

+

 
1

2

log n

Vn
� log log n

Vn
� 1

2 log logn

log n

Vn

!3

5

.
p
n

We now use shelling argument to establish the rate of convergence. Fix t > 1, and define
Aj := {FNN : 2j�1

t rnd(f0,�) 2jt}. It follows from the definition of ERM, we have

P
⇣
rnd(�̂, f0)� t

⌘
= P

0

B@ sup
�2FNN

rnd(f0,�)�t

R̂n(�
?)� R̂n(�)� 0

1

CA


1X

j=1

P
 
sup
�2Aj

R̂n(�
?)� R̂n(�)� 0

!


1X

j=1

P
 
sup
�2Aj

(Rn(�
?)�R(�?))� (Rn(�)�R(�))� inf

�2Aj

R(�)�R(�?)

!


1X

j=1

E
h
sup�2Aj

|(Rn(�?)�R(�?))� (Rn(�)�R(�))|
i

inf�2Aj
R(�)�R(�?)

(A.3)

We bound the numerator and denominator separately. For the denominator note that:

inf
f2Aj

R(�)�R(�?)� inf
f :df,f0�2j�1tr

�1
n

R(�)�R(f0) +R(f0)�R(�?)
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� 22j�2
t
2
r
�2
n � !

2
n

For the numerator:

E
"
sup
�2Aj

|(Rn(�
?)�R(�?))� (Rn(�)�R(�))|

#

 E
"

sup
f :d(f,f0)2jtr

�1
n

|(Rn(�
?)�R(�?))� (Rn(�)�R(�))|

#
. ⇣n

�
2jtr�1

n

�
p
n

.

Here, the second last equation holds because d(�?, f0) = !n  2jtr�1
n as r�1

n � !n. Putting
this bound in equation (A.3) we have:

P
⇣
rnd(f̂ , f0)� t

⌘


1X

j=1

�n

�
2jtr�1

n

�
p
n
�
22j�2t2r

�2
n � !2

n

�


1X

j=1

2jt�n
�
r
�1
n

�
p
n
�
22j�2t2r

�2
n � !2

n

� =
1X

j=1

2jtr2n�n(r
�1
n )n�1/2

22j�2t2 � !2
nr

2
n

.
1X

j=1

2jt

22j�2t2 � 1
[since r

2
n�n(r

�1
n ).

p
n, !

2
nr

2
n  1]

=
1

t

1X

j=1

2j

22j�2 � 1
t2

 c

t

This proves that:

rn d

⇣
�̂, f0

⌘
=Op(1) .

i.e.

kf̂ � f0k2L2(PX) =Op

✓
!
2
n +

Vn

n
log3/2 n

◆
.

Now to balance !n and Vn, we choose N1 = bn1/2(2�1+1)c and N2 = bn1/2(�2+1)c. This
implies:

!
2
n . dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� �2

�2+1

Vn

n
. W

n
logW .

✓
dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� �2

�2+1

◆
log3 n,

which yields

kf̂ � f0k2L2(PX) =Op

✓✓
dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� �2

�2+1

◆
log4.5 n

◆
.

This completes the proof.

A.2. Proof of Theorem 2.12. Here, we establish the lower bound on the following two-
way interaction model:

Yi = µ+
dX

j=1

fj(Xij) +
X

k<l

fkl(Xik,Xil) + ✏i , f0(Xi) + ✏i .
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We show that:

inf
f̂

sup
f2F ,X⇠PX

EPX
[(f̂(X)� f(X))2]� c

✓
dn

� 2�1
2�1+1 +

✓
d

2

◆
n
� �2

�2+1

◆
.

where F is the collection of all additive functions which satisfies: I) The one-dimensional
components are �1-smooth, [0,1] and integrate to 0 and II) the two-dimensional compo-
nents are �2-smooth, supported on [0,1]2 having marginals 0. Our proof is based on the
techniques introduced in (Tsybakov, 2004, Section 2.6.1). Throughout the proof, assume
Xij

iid⇠ Unif(0,1), i  n, j  d and "i
iid⇠ N(0,1), i  n. The key idea is to use Fano’s in-

equality upon carefully choosing a subset of F . Following Tsybakov (2004), fix the following
notations:

(A.4) mi = bc0n
1

2�i+1 c, hi =m
�1
i

, i= 1,2.

We construct the alternatives in two steps, for one-dimensional components and for two-
dimensional components.

Alternatives for one-dimensional components: First divide [0,1] into m1 grids [(k �
1)/m1, k/m1], 1 k m1. For each k, define xk = (k � 0.5)/m1. Select a smooth kernel
K 2 C

1(R) supported on (�1/2,1/2),
R
K(u) du = 0 and define

R
K

2(u) du , kKk22.
Define the functions �k(x), k m1 as:

(A.5) �k(x) := Lh
�1

1 K

✓
x� xk

h1

◆

The constant L is chosen so that �k has bounded derivatives and satisfies Assumption 2.3.
For each k, the function �k is supported on [(k � 1)/m,k/m], and the integral of �k is 0,
since

Z
�k(x) dx= Lh

�1

1

Z
K

✓
x� xk

h1

◆
dx

= Lh
�1

1

Z
xk+

h
2

xk�h
2

K

✓
x� xk

h1

◆
dx [Since K(z)> 0 when |z|� 1/2]

= Lh
�1+1
1

Z 1
2

� 1
2

K(z) dz = 0 .

For j 6= k, �j and �k have disjoint support, yielding the L2([0,1]) inner product between any
�j and �k is 0. Set M1 := dm1 and ⌦1 := {0,1}M1 . For each !1 2 ⌦1, define its entries by
{!1,jk}1jd,1km1

. Define functions f (1)
!1 as:

f
(1)
!1 (X) :=

dX

j=1

mX

k=1

!1,jk�k(Xj) ,

which will contribute to the one dimensional alternatives.

Alternatives for two-dimensional components: The construction for two-dimensional
alternatives are similar to that for one-dimensional components. As before, divide [0,1]2

into m
2
2 rectangles [(k � 1)/m2, k/m2] ⇥ [(l � 1)/m2, l/m2], 1  k, l  m2. Set xk :=

(k� 0.5)/m2. Using K same as before, define �kl, 1 k, lm2 as

(A.6) �kl(x, y) := Lh
�2

2 K

✓
x� xk

h

◆
K

✓
y� xl

h

◆
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Observe that, each �kl is supported on [(k � 1)/m2, k/m2]⇥ [(l � 1)/m2, l/m2]. and con-
sequently L2([0,1]2) inner-product of any two �k1,l1 and �k2,l2 is 0 if (k1, l1) 6= (k2, l2).
Also the marginals of �kl are 0 as

R
K((x� xk)/h) dx= 0. Set M2 := d(d� 1)m2

2/2 and
⌦2 := {0,1}M2 . For each !2 2 ⌦2 we write it in a tensor form !2,ijkl where 1 i < j  d

and 1 k  lm2 and define f
(2)
!2 as:

f
(2)
!2 (X) =

X

i<j

X

k,l

!2,ijkl�kl(Xi,Xj) .

These functions will be the two-dimensional component of our alternatives.

Final step: We now construct our alternatives by combining the one-dimensional and two-
dimensional components as constructed above. We first set the true mean function f0 = 0.
Now we choose S1 ⇢⌦1 and S2 ⇢⌦2 carefully and then construct our alternatives as:

FS =
n
f! = f

(1)
!1 + f

(2)
!2 , !1 2 S1,!2 2 S2

o

To choose S1 and S2 we invoke Varshamov-Gilbert theorem, cf. (Tsybakov, 2004, Lemma
2.9) which we state here for the convenience of the reader:

PROPOSITION A.2 (Varshamov-Gilbert). For any M � 8, there exists S ✓ {0,1}M with
|S| � 2M/8, such that for any ! 6= !0 2 S, ⇢(!,!0) �M/8, where ⇢ is the Hamming dis-
tance.

By Proposition A.2, we can choose S1 and S2 such that for any !1,!0
1 2 S1 we have

⇢(!1,!0
1) � M1/8 and for any !2,!0

2 2 S2, ⇢(!2,!0
2) � M2/8. Observe that for any

! = (!1,!2) 6=!0 = (!0
1,!

0
2) we have:

d
2 (f!, f!0) =

Z

[0,1]d
(f!(x)� f!0(x))2 dx

=

Z

[0,1]d

0

@
dX

j=1

mX

k=1

(!1,jk �!0
1,jk)�k(Xj) +

X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)�kl(Xi,Xj)

1

A
2

dx

=

Z

[0,1]d

0

@
dX

j=1

mX

k=1

(!1,jk �!0
1,jk)�k(Xj)

1

A
2

dx+

0

@
X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)�kl(Xi,Xj)

1

A
2

dx

+ 2

Z

[0,1]d

0

@
dX

j=1

mX

k=1

(!1,jk �!0
1,jk)�k(Xj)

1

A

0

@
X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)�kl(Xi,Xj)

1

A dx

, T1 + T2 + 2T3 .

We now analyze each Ti separately.

T1 =

Z

[0,1]d

0

@
dX

j=1

mX

k=1

(!1,jk �!0
1,jk)�k(Xj)

1

A
2

dx

=
dX

j=1

mX

k=1

(!1,jk �!0
1,jk)

2
Z 1

0
�
2
k(Xj) dXj
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= L
2
h
2�1

1

dX

j=1

mX

k=1

(!1,jk �!0
1,jk)

2
Z 1

0
K

2

✓
Xj � xk

h1

◆
dXj

= L
2
h
2�1+1
1

dX

j=1

mX

k=1

(!1,jk �!0
1,jk)

2
Z 1

2

� 1
2

K
2 (z) dz

= L
2
h
2�1+1
1 kKk22

dX

j=1

mX

k=1

(!1,jk �!0
1,jk)

2 = L
2
h
2�1+1
1 kKk22 ⇢(!1,!

0
1)

For T2:

T2 =

Z

[0,1]d

0

@
X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)�kl(Xi,Xj)

1

A
2

dx

=
X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)

2
Z

[0,1]2
�
2
kl(Xi,Xj) dXi dXj

= L
2
h
2�2

2

X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)

2
Z

[0,1]2
K

2

✓
Xi � xj

h2

◆
K

2

✓
Xj � xk

h2

◆
dXi dXj

= L
2
h
2�2+2
2

X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)

2

 Z 1
2

� 1
2

K
2(z) dz

!2

= L
2
h
2�2+2
2 kKk42

X

i<j

X

k,l

(!2,ijkl �!0
2,ijkl)

2 = L
2
h
4�2+2
2 kKk42⇢(!2,!

0
2) .

Finally we claim that T3 = 0. This follows from the fact that if i, j, k all are distinct, then for
any 1 v1 m1 and 1 v2, v3 m2:

Z

[0,1]3
�v1(Xi)�v2,v3(Xj ,Xk) dXi dXj dXk

=

Z

[0,1]
�v1(Xi) dXi

Z

[0,1]2
�v2,v3(Xj ,Xk) dXj dXk = 0

as the integrals of �v1 and �v2,v3 are 0 by construction. When they are not all distinct, suppose
i= j 6= k. Then:

Z

[0,1]2
�v1(Xi)�v2,v3(Xi,Xk) dXi dXk

=

Z

[0,1]
�v1(Xi)

 Z

[0,1]
�v2,v3(Xi,Xk) dXk

!
dXi = 0

as marginals of �v2,v3 is 0 by our construction. Therefore T3 = 0. Combining the expression
of Ti’s, we have:

d
2(f!, f!0) = L

2
h
2�1+1
1 kKk42 ⇢(!1,!

0
1) +L

2
h
2�2+2
2 kKk42 ⇢(!2,!

0
2)(A.7)

where ⇢ is the Hamming distance. From Proposition A.2, we have:

d
2(f!, f!0)� L

2
1h

2�1+1
1 kKk22

dm1

8
+L

2
2h

2�2+2
2 kKk42

d(d� 1)m2
2

16
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=
L
2
1kKk22
8

dm
�2�1

1 +
L
2
2kKk42
8

✓
d

2

◆
m

�2�2

2 := 4�2 .(A.8)

Here the second equality follows from the fact that h1 =m
�1
1 and h2 =m

�1
2 and the third

inequality follows from the definition of m1,m2. Applying Fano’s inequality (Mukherjee
et al., 2021, Proof of Theorem 2.18) on the collection FS , we obtain:

(A.9) inf
f̂

sup
f,PX

EPX
[(f̂(X)� f(X))2]� �

2

 
1�

n

|S|2
P

! 6=!02S KL (P!|P!0) + log 2

log (|S|� 1)

!

As the error ✏i’s are normal, we have:

KL (P!|P!0) =
1

2
E
h
(f!(X)� f!0(X))2

i
=

1

2
d
2 (f!, f!0)

= L
2
h
2�1+1
1 kKk22 ⇢(!1,!

0
1) +L

2
h
2�2+2
2 kKk42 ⇢(!2,!

0
2)

 L
2
h
2�1+1
1 kKk22 M1 +L

2
h
2�2+2
2 kKk42 M2

= L
2
h
2�1+1
1 kKk22 dm1 +L

2
h
2�2+2
2 kKk42

✓
d

2

◆
m

2
2

= L
2kKk22dm

�2�1

1 +L
2kKk42

✓
d

2

◆
m

�2�2

2  32�2 .

Moreover, |S|= |S1 ⇥ S2|� 2(M1+M2)/8 by Proposition A.2. Plugging the bounds in (A.9),
we have:

inf
f̂

sup
f,PX

EPX
[(f̂(X)� f(X))2]� �

2

✓
1� 9

32n�2 + log 2

M1 +M2

◆
(A.10)

Now from the definition of m1,m2 we have:

n�
2 = n

✓
L
2
1kKk22
32

dm
�2�1

1 +
L
2
2kKk42
32

✓
d

2

◆
m

�2�2

2

◆

Cn

✓
L
2
1kKk22
32

dn
� 2�1

2�1+1 +
L
2
2kKk42
32

✓
d

2

◆
n
� 2�2

2�2+2

◆

=C

✓
L
2
1kKk22
32

_ L
2
2kKk42
32

◆✓
dn

1
2�1+1 +

✓
d

2

◆
n

2
2�2+2

◆

,C

✓
L
2
1kKk22
32

_ L
2
2kKk42
32

◆
 n .

On the other hand:

M1 +M2 = dm1 +

✓
d

2

◆
m

2
2 � c

✓
dn

1
2�1+1 +

✓
d

2

◆
n

2
2�2+2

◆
= c n .

Using these bounds in (A.10) yields:

inf
f̂

sup
f,PX

EPX
[(f̂(X)� f(X))2]� �

2

0

@1� 9
C

⇣
L

2
1kKk2

2

32 _ L
2
2kKk4

2

32

⌘
 n + log 2

c n

1

A

= �
2

0

@1� 9
C

⇣
L

2
1kKk2

2

32 _ L
2
2kKk4

2

32

⌘
+ log 2

 n

c

1

A
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The constants C, c depends on c1, c2 via the definition of m1,m2. Choosing them appropri-
ately and using the fact  n "1 as n "1, we can make

9
C

⇣
L

2
1kKk2

2

32 _ L
2
2kKk4

2

32

⌘
+ log 2

 n

c
 1

2
.

which implies:

inf
f̂

sup
f,PX

EPX
[(f̂(X)� f(X))2]� �

2

�
✓
L
2
1kKk22
8

^ L
2
2kKk42
8

◆✓
dn

�2�1
2�1+1 +

✓
d

2

◆
n

�2�2
2�2+2

◆
.

This completes the proof.

A.3. Proof of Theorem 3.2 and 3.5. Recall the for any � =
P

j
�j +

P
k<l

�kl, we
define k�kn,1 :=

P
j
k�jkn +

P
j<k

k�jkkn and k�k2n =
P

n

i=1 �
2(Xi)/n. Further define

k�kn,lin :=
P

j
k�jkn and k�kn,quad :=

P
k<l

k�klkn. From Theorem 2.9, there exists
{�?

j
}j2S1

,{�?
kl
}(j,k)2S2

, j 2 S1, (j, k) 2 S2, such that, �?
j
2FNN,1, �?

jk
2FNN,2 and

kf0,j � �
?

jk1 C1(N1L1)
�2�1 8 j 2 S1 ,(A.11)

kf0,kl � �
?

klk1 C2(N2L2)
��2 8 (k < l) 2 S2 .(A.12)

and furthermore, �?
j

has integral 0 and �
?

kl
has 0 marginals. For the simplicity of the

rest of the proof, take Li to be of the constant order. Therefore the architecture we use
here is the following: for the fitting the univariate function we use DNNs from the class
F(1, c1N1 logN1, c2,1) and for fitting bivariate functions, we use DNNs from the class
F(1, c1N2 logN2, c3,1). Therefore, defining �

? =
P

j2S1
�
?

j
+
P

(j,k)2S2
�
?

jk
, we have by

Theorem 2.7:

E
⇥
(f0(X)� �

?(X))2
⇤
C1

⇣
s1(N1)

�4�1 + s2(N2)
�2�2

⌘

,C1(s1⇢
2
n,1 + s2⇢

2
n,2) .(A.13)

As �̂ is the minimizer of the penalized loss function among the class of neural networks, it
outperforms �?. Setting pen(�) := �n,1k�kn,lin + �n,2k�kn,quad, we have:

1

2
kY � �̂k2n + pen(�̂) 1

2
kY � �

?k2n + pen(�?)

=) 1

2
k�̂� �

?k2n + pen(�̂) hf0 � �
?
, �̂� �

?in + h✏, �̂� �
?in + pen(�?)

=) 1

2
k�̂� �

?k2n + pen(�̂) kf0 � �
?k2n +

1

4
k�̂� �

?k2n + h✏, �̂� �
?in + pen(�?)

=) 1

4
k�̂� �

?k2n + pen(�̂) kf0 � �
?k2n + h✏, �̂� �

?in + pen(�?).

(A.14)

First we bound the empirical error kf0 � �
?k2n in terms of its population counterpart kf0 �

�
?k22. Using Chebychev inequality, we have for t > 0:

(A.15) P
���kf0 � �

?k2n � kf0 � �
?k22

��> t
�


E
⇥
(f0 � �

?)4
⇤

nt2
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Expanding the fourth moment, we obtain:

E
⇥
(f0 � �

?)4
⇤
 8

8
<

:E

2

4

0

@
X

j2S1

(f0,j � �
?

j )

1

A
43

5+E

2

4

0

@
X

(j,k)2S2

(f0,jk � �
?

jk)

1

A
43

5

9
=

;

 8pmax

8
<

:

Z

[0,1]d

0

@
X

j2S1

(f0,j(xj)� �
?

j (xj))

1

A
4

dx+

Z

[0,1]d

0

@
X

(j,k)2S2

(f0,jk(xj , xk)� �
?

jk(xj , xk))

1

A
4

dx

9
=

;

, 8pmax(T1 + T2) .

Now we analyze T1 and T2 separately. For T1:

T1 =

Z

[0,1]d

0

@
X

j2S1

(f0,j(xj)� �
?

j (xj))

1

A
4

dx

=
X

j2S1

Z 1

0
(f0,j(xj)� �

?

j (xj))
4
dxj +

X

j 6=k2S1

Z 1

0
(f0,j(xj)� �

?

j (xj))
2
dxj

Z 1

0
(f0,j(xk)� �

?

k(xk))
2
dxk

C
4
s
2
1(N1L1)

�8�
.

where the last line follows from the fact that kf0,j � �
?

j
k1 C(N1L1)�2� . Similar analysis

for T2 yields:

T2 =

Z

[0,1]d

0

@
X

(j,k)2S2

(f0,jk(xj , xk)� �
?

jk(xj , xk))

1

A
4

dxC
4
s
2
2(N2L2)

�4�
.

using kf0,jk � �
?

jk
k1  C(N2L2)�� , repeatedly and using Assumption 3.1. Using the

bounds of T1 of T2, we have:

E
⇥
(f0 � �

?)4
⇤
 8C4

pmax

⇣
s
2
1(N1L1)

�8� + s
2
2(N2L2)

�4�
⌘

 8C4
pmax

⇣
s
2
1⇢

4
n,1 + s

2
2⇢

4
n,2

⌘
.

Hence, choosing t0 =C
2
q

8pmax(s21⇢
4
n,1+s22⇢

4
n,2) logn

n
, we have from (A.15):

(A.16) P
���kf0 � �

?k2n � kf0 � �
?k22

��> t0
�
 1

logn

Define the event ⌦n,1 as:

⌦n,1 =
���kf0 � �

?k2n � kf0 � �
?k22

�� t0
 
.

Noticing t0 ⌧ s1⇢
2
n,1 + s2⇢

2
n,2, by (A.13), we have on ⌦n,1 that

(A.14) =) 1

4
k�̂� �

?k2n + pen(�̂)C3(s1⇢
2
n,1 + s2⇢

2
n,2) + h✏, �̂� �

?in + pen(�?)

In the next step, we bound the empirical error, i.e. the inner product between ✏ and �̂� �
?.

First of all, note that, by triangle inequality:

���h✏, �̂� �
?in

���
dX

j=1

�����
1

n

X

i

✏i

⇣
�̂j(Xij)� �

?

j (Xij)
⌘�����
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+
X

k<l

�����
1

n

X

i

✏i

⇣
�̂kl(Xik,Xil)� �

?

kl(Xik,Xil)
⌘�����

To bound each of the summands on the RHS, we first bound each term inside the summation.
Towards that direction, we use Lemma 4 of Fan and Gu (2022), which says that if Gn is a class
of functions with VC dimension Vn, then for any fixed g0 2 G, ✏> 0, t > 0, with probability
� 1� log (1/✏)e�t:

1

n

�����

nX

i=1

✏i(g(Xi)� g0(Xi))

�����C4 (kg� g0kn + ✏)

r
Vn,1 logn

n
+

t

n

for some universal constant c. Note that, �j 2 FNN (1, c1N1 logN1, c2, c3(N1 logN1)2,1),
whose VC dim Vn,1 C5N

2
1 logN1) (see Lemma 2.8). We now apply this lemma to each of

the component functions with t= 2 logd and use a union bound to conclude:

dX

j=1

�����
1

n

X

i

✏i

⇣
�̂j(Xij)� �

?

j (Xij)
⌘�����C4

r
Vn,1 log p

n
+

2 logd

n

0

@
dX

j=1

k�̂j � �
?

n,jkn + d✏1

1

A .

(A.17)

The above event occurs with probability � 1� log(1/✏1)elogd�2 logd = 1� log(1/✏1)/d. A
similar calculation for the bivariate components yields:

X

k<l

�����
1

n

X

i

✏i

⇣
�̂kl(Xik,Xil)� �

?

kl(Xik,Xil)
⌘�����

C5

r
Vn,2 logn

n
+

3 logd

n

 
X

k<l

k�̂kl � �
?

klkn +
d(d� 1)

2
✏2

!
,(A.18)

with probability � 1� log (1/✏2)e2 logd�3 logd = 1� log (1/✏2)/d. For the rest of the analysis,
define the penalty parameters �n,1,�n,2 and ✏1, ✏2 as:

�n,1 = 2C4

r
Vn,1 log p

n
+

2 logd

n
(A.19)

�n,2 = 2C5

r
Vn,2 logn

n
+

3 logd

n
(A.20)

✏i =
si�n,i�

d

i

� for i= 1,2.(A.21)

Combining equation (A.17) and (A.18) we have:
���h✏, �̂� �

?in
���

�n,1

2

pX

j=1

k�̂j � �
?

n,jkn,lin +
�n,2

2

X

k<l

k�̂kl � �
?

klkn,quad

+
s1�

2
n,1

2
+

s2�
2
n,2

2
.(A.22)

Define this event (A.22) to be ⌦n,2 and we will later show that our choice of (N1,N2) ensures
that P(⌦n,2)! 1. On the event ⌦n,1 \⌦n,2, we have:

1

4
k�̂� �

?k2n + �n,1k�̂kn,lin + �n,2k�̂kn,quad
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C3(s1⇢
2
n,1 + s2⇢

2
n,2) +

�n,1

2

pX

j=1

k�̂j � �
?

n,jkn,lin

+
�n,2

2

X

k<l

k�̂kl � �
?

klkn,quad +
s1�

2
n,1

2
+

s2�
2
n,2

2
+ �n,1k�̂kn,lin + �n,2k�̂kn,quad

Some simple algebra yields:

1

4
k�̂� �

?k2n +
�n,1

2
k�̂kn,lin +

�n,2

2
k�̂kn,quad

C3(s1⇢
2
n,1 + s2⇢

2
n,2) +

3�n,1
2

X

j2S1

k�̂j � �
?

n,jkn,lin +
3�n,2
2

X

k<l2S2

k�̂kl � �
?

klkn,quad

+
s1�

2
n,1

2
+

s2�
2
n,2

2
.

(A.23)

If we don’t assume any Restricted Strong Convexity(RSC) on the underlying function class
(i.e. in our case DNNs with some pre-specified architecture), then we can use the fact k�̂j �
�
?

n,j
kn  2B for j and consequently we have:

1

4
k�̂� �

?k2n +
�n,1

2
k�̂kn,lin +

�n,2

2
k�̂kn,quad

C3(s1⇢
2
n,1 + s2⇢

2
n,2) +

3

2
(s1�n,1 + s2�n,2) +

s1�
2
n,1

2
+

s2�
2
n,2

2
.(A.24)

This completes the proof of Theorem 3.2. For the second part, we assume to have RSC
condition Assumption (3.4). From (A.23), we obtain:

1

4
k�̂� �

?k2n +
�n,1

2
k�̂kn,lin +

�n,2

2
k�̂kn,quad

C3(s1⇢
2
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2

X

j2S1

k�̂j � �
?

n,jkn,lin +
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2
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k�̂kl � �
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klkn,quad
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s1�

2
n,1

2
+

s2�
2
n,2

2

C3(s1(⇢
2
n,1 + �

2
n,1) + s2(⇢

2
n,2 + �

2
n,2)) +

3

2
�n,1

p
s1

sX

j2S1

k�̂j � �?
n,j

k2
n,lin

+
3

2
�n,2

p
s2

s X

k<l2S2

k�̂kl � �?
kl
k2
n,quad

C3(s1(⇢
2
n,1 + �

2
n,1) + s2(⇢

2
n,2 + �

2
n,2)) +

9s1�2n,1
221

+

2
1

8

X

j2S1

k�̂j � �
?

n,jk2n,lin

+
9s2�2n,2
222

+

2
2

8

X

k<l2S2

k�̂kl � �
?

klk2n,quad

C3(s1(⇢
2
n,1 + �

2
n,1) + s2(⇢

2
n,2 + �

2
n,2)) +

9s2�2n,2
222

+
9s1�2n,1
221

+
1

8
k�̂� �

?k2n
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This implies:

1

8
k�̂� �

?k2n +
�n,1

2

X

j2Sc
1

k�̂jkn +
�n,2

2

X

(j<k)2Sc
2

k�̂jkkn C6
�
s1(⇢

2
n,1 + �

2
n,1) + s2(⇢

2
n,2 + �

2
n,2)

�

Now we select the optimal value of Ni’s by balancing ⇢n,i and �n,i. First take i= 1. Recall
that we have:

⇢
2
n,1 =N

�4�1

1 , and �2n,1 = 4C2
4

✓
Vn,1 logn

n
+

2 logd

n

◆
C7

✓
N

2
1 log

3
N1 logn

n
+

logd

n

◆

Choosing N1 = bn
1

2(2�1+1) c yields:

⇢
2
n,1 ⇠ n

� 2�1
2�1+1 ,(A.25)

�
2
n,1 ⇠ n

� 2�1
2�1+1 log4 n+

logd

n
.(A.26)

In particular we have:

⇢
2
n,1 + �

2
n,1 C8

✓
n
� 2�1

2�1+1 log4 n+
logd

n

◆
.

Similar calculation for i= 2 implies that choosing N2 = bn
1

2(�2+1) c we have:

⇢
2
n,2 + �

2
n,2 C9

✓
n
� �2

�2+1 log4 n+
logd

n

◆
.

Therefore, the above choice of penalty parameters yields:

1

8
k�̂� �

?k2n +
�n,1

2

X

j2Sc
1

k�̂jkn +
�n,2

2

X

(j<k)2Sc
2

k�̂jkkn

C10

✓
s1

✓
n
� 2�1

2�1+1 log4 n+
logd

n

◆
+ s2

✓
n
� �2

�2+1 log4 n+
logd

n

◆◆
.

This completes the proof.

A.4. Proof of Theorem 3.8. For notational simplicty, define r
2
n = C̃(s1�2n,1 + s2�

2
n,2)

for some constant C̃ mentioned explicitly later in the proof. First we show that the set Ŝi for
i 2 {1,2}, obtained by hard thresholding (Step 3 of Algorithm 1) satisfies Ŝi � Si with high
probability (whp). Recall that kf0

j
k2 > rn and kf0

jk
k2 > rn for all j 2 S1 and (j < k) 2 S2.

Using Lu et al. (2021), there exists DNNs {�?
j
}j and {�?

jk
} such that k�?

j
k2 > rn/2 and

k�?
jk
k2 > rn/2 as the approximation error for each component is < rn/2 by the definition

of rn for all j 2 S1 and (j < k) 2 S2. We will show first that S1 ✓ Ŝ1 whp. The key idea
is as follows: if S1 * Ŝ1, there exists j 2 S1 such that j /2 Ŝ1, i.e. k�̂jkn < C2�n,1. Since
k�?

j
k2 � rn/2, we have k�?

j
kn � rn/4 whp (which again follows from the fact that nr2n !1,

details later). If k�̂jkn <C2�n,1, then

(A.27) C(s1�
2
n,1 + s2�

2
n,2)�

1

8
k�̂� �

?k2n � 1

8
k�̂j � �

?

jk2n � 1

8

⇣
rn

4
�C2�n,1

⌘2
� r

2
n

27
.

This yields contradiction as soon as C̃
2 � 27C . Now we rigorize this intuition. Define the

following events:

1. ⌦n,1 = {
P

j2S1
k�̂j � �

?

j
kn C(s1�n,1 + s2�n,2)}.
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2. ⌦n,2 =
n���k�?jkn � k�?

j
k2
��� k�?

jk2
2

2 8 j 2 S1

o
.

3. ⌦n,3 =
n���k�?jkkn � k�?

jk
k2
��� k�?

jkk2
2

2 8 (j < k) 2 S2

o
.

Using the proof of Theorem 2.9 P(⌦n,1)! 1 as n!1. For ⌦n,2 note that:

X

j2S1

P
 
��k�?jk2n � k�?jk22

���
k�?

j
k22

2

!

X

j2S1

4var

✓⇣
�
?

j
(X)

⌘2◆

nk�?
j
k42


X

j2S1

4E
✓⇣

�
?

j
(X)

⌘4◆

nk�?
j
k42


X

j2S1

4B2E
✓⇣

�
?

j
(X)

⌘2◆

nk�?
j
k42

[As k�?jk1 B]

=
4s1B2

nk�?
j
k22

 4s1B2

nr2n
.

Now by our choice of rn, it is immediate that nr
2
n

s1
& �

2
n,1 & logn ! 1, using (3.7).

This implies P(⌦c
n,2)! 0. Similar calculation yields that P(⌦c

n,3) ! 0. Now, on the event
⌦n,1 \⌦n,2 \⌦n,3, we have from (A.27) that Si ✓ Ŝi for i= 1,2.

For the rest of the calculation, define the event T = {Si ✓ Ŝi, i = 1,2}. We have shown
P(T ) = 1� o(1). For the rest of the analysis, we assume T happens. Define |Ŝ1 \ S

c
1|= �1

and |Ŝ2 \ S
c
2| = �2. Therefore |Ŝ1| = s1 + �1 and |Ŝ2| = s2 + �2. Note that the values of

�1,�2 satisfies:

2C10
�
�1�

2
n,1 + �2�

2
n,2

�
 �n,1

2

X

j2Sc
1

k�̂jkn +
�n,2

2

X

(j<k)2Sc
2

k�̂jkkn

 2C10
�
s1�

2
n,1 + s2�

2
n,2

�

i.e.

(A.28) �1�
2
n,1 + �2�

2
n,2  s1�

2
n,1 + s2�

2
n,2 .

According to Algorithm 1, we use the second half of the data to estimate the mean function
by restricting ourselves only on Ŝ1 and Ŝ2 and minimizing (unpenalized) squared error loss,
i.e. our final estimate is:

f̂
final(x) =

X

j2Ŝ1

�̂
final
j (xj) +

X

(j<k)2Ŝ2

�̂
final
jk (xj , xk),

where the component functions are estimated as:

{�̂finalj },{�̂finaljk }= argmin�j ,�jk

1

n

X

i

0

@Yi �
X

j2Ŝ1

�j(Xij)�
X

(j<k)2Ŝ2

�jk(Xij ,Xik)

1

A
2

.

Rest of the proof is similar to that of Theorem 2.9. By (Fan and Gu, 2022, Theorem 4.8),
we know that if f is an d-variate � smooth function, then, there exists neural network g with
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width N and constant depth (where the constant depends on d,�) such that

kf � gk1  cN
� 2�

d .

for some constant c = c(�, d) > 0. Here we fit univariate and bivariate functions seprately.
Suppose we fit the univariate components using neural networks of width N1 (and constant
depth c1) and bivariate components using neural networks of width N2 (and constant depth
c2). Then to fit the additive functions, we need |Ŝ1| many such univariate components and
|Ŝ2| many bivariate components. Therefore total number of weights (no. of active parameters)
required to fit such a mean function is W =C1(|Ŝ1|N2

1 + |Ŝ2|N2
2 ). From Bartlett et al. (2019),

that VC-dim of such neural networks is Vn  C2W logW (as the depth is O(1)). The bias-
variance decomposition yields:

kf̂final � f0k2L2(PX)  2

0

B@k�? � f0k2L2(PX)| {z }
bias

+kf̂final � �
?k2

L2(PX)| {z }
variance

1

CA

where �? is the best approximator of f0 among the class of neural network over which we
are optimizing (i.e. sum of |Ŝ1| many univariate networks with width N1 and sum of |Ŝ2|
many bivariate components of width N2). As Si ✓ Ŝi for i 2 {1,2}, we know from the proof
of Theorem 3.5 (see equation (A.13)) that

k�? � f0k2L2(PX) C1

⇣
s1N

�4�1

1 + s2N
�2�2

2

⌘
.

Now to bound the variance term we use VC dimension techniques similar to the proof of
Theorem 2.9. For any choice of component function, we can treat the overall sum

P
j2Ŝ1

�j+P
(j<k)2S2

�jk as a function from the VC class with V C-dim C2W logW . Therefore, from
the proof of Theorem 2.9, we have:

kf̂final � f0k2L2(PX) =Op

✓
Vn logn

n
+ s1N

�4�1

1 + s2N
�2�2

2

◆

=Op

✓
W logW logn

n
+ s1N

�4�1

1 + s2N
�2�2

2

◆

=Op

 
(s1 + �1)N2

1 + (s2 + �2)N2
2 log

�
(s1 + �1)N2

1 + (s2 + �2)N2
2

�
logn

n

+s1N
�4�1

1 + s2N
�2�2

2

⌘

=Op

�
(s1 + �1)�

2
n,1 + (s2 + �2)�

2
n,2

�
=Op

�
s1�

2
n,1 + s2�

2
n,2

�
,

where the second last line follows from the definition of �n,1 and �n,2 (see (3.7)) and the last
line follows from (A.28). This completes the proof.

A.5. Proof of Theorem 3.9. Here, we extend our proof of Theorem 2.12 to the sparse
interaction model. The main technical change here is to incorporate sparsity. For that, we
need slightly different definitions for m1,m2 from (A.4). We define m1 to be the solution of:

m
�2�1

1 = c1

0

@n
� 2�1

2�1+1 _ 8
log

⇣
2d
s1

� 2
⌘

n

1

A=
c1

n

✓
n

1
2�1+1 _ 8 log

✓
2d

s1
� 2

◆◆
(A.29)
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and m2 to be the solution of the equation:

m
�2�2

2 = c2

0

@n
� 2�2

2�2+2 _ 8
log

⇣
d(d�1)

s2
� 2

⌘

n

1

A=
c2

n

✓
n
� 2�2

2�2+2 _ 8 log

✓
d(d� 1)

s2
� 2

◆◆
(A.30)

If m1,m2 are not integers, we will take the nearest integer. As this does not affect us asymp-
totically, we henceforth assume them to be exact solution for the simplicity of proof. The
constant c1, c2 > 0 will be chosen at the end of the proof. Similar to (A.4), define hi :=m

�1
i

,
i 2 {1,2}. Consider the set ⌦i = {0,1}mi for i 2 {1,2}. By Proposition A.2, we can find
Si ⇢ ⌦i such that |Si| � 2mi/8 and for any !,!0 2 Si, we have ⇢(!,!0) �mi/8, where ⇢
is the Hamming distance. As before define ⌦= ⌦1 ⇥⌦2 and S = S1 ⇥ S2. For any ! 2 ⌦,
we write it as ! = (!1,!2) where !i 2 ⌦i. For one-dimensional components, given any
!1 2⌦1, we define a function f

(1)
!1 as:

f
(1)
!1 (x) =

mX

k=1

!1,k�k(x) ,

where �k defined in (A.5). Define F1 := {f (1)
!1 : !1 2 S1} and �1 := |F1|� 2m1/8. Enumer-

ate the functions in F1 as F1 = {f (1)
1 , . . . , f

(1)
�1

}. Note that for any i 6= j:
Z 1

0

⇣
f
(1)
i

(x)� f
(1)
j

(x)
⌘2

dx

=
mX

k=1

(!i,k �!j,k)
2
Z 1

0
�
2
k(x) dx [Since h�j ,�kiL2

= 0 8 j 6= k]

= L
2
1h

2�1+1kKk22⇢(!i,!j)(A.31)

For the two-dimensional components, given any !2 2⌦2, we define f
(2)
!2 as:

f
(2)
!2 (x, y) =

mX

k,l=1

!2,k,l�k,l(x, y) ,

where �k,l is defined by (A.6). Define F2 := {f (2)
!2 :!2 2 S2} and �2 := |F2|� 2m

2
2/8. Enu-

merate the functions in F2 as F2 = {f (2)
1 , . . . , f

(2)
�2

}. For any i 6= j:
Z

[0,1]2

⇣
f
(2)
i

(x, y)� f
(2)
j

(x, y)
⌘2

dx dy

=
X

1k,lm2

(!i,k,l �!j,k,l)
2
ZZ 1

0
�
2
k,l(x, y) dx [Since h�j,k,�l,mi

L2
= 0 8 (j, k) 6= (l,m)]

= L
2
2h

2�2+2kKk24⇢(!i,!j)

(A.32)

To construct our set of sparse alternatives, define sets U⇤
1 and U

⇤
2 as:

U
⇤
i =

n
u 2 {0,1, . . . ,�1}(

d

2) : kuk0 = si

o
, i= 1,2.
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It is immediate that |U⇤
i
| =

�(di)
si

�
�si

i
, i = 1,2. Choose Ui ⇢ U

⇤
i

such that for any u, v 2 Ui,
we have ⇢(u, v)� si/2. By the proof of (Raskutti et al., 2012, Lemma 4), we have:

|Ui|�
1

2

 �
d

i

�
� si

si/2

!si/2

�si/2
i

, i= 1,2.

For i 2, ui 2 Ui, define functions f (i)
ui as:

f
(1)
u1

(X) =
dX

j=1

f
(1)
u1,j

(Xj), f
(2)
u2

(X) =
X

1i<jd

f
(2)
u2,i,j

(Xi,Xj)

where f
(i)
0 = 0, else it is chosen from Fi. Now, our set of alternatives are:

f(X) = f
(1)
u1

(X) + f
(2)
u2

(X) u1 2 U1, u2 2 U2 .

Define F sparse to be collection of all such functions f . Let M = |F sparse|. Pick any two f, f
0 2

F sparse. We have:

d
2(f, f 0) =

Z

[0,1]d

0

@
dX

j=1

(f (1)
u1,j

� f
(1)
u0
1,j
)(Xj) +

X

1i<jd

(f (2)
u2,i,j

� f
(2)
u0
2,i,j

)(Xi,Xj)

1

A
2

dX

=

Z

[0,1]d

0

@
dX

j=1

(f (1)
u1,j

� f
(1)
u0
1,j
)(Xj)

1

A
2

dX +

Z

[0,1]d

0

@
X

1i<jd

(f (2)
u2,i,j

� f
(2)
u0
2,i,j

)(Xi,Xj)

1

A
2

dX

+ 2

Z

[0,1]d

0

@
dX

j=1

(f (1)
u1,j

� f
(1)
u0
1,j
)(Xj)

1

A

0

@
X

1i<jd

(f (2)
u2,i,j

� f
(2)
u0
2,i,j

)(Xi,Xj)

1

A dX

, T1 + T2 + 2T3

We now analyze each Ti separately.

T1 =

Z

[0,1]d

0

@
dX

j=1

(f (1)
u1,j

� f
(1)
u0
1,j
)(Xj)

1

A
2

dX

=
dX

j=1

Z 1

0

⇣
(f (1)

u1,j
� f

(1)
u0
1,j
)(Xj)

⌘2
dXj


Since

Z
f
(1)
u1,j

(Xj) dXj = 0

�

= L
2
1h

2�1+1
1 kKk22

dX

j=1

⇢(!u1,j ,!u0
1,j
) 1u1,j 6=u0

1,j
[From (A.31)]

T2 =

Z

[0,1]d

0

@
X

1i<jd

(f (2)
u2,i,j

� f
(2)
u0
2,i,j

)(Xi,Xj)

1

A
2

dX

=
X

1i<jd

Z

[0,1]2

⇣
(f (2)

u2,i,j
� f

(2)
u0
2,i,j

)(Xi,Xj)
⌘2

dXi dXj [ As marginals of f (2) are 0]

= L
2
2h

2�2+2
2

X

1i<jd

⇢(!u2,i,j ,!u0
2,i,j

) 1u2,i,j 6=u0
2,i,j

[From (A.32)]
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Furthermore, T3 = 0 as the marginals of f (2) are 0. Combining the bounds of Ti’s, we obtain:

d
2(f, f 0) = L

2
1h

2�1+1
1 kKk22

dX

j=1

⇢(!u1,j ,!u0
1,j
) 1u1,j 6=u0

1,j

+L
2
2h

2�2+2
2 kKk42

X

1i<jd

⇢(!u2,i,j ,!u0
2,i,j

) 1u2,i,j 6=u0
2,i,j

� L
2
1kKk22
8

h
2�1+1
1 m1

dX

j=1

1u1,j 6=u0
1,j

+
L
2
2kKk42
8

h
2�2+2
2 m

2
2

X

1i<jd

1u2,i,j 6=u0
2,i,j

� L
2
1kKk22
16

h
2�1+1
1 m1s1 +

L
2
2kKk42
16

h
2�2+2
2 m

2
2s2

� L
2
1kKk22
16

m
�2�1

1 s1 +
L
2
2kKk42
16

m
�2�2

2 s2 := 4�2 .(A.33)

Similarly we can obtain an upper bound in terms of �:

d
2(f, f 0) = L

2
1h

2�1+1
1 kKk22

dX

j=1

⇢(!u1,j ,!u0
1,j
) 1u1,j 6=u0

1,j

+L
2
2h

2�2+2
2 kKk42

X

1i<jd

⇢(!u2,i,j ,!u0
2,i,j

) 1u2,i,j 6=u0
2,i,j

 2L2
1kKk22s1m1h

2�1+1
1 + 2L2

2kKk42s2m2
2h

2�2+2
2(A.34)

= 2L2
1kKk22s1m

�2�1

1 + 2L2
2kKk42s2m

�2�2

2 = 128�2 .(A.35)

Combining the bounds obtained in equation (A.33) and equation (A.34) we have that for any
two f, f

0 2F sparse:

(A.36) 4�2  d
2(f, f 0) 128�2 .

which further implies that F sparse is a 2� packing set of the set of all feasible functions. An
application of Fano’s inequality (Mukherjee et al., 2021, Proof of Theorem 2.18) yields:

(A.37) inf
f̂

sup
f,PX

EPX
[(f̂(X)� f(X))2]� �

2

✓
1�

n

M2

P
f,f 02F sparse KL (Pf |Pf 0) + log 2

log (M � 1)

◆

Now as the errors are normally distributed:

KL (Pf |Pf 0) = E
h�
f(X)� f

0(X)
�2i

= d
2(f, f 0)

Using the bounds of equation (A.36), we have KL (Pf |Pf 0) 128�2 for all f, f 0. Therefore,
we obtain from equation (A.37):

inf
f̂

sup
f,PX

EPX
[(f̂(X)� f(X))2]� �

2

✓
1� 128n�2 + log 2

log (M � 1)

◆

� �
2

✓
1� 128n�2 + log 2

2 logM

◆
,(A.38)

where M = |U1||U2|. The rest of the proof is to balance n�
2 and logM to say we can say

128n�2+log 2
2 logM  c

⇤ for some 0< c
⇤
< 1. For that it is enough to show that n�2 and logM has
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same order as we can then chosen the constants carefully so that the ratio is within (0,1).
From the definition of �, we have:
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L
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1kKk22
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=
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On the other hand,by our construction, we have:
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We now consider four cases:
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Using (A.29), (A.30), we have m1 = n
1/(2�1+1) and m2 = n

1/(2�2+2). Therefore, equa-
tions (A.39) and (A.40) are simplified to:
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Hence, in all four cases, the numerator and the denominator has same order. Hence,
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Putting this in equation (A.38) we obtain:
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Now choose c1, c2 such that (L2
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This completes the proof.
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