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ABSTRACT

Diffusion models, a powerful and universal generative artificial intelligence technology, have achieved
tremendous success and opened up new possibilities in diverse applications. In these applications, diffusion
models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples
under active control towards task-desired properties. Despite the significant empirical success, theoretical

underpinnings of diffusion models are very limited, potentially slowing down principled methodological

innovations for further harnessing and improving diffusion models. In this paper, we review emerging

applications of diffusion models to highlight their sample generation capabilities under various control
goals. At the same time, we dive into the unique working flow of diffusion models through the lens of

stochastic processes. We identify theoretical challenges in analyzing diffusion models, owing to their

complicated training procedure and interaction with the underlying data distribution. To address these

challenges, we overview several promising advances, demonstrating diffusion models as an efficient

distribution learner and a sampler. Furthermore, we introduce a new avenue in high-dimensional structured
optimization through diffusion models, where searching for solutions is reformulated as a conditional
sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion
models. The purpose of this paper is to provide a well-rounded exposure for stimulating forward-looking

theories and methods of diffusion models.

Keywords: generative Al diffusion model, sample generation under controls, optimization

INTRODUCTION

The field of artificial intelligence (AI) has been
revolutionized by generative models, particularly
large language models and diffusion models. While
large language models focus on generating coher-
ent text based on context, diffusion models excel
at modeling complex data distributions and gen-
erating diverse samples. Both of them are recog-
nized as foundation models [1], are trained on mas-
sive corpora of data and have opened up vibrant
new possibilities in machine learning research and
applications.

Unlike supervised models that learn to classify or
predict based on input data, generative models are
unsupervised and aim to capture the essence of the
underlying data distribution. By learning the intri-
cate dependencies and relationships within the data,
these models can generate entirely new instances
that exhibit the same characteristics as the training

data. This ability to create synthetic data has proven
invaluable in areas like content creation, data aug-
mentation, artistic exploration, healthcare and sim-
ulation [2-4].

This paper aims to review the new opportunities
brought by contemporary study on diffusion models,
with an emphasis on the theoretical underpinnings
of the vast empirical developments. Our ultimate
goal is to demonstrate and further harness the power
of diffusion models, connecting to broad interdis-
ciplinary areas within applied mathematics, statis-
tics, computational biology, operations research,
reinforcement learning, robotics and healthcare.

Diffusion models are a new powerhouse

Diffusion models, inspired by thermodynamics
modeling [5], have emerged in recent years with
ground-breaking performance, surpassing the
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previous state of the art, such as generative ad-
versarial networks (GANs) [6] and variational
autoencoders (VAEs) [7]. Diffusion models are
widely adopted in computer vision and audio gen-
eration tasks [8-11], and further utilized in text
generation [12,13], sequential data modeling [14-
16], reinforcement learning and control [17-20], as
well as life science [21-23]. For a more comprehen-
sive exposition of applications, we refer readers to
survey papers [ 3,24-28].

The celebrated performance of diffusion mod-
els is indispensable to numerous methodological in-
novations that significantly expand the scope and
boost the functionality of diffusion models, enabling
high-fidelity generation, efficient sampling and flex-
ible control of the sample generation. For exam-
ple, Austin et al. [29] and Ouyan et al. [30] ex-
tended diffusion models to discrete data genera-
tion, while the vanilla diffusion models target con-
tinuous data. Meanwhile, there is an active line of
research aiming to expedite the sample generation
speed of diffusion models (see the references in the
online supplementary material). Last but not least, a
recent surge of research focuses on fine-tuning diffu-
sion models towards generating samples of desired
properties, such as generating images with peculiar
aesthetic qualities [31,32]. These task-specific prop-
erties are often encoded as guidance to the diffusion
model, consisting of conditioning and control sig-
nals to steer the sample generation. Notably, guid-
ance allows for the creation of diverse and relevant
content across a wide range of applications, which
underscores the versatility and adaptability of diffu-
sion models. We call diffusion models with guidance
conditional diffusion models.

Limited understanding of diffusion
models

Despite the rapidly growing body of empirical ad-
vancements, principled understanding of diffusion
models fall far behind. A major reason owes to the
unique training and sample generation procedure of
diffusion models, which are fundamentally different
from previous models such as GANs and VAEs. Sig-
nificant new challenges are present and an innovative
analytical framework is yet to be established for dif-
fusion models.

Some recent works set a promising theoretical
footprint via viewing diffusion models as an inte-
gration of a data sampler and an unsupervised dis-
tribution learner. Accordingly, they establish sam-
pling convergence guarantees [33-38] and statisti-
cal distribution learning guarantees [39-42]. Such
results offer invaluable theoretical insights into the
efficiency and accuracy of diffusion models for mod-
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eling complex data, with a central focus on uncondi-
tioned diffusion models. This leaves a gap between
theory and practice for conditional diffusion mod-
els. Specifically, a theoretical foundation to support
and motivate principled methodologies for guidance
design and adapting diffusion models to task-specific
needs is still lacking.

Salient questions about diffusion models

To bridge the gap between theory and practice, we
focus on the following set of questions. To acquire
basic understanding and set up the playground of
this paper, we ask the following question.

« How do diffusion models generate samples and
how can they be trained?

Answering this question will distinguish diffusion
models from previous generative models such as
GANs and VAEs, providing a valuable first impres-
sion of the unique characteristics of diffusion mod-
els. This can be beneficial to gain insight into why dif-
fusion models outperform previous models and to
also identify the challenges in analyzing them.

Secondly, although empirical success suggests
that diffusion models can capture complex data
distributions and generate diverse and high-fidelity
samples, a rigorous justification is still lacking.
Therefore, from a statistics and sampling perspec-
tive, the following question is curiously open.

« Can diffusion models learn and sample data distri-
butions accurately and efficiently?

Study within the scope of this question centers
around statistical sample complexities and sampling
convergence guarantees. A positive answer is ex-
pected, yet a particular emphasis will be on the
influence of the underlying data geometry, as real-
world data in high-dimensional spaces often exhibit
rich low-dimensional intrinsic structures [43,44].
This leads to an important follow-up question.

« Can diffusion models capture the intrinsic struc-
tures of data and enable more efficient learning and
sampling?

Thirdly, we turn to conditional diffusion models,
where the sample generation is steered by guidance
towards desired task-specific needs. A natural ques-
tion here is the following.

« Can conditional diffusion models generate sam-
ples aligned to task-specific needs?

The question above studies the fundamental ca-
pability of conditional diffusion models, going
beyond plain distribution learning without condi-
tioning. Yet, to harness such a capability for practical
uses, principled and computationally efficient
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Figure 1. Demonstration of forward and backward processes in diffusion models. The
forward process is a noise corruption process, where Gaussian noise of increasing vari-
ance is progressively added to the clean data. The backward process is used for new
sample generation starting from a standard Gaussian distribution, where the score
function steers the generation process.

methods are needed. To this end, the following
question still remains largely unclear.

« How can we properly design the guidance and
what is the sample complexity to train conditional
diffusion models?

In this paper, we address all these questions from
an interdisciplinary point of view, integrating con-
cepts and techniques from applied mathematics,
statistics, sampling and optimization.

Paper organization

In this paper we review the formulation, emerging
applications and contemporary theoretical advance-
ments of diffusion models, as well as discuss fu-
ture directions of diffusion models for generative
Al To begin with, in the section entitled ‘Diffu-
sion models as stochastic processes’ we present a
continuous-time description of diffusion models us-
ing stochastic differential equations. This serves as
a well-rounded exposure to how diffusion models
learn (conditional) distributions and generate new
samples. The continuous-time point of view allows
a systematic introduction and bridges seamlessly to
practical implementations. In the section entitled
‘Emerging applications of diffusion models’, we re-
view emerging applications of diffusion models, es-
pecially in various controlled generation tasks, aim-
ing to elucidate the conditional distributions that
diffusion models attempt to capture. We also re-
late conditional generation to black-box optimiza-
tion via gauging the quality of the generated sam-
ples under control by an abstract reward function. In
the consecutive sections entitled ‘Challenges and un-
derstanding of unconditional diffusion models’ and
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‘Challenges and understanding of conditional diffu-
sion models), we highlight fundamental challenges
in analyzing diffusion models and review recently
developed theoretical foundations of them. Our ex-
posure builds upon the similarities between un-
conditional and conditional diffusion models, and
extends to unique properties for conditional dif-
fusion models. In the section entitled ‘Diffusion
model for optimization), we revisit the connection
between controlled generation to optimization, and
introduce theories and methodologies of data-driven
black-box optimization using conditional diffusion
models. We draw our conclusions in the section en-
titled ‘Future directions’

DIFFUSION MODELS AS STOCHASTIC
PROCESSES

This section answers the question of how diffusion
models work. Roughly speaking, a diffusion model
consists of a forward process and a backward pro-
cess. In the forward process, a clean sample from the
data distribution is sequentially corrupted by Gaus-
sian random noise, and in the infinite-time limit, the
data distribution is transformed into pure noise. In
the backward process, a denoising neural network is
trained to sequentially remove the added noise dis-
tribution in data and restore a new clean data distri-
bution. The forward and backward processes are de-
picted in Fig. 1.

To fully decipher how diffusion models work, we
describe the forward and backward processes in a
continuous-time limit and review how to implement
the backward process with a discretization. Next,
we introduce guidance to realize conditioning in
controlled sample generation using conditional
diffusion models. Note that we use a completely
different language set for describing diffusion mod-
els, to set them aside from previous models such as
GANSs and VAEs.

Forward and backward processes

The forward process in diffusion models progres-
sively adds noise to the original data. Here we con-
sider the Ornstein—Ulhenbeck process, which is de-
scribed by the stochastic differential equation (SDE)

1

where g(t) > 0, initial Xy ~ Py, follows the data
distribution, (W;);>o is a standard Wiener pro-
cess and g(t) is a nondecreasing weighting func-
tion. We denote the marginal distribution of X;
at time ¢ by P. After an infinitesimal time, the
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forward process (1) shrinks the magnitude of data
and corrupts data by Gaussian noise. More pre-
cisely, given Xo, the conditional distribution of X; |
Xy is Gaussian N (o (t)Xo, h(t)Ip), where a(t) =
exp(— fot %g(s) ds) and h(t) = 1 — a*(t). Conse-
quently, under mild conditions, (1) transforms the
initial distribution Py, to P», = N(0, Ip). There-
fore, (1) isknown as the variance-preserving forward
SDE [10].

The value of g(t) controls the noise corruption
speed in the forward process. In real-world usage,
various choices on g(¢ ) are implemented. One exam-
ple is to choose g(t) so that the variance of the Gaus-
sian noise in the forward process increases linearly
with respect to time [9]. Later, several improved
techniques for choosing g(t) are proposed, such asa
cosine-based variance schedule [45]. To simplify our
presentation, we take g(t) = 1 forallt in the sequel.

The forward process (1) will terminate at a suf-
ficiently large time T > 0, where the corrupted
marginal distribution Pr is expected to be close to
the standard Gaussian distribution. Then diffusion
models generate fake data by reversing the time of
(1), which leads to the backward SDE

o= [+ Poap ] s a7,

(2)

where t € [0, T), Vlog p;(+) is the so-called ‘score
function) i.e. the gradient of the log probability den-
sity function of P, W, is another Wiener process
independent of W; and we use the superscript ‘<’
to distinguish from the forward process (1). Under
mild conditions, when initialized at X;~ ~ Pr, the
backward process (X;_ o<t <t has the same distri-
bution as the forward process (Xr—_; )o<¢ <1 [46]. In
particular, the distribution of X[~ is very close to
that of X, the distribution to be generated.

Working with (2), however, leads to difficulties,
as both the score function Vlog p; and the distri-
bution Pr are unknown. Therefore, several surro-
gates are deployed in practice. Firstly, we replace
the unknown distribution Pr by the standard Gaus-
sian distribution N(0, Ip). Secondly, we denote by
$(x, t) an estimator to the ground truth score func-
tion V log p; (x). The estimated score § is often pa-
rameterized by a deep neural network and takes data
and time as inputs. Substituting § into the back-
ward process, we obtain the practical continuous-
time backward SDE

dX,” = B)’(f +$(X°, T — t)i| dt + dw,
(3)
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with X;~ ~ N(0, Ip) being standard Gaussian. Dif-
fusion models then generate data by simulating a dis-
cretization of (3) with a proper step size. A common
practice is to set the step size O (1/1000) so that the
backward SDE (3) is discretized to hundreds of steps

[9].

Accelerating sample generation

It is worth mentioning that simulating the backward
process for thousands of steps to generate a sample
is time consuming. This is not present in GANs and
VAEs, as they generate samples by transforming a
low-dimensional noise through a single neural net-
work. Accelerating the sampling speed of diffusion
models is an active research direction. We refer inter-
ested readers to the online supplementary material
for a detailed discussion.

Conditional diffusion models

Conditional diffusion models generate samples anal-
ogous to the unconditioned models, with the ma-
jor difference being added conditional information.
We denote the conditional information by y. Then
the goal of conditional diffusion models is to gen-
erate samples from the conditional data distribution
P(-|y). The conditional forward process is again an
Ornstein—Ulhenbeck process:

y 1oy
dX; = _EXt dt + dw;
with X(’)V~P0(~|y) and t e (0, T].
(4)

Note that the initial distribution is now a conditional
distribution Py (- | y), which is different from the un-
conditioned forward process (1). The noise corrup-
tion is only performed on x, while y is kept fixed. We
use the superscript y to emphasize the dependence
of the process on y. Similarly, for sample generation,
the backward process reverses the time in (4):

X = BXfw + Viegp, (X" Iy)] dt
+dw,
(%)

fort € [0, T).Here Vlog pr_ (X" | y)is the so-
called ‘conditional score function), which replaces the
score function in (2). The initialization is identical
to (2) as Xg’e ~ N(0, Ip), independent of the
guidance y.

With an estimated conditional score function
$(x, y,t) replacing the ground truth conditional
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score V log p; (x | y), the conditional sample gener-
ation is to simulate the backward process

X = Bgf“(gyv‘—,y, T—t):| dt+dw,
(6)

with XJ'~ ~ N(0,Ip). In practical implementa-
tions, a proper discretization scheme is applied.

Training conditional diffusion models is differ-
ent from unconditioned ones

Despite the similarity in forward and backward pro-
cesses, the major difference between conditional dif-
fusion models and unconditioned ones lies in the
training procedure for estimating the conditional
score function V log p; (- |y). In particular, the con-
ditional score function can be related to the uncon-
ditioned one, which allows fine-tuning a pre-trained
unconditioned model to avoid heavy computation
when training from scratch. This motivates a collec-
tion of practical algorithms, including classifier guid-
ance and classifier-free guidance [9,10,47]. More im-
portantly, how to adapt a pre-trained diffusion model
to various task-specific needs requires efficient and
effective computation of a conditional score func-
tion, which is an active research direction for wide
practical applications.

EMERGING APPLICATIONS OF
DIFFUSION MODELS

Through extensive developments [8-10,45], mod-
ern diffusion models have achieved startling suc-
cess and are implanted in various applications (see,
for example, survey [3]). In many domains, diffu-
sion models are quickly replacing previous genera-
tive models with ground-breaking performance. At
the same time, diffusion models are bringing new op-
portunities and promises to even broader areas. We
highlight vast applications of diffusion models in the
following, with a particular emphasis on conditional
diffusion models for controlled sample generation. A
more comprehensive list of references is deferred to
the online supplementary material.

Vision and audio generation

Diffusion models achieve state-of-the-art perfor-
mance in image and audio generation [8-11,25] and
are one of the fundamental building blocks of image
and audio synthesis systems.

Diftusion models” performance is appraised of
high-fidelity sample generation and allows versatile
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guidance to control the generation. The simplest ex-
ample of generation under guidance is to generate
images of certain categories, such as cats or dogs.
Such categorical information is taken as a condi-
tional signal and fed into conditional diffusion mod-
els. In more detail, we train conditional diffusion
models using a labeled data set consisting of sample
pairs (x;, y;), where y; is the label of an image x;. The
training is to estimate a conditional score function
using the data set, modeling the correspondence be-
tween x and y. In this way, conditional diffusion mod-
els are learning the conditional distribution P(x =
image | y = given label) and allow sampling from
the distribution.

In text-to-image synthesis systems, the condi-
tional information is an input text prompt, which
can be a sentence consisting of objects or more
abstract requirements, e.g. aesthetic quality. To
generate images aligned with prompts, conditional
diffusion models are trained with a massive anno-
tated data set encompassing image and text sum-
mary pairs denoted as (x;,y;). The text y; will
be transformed into a word embedding and taken
as input to a conditional diffusion model. Similar
to the generation of images in certain categories,
conditional diffusion models for text-to-image syn-
thesis learn the conditional distribution P(x =
image | y = text prompt) and allow sampling from
it. For instance, Nichol et al. [48] implemented the
classifier-free guidance method (see a detailed de-
scription in the subsection entitled ‘Learning the
conditional score’) for text-conditioned image gen-
eration, which outperforms some mature image syn-
thesis systems such as DALL-E. In more sophisti-
cated synthesis systems, some fine-tuning steps are
implemented to further enable abstract prompt con-
ditioning and improve the quality of generated im-
ages. For example, Yang et al. [49] utilized language
models to guide the text-to-image generation of dif-
fusion models under complex prompts with multiple
objects, attributes and relationships. The language
model parses the prompts according to the objects
and divides the image generation into subregions,
which correspond to different objects. Built upon
a stable diffusion backbone model, Yang et al. [49]
beat some state-of-the-art text-to-image generative
models such as Stable Diffusion XL and DALL-
E 3. As another example, Black et al. [32] refor-
mulated the discretized backward process (2) as a
finite-horizon Markov decision process (MDP). The
state space represents images, the conditional score
function is viewed as a policy and a reward func-
tion is defined to measure the alignment of an im-
age to its desired text prompt. Therefore, generat-
ing prompt-aligned images amounts to optimizing
reward by finding an optimal policy. Black et al. [32]
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——— Promptalignment: a raccoon washing dishes e —

Figure 2. Conditional diffusion models generate images under various guidance. The
upper row demonstrates an alignment with text description consisting of multiple ob-
jects. The lower row demonstrates an abstract description of aesthetic quality. Repro-
duced with permission from Black et al. [32].

proposed a policy gradient-based method for fine-
tuning pre-trained diffusion models. In Fig. 2, we
demonstrate a progressive improvement from left to
right of fine-tuning a conditional diffusion model us-
ing the method in [32].

Conditional diffusion models are also a power-
ful tool in image editing and restoration [50-52],
as well as audio enhancement [53]; see also sur-
veys [24,25] and the references therein. To show-
case the idea, we consider the image inpainting
task as an example. The goal of inpainting is to
predict missing pixels of an image. We denote the
known region of an image by y and the original full
image by x. Then inpainting boils down to sam-
pling x from the conditional distribution P(x =
full image | y = known region of the image). For
a very basic image editing task, the input con-
sists of a raw image and a text instruction, such
as Treplace the fruits with cakes in the image’ In
this case, image editing seeks samples from the
conditional distribution P(x = edited image | y =
araw image and an instruction). Here, the raw im-
age can also represent an image prompt for more
diverse editing tasks. Brooks et al. [S1] adopted
the classifier-free guidance method again to train
an image editing diffusion model from scratch on
a massive synthetic data set. Training from scratch,
however, often requires heavy computational re-
sources. It is desired to maintain a pre-trained text-
to-image diffusion model and efficiently adapt it
to editing tasks. Works in this direction include
[54-56], which advocate the use of an external
cross attention mechanism for aligning the gen-
erated images with prompts. In all these applica-
tions, conditional diffusion models are shown to
be expressive and effective in modeling conditional
distributions [10].
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Control and reinforcement learning

Apart from primary computer vision and audio
tasks, diffusion models are actively deployed in rein-
forcement learning (RL) and control problems with
appealing performance. For example, the authors
of [17-20] utilized conditional diffusion models to
parameterize control/RL policies in highly compli-
cated tasks, e.g. robot control and human behavior
imitation. An extended review of the connection be-
tween diffusion models and RL can be found in [19].
In RL/control problems, a policy is a conditional
probabilistic distribution on the action space given
the state of an underlying dynamical system. Accord-
ingly, when using diffusion models to parameterize
policies, the goal is to learn a distribution P(a =
action | y = system states). Pearce et al. [17] and
Hansen-Estruch et al. [18] focused on the imitation
learning scenario, where the goal is to mimic the be-
haviors of an expert. The data set contains expert
demonstrations denoted by (y;, a;) pairs. Here y; is
the state of the system and a; is the expert’s cho-
sen action. Analogous to text-to-image synthesis, we
train a conditional score network using the data set to
capture the dependency between states and actions.
During inference, given a new system state, we use
the learned conditional diffusion model to generate
plausible actions.

Diffusion models also embody a new realm for
algorithm design in control and RL problems by
viewing sequential decision making as generative
sequence modeling. In a typical task of reward-
maximization planning in RL, the goal is to find
an optimal policy that achieves large accumulative
rewards. Conventional methods rely on iteratively
solving for the Bellman optimality to obtain a cor-
responding policy. Generative sequence modeling,
however, directly produces state-action trajecto-
ries of large rewards, avoiding explicitly solving
for Bellman optimality. In other words, generative
sequence modeling directly samples from the condi-
tional distribution P(T = state-action trajectory |
7 attains large reward). Early success was demon-
strated with transformer generative models [57].
Later, conditional diffusion models were deployed
with state-of-the-art performance. Namely, Diffuser
[58] generates state-action trajectories conditioned
on high reward as guidance via conditional diffusion
models. Decision Diffuser [59] presents conditional
trajectory generation, taking reward, constraints or
skills as guidance and enhances Diffuser’s perfor-
mance. For instance, given a pre-collected data set
consisting of (;,y;), where 7; is the state-action
trajectory and y; is the accumulative reward of t;.
We use a conditional diffusion model to model the
conditional distribution P(7 | y), by estimating the
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selection -

T g
T T
d T
Skills @ ..T/;
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DIfquIOn

Generated trajectories

Self-evolution Diverse trajectories
Figure 3. Decision Diffuser and AdaptDiffuser in [59] and [61], respectively. Deci-
sion diffuser is trained on offline-labeled trajectories and is capable of generating
new trajectories conditioned on desired reward values, or skills. AdaptDiffuser intro-
duces a self-evolution loop utilizing selected high-quality trajectories from a trainable
discriminator.

conditional score function. After training, we spec-
ify a proper target reward value and deploy the
conditional diffusion model to generate sample
trajectories. A policy can then be extracted from
the generated trajectories via an inverse dynamics
model [60]. See the working flow of Decision
Diffuser in Fig. 3. AdaptDiffuser [61] further intro-
duces a discriminator for fine-tuning the diffusion
model, allowing self-evolution and adaptation to
out-of-distribution tasks.

Life-science applications

In life-science applications, conditional diffu-
sion models are making ever profound impacts
[21-23]. See also survey [26] on applications of
diffusion models in bioinformatics. These results
cover diverse tasks, including single-cell image
analysis, protein design and generation, drug design,
small molecule generation, etc. The performance
surpasses many of their predecessors using autore-
gressive, VAE or GAN-type deep generative models
[62].

To demonstrate the use of conditional diffusion
models, we take protein design as an example. Pro-
tein design can be posed as a problem of finding a
sequence w of a certain length, where each coordi-
nate of the sequence represents the structural infor-
mation of the protein. A protein is only useful if it
can be expressed in living cells. A widely adopted
metric of usefulness is the likelihood of a protein
sequence being a natural one [63]. In addition, the
binding affinity and aggregation tendency are also
vital properties of the protein structure. Combined
with the usefulness metric, all these properties can
be summarized by a vector-valued function f(w).In
this sense, conditional diffusion models actually gen-
erate protein sequences w following a conditional
distribution P(w | f(w) € &), where & is a set de-
scribing plausible protein structures. The training
of conditional diffusion models for protein genera-
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tion is analogous to text-to-image diffusion models,
based on a training data set containing diverse pro-
tein structures with measured properties. In the in-
ference stage, we can first sample one configuration
from & and, conditioned on the configuration, we
generate new proteins.

Black-box optimization

In control, RL and life-science applications, various
guidance may be summarized as an abstract reward
function V(-). Then the goal is to generate new
samples from a conditional distribution, aiming to
optimize the reward. Consequently, conditional dif-
fusion models act as an optimizer that generates op-
timal solutions.

We revisit the example of offline reward-
maximization planning in RL. Recall that our data
set comprises state-action trajectories 7; and the
associated accumulative rewards y; = V(1) + €,
where €; is an independent observation noise.
Reward-maximization planning essentially seeks
solutions to the black-box optimization problem

arg maxTV(‘E). (7)

In this setting, we are prohibited from interacting
with the target function V beyond the given data set
[64]. Early existing works utilize GANs for optimal
solution generation [65], yet suffer from training in-
stability and mode collapse issues. Recently, Krish-
namoorthy et al. [66] empirically presented superior
performance of generating high-quality solutions us-
ing conditional diffusion models. The idea is to
transform the black-box optimization problem into
a conditional sampling problem. In particular, given
a proper target value g, conditional diffusion models
generate solutions from the conditional distribution
P(t | V(t) = a). The subtlety stems from how to
properly choose the target value a to ensure the high
quality of the generated solutions. Roughly speaking,
we are motivated to choose a large a so that the gen-
erated solutions achieve large rewards. However, if
we choose a too large compared to the given data
set, significant extrapolation is required to generate
corresponding solutions, leading to potential qual-
ity degradation. Consequently, a proper choice on
a heavily depends on the coverage of the collected
data set. Li et al. [67] provided theoretical guide-
lines on how to choose a to ensure good generated
solutions. Empirically, Krishnamoorthy et al. [66]
proposed several methods to encourage large-reward
solutions during the training of the conditional diffu-
sion model, such as sample reweighting—assigning
large weights to samples with large rewards.
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CHALLENGES AND UNDERSTANDING OF
UNCONDITIONAL DIFFUSION MODELS

This section discusses unprecedented challenges of
diffusion models and reviews recent progress in their
theoretical understanding. We recall that the score
function is the key to implement a diffusion model.
From a theoretical perspective, the performance of
diffusion models is intimately tied to whether or not
the score function can be learned accurately. For a
systematic treatment, we first introduce methods for
learning the score and then dive into their theoret-
ical insights. Specifically, we discuss how to prop-
erly choose neural networks for learning the score
function, based on the universal and adaptive ap-
proximation capability of neural networks. More im-
portantly, we demonstrate structural properties in
the score function induced by data distribution as-
sumptions, e.g. low-dimensional support and graph-
ical models. Then we provide statistical sample com-
plexities for estimating the score using the chosen
neural networks. We are particularly interested in un-
derstanding how score estimation circumvents the
curse of dimensionality issues in high-dimensional
settings. Lastly, we study statistical rates for estimat-
ing the data distribution.

Learning score functions

We consider the goal of learning the score function
V log p; (x;) using neural networks. A naive objec-
tive function is the weighted quadratic loss

NS

T
min [ w@) & [1910gp(x) —sCo )]
0 X~ b

(8)

where w(t) is a weighting function and S is a con-
cept class (deep neural networks). However, such
an objective function is not computable using sam-
ples, since the score function V log p; is unknown.
As shown in the seminal works [68,69], rather than
minimizing integral (8), we can minimize an equiva-
lent objective function,

T
min / W (1) Ey i {B, ~N (@ (6o h(0)1)
0

seS

[IIVy, log @ (x| x0) — s(xe, t)115]} dt.
)

Here, ¢ (x; | xo) denotes the Gaussian transition
kernel of the forward process, so that V log ¢, admits

Page 8 of 23

an analytical form

Xy — Ol(t)xo

Vi log e (x| x0) = —

By this analytical expression, we could approxi-
mate objective (9) using finite samples. Note that
V., log ¢ (x; | x0) is the noise added to xy at time
t. Therefore, (9) is also known as the denoising
score matching. Denoising score matching can also
be derived using a variational perspective, reproduc-
ing the evidence lower bound for regularized data
negative likelihood minimization. See the online
supplementary material for details.

Score blowup and early stopping

One challenge of optimizing (9) is the score blowup
issue. To demonstrate the phenomenon, we con-
sider a data distribution that lies in a linear subspace,
where x = Az for a representation matrix A € RP*?
and a latent variable z € RY. Here D represents the
ambient dimension of data and d is the intrinsic di-
mension, which is often much smaller than D. As
shown in [40], the ground truth score V log p; (x)
assumes the orthogonal decomposition

Vlog pi(x) = AV log pi¥ (A" x)
1

1—et

+

(1—AAT)x, (11)

(7)

where p¢ is the marginal density function of apply-
ing the forward diffusion process (1) on the latent
variable z. As can be seen, the term (7) is orthogonal
to the subspace spanned by matrix A. More impor-
tantly, as t approaches 0, the magnitude of (7") grows
to infinity aslong as x # 0. The reason behind this is
that (7") enforces the orthogonal component to van-
ish so that the low-dimensional subspace structure is
reproduced in generated samples. Such a blowup is-
sue appears in all geometric data [71]. As a conse-
quence, an early stopping time t, > 0 is introduced
and the score estimation loss is written as

T
min / W () Ey i (B N (@ (60,50 1)
to

seS
[ Vs, log e (e | %0) — s(axe, £) 1131} dt.
(12)

For practical implementation, we approximate (12)
by its empirical version. Specifically, given n inde-
pendent and identically distributed data points x; ~
Py for i =1, ..., n, we sample x; given xo = x;
from the Gaussian distribution N (e (t)x;, h(t)Ip).
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Figure 4. U-Net architecture for 32 x 32 resolution RGB images. When generating new samples using a discretized backward
process, diffusion models utilize U-Net at each discretization step for transforming samples. The image sample together with
a time embedding is first compressed into a low-dimensional representation and then lifted back to the original dimension.
Reproduced with permission from Ronneberger et al. [70]. Copyright 2015 Springer.

We also sample time t from the interval [¢,, T'] to ap-
proximate the integration with respect to t.

Algorithmic implementation to tackle score blowup.
While introducing an early stopping time f, is intu-
itive and simple, its empirical performance appears
to be sensitive to ty. When £, is small, it is reported
that the magnitude of the integrand corresponding
to different times ¢ > ¢, in (12) can still be poorly
balanced (Fig. 1a in ref [73]). When t, is large how-
ever the generated samples will heavily lose fidelity.
This leads to a difficulty in properly determining
the early stopping time f;. Some recommended
methods to mitigate the issue include using (1) an
exponential moving average on the trainable param-
eters for small t [45,72,73]; (2) the soft truncation
method in [72] where the early stopping time ¢, is
randomly sampled from a distribution supported
on [7, T] for a sufficiently small T > 0, that is, the
score estimation loss becomes

T
rsrég’ Efo [ / ExONPdata {ExtNN(a(t)xOvh(t)lD)

to

[V, log (s | %) — s, t)ll%]}dt],
(13)
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where the population expectations will again
be approximated by empirical samples for
implementation.

Practical choice on network class S. While in the-
ory class S can be any expressive network, a com-
mon practical choice of the network class S is U-
Net [70] as demonstrated in Fig. 4. The network
architecture utilizes convolution layers and short-
cut connections. In the network, an input is first
compressed into a low-dimensional representation
and then gradually lifted back to the original dimen-
sion. This encoder-decoder-type structure aims to
extract intrinsic structures in data and leads to effi-
cient learning. Instead of U-Net, using a transformer-
based score network has demonstrated outstanding
performance [74] which excels in capturing spatial-
temporal dependencies in data.

Score approximation and estimation

The choice of concept class S is vital to learning
the score function as in (12). There are two require-
ments on S: (1) class S should be rich enough to
well approximate the ground truth score function,
i.e. there exists a candidate in S close to V log p;;
(2) class S should not be overly complicated to
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obscure the learning process with finite training sam-
ples. These are challenging requirements to satisfy,
as diffusion models dynamically corrupt and denoise
data, introducing a complicated time ¢ dependence.
We present novel theoretical insights into both re-
quirements, and address (1) from a function approx-
imation perspective and (2) from a statistical learn-
ing perspective.

Score approximation guarantees

The question underscoring score approximation is
what score network size and architecture ensures
the existence of an €-error approximation to the
score function. Here € > 0 is the desired error level
and often represents an L* distance measure. Such
a question is reminiscent of the universal and adap-
tive function approximation ability of neural net-
works (see the online supplementary material for
further details). However, we highlight some fun-
damental differences between the score approxi-
mation and conventional function approximation.
Firstly, the score function is defined on all of the
high-dimensional Euclidean space, due to the added
Gaussian noise, while conventional neural network
approximation theory focuses on compact domains.
Secondly, the score function depends on an addi-
tional time dimension, which complicates its approx-
imation.

Concurrent works [39] and [40] tackle the chal-
lenges via very different approaches and develop
score approximation theories for Euclidean data and
low-dimensional linear subspace data. Oko et al. [39]
rewrote the score function as Vlog p; = % and
used neural networks to approximate p; and Vp,
separately. To address the time dependency Oko
et al. [39] proposed a series of ‘diffused basis func-
tions. More formally diffused basis functions are
convolutions of the Gaussian transition kernel in the
forward process (1) with time-independent poly-
nomials, such as Taylor polynomials and B-splines.
The idea behind the diffused basis functions can be
understood as tracking the evolution of p; with re-
spect to time t. Indeed, once we can approximate
the density of the clean data distribution Py,, with
time-independent polynomials, the corresponding
diffused polynomials automatically approximate the
density p; for all ¢.

On the other hand, Chen et al. [40] resorted
to a local Taylor approximation of the score func-
tion using neural networks. In this case the score
function Vlog p; is viewed as a multi-dimensional
input-output mapping of certain regularity. Build-
ing upon the existing universal approximation the-
ories of neural networks, Chen et al. [40] devised a
score approximation result. More interestingly Chen
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Shortcut

— >
x R R R s,,(x0)
Encoder Decoder

Figure 5. Simplified U-Net architecture for approximating
score functions in the low-dimensional subspace data set-
ting. Matrix V represents the linear encoder and decoder,
which is to be jointly learned with parameter 6 during the
optimization of loss (12). Here f, is a network with input and
output dimensions being the subspace dimension. sy ¢(x, t)
is the score network parameterized by / and 6. Reproduced
with permission from Chen et al. [40].

et al. [40] considered low-dimensional linear sub-
space data and showed that the ground truth score
V log p; decomposes into two terms as in (11). In
this regard a simplified U-Net architecture (Fig. )
with linear encoder and decoder is constructed for
efficient score approximation, indicating that the
data subspace structures circumvent dependence on
the data ambient dimension.

In deriving the approximation guarantees Oko
et al. [39] and Chen et al. [40] leveraged sophisti-
cated input truncation to deal with the unbounded
domain. The approximation error is in turn mea-
sured in the L*-norm sense instead of the commonly
used L norm. In order to achieve an € approxima-
tion error, the network size scales as O (e =7 ), where
y is data dimension dependent. We emphasize that,
when there exists low-dimensional subspace struc-
tures in data, y depends only on the subspace di-
mension. A recent work [75] also provides ambi-
ent dimension-free score approximation guarantees
when the ratio of the data density function to the
standard Gaussian is well controlled.

Sample complexity of score estimation

We turn to understanding how many samples are
needed to learn a score estimator by optimizing (12).
The learned estimator should generalize in the sense
that its deviation to the ground truth score is small.
This requires not only a good score network class S,
but also learnability within S, which is characterized
by some complexity measure of S.

An early work [33] provides a sample complex-
ity bound for score estimation. However the bound
depends on some unknown Rademacher complex-
ity of the score network class. Koehler et al. [76]
connected the efficiency of score estimation to the
isoperimetry properties of the underlying data dis-
tribution. Using score approximation theory Oko
et al. [39] and Chen et al. [40] established score
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estimation theories from the nonparametric statis-
tics point of view. Oko et al. [39] assumed that the
clean data distribution is supported on a unit cube
with a Besov continuous density. In order to obtain
an e-accurate score estimator in the L* norm the

sample size grows as O(e” 7 ), where D is the
data dimension and 8 is the smoothness index of the
density. As can be seen, the sample complexity indi-
cates the curse of dimensionality, and Oko et al. [39]
reduced the dependence on D when the data have
a known linear subspace structure. In the indepen-
dent study Chen et al. [40] focused on linear sub-
space data without knowing the subspace in advance.
Under the assumptions that the data have a Gaussian
tail and the score is Lipschitz Chen et al. [40] es-
tablished an O(e~(4+5)) sample complexity where
d is the subspace dimension. While free of the curse
of dimensionality, Chen et al. [40] also proved that
the unknown subspace can be automatically esti-
mated via score estimation. Turning to a kernel-
based approach the authors of [77-79] established
optimal statistical score estimation rates built upon
kernel methods. The obtained sample complexity is
O(e=#4) for Lipschitz score functions.

Optimization guarantees on score estimation. On the al-
gorithmic side we are aware of Shah et al. [80] who
studied score estimation in Gaussian mixture mod-
els. They provided convergence analysis of using gra-
dient descent to minimize the score estimation loss
(12). The algorithmic behavior can be characterized
in two phases: the large-noise phase, i.e. large time
t in (12), where gradient descent is analogous to
power iteration; and the small-noise phase, i.e. small
t, where gradient descent is akin to the EM algo-
rithm. Besides, Han ef al. [81] studied the optimiza-
tion guarantee of using two-layer neural networks for
score estimation.

Score estimation in graphical models
Besides considering data distributions in continuous
spaces such as Euclidean space and linear subspace,
Mei and Wu [41] studied score approximation and
estimation in graphical models. Graphical models
such as Markov random fields and restricted Boltz-
mann machines have been widely used for model-
ing image distributions in the literature [82,83] yet
they are fundamentally different from distributions
on continuous variables. Mei and Wu [41] proposed
anovel approach for controlling the sample complex-
ity of score estimation in high dimensions. In partic-
ular they viewed neural networks in diffusion models
as a denoising algorithm, enabling an efficient score
approximation.

Specifically, Mei and Wu [41] assumed that the
data distribution follows an Ising model. Under
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certain high-temperature conditions the score func-
tion s(x;t) can be approximately computed by
variational inference algorithms such as message
passing [84,85]. Each step of the message-passing
algorithm comprises simple operations, including
matrix-vector multiplication and pointwise nonlin-
earity, which could be efficiently approximated by
one block of the residual network. This renders an
efficient approximation of Ising model score func-
tions using a residual network with O(D*L) pa-
rameters, where L is the number of neural network
layers, allowing a moderate dependence on the prob-
lem size. Incorporating a standard Rademacher com-
plexity generalization error bound, Mei and Wu [41]
provided an estimation error bound without the ex-
ponential dependence on dimensionality.

Follow-up work by Mei [86] extended such anal-
ysis to generative hierarchical models. Mei showed
that U-Net [70] could efficiently approximate the
belief-propagation denoising algorithm for such
models and thus that score functions could be
learned efficiently by U-Nets.

Sampling and distribution estimation

Our ultimate goal of diffusion models is to learn the
data distribution and provide easy access to generat-
ing new samples. This subsection first reviews sam-
pling theories of diffusion models via the backward
process (3), with a basic assumption on the accu-
racy of the estimated score function §. Next, we move
to an end-to-end analysis of diffusion models, by
presenting sample complexity bounds for learning
distributions.

Sampling theory

Several recent sampling theories of diffusion mod-
els prove that the distribution generated by the back-
ward process is close to the data distribution, as
long as the score function is accurately estimated.
The central contribution is a relationship between
€dis and €gcore, Where €4 is a discrepancy between
the sampled data distribution and the ground truth
distribution, and €, is the score estimation er-
ror. Specifically, De Bortoli ef al. [87] and Albergo
et al. [88] established upper bounds on €4 using
€score for diffusion Schrédinger bridges. The error
€4is is measured in the total variation distance and
€score is measured in the L% norm. More concrete
bounds of €4 are provided in [33-36,38]. These
works specialize €y to be the L? error of the es-
timated score function and €g4;, to be the total vari-
ation distance between the generated distribution
and the data distribution. Lee et al. [34] required the
data distribution to satisfy a log-Sobolev inequality.
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Concurrent works [35] and [36] relaxed the log-
Sobolev assumption on the data distribution to only
having bounded moments. The upper bound in [35]
takes the form

€ = O( JT €score + discretization error

+ forward error). (14)

Here T is the terminal time in the forward process.
The discretization error depends on the regularity
of the data distribution and the step size in the dis-
cretized backward process. The forward error quan-
tifies the divergence between Pr and P,, = N (o1p),
since the forward process is terminated at a finite
time T. It is worth mentioning that Lee et al. [36]
allowed €4ore to be time dependent and Benton
etal. [38] improved the data dimension dependency.
The recent works [37,38,89-91] have largely en-
riched the study of sampling theory using diffusion
models. Specifically novel analyses based on Taylor
expansions of the discretized backward process [91]
or localization method [38] have been developed
which improve the upper bound on €4;,. Further-
more, Chen et al. [89] considered the DDIM sam-
pling scheme and Chen et al. [37] considered proba-
bilistic ODE backward sampling.

Besides Euclidean data De Bortoli [92] made the
first attempt to analyze diffusion models for learning
low-dimensional manifold data. Assuming that €core
is small under the L™ norm (extension to the L?
norm is also provided) De Bortoli [92] bounded
€4is of diffusion models in terms of the Wasserstein
distance. The obtained bound has an exponential
dependence on the diameter of the data manifold.
Moreover Montanari and Wu [93] considered using
diffusion processes to sample from noisy observa-
tions of symmetric spiked models and El Alaoui
et al. [94] studied polynomial-time algorithms
for sampling from Gibbs distributions based on
diffusion processes. The construction of diffusion
processes in [93,94] leverages the idea of stochastic
localization. See a brief introduction to stochastic lo-
calization in the online supplementary material
whose connection to diffusion models is
presented in the subsection entitled ‘Alternative
formulation: stochastic localization’ below. Be-
sides concurrent works [95,96] study learning and
sampling from Gaussian mixture models through
diffusion-based methods. They provide algorithms
that enjoy a polynomial runtime and rely on a
polynomial number of samples.

It is worth mentioning that concurrent works
[95,96] study sampling from Gaussian mixture mod-
els through diffusion-based methods. They provide
algorithms to sample from Gaussian mixtures with
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bounded component means and well-conditioned
covariance matrices which go beyond the conven-
tional assumptions on component separation condi-
tions. Their proposed algorithms run in polynomial
time and require a polynomial number of samples.

Computational efficiency of sampling through diffu-
sion models. Sampling from certain high-dimensional
distributions can be computationally challenging.
For instance, El Alaoui et al. [97] demonstrated
the hardness of sampling from the low-temperature
Sherrington—Kirkpatrick model using any stable al-
gorithm. An intriguing line of inquiry would be to
understand the computational complexity of sam-
pling through diffusion models and its connection to
the complexity of sampling via Langevin dynamics.

Using heuristic physics methods Ghio et al. [98]
investigated the relationship between the computa-
tional complexity of sampling through Langevin dy-
namics and diffusion models in high-dimensional
distributions widely studied in the statistical physics
of disordered systems. By utilizing the hardness
of computing the score function as a proxy for
the hardness of sampling with diffusion models
Ghio et al. [98] generated phase diagrams of the
computational complexity for sampling from high-
dimensional models and identified parameter re-
gions where diffusion models are not efficient but
Langevin dynamics are; conversely, they also identi-
fied regions where the Langevin dynamics are inefhi-
cient, yet diffusion models perform well.

Sample complexity of distribution estimation
Distribution estimation theory of diffusion models
is explored in [99,100] from an asymptotic statistics
point of view. These results do not provide an ex-
plicit sample complexity bound. On the other hand
given the aforementioned sampling theory and score
estimation theory we are able to develop an end-to-
end analysis of diffusion models [39,40,42], as well
as demonstrate their efficiency. In particular, sup-
pose that the data distribution Py, is supported on
a cube [—1, 1]P with a density function of smooth-
ness index s. Under some conditions in [39] diffu-
sion models can learn a distribution P satisfying

dry (B, Pi) = O(n” &), (15)

where drv is the total variation distance. From (15),
we conclude that if the density function has a higher
smoothness s, the distribution estimation is more
efficient. Moreover, (15) matches the minimax op-
timal rate of distribution estimation in Euclidean
spaces, indicating that diffusion models are powerful
and efficient distribution estimators.
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We observe from (15) a curse of dimensionality
issue, where the data dimension D appears in the ex-
ponent. Chen et al. [40] and Tang and Yang [42]
showed that diffusion models are able to circum-
vent the curse of dimensionality whenever data have
intrinsic low-dimensional structures. For example,
suppose that the data distribution is supported on a
d-dimensional subspace, i.e. datax = Az with anun-
known matrix A € RP*4 of orthonormal columns.
We recall that d is the intrinsic dimension and much
smaller than D. Specializing the smoothness index
s = 1 and under some conditions in [40] diffusion
models can estimate the subspace and learn a distri-
bution P, in the subspace satisfying

dTV(psub’ pdata) = @(n_(djlj) )s (16)

where Py, is a slightly perturbed data distribution.
Beyond the subspace data, Tang and Yang [42]
considered the data distribution supported on an
unknown smooth low-dimensional manifold and
obtained adaptive convergence rates depending
only on the manifold dimension. These results
unveil the adaptivity of diffusion models and
provide valuable insights into why diffusion mod-
els yield startling practical performance since
real-world high-dimensional data often have rich
low-dimensional geometric structures and diffusion
models are efficient in capturing these structures for
efficient learning.

Building upon  previous results, Jiao
et al. [101,102] extended the statistical conver-
gence analysis to latent diffusion models and flow
models. They considered a pre-trained VAE for
dimension reduction and then trained a diffusion
model on the low-dimensional embedding space
defined by the VAE. As a result, the sample com-
plexities of latent diffusion models are also free of
the curse of data ambient dimensionality.

Alternative formulation: stochastic
localization

We connect diffusion models to stochastic localiza-
tion, a measure-valued stochastic process that has
been successfully generalized as a sampling algo-
rithm with provable sampling error bounds. Stochas-
tic localization provides flexible formulations and
rich analytical tools for a deeper exploration of
diffusion models. We refer readers to the online
supplementary material for an extended introduc-
tion. The connections between stochastic localiza-
tion and the denoising diffusion probabilistic mod-
els (DDPMs) are demonstrated in [103].
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We introduce the simplest stochastic localization
process following the presentation in [103]. Given
the measure Py, the stochastic localization process
is a stochastic differential equation defined as

dy, = m,(Y;)dt +dw, fort € [0, 0),Y, =0,

(17)

whete (1) = By om0, (¥ | 3+ Vig =
y] is the posterior expectation of Y; upon observing
y = tx + «/tg. Standard theory implies that the

marginal distribution of Y; satisfies Y; 2 tx + «/Zg,
where (%, g) ~ Paa ® N(0,Ip). Consequently,
lim;_, o Y; /t converges to a random variable follow-
ing distribution Py,,. In generative modeling tasks,
one could fit the posterior expectation m; (y) using
neural networks and training samples, and discretize
the SDE as in (17), similar to DDPMs.

In sampling tasks with distribution Py, being
spin-glass models and the posterior of spiked matrix
models, the posterior expectation m; can be approx-
imately computed using variational inference algo-
rithms in the high-temperature regime, enabling ef-
ficient sampling from these distributions.

A firm connection between stochastic localiza-
tion to DDPM:s is shown in [103]: the stochastic
localization process {Y;};>¢ as in (17) is equivalent
to the backward SDE of the diffusion model (2)
up to time and scale reparametrizations. Montanari
[103] further generalized the stochastic localization
scheme to general stochastic processes. We also re-
fer readers to the online supplementary material for
physics-style analyses of diffusion models.

CHALLENGES AND UNDERSTANDING OF
CONDITIONAL DIFFUSION MODELS

Although conditional diffusion models share many
characteristics with their unconditional counter-
parts their unique reliance on guidance requires new
understanding and insights. As a result principled
understanding on conditional diffusion models is
highly limited, even though empirical heuristics are
abundant.

In this section, we mimic the study of uncondi-
tional diffusion models, but put an extra emphasis
on distinct uses and methods of conditional diffu-
sion models. We first introduce training methods of
conditional diffusion models, which boils down to
estimating the conditional score function. Interest-
ingly, the conditional score function can be related to
the unconditional score function, motivating a fine-
tuning perspective for training conditional diffusion
models. Next, we present conditional score estima-
tion and distribution estimation theories. The last
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section is devoted to insights into the (mysterious)
influence of diffusion guidance in Gaussian mixture
models, where we both theoretically and experimen-
tally corroborate common observations and reveal
curious new discoveries.

Learning the conditional score

For conditional sample generation via (), the condi-
tional score function V log p; («x | ) needsto be esti-
mated. We slightly abuse the notation to denote sasa
conditional score network and S as the correspond-
ing network class. By introducing an early stopping
time t, a conceptual quadratic loss for conditional
score estimation is defined as

T
min [ E[IViog (s 1) —sCos )R]
tg s

NS
(18)
Compared to (8), we omit the time-dependent
weighting function w(t) for simplicity. Inspired by
[68,69], Proposition 3.1 of [67] asserts the equiva-
lence of (18) to the implementable loss function

T
Islégl/t; E (o) B ~N (e (0)x0h()1)

(Vs log (x| x0) — s(ax¢, y, t)”%]} dt,
(19)

which shares the same spirit as (3).

Classifier and classifier-free guidance
Practical implementations of conditional score
estimation, such as classifier and classifier-free
guidance methods, build upon (19) for reduced
computational cost or better performance [47,104].
We begin with the classifier guidance method [104]
which is arguably the first method to allow con-
ditional generation in diffusion models similar to
GANS s or flow models [105,106]. Specifically when
conditional information y is discrete, e.g. image
categories, the conditional score Vlog p; (x; | y) is
rewritten via Bayes’ rule as

Viog pi(x: | y) = Vg pi () + Vloge,(y | ),
(20)

where ; is the likelihood function of an external clas-
sifier. In other words, classifier guidance combines
the unconditional score function with the gradient
of an external classifier. The external classifier is
trained using the diffused data points in the forward
process. As a result, the performance of classifier
guidance methods is sometimes limited, since it is
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difficult to train the external classifier with highly
corrupted data.

Later, classifier-free guidance proposes to remove
the external classifier, circumventing the limitation
caused by classifier training. The idea of classifier-
free guidance is to introduce a mask signal to ran-
domly ignore y and unify the learning of condi-
tional and unconditional scores. Specifically, let T €
{9, id} be a mask signal, where ¥ means to ignore
the conditional information y and id to keep y with
idy = y. For T = J, we have

T
/ B (g, ) B~ N e ()0, (1)
1

0

[lls(xe, t) — Vi, log i (x: | x0) 151} dt

and, for T = id, we have

T
/ IE (g ) (B, ~N ()0, 1) 1) LIl s (e, 3, )

to

—V,, log ¢y (x; | x0) |31} dt.
(21)

Note that (21) coincides with (19), and recall that t,
is an early stopping time. Combining the two cases,
the classifier-free guidance method minimizes the
loss function

T
i E B b, i ~N(e(t)x
rsrégl‘/to (Xo-,}/){ Pr 2 ~N (e (t)x0,h () Ip)

|:||S(xt’ Ty’ t) - Vx, log¢t(xt | JC())”%]} df,
(22)

where s(x;, Ty,t) denotes a unified score net-
work, ie. s(x;, Ty, t) = s(x;,t) when 7 = ¢ and
s(x;, Ty, t) = s(x;,y,t) when 7 =id. Here 7 is
randomly chosen among ¥ and id following distri-
bution P;. The simplistic choice on P; is a uniform
distribution on {#, id}, while it is preferred to bias
towards setting T = id more often in some applica-
tions [47].

Modulating guidance strength in practice. Once the es-
timator § is learned from (22) we compute

§(x,y, t)=(14+n) ~§(x,y, t) —n-$(x,t)
(23)

with some 1 > 0 for substitution into the backward
process. From a theoretical point of view, choosing
n > 0 is counter-intuitive, as the resulting § does
not correspond to the conditional score function
Vlog pi (x | y). However, a properly chosen 7 leads
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Figure 6. The effect of guidance strength  on a three-component GMM in R? [47,107].

Each component has weight 1/3 and identity covariance, and the component centers

are(+/3/2,1/2),(=~/3/2,1/2)and (0, —1). The leftmost panel displays the unguided

density. We increase the guidance strength from left to right. When generating sam-

ples, we use the ground truth score. Reproduced with permission from Wu et al. [107].
to improved performance on benchmarks in prac-
tice. More interestingly, increasing 7 reduces the di-
versity of the generated samples, but promotes dis-
tinguishability of them [47]. Coefficient 17 can also
be chosen dependent of time t. Unfortunately a prin-
cipled guidance on how to choose 7 is still missing,
but some theoretical insights into the impact of n
have been developed [107].

Adapting the unconditional score via guidance
In real use cases the desired criteria or objectives of
conditional sample generation may shift over time,
which necessitates quick adaptation of conditional
diffusion models. Although the classifier-free guid-
ance method has been adopted for training condi-
tional diffusion models from scratch, it is not tailored
for adapting or fine-tuning diffusion models ow-
ing to computational overhead. Consequently, this
opens up new possibilities for theories and methods
of fine-tuning diffusion models without compromis-
ing the pre-training performance.

Recently, a line of work proposes using efficient
fine-tuning methods when the quality of the gener-
ated samples is measured by a scalar-valued reward
function. See the online supplementary material for
more information. For demonstration, to guide a
pre-trained model for generating high-reward sam-
ples, Clark et al. [31] assumed the differentiability
of the reward function and directly fine-tuned pa-
rameters in the diffusion model by back-propagation.
Black et al. [32] and Fan et al. [108] formulated the
sample generation process of diffusion models as a
finite-horizon Markov decision process. The score
function is equivalent to a policy and allows for fine-
tuning using reinforcement learning techniques such
as policy gradient methods.

A more interesting and principled fine-tuning
method draws motivation from the classifier guid-
ance. We revisit Bayes’ rule for the conditional score
function

Vlogpt(xf |)’)
= Vlogpi(x;) +Vloge,(y | %) (24)

pre—trained score guidance
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where classifier ¢; acts as guidance to adapting the
pre-trained score. Despite classifier guidance requir-
ing a discrete label y (yet can be multi-dimensional),
the decomposition in the last display has a profound
impact on guidance-based fine-tuning. Indeed, the
authors of [$8,109,110] extended guidance to arbi-
trary conditioning by incorporating gradients of a
proper scalar-valued function. For demonstration,
Bansal et al. [109] defined the so-called ‘universal
guidance’ in the form of V, £(y f(%)), where f is
a function measuring the quality of samples, %o is
the anticipated generated sample of the pre-trained
diffusion model given current point x; in the back-
ward process and £ is a loss function. Note that &,
correlates with x; and the gradient is nontrivial. As
a special example, when y is the discrete label, f
is the classification likelihood and £ is the cross-
entropy loss, universal guidance reproduces classifier
guidance.

Conditional score and distribution
estimation

The theory of conditional score estimation and con-
ditional distribution estimation is very limited. To
the best of our knowledge, Li et al. [67] provided an
initial study using (19) for conditional score estima-
tion and distribution estimation. A systematic analy-
sis of the classifier-free guidance method is presented
in [111] with results highlighted by approximation
theories of conditional score functions and sample
complexities of conditional score estimation and dis-
tribution learning. In addition, Fu et al. [ 111] showed
the utility of the developed statistical theory in elu-
cidating the performance of conditional diffusion
models for diverse applications including model-
based transition kernel estimation in reinforcement
learning solving inverse problems [112,113] and re-
ward conditioned sample generation.

The core contribution of [ 111] is the conditional
score approximation theory which is motivated by
the idea of diffused basis approximation in [39]. In
more detail Fu ef al. [111] substantially broadened
the framework to unbounded data domains and con-

ditional distributions. The authors rewrote the c(on)—
Vi (xly
pe(xly)
and approximated Vp;(x | y) and p;(x | y) sepa-

rately. On a technical side the unbounded data do-

ditional score function as Vlog p; (x | y) =

main and the conditioning on y lead to new chal-
lenges. More importantly, however, Fu et al. [111]
lifted the technical conditions on data distributions
in [39] and obtained optimal statistical rates with
a mild bounded Holder norm assumption. We re-
mark that Fu et al. [111] takes the condition y as in-
dependent input variables leaving an open direction
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Figure 7. lllustration of a negative effect of large guidance strength. In this plot, the component means of the Gaussian
mixture model are aligned on the same line. We increase the guidance strength » from left to right. The upper row uses a
relatively large discretization step size in the backward process. With a large », the center component splits into two clusters
at an earlier stage. The bottom row uses a much smaller discretization step size; the center component then splits only with
a much larger n. Reproduced with permission from Wu et al. [107].

to identify intrinsic smoothness with respect to y in
the conditional distribution so as to improve the di-
mension dependency.

(Mysterious) Effects of the guidance
strength

We conclude the discussion on conditional diffusion
models by pointing out a complicated influence of
the strength of guidance on conditional sample gen-
eration [107]. We refer back to (23) and study the
influence of 1 on the sample generation. The same
strength parameter can be introduced into classifier
guidance as

$(xyt) = Vlog pi (%) + nVloge(y | x).(25)

Hence, we will not distinguish different guidance
methods, and term 7 as the strength of guidance.

A common observation of the consequence
yielded by 7 is best illustrated in Fig. 6 on a three-
component Gaussian mixture model (GMM). Here,
label y indicates the Gaussian components and x is
a two-dimensional variable. When generating new
samples, we fix a choice on y to obtain within-
component samples. We observe that, with an in-
creased guidance strength 7, the generated condi-
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tional distribution shifts its probability mass further
away from other components, and most of the mass
becomes concentrated in smaller regions.

The results in [107] theoretically characterize
the influence of strength on diffusion models in
the context of Gaussian mixture models. Under
mild conditions Wu et al. [107] proved that in-
corporating strong guidance not only boosts clas-
sification confidence but also diminishes distribu-
tion diversity, leading to a reduction in the differ-
ential entropy of the generated conditional distri-
bution. These theories align closely with empirical
observations.

On the other hand, Wu et al. [107] identified a
possible negative impact of large 7 under discretized
backward sampling in Gaussian mixture models as
depicted in Fig. 7. There exists a phase shift as
strength 7 increases. Under large 7, the center com-
ponent of the original Gaussian mixture model splits
into two symmetric clusters, harming the modality
of the original data. The emergence of this negative
effect is tied to the locations of the components and
the discretization step size in the backward sampling
process. To the best of our knowledge, there are no
principled methods for tuning the strength 7 in dif-
ferent tasks, which might be encouraged by the ob-
tained theoretical insights.
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x € argmax /*(x)
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Conditional diffusion:
sampling from the learned conditional distribution

Figure 8. Reformulation of data-driven black-box optimization as conditional sampling
in [67]. The conditional distribution takes the targeted function value as the condition-
ing and is learned from a pre-collected data set. Reproduced with permission from Li

etal. [67].

DIFFUSION MODEL FOR OPTIMIZATION

This section introduces a novel avenue for opti-
mization in high-dimensional complex and struc-
tured spaces through diffusion models. We focus on
data-driven black-box optimization where the goal
is to generate new solutions that optimize an un-
known objective function. Black-box optimization
also known as model-based optimization in machine
learning encapsulates various application domains
such as reinforcement learning, computational biol-
ogy and business management [26,59,114].

Solving data-driven black-box optimization is dis-
tinct from solving conventional optimization, as in-
teractions with the objective function beyond a pre-
collected data set are prohibitive, diminishing the
possibility of sequentially searching for optimal so-
lutions. Instead, people aim to extract pertinent in-
formation from the pre-collected data set and di-
rectly recommend solutions. To complicate matters,
the solution space is often high dimensional with
rich latent structures. For example, in drug discov-
ery, molecule structures need to satisfy global and lo-
cal regularities to be expressive in living bodies. This
poses a critical requirement for solving data-driven
black-box optimization: we need to capture the la-
tent structures of data to avoid suggesting unrealistic
solutions that deviate severely from the original data
domain.

To address the challenges, Li et al. [67] formu-
lated data-driven black-box optimization as sampling
from a conditional distribution as demonstrated in
Fig. 8. The objective function value is the condition-
ing in the conditional distribution, meanwhile the
distribution implicitly captures the latent structures
of data.

The pre-collected data set in [67] consists of two
parts: a massive unlabeled part Dyyjape and a smaller
labeled part Dypel. By terming the objective function
as a reward function Li et al. [67] considered the fol-

lowing two types of label feedback in Dj,pe.

(1) Real-valued reward: the data set Dy, consists of
data and reward pairs where the reward is a real-
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valued noise-perturbed version of the underly-
ing ground truth reward.

(2) Human preference: the data set Dy, consists of
triples taking two comparable data points and
a binary preference label. The preference label
indicates that the corresponding data point is
likely to have an edge in the underlying reward
over the other one.

Moreover, the data point x € R” is assumed to con-
centrate on a linear subspace, i.e. x = Az for some
unknown matrix A € RP*? with z € R? being the
latent variable. Therefore, newly generated samples
should be kept close to the subspace to maintain high
fidelity.

A semi-supervised learning algorithm is pro-
posed in Fig. 9. There are two training procedures:
one in the first step for estimating the reward func-
tion and the another in the third step for training
the conditional diffusion model. In the fourth step,
the target reward is set at a scalar value g, so that
the generated samples follow the conditional distri-
bution P, = P(- | reward = a),whereﬁandrgv;i
emphasize that the distribution and the reward are
estimated, rather than the ground truth. One may be
curious about the quality of the generated samples.
In particular, the following two properties of the gen-
erated samples are of particular interest: the reward
levels of new samples and their level of fidelity—how
much the new samples deviate from the latent sub-
space.

The results in [67] provide a positive statisti-
cal answer. For the reward levels of new samples Li
et al. [67] defined

SubOpt(a) =a —E, 5 [V(x)] (26)

to measure the gap between the sample average re-
ward and the target reward. In the language of bandit
learning SubOpt s interpreted as a form of off-policy
sub-optimality.

To demonstrate, Lietal. [67] considered datax =
Az for some unknown matrix A € RP*? with or-
thonormal columns. Suppose that the reward func-
tion V decomposes as

V()= gAATx) + h((I—AAT)x) .
— R ———
>0, on-support reward <0, oft-support penalty

(27)

We note that the reward function V' consists of two
components: the on-support reward g, which is non-
negative and measures the quality of samples by
projecting it onto the subspace spanned by matrix
A; and the off-support penalty, which is nonpositive
and discourages the generated samples extrapolating
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Step 1: reward learning

Step 2: pseudo-labeling

Target reward

Conditional score s(feature, label, {)

‘o -0 -0

Step 3: conditional diffusion model training

L2

High-reward
generated samples

i .

Reward-conditioned diffusion

Step 4: guided generation

Figure 9. The learning algorithm proposed in [67] consists of four steps. In the first step a reward model is learned from the
labeled data Djpe. In the second step, the learned reward model is deployed as a pseudo-labeler to label Dyyaper. In the
third step, a conditional diffusion model is trained using the pseudo-labeled data. Lastly, in the fourth step, new samples
are generated from the conditional distribution £, by specifying a target reward value a. Reproduced with permission from Li

et al. [67].

in the space outside the subspace spanned by matrix
A.

Running the algorithm in Fig. 9 generates high-
fidelity samples and gives

SubOpt(a) = Epllg—gl]l + |Es[h]l
—— ~——
reward estimation error off —support penalty
+ |Ep[g] — Ep [g]l . (28)

—_—

on—support diffusion error

where § is an estimated reward function and P, =
P(- | reward = a).

The reward estimation error depends on the
sample size in Diype;, which is often the dominat-
ing term. The on-support diffusion error and off-
support penalty depend on the sample size in Dyyabel
and rely on a statistical analysis of conditional dif-
fusion models for distribution estimation. There is
also a subtlety in explicitly quantifying the three er-
ror terms, namely, the distribution shift, which is the
mismatch between the training data distribution and
the target data distribution. Diffusion models are de-
signed to generate similar samples to the training
distribution; however, optimizing the reward func-
tion drives the model to deviate from the training.
In other words, the model needs to both ‘interpo-
late’ and ‘extrapolate. A higher value of a provides
stronger guidance to the diffusion model, while the
increasing distribution shift may hurt the generated
samples’ quality.

Through detailed analysis, Li et al. [67] instan-
tiated the SubOpt bound to parametric and non-
parametric settings. For example with a linear reward
function g, the reward estimation error aligns with
the optimal off-policy bandit sub-optimality [115]
where the distribution shift is explicitly computed
and the dimension dependence is d instead of the
large ambient dimension D. In the human preference
setting, Li et al. [67] considered the Bradley-Terry-
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Luce choice model [116] and derived a similar con-
crete sub-optimality bound.

FUTURE DIRECTIONS

We discuss several future directions of diffusion
models exploring their connections to stochastic
control and distributional robustness; we also intro-
duce discrete diffusion models.

Connection to stochastic control

In either unconditioned diffusion models or con-
ditional diffusion models, generating samples us-
ing the backward process (2) or (S) can be viewed
as a stochastic control problem [117]. The goal
of stochastic control is to design the evolution of
the controlled variable so that certain cost is min-
imized. In diffusion models, the score function
constitutes the control and steers the quality of the
generated samples. In the simplest form of uncondi-
tioned diffusion models, we define the cost to be the
distribution divergence between the generated dis-
tribution and the data distribution, such as the to-
tal variation distance and the Wasserstein distance.
Then the score estimation essentially amounts to
finding the optimal control for minimizing such
costs.

When using conditional diffusion models for
black-box optimization, the cost is the negative of a
reward function and the conditional score function
is the control. The theory in [67] chooses a proper
target reward to design the control for optimizing
the cost. Leveraging this control perspective a series
of empirical results attempt to fine-tune diffusion
models by designing the control based on various
cost forms. See the references and further discus-
sions in the online supplementary material. In this
regard principled methodologies and accompanying
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theories can be motivated from the stochastic con-
trol perspective, improving and analyzing diffusion
models under various task objectives.

Adversarial robustness and
distributionally robust optimization

Diftusion models exhibit the natural denoising prop-
erty in the backward processes, which are leveraged
for adversarial purification and promoting robust-
ness [118,119]. To illustrate, in robust classification,
a two-step classification procedure is proposed. A
trained conditional diffusion model is first deployed
to generate new samples given the input adversar-
ial examples for multiple times, hoping to purify the
added noise in the input sample. Then the generated
samples are fed into a trained classifier to produce
a predicted label. Because of the randomness in the
diffusion models, multiple transformed samples of
the same input adversarial example can be obtained.
Therefore, a majority vote among the predicted la-
bels is assigned as the label of the adversarial exam-
ple. This method is motivated by a justification on
the promotion of robustness using diffusion models
and empirically shown to be effective [119]. How-
ever an end-to-end analysis is still missing.

We also expect a close connection between dif-
fusion models and distributionally robust optimiza-
tion (DRO). Diffusion models generate samples in
the close vicinity of a target distribution, which can
be viewed as providing a certain coverage of the dis-
tributional uncertainty set in DRO. In this sense, dif-
fusion models can potentially simulate the worst-
case scenario in the uncertainty set. We expect the
emergence of innovative methods and theories in the
corresponding intersection area, where motivating
attempts have been made in [120].

Discrete diffusion models

Discrete diffusion models analogous to the previous
continuous counterparts, are designed to keep the
finite data support during the forward and backward
processes. Instead of using continuous Gaussian
noise to corrupt clean data, discrete diffusion re-
sorts to continuous-time Markov processes for
transforming clean data. The discrete nature has
appealing alignment to real data characterized by a
massive but finite support, e.g. natural language rep-
resented by word tokens and molecular structures.
As reported in [121] discrete diffusion achieves
competitive or better performance in language tasks
with comparable sized models.

We describe a discrete distribution by a probabil-
ity vector pqa, belonging to the simplex. Analogous
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to Gaussian noise corruption for continuous diffu-
sion, we utilize a continuous-time Markov process
driven by a time-dependent transition matrix Qy, i.e.

d
ﬁ=Qr1’t

% with  po = Ppdata- (29)

The process above is known as the forward discrete
diffusion process. Several design choices of Q; are
summarized in [29] including discretized Gaussian,
uniform and absorbing transitions.

The discrete forward process (29) also asserts a
time reversal:

dp;” .
= 0
o e (30)
with
= [Qr ;i ifi #
xlij = V2
[Qt]l _Z[QT—t]is [P ] ifi = J:
5751' pT—t i

Here Q, is the backward transition matrix and [-];
(or [-];j) denotes the ith (or (i, j)th) entry. We ob-
serve from the backward process (30) that to gener-
ate new samples, we only need to estimate the ratios
[p:)i/[p:]; for t € [0, T]. We can view this prob-
ability ratio as an analogy to the score function in
the continuous distribution. However, we note the
caveats that estimating the ratios suffers from the
massive support size of the data distribution and that
the magnitude of ratios can vary significantly. It is
also likely that a large fraction of the ratios are zero
or approximately zero, inducing sparse structures.
There are different empirical methods for estimating
the ratios based on different loss functions. See the
online supplementary material for references.

From a theoretical stand point, discrete diffusion
poses interesting open questions, such as how to ef-
ficiently estimate the ratios using finite samples, with
potential sparse structures and ill-spread ranges of
ratios. More importantly, it remains unclear how to
smartly design principled transition kernels relevant
to data distributions. Nonetheless, assuming access
to estimated ratios, Chen and Ying [122] proved the
first sampling theory of discrete diffusion models.

Enforcing privacy in diffusion models

Attracted by the diverse and high-fidelity image gen-
eration abilities diffusion models were initially be-
lieved to protect the privacy and usage rights of
real images [123]. Unfortunately this claim seems
to be superficial and misleading. For instance, in
image generation, stable diffusion does memorize
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individual training data and generates them at test
time. As reported in [123], diffusion models leak
more than twice as much training data as GANS, pos-
ing an urgent call for privacy-enhancing techniques.

Unlike GANs, diffusion models enjoy a
regression-type training objective, i.e. the score
estimation, which grants convenient access to pri-
vacy enforcement. An inspiring attempt has been
made in [124, Algorithm 1], where a differentially
private stochastic gradient descent algorithm is
developed for optimizing the training objective. In
each iteration, independent noise is injected into a
stochastic gradient to ensure the Rényi differential
privacy condition. This algorithm achieves state-
of-the-art performance in common differentially
private image generation benchmarks.

Broadly speaking, diffusion models are poten-
tially an ideal generative modeling tool for differen-
tially private generative learning, owing to their clean
regression-type training objective. We foresee fast fu-
ture progress of differentially private diffusion mod-
els for multi-modality data, given the versatility of
diffusion models. There are still several factors to
consider for a better privacy-utility trade-off: (1) the
score blowup issue may interact with a proper noise
injection for privacy; (2) the score neural network
may allow architectural innovations for better pri-
vacy protection.

Contributions to artificial general
intelligence

Although diffusion models have shown promise in
various fields of artificial intelligence with multi-
modality data, their role in achieving artificial gen-
eral intelligence (AGI) is more nuanced. Current
gaps are many faceted: diffusion models are typi-
cally specialized for tasks, whereas AGI requires a
broad understanding and the ability to perform a
wide range of tasks; training diffusion models can
be resource intensive, requiring massive data, which
may limit their scalability for AGI purposes.

While we view diffusion models on their own
insufficient for achieving AGI, they can contribute
to this goal by generating high-quality synthetic
data in diverse environments for multi-modal data
and being integrated into other artificial intelligence
techniques and paradigms. As mentioned in the
subsection entitled ‘Conditional diffusion mod-
els’, using reinforcement learning-based methods
to fine-tune diffusion models allows an efficient
adaptation with limited samples to downstream
tasks. We expect these hybrid artificial intelligence
techniques to make a solid contribution to the broad
and complex objective of AGL
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CONCLUSION

In this paper, we surveyed how diffusion models
generate samples, their wide applications and their
existing theoretical underpinnings. We adopted a
continuous-time description of the forward and
backward processes in diffusion models and dis-
cussed their training procedure, especially when
there exists guidance to steer the sample genera-
tion. We started with an exposure to theories of
unconditional diffusion models, covering their score
approximations, statistical estimations and sampling
theories. Building upon insights from unconditional
diffusion models, we then turned to conditional
diffusion models, with a focus on their unique
design properties and theories. Next, we made a
connection between generative diffusion models
to black-box optimization, paving a new avenue for
high-dimensional optimization problems. Lastly, we
discussed several trending future directions.
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