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ABSTRACT 
Di!usion models, a powerful and universal generative arti"cial intelligence technology, have achieved 
tremendous success and opened up new possibilities in diverse applications. In these applications, di!usion 
models provide #exible high-dimensional data modeling, and act as a sampler for generating new samples 
under active control towards task-desired properties. Despite the signi"cant empirical success, theoretical 
underpinnings of di!usion models are very limited, potentially slowing down principled methodological 
innovations for further harnessing and improving di!usion models. In this paper, we review emerging 
applications of di!usion models to highlight their sample generation capabilities under various control 
goals. At the same time, we dive into the unique working #ow of di!usion models through the lens of 
stochastic processes. We identify theoretical challenges in analyzing di!usion models, owing to their 
complicated training procedure and interaction with the underlying data distribution. To address these 
challenges, we overview several promising advances, demonstrating di!usion models as an e$cient 
distribution learner and a sampler. Furthermore, we introduce a new avenue in high-dimensional structured 
optimization through di!usion models, where searching for solutions is reformulated as a conditional 
sampling problem and solved by di!usion models. Lastly, we discuss future directions about di!usion 
models. The purpose of this paper is to provide a well-rounded exposure for stimulating forward-looking 
theories and methods of di!usion models. 
Keywords: generative AI, di!usion model, sample generation under controls, optimization 
INTRODUCTION 
The "eld of arti"cial intelligence (AI) has been 
revolutionized by generative models, particularly 
large language models and di!usion models. While 
large language models focus on generating coher- 
ent text based on context, di!usion models excel 
at modeling complex data distributions and gen- 
erating diverse samples. Both of them are recog- 
nized as foundation models [1 ], are trained on mas- 
sive corpora of data and have opened up vibrant 
new possibilities in machine learning research and 
applications. 

Unlike supervised models that learn to classify or 
predict based on input data, generative models are 
unsupervised and aim to capture the essence of the 
underlying data distribution. By learning the intri- 
cate dependencies and relationships within the data, 
these models can generate entirely new instances 
that exhibit the same characteristics as the training 

data. This ability to create synthetic data has proven 
invaluable in areas like content creation, data aug- 
mentation, artistic exploration, healthcare and sim- 
ulation [& –4 ]. 

This paper aims to review the new opportunities 
brought by contemporary study on di!usion models, 
with an emphasis on the theoretical underpinnings 
of the vast empirical developments. Our ultimate 
goal is to demonstrate and further harness the power 
of di!usion models, connecting to broad interdis- 
ciplinary areas within applied mathematics, statis- 
tics, computational biology, operations research, 
reinforcement learning, robotics and healthcare. 
Diffusion models are a new powerhouse 
Di!usion models, inspired by thermodynamics 
modeling [( ], have emerged in recent years with 
ground-breaking performance, surpassing the 
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previous state of the art, such as generative ad- 
versarial networks (GANs) [6 ] and variational 
autoencoders (VAEs) [7 ]. Di!usion models are 
widely adopted in computer vision and audio gen- 
eration tasks [, –11 ], and further utilized in text 
generation [1& ,1- ], sequential data modeling [14 –
16 ], reinforcement learning and control [17 –&) ], as 
well as life science [&1 –&- ]. For a more comprehen- 
sive exposition of applications, we refer readers to 
survey papers [- ,&4 –&, ]. 

The celebrated performance of di!usion mod- 
els is indispensable to numerous methodological in- 
novations that signi"cantly expand the scope and 
boost the functionality of di!usion models, enabling 
high-"delity generation, e$cient sampling and #ex- 
ible control of the sample generation. For exam- 
ple, Austin et al. [&. ] and Ouyan et al. [-) ] ex- 
tended di!usion models to discrete data genera- 
tion, while the vanilla di!usion models target con- 
tinuous data. Meanwhile, there is an active line of 
research aiming to expedite the sample generation 
speed of di!usion models (see the references in the 
online supplementary material). Las t but not leas t, a 
recent surge of research focuses on "ne-tuning di!u- 
sion models towards generating samples of desired 
properties, such as generating images with peculiar 
aesthetic qualities [-1 ,-& ]. These task-speci"c prop- 
erties are often encoded as guidance to the di!usion 
model, consisting of conditioning and control sig- 
nals to steer the sample generation. Notably, guid- 
ance allows for the creation of diverse and relevant 
content across a wide range of applications, which 
underscores the versatility and adaptability of di!u- 
sion models. We call di!usion models with guidance 
conditional di!usion models. 
Limited understanding of diffusion 
models 
Despite the rapidly growing body of empirical ad- 
vancements, principled understanding of di!usion 
models fall far behind. A major reason owes to the 
unique training and sample generation procedure of 
di!usion models, which are fundamentally di!erent 
from previous models such as GANs and VAEs. Sig- 
ni"cant new challenges are present and an innovative 
analytical framework is yet to be established for dif- 
fusion models. 

Some recent works set a promising theoretical 
footprint v ia v iew ing di!usion models as an inte- 
gration of a data sampler and an unsupervised dis- 
tribution learner. Accordingly, they establish sam- 
pling convergence guarantees [-- –-, ] and statisti- 
cal distribution learning guarantees [-. –4& ]. Such 
results o!er invaluable theoretical insights into the 
e$ciency and accuracy of di!usion models for mod- 

eling complex data, with a central focus on uncondi- 
tioned di!usion models. This leaves a gap between 
theory and practice for conditional di!usion mod- 
els. Speci"cally, a theoretical foundation to support 
and motivate principled methodologies for guidance 
design and adapting di!usion models to task-speci"c 
needs is sti l l lacking. 
Salient questions about diffusion models 
To bridge the gap between theory and practice, we 
focus on the following set of questions. To acquire 
basic understanding and set up the playground of 
this paper, we ask the following question. 
• How do di!usion models generate samples and 
how can they be trained? 

Answering this question wi l l distinguish di!usion 
models from previous generative models such as 
GANs and VAEs, providing a valuable "rst impres- 
sion of the unique characteristics of di!usion mod- 
els. This can be bene"cial to gain insight into why dif- 
fusion models outperform previous models and to 
also identify the challenges in analyzing them. 

Secondly, although empirical success suggests 
that di!usion models can capture complex data 
distributions and generate diverse and high-"delity 
samples, a rigorous justi"cation is sti l l lacking. 
Therefore, from a statistics and sampling perspec- 
tive, the following question is curiously open. 
• Can di!usion models learn and sample data distri- 
butions accurately and e$ciently? 

Study within the scope of this question centers 
around statistical sample complexities and sampling 
convergence guarantees. A positive answer is ex- 
pected, yet a particular emphasis wi l l be on the 
in#uence of the underlying data geometry, as real- 
world data in high-dimensional spaces often exhibit 
rich low-dimensional intrinsic structures [4- ,44 ]. 
This leads to an important follow-up question. 
• Can di!usion models capture the intrinsic struc- 
tures of data and enable more e$cient learning and 
sampling? 
Thirdly, we turn to conditional di!usion models, 

where the sample generation is steered by guidance 
towards desired task-speci"c needs. A natural ques- 
tion here is the following. 
• Can conditional di!usion models generate sam- 
ples aligned to task-speci"c needs? 

The question above studies the fundamental ca- 
pability of conditional di!usion models, going 
beyond plain distribution learning without condi- 
tioning. Yet, to harness such a capability for practical 
uses, principled and computationally e$cient 
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Figure 1. Demonstration of forward and backward processes in diffusion models. The 
forward process is a noise corruption process, where Gaussian noise of increasing vari- 
ance is progressively added to the clean data. The backward process is used for new 
sample generation starting from a standard Gaussian distribution, where the score 
function steers the generation process. 

methods are needed. To this end, the following 
question sti l l remains largely unclear. 
• How can we properly design the guidance and 
what is the sample complexity to train conditional 
di!usion models? 
In this paper, we address all these questions from 

an interdisciplinary point of view, integrating con- 
cepts and techniques from applied mathematics, 
statistics, sampling and optimization. 
Paper organization 
In this paper we review the formulation, emerging 
applications and contemporary theoretical advance- 
ments of di!usion models, as well as discuss fu- 
ture directions of di!usion models for generative 
AI. To begin with, in the section entitled ‘Di!u- 
sion models as stochastic processes’ we present a 
continuous-time description of di!usion models us- 
ing stochastic di!erential equations. This serves as 
a well-rounded exposure to how di!usion models 
learn (conditional) distributions and generate new 
samples. The continuous-time point of view allows 
a systematic introduction and bridges seamlessly to 
practical implementations. In the section entitled 
‘Emerging applications of di!usion models’, we re- 
view emerging applications of di!usion models, es- 
pecially in various controlled generation tasks, aim- 
ing to elucidate the conditional distributions that 
di!usion models attempt to capture. We also re- 
late conditional generation to black-box optimiza- 
tion via gauging the quality of the generated sam- 
ples under control by an abstract reward function. In 
the consecutive sections entitled ‘Challenges and un- 
derstanding of unconditional di!usion models’ and 

‘Challenges and understanding of conditional di!u- 
sion models’, we highlight fundamental challenges 
in analyzing di!usion models and review recently 
developed theoretical foundations of them. Our ex- 
posure builds upon the similarities between un- 
conditional and conditional di!usion models, and 
extends to unique properties for conditional dif- 
fusion models. In the section entitled ‘Di!usion 
model for optimization’, we revisit the connection 
between controlled generation to optimization, and 
introduce theories and methodologies of data-driven 
black-box optimization using conditional di!usion 
models. We draw our conclusions in the section en- 
titled ‘Future directions’. 
DIFFUSION MODELS AS STOCHASTIC 
PROCESSES 
This section answers the question of how di!usion 
models work. Roughly speaking, a di!usion model 
consists of a forward process and a backward pro- 
cess. In the forward process, a clean sample from the 
data distribution is sequentially corrupted by Gaus- 
sian random noise, and in the in"nite-time limit, the 
data distribution is transformed into pure noise. In 
the backward process, a denoising neural network is 
trained to sequentially remove the added noise dis- 
tribution in data and restore a new clean data distri- 
bution. The forward and backward processes are de- 
picted in Fig. 1 . 

To fully decipher how di!usion models work, we 
describe the forward and backward processes in a 
continuous-time limit and review how to implement 
the backward process with a discretization. Next, 
we introduce guidance to realize conditioning in 
controlled sample generation using conditional 
di!usion models. Note that we use a completely 
di!erent language set for describing di!usion mod- 
els, to set them aside from previous models such as 
GANs and VAEs. 
Forward and backward processes 
The forward process in di!usion models progres- 
sively adds noise to the original data. Here we con- 
sider the Ornstein–Ulhenbeck process, which is de- 
scribed by the stochastic di!erential equation (SDE) 

d Xt = −1 
2 g(t ) Xt d t +

√ 
g(t ) d Wt , (1) 

where g(t ) > 0 , initial X0 ∼ Pdata follows the data 
distribution, (Wt )t≥0 is a standard Wiener pro- 
cess and g(t ) is a nondecreasing weighting func- 
tion. We denote the marginal distribution of Xt 
at time t by Pt . After an in"nitesimal time, the 

Page - of &-

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/11/12/nw

ae348/7810289 by guest on 16 M
ay 2025



Natl Sci Rev, 2024, Vol. 11, nwae348

forward process ( 1 ) shrinks the magnitude of data 
and corrupts data by Gaussian noise. More pre- 
cisely, given X0 , the conditional distribution of Xt | 
X0 is Gaussian N (α(t ) X0 , h (t ) ID ) , where α(t ) = 
exp (− ∫ t 

0 1 2 g(s ) d s ) and h (t ) = 1 − α2 (t ) . Conse- 
quently, under mild conditions, ( 1 ) transforms the 
initial distribution Pdata to P∞ = N (0 , ID ) . There- 
fore, ( 1 ) is known as the variance-preserving forward 
SDE [1) ]. 

The value of g(t ) controls the noise corruption 
speed in the forward process. In real-world usage, 
various choices on g(t ) are implemented. One exam- 
ple is to choose g(t ) so that the variance of the Gaus- 
sian noise in the forward process increases linearly 
with respect to time [. ]. Later, several improved 
techniques for choosing g(t ) are proposed, such as a 
cosine-based variance schedule [4( ]. To simplify our 
presentation, we take g(t ) = 1 for all t in the sequel. 

The forward process ( 1 ) wi l l terminate at a suf- 
"ciently large time T > 0 , where the corrupted 
marginal distribution PT is expected to be close to 
the standard Gaussian distribution. Then di!usion 
models generate fake data by reversing the time of 
( 1 ), which leads to the backward SDE 
d X← 

t = [1 
2 X← 

t + ∇ log pT−t (X← 
t )

]
d t + dW t , 

(&) 
where t ∈ [0 , T ) , ∇ log pt (·) is the so-called ‘score 
function’, i.e. the gradient of the log probability den- 
sity function of Pt , W t is another Wiener process 
independent of Wt and we use the superscript ‘ ← ’ 
to distinguish from the forward process ( 1 ). Under 
mild conditions, when initialized at X← 

0 ∼ PT , the 
backward process (X← 

t )0 ≤t<T has the same distri- 
bution as the forward process (XT −t )0 ≤t<T [46 ]. In 
particular, the distribution of X← 

T − is very close to 
that of X0 , the distribution to be generated. 

Working with ( & ), however, leads to di$culties, 
as both the score function ∇ log pt and the distri- 
bution PT are unknown. Therefore, several surro- 
gates are deployed in practice. Firstly, we replace 
the unknown distribution PT by the standard Gaus- 
sian distribution N (0 , ID ) . Secondly, we denote by 
ˆ s (x, t ) an estimator to the ground truth score func- 
tion ∇ log pt (x ) . The estimated score ˆ s is often pa- 
rameterized by a deep neural network and takes data 
and time as inputs. Substituting ˆ s into the back- 
ward process, we obtain the practical continuous- 
time backward SDE 
d ˜ X← 

t = [1 
2 ˜ X← 

t + ˆ s ( ˜ X← 
t , T − t )

]
d t + dW t 

(-) 

with ˜ X← 
0 ∼ N (0 , ID ) being standard Gaussian. Dif- 

fusion models then generate data by simulating a dis- 
cretization of ( - ) with a proper step size. A common 
practice is to set the step size O(1 / 1000) so that the 
backward SDE ( - ) is discretized to hundreds of steps 
[. ]. 
Accelerating sample generation 
It is worth mentioning that simulating the backward 
process for thousands of steps to generate a sample 
is time consuming. This is not present in GANs and 
VAEs, as they generate samples by transforming a 
low-dimensional noise through a single neural net- 
work. Accelerating the sampling speed of di!usion 
models is an active research direction. We refer inter- 
ested readers to the online supplementary material
for a detailed discussion. 
Conditional diffusion models 
Conditional di!usion models generate samples anal- 
ogous to the unconditioned models, with the ma- 
jor di!erence being added conditional information. 
We denote the conditional information by y . Then 
the goal of conditional di!usion models is to gen- 
erate samples from the conditional data distribution 
P (· |y ) . The conditional forward process is again an 
Ornstein–Ulhenbeck process: 
d Xy 

t = −1 
2 Xy 

t d t + d Wt 
with Xy 

0 ∼ P0 (· |y ) and t ∈ (0 , T ] . 
(4) 

Note that the initial distribution is now a conditional 
distribution P0 (· |y ) , which is di!erent from the un- 
conditioned forward process ( 1 ). The noise corrup- 
tion is only performed on x , while y is kept "xed. We 
use the superscript y to emphasize the dependence 
of the process on y . Similarly, for sample generation, 
the backward process reverses the time in ( 4 ): 
d Xy, ← 

t = [1 
2 Xy, ← 

t + ∇ log pT−t (Xy, ← 
t | y )] d t 

+ dW t 
(() 

for t ∈ [0 , T ) . Here ∇ log pT −t (Xy, ← 
t | y ) is the so- 

called ‘conditional score function’, which replaces the 
score function in ( & ). The initialization is identical 
to ( & ) as Xy, ← 

0 ∼ N (0 , ID ) , independent of the 
guidance y . 

With an estimated conditional score function 
ˆ s (x, y, t ) replacing the ground truth conditional 
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score ∇ log pt (x | y ) , the conditional sample gener- 
ation is to simulate the backward process 
d ˜ Xy, ← 

t = [1 
2 ˜ Xy, ← 

t +ˆ s ( ˜ Xy, ← 
t , y, T −t )

]
d t +dW t 

(6) 
with ˜ Xy, ← 

0 ∼ N (0 , ID ) . In practical implementa- 
tions, a proper discretization scheme is applied. 
Training conditional diffusion models is differ- 
ent from unconditioned ones 
Despite the similarity in forward and backward pro- 
cesses, the major di!erence between conditional dif- 
fusion models and unconditioned ones lies in the 
training procedure for estimating the conditional 
score function ∇ log pt (· |y ) . In particular, the con- 
ditional score function can be related to the uncon- 
ditioned one, which allows "ne-tuning a pre-trained 
unconditioned model to avoid heavy computation 
when training from scratch. This motivates a collec- 
tion of practical algorithms, including classi"er guid- 
ance and classi"er-free guidance [. ,1) ,47 ]. More im- 
portantly, how to adapt a pre-trained di!usion model 
to various task-speci"c needs requires e$cient and 
e!ective computation of a conditional score func- 
tion, which is an active research direction for wide 
practical applications. 
EMERGING APPLICATIONS OF 
DIFFUSION MODELS 
Through extensive developments [, –1) ,4( ], mod- 
ern di!usion models have achieved startling suc- 
cess and are implanted in various applications (see, 
for example, survey [- ]). In many domains, di!u- 
sion models are quickly replacing previous genera- 
tive models with ground-breaking performance. At 
the same time, di!usion models are bringing new op- 
portunities and promises to even broader areas. We 
highlight vast applications of di!usion models in the 
follow ing, w ith a particular emphasis on conditional 
di!usion models for controlled sample generation. A 
more comprehensive list of references is deferred to 
the online supplementary material. 
Vision and audio generation 
Di!usion models achieve state-of-the-art perfor- 
mance in image and audio generation [, –11 ,&( ] and 
are one of the fundamental building blocks of image 
and audio synthesis systems. 

Di!usion models’ performance is appraised of 
high-"delity sample generation and allows versatile 

guidance to control the generation. The simplest ex- 
ample of generation under guidance is to generate 
images of certain categories, such as cats or dogs. 
Such categorical information is taken as a condi- 
tional signal and fed into conditional di!usion mod- 
els. In more detail, we train conditional di!usion 
models using a labeled data set consisting of sample 
pairs (xi , yi ) , where yi is the label of an image xi . The 
training is to estimate a conditional score function 
using the data set, modeling the correspondence be- 
tween x and y . In this way, conditional di!usion mod- 
els are learning the conditional distribution P (x = 
image | y = given label ) and allow sampling from 
the distribution. 

In text-to-image synthesis systems, the condi- 
tional information is an input text prompt, which 
can be a sentence consisting of objects or more 
abstract requirements, e.g. aesthetic quality. To 
generate images aligned with prompts, conditional 
di!usion models are trained with a massive anno- 
tated data set encompassing image and text sum- 
mary pairs denoted as (xi , yi ) . The text yi wi l l 
be transformed into a word embedding and taken 
as input to a conditional di!usion model. Similar 
to the generation of images in certain categories, 
conditional di!usion models for text-to-image syn- 
thesis learn the conditional distribution P (x = 
image | y = text prompt ) and allow sampling from 
it. For instance, Nichol et al. [4, ] implemented the 
classi"er-free guidance method (see a detailed de- 
scription in the subsection entitled ‘Learning the 
conditional score’) for text-conditioned image gen- 
eration, which outperforms some mature image syn- 
thesis systems such as DALL-E. In more sophisti- 
cated synthesis systems, some "ne-tuning steps are 
implemented to further enable abstract prompt con- 
ditioning and improve the quality of generated im- 
ages. For example, Yang et al. [4. ] utilized language 
models to guide the text-to-image generation of dif- 
fusion models under complex prompts with multiple 
objects, attributes and relationships. The language 
model parses the prompts according to the objects 
and divides the image generation into subregions, 
which correspond to di!erent objects. Built upon 
a stable di!usion backbone model, Yang et al. [4. ] 
beat some state-of-the-art text-to-image generative 
models such as Stable Di!usion XL and DALL- 
E -. As another example, Black et al. [-& ] refor- 
mulated the discretized backward process ( & ) as a 
"nite-horizon Markov decision process (MDP). The 
state space represents images, the conditional score 
function is viewed as a policy and a reward func- 
tion is de"ned to measure the alignment of an im- 
age to its desired text prompt. Therefore, generat- 
ing prompt-aligned images amounts to optimizing 
reward by "nding an optimal policy. Black et al. [-& ] 
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Prompt alignment: a raccoon washing dishes

Aesthetic quality: lion

Figure 2. Conditional diffusion models generate images under various guidance. The 
upper row demonstrates an alignment with text description consisting of multiple ob- 
jects. The lower row demonstrates an abstract description of aesthetic quality. Repro- 
duced with permission from Black et al. [32 ]. 

proposed a policy gradient-based method for "ne- 
tuning pre-trained di!usion models. In Fig. & , we 
demonstrate a progressive improvement from left to 
right of "ne-tuning a conditional di!usion model us- 
ing the method in [-& ]. 

Conditional di!usion models are also a power- 
ful tool in image editing and restoration [() –(& ], 
as well as audio enhancement [(- ]; see also sur- 
veys [&4 ,&( ] and the references therein. To show- 
case the idea, we consider the image inpainting 
task as an example. The goal of inpainting is to 
predict missing pixels of an image. We denote the 
known region of an image by y and the original full 
image by x . Then inpainting boils down to sam- 
pling x from the conditional distribution P (x = 
full image | y = known region of the image ) . For 
a very basic image editing task, the input con- 
sists of a raw image and a text instruction, such 
as ‘replace the fruits with cakes in the image’. In 
this case, image editing seeks samples from the 
conditional distribution P (x = edited image | y = 
a raw image and an instruction ) . Here, the raw im- 
age can also represent an image prompt for more 
diverse editing task s. Brook s et al. [(1 ] adopted 
the classi"er-free guidance method again to train 
an image editing di!usion model from scratch on 
a massive synthetic data set. Training from scratch, 
however, often requires heavy computational re- 
sources. It is desired to maintain a pre-trained text- 
to-image di!usion model and e$ciently adapt it 
to editing tasks. Works in this direction include 
[( 4 –(6 ], w hich advocate the use of an external 
cross attention mechanism for aligning the gen- 
erated images with prompts. In all these applica- 
tions, conditional di!usion models are shown to 
be expressive and e!ective in modeling conditional 
distributions [1) ]. 

Control and reinforcement learning 
Apart from primary computer vision and audio 
tasks, di!usion models are actively deployed in rein- 
forcement learning (RL) and control problems with 
appealing performance. For example, the authors 
of [17 –&) ] utilized conditional di!usion models to 
parameterize control/RL policies in highly compli- 
cated tasks, e.g. robot control and human behavior 
imitation. An extended review of the connection be- 
tween di!usion models and RL can be found in [1. ]. 
In RL/control problems, a policy is a conditional 
probabilistic distribution on the action space given 
the state of an underlying dynamical system. Accord- 
ingly, when using di!usion models to parameterize 
policies, the goal is to learn a distribution P (a = 
action | y = system states ) . Pearce et al. [17 ] and 
Hansen-Estruch et al. [1, ] focused on the imitation 
learning scenario, where the goal is to mimic the be- 
haviors of an expert. The data set contains expert 
demonstrations denoted by (yi , ai ) pairs. Here yi is 
the state of the system and ai is the expert’s cho- 
sen action. Analogous to text-to-image synthesis, we 
train a conditional score network using the data set to 
capture the dependency between states and actions. 
During inference, given a new system state, we use 
the learned conditional di!usion model to generate 
plausible actions. 

Di!usion models also embody a new realm for 
algorithm design in control and RL problems by 
v iew ing sequential decision making as generative 
sequence modeling. In a typical task of reward- 
maximization planning in RL, the goal is to "nd 
an optimal policy that achieves large accumulative 
rewards. Conventional methods rely on iteratively 
solving for the Bellman optimality to obtain a cor- 
responding policy. Generative sequence modeling, 
however, directly produces state-action trajecto- 
ries of large rewards, avoiding explicitly solving 
for Bellman optimality. In other words, generative 
sequence modeling directly samples from the condi- 
tional distribution P (τ = state-action trajectory | 
τ attains large reward ) . Early success was demon- 
strated with transformer generative models [(7 ]. 
Later, conditional di!usion models were deployed 
with state-of-the-art performance. Namely, Di!user 
[(, ] generates state-action trajectories conditioned 
on high reward as guidance via conditional di!usion 
models. Decision Di!user [(. ] presents conditional 
trajectory generation, taking reward, constraints or 
ski l ls as guidance and enhances Di!user’s perfor- 
mance. For instance, given a pre-collected data set 
consisting of (τi , yi ) , where τi is the state-action 
trajectory and yi is the accumulative reward of τi . 
We use a conditional di!usion model to model the 
conditional distribution P (τ | y ) , by estimating the 
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Figure 3. Decision Diffuser and AdaptDiffuser in [59 ] and [61 ], respectively. Deci- 
sion diffuser is trained on of!ine-labeled trajectories and is capable of generating 
new trajectories conditioned on desired reward values, or skills. AdaptDiffuser intro- 
duces a self-evolution loop utilizing selected high-quality trajectories from a trainable 
discriminator. 

conditional score function. After training, we spec- 
ify a proper target reward value and deploy the 
conditional di!usion model to generate sample 
trajectories. A policy can then be extracted from 
the generated trajectories via an inverse dynamics 
model [6) ]. See the working #ow of Decision 
Di!user in Fig. - . AdaptDi!user [61 ] further intro- 
duces a discriminator for "ne-tuning the di!usion 
model, allowing self-evolution and adaptation to 
out-of-distribution tasks. 
Life-science applications 
In life-science applications, conditional di!u- 
sion models are making ever profound impacts 
[&1 –&- ]. See also survey [&6 ] on applications of 
di!usion models in bioinformatics. These results 
cover diverse tasks, including single-cell image 
analysis, protein design and generation, drug design, 
small molecule generation, etc. The performance 
surpasses many of their predecessors using autore- 
gressive, VAE or GAN-type deep generative models 
[6& ]. 

To demonstrate the use of conditional di!usion 
models, we take protein design as an example. Pro- 
tein design can be posed as a problem of "nding a 
sequence w of a certain length, where each coordi- 
nate of the sequence represents the structural infor- 
mation of the protein. A protein is only useful if it 
can be expressed in living cells. A widely adopted 
metric of usefulness is the likelihood of a protein 
sequence being a natural one [6- ]. In addition, the 
binding a$nity and aggregation tendency are also 
vital properties of the protein structure. Combined 
with the usefulness metric, all these properties can 
be summarized by a vector-valued function f (w) . In 
this sense, conditional di!usion models actually gen- 
erate protein sequences w following a conditional 
distribution P (w | f (w) ∈ E ) , where E is a set de- 
scribing plausible protein structures. The training 
of conditional di!usion models for protein genera- 

tion is analogous to text-to-image di!usion models, 
based on a training data set containing diverse pro- 
tein structures with measured properties. In the in- 
ference stage, we can "rst sample one con"guration 
from E and, conditioned on the con"guration, we 
generate new proteins. 
Black-box optimization 
In control, RL and life-science applications, various 
guidance may be summarized as an abstract reward 
function V (·) . Then the goal is to generate new 
samples from a conditional distribution, aiming to 
optimize the reward. Consequently, conditional dif- 
fusion models act as an optimizer that generates op- 
timal solutions. 

We revisit the example of o/ine reward- 
maximization planning in RL. Recall that our data 
set comprises state-action trajectories τi and the 
associated accumulative rewards yi = V (τi ) + εi , 
where εi is an independent observation noise. 
Reward-maximization planning essentially seeks 
solutions to the black-box optimization problem 

arg max τV (τ ) . (7) 
In this setting, we are prohibited from interacting 
with the target function V beyond the given data set 
[64 ]. Early existing works utilize GANs for optimal 
solution generation [6( ], yet su!er from training in- 
stability and mode collapse issues. Recently, Krish- 
namoorthy et al. [66 ] empirically presented superior 
performance of generating high-quality solutions us- 
ing conditional di!usion models. The idea is to 
transform the black-box optimization problem into 
a conditional sampling problem. In particular, given 
a proper target value a , conditional di!usion models 
generate solutions from the conditional distribution 
P (τ | V (τ ) = a ) . The subtlety stems from how to 
properly choose the target value a to ensure the high 
quality of the generated solutions. Roughly speaking, 
we are motivated to choose a large a so that the gen- 
erated solutions achieve large rewards. However, if 
we choose a too large compared to the given data 
set, signi"cant extrapolation is required to generate 
corresponding solutions, leading to potential qual- 
ity degradation. Consequently, a proper choice on 
a heavily depends on the coverage of the collected 
data set. Li et al. [67 ] provided theoretical guide- 
lines on how to choose a to ensure good generated 
solutions. Empirically, Krishnamoorthy et al. [66 ] 
proposed several methods to encourage large-reward 
solutions during the training of the conditional di!u- 
sion model, such as sample reweighting—assigning 
large weights to samples with large rewards. 
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CHALLENGES AND UNDERSTANDING OF 
UNCONDITIONAL DIFFUSION MODELS 
This section discusses unprecedented challenges of 
di!usion models and reviews recent progress in their 
theoretical understanding. We recall that the score 
function is the key to implement a di!usion model. 
From a theoretical perspective, the performance of 
di!usion models is intimately tied to whether or not 
the score function can be learned accurately. For a 
systematic treatment, we "rst introduce methods for 
learning the score and then dive into their theoret- 
ical insights. Speci"cally, we discuss how to prop- 
erly choose neural networks for learning the score 
function, based on the universal and adaptive ap- 
proximation capability of neural networks. More im- 
portantly, we demonstrate structural properties in 
the score function induced by data distribution as- 
sumptions, e.g. low-dimensional support and graph- 
ical models. Then we provide statistical sample com- 
plexities for estimating the score using the chosen 
neural networks. We are particularly interested in un- 
derstanding how score estimation circumvents the 
curse of dimensionality issues in high-dimensional 
settings. Lastly, we study statistical rates for estimat- 
ing the data distribution. 
Learning score functions 
We consider the goal of learning the score function 
∇ log pt (xt ) using neural networks. A naïve objec- 
tive function is the weighted quadratic loss 
min 
s ∈S 

∫ T 
0 w(t ) E 

xt ∼Pt [‖∇ log pt (xt ) − s (xt , t ) ‖2 2 ] d t , 
(,) 

where w(t ) is a weighting function and S is a con- 
cept class (deep neural networks). However, such 
an objective function is not computable using sam- 
ples, since the score function ∇ log pt is unknown. 
As shown in the seminal works [6, ,6. ], rather than 
minimizing integral ( , ), we can minimize an equiva- 
lent objective function, 

min 
s ∈S 

∫ T 
0 w(t ) Ex0 ∼Pdata { Ext ∼N (α(t ) x0 ,h (t ) ID ) 

[ ‖∇xt log φt (xt | x0 ) − s (xt , t ) ‖2 2 ] } d t . 
(.) 

Here, φt (xt | x0 ) denotes the Gaussian transition 
kernel of the forward process, so that ∇ log φt admits 

an analytical form 
∇xt log φt (xt | x0 ) = −xt − α(t ) x0 

h (t ) . (1)) 
By this analytical expression, we could approxi- 
mate objective ( . ) using "nite samples. Note that 
∇xt log φt (xt | x0 ) is the noise added to x0 at time 
t . Therefore, ( . ) is also known as the denoising 
score matching. Denoising score matching can also 
be derived using a variational perspective, reproduc- 
ing the evidence lower bound for regularized data 
negative likelihood minimization. See the online
supplementary material for details. 
Score blowup and early stopping 
One challenge of optimizing ( . ) is the score blowup 
issue. To demonstrate the phenomenon, we con- 
sider a data distribution that lies in a linear subspace, 
where x = Az for a representation matrix A ∈ RD +d 
and a latent variable z ∈ Rd . Here D represents the 
ambient dimension of data and d is the intrinsic di- 
mension, which is often much smaller than D . As 
shown in [4) ], the ground truth score ∇ log pt (x ) 
assumes the orthogonal decomposition 

∇ log pt (x ) = A ∇ log pld t (A, x ) 
+ 1 

1 − e−t (I − AA, ) x 
︸ ︷︷ ︸ 

(T ) 
, (11) 

where pld t is the marginal density function of apply- 
ing the forward di!usion process ( 1 ) on the latent 
variable z . As can be seen, the term (T ) is orthogonal 
to the subspace spanned by matrix A . More impor- 
tantly, as t approaches ), the magnitude of (T ) grows 
to in"nity as long as x - = 0 . The reason behind this is 
that (T ) enforces the orthogonal component to van- 
ish so that the low-dimensional subspace structure is 
reproduced in generated samples. Such a blowup is- 
sue appears in all geometric data [71 ]. As a conse- 
quence, an early stopping time t0 > 0 is introduced 
and the score estimation loss is written as 

min 
s ∈S 

∫ T 
t0 w(t ) Ex0 ∼Pdata { Ext ∼N (α(t ) x0 ,h (t ) ID ) 

[ ‖∇xt log φt (xt | x0 ) − s (xt , t ) ‖2 2 ] } d t . 
(1&) 

For practical implementation, we approximate ( 1& ) 
by its empirical version. Speci"cally, given n inde- 
pendent and identically distributed data points xi ∼
Pdata for i = 1 , . . . , n , we sample xt given x0 = xi 
from the Gaussian distribution N (α(t ) xi , h (t ) ID ) . 
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Figure 4. U-Net architecture for 32 + 32 resolution RGB images. When generating new samples using a discretized backward 
process, diffusion models utilize U-Net at each discretization step for transforming samples. The image sample together with 
a time embedding is "rst compressed into a low-dimensional representation and then lifted back to the original dimension. 
Reproduced with permission from Ronneberger et al. [70 ]. Copyright 2015 Springer. 
We also sample time t from the interval [ t0 , T ] to ap- 
proximate the integration with respect to t . 
Algorithmic implementation to tackle score blowup. 
While introducing an early stopping time t0 is intu- 
itive and simple, its empirical performance appears 
to be sensitive to t0 . When t0 is small, it is reported 
that the magnitude of the integrand corresponding 
to di!erent times t > t0 in ( 1& ) can sti l l be poorly 
balanced (Fig. 1a in ref [7- ]). When t0 is large how- 
ever the generated samples wi l l heavi ly lose "delity. 
This leads to a di$culty in properly determining 
the early stopping time t0 . Some recommended 
methods to mitigate the issue include using (1) an 
exponential moving average on the trainable param- 
eters for small t [4( ,7& ,7- ]; (&) the soft truncation 
method in [7& ] where the early stopping time t0 is 
randomly sampled from a distribution supported 
on [ τ, T ] for a su$ciently small τ > 0 , that is, the 
score estimation loss becomes 

min 
s ∈S Et0 

[ ∫ T 
t0 Ex0 ∼Pdata { Ext ∼N (α(t ) x0 ,h (t ) ID ) 

[ ‖∇xt log φt (xt | x0 ) − s (xt , t ) ‖2 2 ] } d t
]
, 
(1-) 

where the population expectations wi l l again 
be approximated by empirical samples for 
implementation. 
Practical choice on network class S . While in the- 
ory class S can be any expressive network, a com- 
mon practical choice of the network class S is U- 
Net [7) ] as demonstrated in Fig. 4 . The network 
architecture utilizes convolution layers and short- 
cut connections. In the network, an input is "rst 
compressed into a low-dimensional representation 
and then gradually lifted back to the original dimen- 
sion. This encoder-decoder-type structure aims to 
extract intrinsic structures in data and leads to e$- 
cient learning. Instead of U-Net, using a transformer- 
based score network has demonstrated outstanding 
performance [74 ] which excels in capturing spatial- 
temporal dependencies in data. 
Score approximation and estimation 
The choice of concept class S is vital to learning 
the score function as in ( 1& ). There are two require- 
ments on S: (1) class S should be rich enough to 
well approximate the ground truth score function, 
i.e. there exists a candidate in S close to ∇ log pt ; 
(&) class S should not be overly complicated to 
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obscure the learning process with "nite training sam- 
ples. These are challenging requirements to satisfy, 
as di!usion models dynamically corrupt and denoise 
data, introducing a complicated time t dependence. 
We present novel theoretical insights into both re- 
quirements, and address (1) from a function approx- 
imation perspective and (&) from a statistical learn- 
ing perspective. 
Score approximation guarantees 
The question underscoring score approximation is 
what score network size and architecture ensures 
the existence of an ε-error approximation to the 
score function. Here ε > 0 is the desired error level 
and often represents an L2 distance measure. Such 
a question is reminiscent of the universal and adap- 
tive function approximation ability of neural net- 
works (see the online supplementary material for 
further details). However, we highlight some fun- 
damental di!erences between the score approxi- 
mation and conventional function approximation. 
Firstly, the score function is de"ned on all of the 
high-dimensional Euclidean space, due to the added 
Gaussian noise, while conventional neural network 
approximation theory focuses on compact domains. 
Secondly, the score function depends on an addi- 
tional time dimension, which complicates its approx- 
imation. 

Concurrent works [-. ] and [4) ] tackle the chal- 
lenges via very di!erent approaches and develop 
score approximation theories for Euclidean data and 
low-dimensional linear subspace data. Oko et al. [-. ] 
rewrote the score function as ∇ log pt = ∇ pt 

pt and 
used neural networks to approximate pt and ∇ pt 
separately. To address the time dependency Oko 
et al. [-. ] proposed a series of ‘di!used basis func- 
tions’. More formally di!used basis functions are 
convolutions of the Gaussian transition kernel in the 
forward process ( 1 ) with time-independent poly- 
nomials, such as Taylor polynomials and B-splines. 
The idea behind the di!used basis functions can be 
understood as tracking the evolution of pt with re- 
spect to time t . Indeed, once we can approximate 
the density of the clean data distribution Pdata with 
time-independent polynomials, the corresponding 
di!used polynomials automatically approximate the 
density pt for all t . 

On the other hand, Chen et al. [4) ] resorted 
to a local Taylor approximation of the score func- 
tion using neural networks. In this case the score 
function ∇ log pt is viewed as a multi-dimensional 
input-output mapping of certain regularity. Build- 
ing upon the existing universal approximation the- 
ories of neural networks, Chen et al. [4) ] devised a 
score approximation result. More interestingly Chen 
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−h−1(t)

h−1(t)
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x D d d D
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V

Figure 5. Simpli"ed U-Net architecture for approximating 
score functions in the low-dimensional subspace data set- 
ting. Matrix V represents the linear encoder and decoder, 
which is to be jointly learned with parameter θ during the 
optimization of loss ( 12 ). Here fθ is a network with input and 
output dimensions being the subspace dimension. sV,θ (x , t ) 
is the score network parameterized by V and θ . Reproduced 
with permission from Chen et al. [40 ]. 
et al. [4) ] considered low-dimensional linear sub- 
space data and showed that the ground truth score 
∇ log pt decomposes into two terms as in ( 11 ). In 
this regard a simpli"ed U-Net architecture (Fig. ( ) 
with linear encoder and decoder is constructed for 
e$cient score approximation, indicating that the 
data subspace structures circumvent dependence on 
the data ambient dimension. 

In deriving the approximation guarantees Oko 
et al. [-. ] and Chen et al. [4) ] leveraged sophisti- 
cated input truncation to deal with the unbounded 
domain. The approximation error is in turn mea- 
sured in the L2 -norm sense instead of the commonly 
used L∞ norm. In order to achieve an ε approxima- 
tion error, the network size scales as ˜ O (ε−γ ) , where 
γ is data dimension dependent. We emphasize that, 
when there exists low-dimensional subspace struc- 
tures in data, γ depends only on the subspace di- 
mension. A recent work [7( ] also provides ambi- 
ent dimension-free score approximation guarantees 
when the ratio of the data density function to the 
standard Gaussian is well controlled. 
Sample complexity of score estimation 
We turn to understanding how many samples are 
needed to learn a score estimator by optimizing ( 1& ). 
The learned estimator should generalize in the sense 
that its deviation to the ground truth score is small. 
This requires not only a good score network class S , 
but also learnability within S , which is characterized 
by some complexity measure of S . 

An early work [-- ] provides a sample complex- 
ity bound for score estimation. However the bound 
depends on some unknown Rademacher complex- 
ity of the score network class. Koehler et al. [76 ] 
connected the e$ciency of score estimation to the 
isoperimetry properties of the underlying data dis- 
tribution. Using score approximation theory Oko 
et al. [-. ] and Chen et al. [4) ] established score 
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estimation theories from the nonparametric statis- 
tics point of view. Oko et al. [-. ] assumed that the 
clean data distribution is supported on a unit cube 
with a Besov continuous density. In order to obtain 
an ε-accurate score estimator in the L2 norm the 
sample size grows as ˜ O (ε− (D +2 β) 

β ) , where D is the 
data dimension and β is the smoothness index of the 
density. As can be seen, the sample complexity indi- 
cates the curse of dimensionality, and Oko et al. [-. ] 
reduced the dependence on D when the data have 
a known linear subspace structure. In the indepen- 
dent study Chen et al. [4) ] focused on linear sub- 
space data without knowing the subspace in advance. 
Under the assumptions that the data have a Gaussian 
tail and the score is Lipschitz Chen et al. [4) ] es- 
tablished an ˜ O (ε−(d+5) ) sample complexity where 
d is the subspace dimension. While free of the curse 
of dimensionality, Chen et al. [4) ] also proved that 
the unknown subspace can be automatically esti- 
mated via score estimation. Turning to a kernel- 
based approach the authors of [77 –7. ] established 
optimal statistical score estimation rates built upon 
kernel methods. The obtained sample complexity is 
˜ O (ε−(d+4) ) for Lipschitz score functions. 
Optimization guarantees on score estimation. On the al- 
gorithmic side we are aware of Shah et al. [,) ] who 
studied score estimation in Gaussian mixture mod- 
els. They provided convergence analysis of using gra- 
dient descent to minimize the score estimation loss 
( 1& ). The algorithmic behavior can be characterized 
in two phases: the large-noise phase, i.e. large time 
t in ( 1& ), where gradient descent is analogous to 
power iteration; and the small-noise phase, i.e. small 
t , where gradient descent is akin to the EM algo- 
rithm. Besides, Han et al. [,1 ] studied the optimiza- 
tion guarantee of using two-layer neural networks for 
score estimation. 
Score estimation in graphical models 
Besides considering data distributions in continuous 
spaces such as Euclidean space and linear subspace, 
Mei and Wu [41 ] studied score approximation and 
estimation in graphical models. Graphical models 
such as Markov random "elds and restricted Boltz- 
mann machines have been widely used for model- 
ing image distributions in the literature [,& ,,- ] yet 
they are fundamentally di!erent from distributions 
on continuous variables. Mei and Wu [41 ] proposed 
a novel approach for controlling the sample complex- 
ity of score estimation in high dimensions. In partic- 
ular they viewed neural networks in di!usion models 
as a denoising algorithm, enabling an e$cient score 
approximation. 

Speci"cally, Mei and Wu [41 ] assumed that the 
data distribution follows an Ising model. Under 

certain high-temperature conditions the score func- 
tion s (xt t ) can be approximately computed by 
variational inference algorithms such as message 
passing [,4 ,,( ]. Each step of the message-passing 
algorithm comprises simple operations, including 
matrix-vector multiplication and pointwise nonlin- 
earity, which could be e$ciently approximated by 
one block of the residual network. This renders an 
e$cient approximation of Ising model score func- 
tions using a residual network with O(D2 L ) pa- 
rameters, where L is the number of neural network 
layers, allowing a moderate dependence on the prob- 
lem size. Incorporating a standard Rademacher com- 
plexity generalization error bound, Mei and Wu [41 ] 
provided an estimation error bound without the ex- 
ponential dependence on dimensionality. 

Follow-up work by Mei [,6 ] extended such anal- 
ysis to generative hierarchical models. Mei showed 
that U-Net [7) ] could e$ciently approximate the 
belief-propagation denoising algorithm for such 
models and thus that score functions could be 
learned e$ciently by U-Nets. 
Sampling and distribution estimation 
Our ultimate goal of di!usion models is to learn the 
data distribution and provide easy access to generat- 
ing new samples. This subsection "rst reviews sam- 
pling theories of di!usion models via the backward 
process ( - ), with a basic assumption on the accu- 
racy of the estimated score function ̂  s . Next, we move 
to an end-to-end analysis of di!usion models, by 
presenting sample complexity bounds for learning 
distributions. 
Sampling theory 
Several recent sampling theories of di!usion mod- 
els prove that the distribution generated by the back- 
ward process is close to the data distribution, as 
long as the score function is accurately estimated. 
The central contribution is a relationship between 
εdis and εscore , where εdis is a discrepancy between 
the sampled data distribution and the ground truth 
distribution, and εscore is the score estimation er- 
ror. Speci"cally, De Bortoli et al. [,7 ] and Albergo 
et al. [,, ] established upper bounds on εdis using 
εscore for di!usion Schrödinger bridges. The error 
εdis is measured in the total variation distance and 
εscore is measured in the L∞ norm. More concrete 
bounds of εdis are provided in [-- –-6 ,-, ]. These 
works specialize εscore to be the L2 error of the es- 
timated score function and εdis to be the total vari- 
ation distance between the generated distribution 
and the data distribution. Lee et al. [-4 ] required the 
data distribution to satisfy a log-Sobolev inequality. 
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Concurrent works [-( ] and [-6 ] relaxed the log- 
Sobolev assumption on the data distribution to only 
having bounded moments. The upper bound in [-( ] 
takes the form 

εdis = ˜ O (√ 
T εscore + discretization error 

+ forward error ) . (14) 
Here T is the terminal time in the forward process. 
The discretization error depends on the regularity 
of the data distribution and the step size in the dis- 
cretized backward process. The forward error quan- 
ti"es the divergence between PT and P∞ = N (0 ID ) , 
since the forward process is terminated at a "nite 
time T . It is worth mentioning that Lee et al. [-6 ] 
allowed εscore to be time dependent and Benton 
et al. [-, ] improved the data dimension dependency. 
The recent works [-7 ,-, ,,. –.1 ] have largely en- 
riched the study of sampling theory using di!usion 
models. Speci"cally novel analyses based on Taylor 
expansions of the discretized backward process [.1 ] 
or localization method [-, ] have been developed 
which improve the upper bound on εdis . Further- 
more, Chen et al. [,. ] considered the DDIM sam- 
pling scheme and Chen et al. [-7 ] considered proba- 
bilistic ODE backward sampling. 

Besides Euclidean data De Bortoli [.& ] made the 
"rst attempt to analyze di!usion models for learning 
low-dimensional manifold data. Assuming that εscore 
is small under the L∞ norm (extension to the L2 
norm is also provided) De Bortoli [.& ] bounded 
εdis of di!usion models in terms of the Wasserstein 
distance. The obtained bound has an exponential 
dependence on the diameter of the data manifold. 
Moreover Montanari and Wu [.- ] considered using 
di!usion processes to sample from noisy observa- 
tions of symmetric spiked models and El Alaoui 
et al. [.4 ] studied polynomial-time algorithms 
for sampling from Gibbs distributions based on 
di!usion processes. The construction of di!usion 
processes in [.- ,.4 ] leverages the idea of stochastic 
localization. See a brief introduction to stochastic lo- 
calization in the online supplementary material
whose connection to di!usion models is 
presented in the subsection entitled ‘Alternative 
formulation: stochastic localization’ below. Be- 
sides concurrent works [.( ,.6 ] study learning and 
sampling from Gaussian mixture models through 
di!usion-based methods. They provide algorithms 
that enjoy a polynomial runtime and rely on a 
polynomial number of samples. 

It is worth mentioning that concurrent works 
[.( ,.6 ] study sampling from Gaussian mixture mod- 
els through di!usion-based methods. They provide 
algorithms to sample from Gaussian mixtures with 

bounded component means and well-conditioned 
covariance matrices which go beyond the conven- 
tional assumptions on component separation condi- 
tions. Their proposed algorithms run in polynomial 
time and require a polynomial number of samples. 
Computational e!ciency of sampling through di"u- 
sion models. Sampling from certain high-dimensional 
distributions can be computationally challenging. 
For instance, El Alaoui et al. [.7 ] demonstrated 
the hardness of sampling from the low-temperature 
Sherrington–Kirkpatrick model using any stable al- 
gorithm. An intriguing line of inquiry would be to 
understand the computational complexity of sam- 
pling through di!usion models and its connection to 
the complexity of sampling via Langevin dynamics. 

Using heuristic physics methods Ghio et al. [., ] 
investigated the relationship between the computa- 
tional complexity of sampling through Langevin dy- 
namics and di!usion models in high-dimensional 
distributions widely studied in the statistical physics 
of disordered systems. By utilizing the hardness 
of computing the score function as a proxy for 
the hardness of sampling with di!usion models 
Ghio et al. [., ] generated phase diagrams of the 
computational complexity for sampling from high- 
dimensional models and identi"ed parameter re- 
gions where di!usion models are not e$cient but 
Langevin dynamics are; conversely, they also identi- 
"ed regions where the Langevin dynamics are ine$- 
cient, yet di!usion models perform well. 
Sample complexity of distribution estimation 
Distribution estimation theory of di!usion models 
is explored in [.. ,1)) ] from an asymptotic statistics 
point of view. These results do not provide an ex- 
plicit sample complexity bound. On the other hand 
given the aforementioned sampling theory and score 
estimation theory we are able to develop an end-to- 
end analysis of di!usion models [-. ,4) ,4& ], as well 
as demonstrate their e$ciency. In particular, sup- 
pose that the data distribution Pdata is supported on 
a cube [ −1 , 1]D with a density function of smooth- 
ness index s . Under some conditions in [-. ] di!u- 
sion models can learn a distribution ˆ P satisfying 

dTV ( ˆ P , Pdata ) = ˜ O (n− s 
(2 s + D ) ) , (1() 

where dTV is the total variation distance. From ( 1( ), 
we conclude that if the density function has a higher 
smoothness s , the distribution estimation is more 
e$cient. Moreover, ( 1( ) matches the minimax op- 
timal rate of distribution estimation in Euclidean 
spaces, indicating that di!usion models are powerful 
and e$cient distribution estimators. 
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We observe from ( 1( ) a curse of dimensionality 
issue, where the data dimension D appears in the ex- 
ponent. Chen et al. [4) ] and Tang and Yang [4& ] 
showed that di!usion models are able to circum- 
vent the curse of dimensionality whenever data have 
intrinsic low-dimensional structures. For example, 
suppose that the data distribution is supported on a 
d-dimensional subspace, i.e. data x = Az with an un- 
known matrix A ∈ RD +d of orthonormal columns. 
We recall that d is the intrinsic dimension and much 
smaller than D . Specializing the smoothness index 
s = 1 and under some conditions in [4) ] di!usion 
models can estimate the subspace and learn a distri- 
bution ˆ Psub in the subspace satisfying 

dTV ( ˆ Psub , ˜ Pdata ) = ˜ O (n− 1 
(d+5) ) , (16) 

where ˜ Pdata is a slightly perturbed data distribution. 
Beyond the subspace data, Tang and Yang [4& ] 
considered the data distribution supported on an 
unknown smooth low-dimensional manifold and 
obtained adaptive convergence rates depending 
only on the manifold dimension. These results 
unveil the adaptivity of di!usion models and 
provide valuable insights into why di!usion mod- 
els yield startling practical performance since 
real-world high-dimensional data often have rich 
low-dimensional geometric structures and di!usion 
models are e$cient in capturing these structures for 
e$cient learning. 

Building upon previous results, Jiao 
et al. [1)1 ,1)& ] extended the statistical conver- 
gence analysis to latent di!usion models and #ow 
models. They considered a pre-trained VAE for 
dimension reduction and then trained a di!usion 
model on the low-dimensional embedding space 
de"ned by the VAE. As a result, the sample com- 
plexities of latent di!usion models are also free of 
the curse of data ambient dimensionality. 
Alternative formulation: stochastic 
localization 
We connect di!usion models to stochastic localiza- 
tion, a measure-valued stochastic process that has 
been successfully generalized as a sampling algo- 
rithm with provable sampling error bounds. Stochas- 
tic localization provides #exible formulations and 
rich analytical tools for a deeper exploration of 
di!usion models. We refer readers to the online
supplementary material for a n exte nded in troduc- 
tion. The connections between stochastic localiza- 
tion and the denoising di!usion probabilistic mod- 
els (DDPMs) are demonstrated in [1)- ]. 

We introduce the simplest stochastic localization 
process following the presentation in [1)- ]. Given 
the measure Pdata the stochastic localization process 
is a stochastic di!erential equation de"ned as 
d Yt = mt (Yt ) d t + d Wt for t ∈ [0 , ∞ ) , Y0 = 0 , 

(17) 
where mt (y ) = E(x,g) ∼Pdata ⊗N (0 ,ID ) [ x | tx + √ 

t g = 
y ] is the posterior expectation of Yt upon observing 
y = tx + √ 

t g. Standard theory implies that the 
marginal distribution of Yt satis"es Yt d = tx + √ 

t g, 
where (x, g) ∼ Pdata ⊗ N (0 , ID ) . Consequently, 
lim t→∞ Yt /t converges to a random variable follow- 
ing distribution Pdata . In generative modeling tasks, 
one could "t the posterior expectation mt (y ) using 
neural networks and training samples, and discretize 
the SDE as in ( 17 ), similar to DDPMs. 

In sampling tasks with distribution Pdata being 
spin-glass models and the posterior of spiked matrix 
models, the posterior expectation mt can be approx- 
imately computed using variational inference algo- 
rithms in the high-temperature regime, enabling ef- 
"cient sampling from these distributions. 

A "rm connection between stochastic localiza- 
tion to DDPMs is shown in [1)- ]: the stochastic 
localization process { Yt }t≥0 as in ( 17 ) is equivalent 
to the backward SDE of the di!usion model ( & ) 
up to time and scale reparametrizations. Montanari 
[1)- ] further generalized the stochastic localization 
scheme to general stochastic processes. We also re- 
fer readers to the online supplementary material for 
physics-style analyses of di!usion models. 
CHALLENGES AND UNDERSTANDING OF 
CONDITIONAL DIFFUSION MODELS 
Although conditional di!usion models share many 
characteristics with their unconditional counter- 
parts their unique reliance on guidance requires new 
understanding and insights. As a result principled 
understanding on conditional di!usion models is 
highly limited, even though empirical heuristics are 
abundant. 

In this section, we mimic the study of uncondi- 
tional di!usion models, but put an extra emphasis 
on distinct uses and methods of conditional di!u- 
sion models. We "rst introduce training methods of 
conditional di!usion models, which boils down to 
estimating the conditional score function. Interest- 
ingly, the conditional score function can be related to 
the unconditional score function, motivating a "ne- 
tuning perspective for training conditional di!usion 
models. Next, we present conditional score estima- 
tion and distribution estimation theories. The last 
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section is devoted to insights into the (mysterious) 
in#uence of di!usion guidance in Gaussian mixture 
models, where we both theoretically and experimen- 
tally corroborate common observations and reveal 
curious new discoveries. 
Learning the conditional score 
For conditional sample generation via ( ( ), the condi- 
tional score function ∇ log pt (x | y ) needs to be esti- 
mated. We slightly abuse the notation to denote s as a 
conditional score network and S as the correspond- 
ing network class. By introducing an early stopping 
time t0 , a conceptual quadratic loss for conditional 
score estimation is de"ned as 
min 
s ∈S 

∫ T 
t0 E 

xt ,y [ ‖∇ log pt (xt | y ) − s (xt , y, t ) ‖2 2 ] d t . 
(1,) 

Compared to ( , ), we omit the time-dependent 
weighting function w(t ) for simplicity. Inspired by 
[6, ,6. ], Proposition -.1 of [67 ] asserts the equiva- 
lence of ( 1, ) to the implementable loss function 

min 
s ∈S 

∫ T 
t0 E(x0 y ) { Ext ∼N (α(t ) x0 h (t ) ID ) 

[ ‖∇xt log φt (xt | x0 ) − s (xt , y, t ) ‖2 2 ] } d t, 
(1.) 

which shares the same spirit as ( - ). 
Classi!er and classi!er-free guidance 
Practical implementations of conditional score 
estimation, such as classi"er and classi"er-free 
guidance methods, build upon ( 1. ) for reduced 
computational cost or better performance [47 ,1)4 ]. 
We begin with the classi"er guidance method [1)4 ] 
which is arguably the "rst method to allow con- 
ditional generation in di!usion models similar to 
GANs or #ow models [1)( ,1)6 ]. Speci"cally when 
conditional information y is discrete, e.g. image 
categories, the conditional score ∇ log pt (xt | y ) is 
rewritten via Bayes’ rule as 
∇ log pt (xt | y ) = ∇ log pt (xt ) + ∇ log ct (y | xt ) , 

(&)) 
where ct is the likelihood function of an external clas- 
si"er. In other words, classi"er guidance combines 
the unconditional score function with the gradient 
of an external classi"er. The external classi"er is 
trained using the di!used data points in the forward 
process. As a result, the performance of classi"er 
guidance methods is sometimes limited, since it is 

di$cult to train the external classi"er with highly 
corrupted data. 

Later, classi"er-free guidance proposes to remove 
the external classi"er, circumventing the limitation 
caused by classi"er training. The idea of classi"er- 
free guidance is to introduce a mask signal to ran- 
domly ignore y and unify the learning of condi- 
tional and unconditional scores. Speci"cally, let τ ∈ 
{∅ , id } be a mask signal, where ∅ means to ignore 
the conditional information y and id to keep y with 
id y = y . For τ = ∅ , we have 

∫ T 
t0 E(x0 ,y ) { Ext ∼N (α(t ) x0 ,h (t ) ID ) 

[ ‖ s (xt , t ) − ∇xt log φt (xt | x0 ) ‖2 2 ] } d t 
and, for τ = id , we have 

∫ T 
t0 E(x0 ,y ) { Ext ∼N (α(t ) x0 ,h (t ) ID ) [ ‖ s (xt , y, t ) 

−∇xt log φt (xt | x0 ) ‖2 2 ] } d t . 
(&1) 

Note that ( &1 ) coincides with ( 1. ), and recall that t0 
is an early stopping time. Combining the two cases, 
the classi"er-free guidance method minimizes the 
loss function 

min 
s ∈S 

∫ T 
t0 E(x0 ,y ) { Eτ∼Pτ ,xt ∼N (α(t ) x0 ,h (t ) ID ) 

[ ‖ s (xt , τ y, t ) − ∇xt log φt (xt | x0 ) ‖2 2 ] } d t, 
(&&) 

where s (xt , τ y, t ) denotes a uni"ed score net- 
work, i.e. s (xt , τ y, t ) = s (xt , t ) when τ = ∅ and 
s (xt , τ y, t ) = s (xt , y, t ) when τ = id . Here τ is 
randomly chosen among ∅ and id following distri- 
bution Pτ . The simplistic choice on Pτ is a uniform 
distribution on {∅ , id } , while it is preferred to bias 
towards setting τ = id more often in some applica- 
tions [47 ]. 
Modulating guidance strength in practice. Once the es- 
timator ̂  s is learned from ( && ) we compute 

˜ s (x, y, t ) = (1 + η) · ˆ s (x, y, t ) − η · ˆ s (x, t ) 
(&-) 

with some η > 0 for substitution into the backward 
process. From a theoretical point of view, choosing 
η > 0 is counter-intuitive, as the resulting ˜ s does 
not correspond to the conditional score function 
∇ log pt (x | y ) . However, a properly chosen η leads 
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η = 1 η = 2 η = 10η = 0

Figure 6. The effect of guidance strength η on a three-component GMM in R2 [47 ,107 ]. 
Each component has weight 1 / 3 and identity covariance, and the component centers 
are (√ 

3 / 2 , 1 / 2) , (−√ 
3 / 2 , 1 / 2) and (0 , −1) . The leftmost panel displays the unguided 

density. We increase the guidance strength from left to right. When generating sam- 
ples, we use the ground truth score. Reproduced with permission from Wu et al. [107 ]. 

to improved performance on benchmarks in prac- 
tice. More interestingly, increasing η reduces the di- 
versity of the generated samples, but promotes dis- 
tinguishability of them [47 ]. Coe$cient η can also 
be chosen dependent of time t . Unfortunately a prin- 
cipled guidance on how to choose η is sti l l missing, 
but some theoretical insights into the impact of η
have been developed [1)7 ]. 
Adapting the unconditional score via guidance 
In real use cases the desired criteria or objectives of 
conditional sample generation may shift over time, 
which necessitates quick adaptation of conditional 
di!usion models. Although the classi"er-free guid- 
ance method has been adopted for training condi- 
tional di!usion models from scratch, it is not tailored 
for adapting or "ne-tuning di!usion models ow- 
ing to computational overhead. Consequently, this 
opens up new possibilities for theories and methods 
of "ne-tuning di!usion models without compromis- 
ing the pre-training performance. 

Recently, a line of work proposes using e$cient 
"ne-tuning methods when the quality of the gener- 
ated samples is measured by a scalar-valued reward 
function. See the online supplementary material for 
more information. For demonstration, to guide a 
pre-trained model for generating high-reward sam- 
ples, Clark et al. [-1 ] assumed the di!erentiability 
of the reward function and directly "ne-tuned pa- 
rameters in the di!usion model by back-propagation. 
Black et al. [-& ] and Fan et al. [1), ] formulated the 
sample generation process of di!usion models as a 
"nite-horizon Markov decision process. The score 
function is equivalent to a policy and allows for "ne- 
tuning using reinforcement learning techniques such 
as policy gradient methods. 

A more interesting and principled "ne-tuning 
method draws motivation from the classi"er guid- 
ance. We revisit Bayes’ rule for the conditional score 
function 

∇ log pt (xt | y ) 
= ∇ log pt (xt ) ︸ ︷︷ ︸ 

pre −trained score +∇ log ct (y | xt ) ︸ ︷︷ ︸ 
guidance (&4) 

where classi"er ct acts as guidance to adapting the 
pre-trained score. Despite classi"er guidance requir- 
ing a discrete label y (yet can be multi-dimensional), 
the decomposition in the last display has a profound 
impact on guidance-based "ne-tuning. Indeed, the 
authors of [(, ,1). ,11) ] extended guidance to arbi- 
trary conditioning by incorporating gradients of a 
proper scalar-valued function. For demonstration, 
Bansal et al. [1). ] de"ned the so-called ‘universal 
guidance’ in the form of ∇xt ) (y f (ˆ x0 )) , where f is 
a function measuring the quality of samples, ˆ x0 is 
the anticipated generated sample of the pre-trained 
di!usion model given current point xt in the back- 
ward process and ) is a loss function. Note that ˆ x0 
correlates with xt and the gradient is nontrivial. As 
a special ex ample, w hen y is the discrete label, f 
is the classi"cation likelihood and ) is the cross- 
entropy loss, universal guidance reproduces classi"er 
guidance. 

Conditional score and distribution 
estimation 
The theory of conditional score estimation and con- 
ditional distribution estimation is very limited. To 
the best of our knowledge, Li et al. [67 ] provided an 
initial study using ( 1. ) for conditional score estima- 
tion and distribution estimation. A systematic analy- 
sis of the classi"er-free guidance method is presented 
in [111 ] with results highlighted by approximation 
theories of conditional score functions and sample 
complexities of conditional score estimation and dis- 
tribution learning. In addition, Fu et al. [111 ] showed 
the utility of the developed statistical theory in elu- 
cidating the performance of conditional di!usion 
models for diverse applications including model- 
based transition kernel estimation in reinforcement 
learning solving inverse problems [11& ,11- ] and re- 
ward conditioned sample generation. 

The core contribution of [111 ] is the conditional 
score approximation theory which is motivated by 
the idea of di!used basis approximation in [-. ]. In 
more detail Fu et al. [111 ] substantially broadened 
the framework to unbounded data domains and con- 
ditional distributions. The authors rewrote the con- 
ditional score function as ∇ log pt (x | y ) = ∇ pt (x | y ) 

pt (x | y ) 
and approximated ∇ pt (x | y ) and pt (x | y ) sepa- 
rately. On a technical side the unbounded data do- 
main and the conditioning on y lead to new chal- 
lenges. More importantly, however, Fu et al. [111 ] 
lifted the technical conditions on data distributions 
in [-. ] and obtained optimal statistical rates with 
a mild bounded Hölder norm assumption. We re- 
mark that Fu et al. [111 ] takes the condition y as in- 
dependent input variables leaving an open direction 
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Figure 7. Illustration of a negative effect of large guidance strength. In this plot, the component means of the Gaussian 
mixture model are aligned on the same line. We increase the guidance strength η from left to right. The upper row uses a 
relatively large discretization step size in the backward process. With a large η, the center component splits into two clusters 
at an earlier stage. The bottom row uses a much smaller discretization step size; the center component then splits only with 
a much larger η. Reproduced with permission from Wu et al. [107 ]. 
to identify intrinsic smoothness with respect to y in 
the conditional distribution so as to improve the di- 
mension dependency. 
(Mysterious) Effects of the guidance 
strength 
We conclude the discussion on conditional di!usion 
models by pointing out a complicated in#uence of 
the strength of guidance on conditional sample gen- 
eration [1)7 ]. We refer back to ( &- ) and study the 
in#uence of η on the sample generation. The same 
strength parameter can be introduced into classi"er 
guidance as 

˜ s (xyt ) = ∇ log pt (xt ) + η∇ log ct (y | xt ) . (&() 
Hence, we wi l l not distinguish di!erent guidance 
methods, and term η as the strength of guidance. 

A common observation of the consequence 
yielded by η is best i l lustrated in Fig. 6 on a three- 
component Gaussian mixture model (GMM). Here, 
label y indicates the Gaussian components and x is 
a two-dimensional variable. When generating new 
samples, we "x a choice on y to obtain within- 
component samples. We observe that, with an in- 
creased guidance strength η, the generated condi- 

tional distribution shifts its probability mass further 
away from other components, and most of the mass 
becomes concentrated in smaller regions. 

The results in [1)7 ] theoretically characterize 
the in#uence of strength on di!usion models in 
the context of Gaussian mixture models. Under 
mild conditions Wu et al. [1)7 ] proved that in- 
corporating strong guidance not only boosts clas- 
si"cation con"dence but also diminishes distribu- 
tion diversity, leading to a reduction in the di!er- 
ential entropy of the generated conditional distri- 
bution. These theories align closely with empirical 
observations. 

On the other hand, Wu et al. [1)7 ] identi"ed a 
possible negative impact of large η under discretized 
backward sampling in Gaussian mixture models as 
depicted in Fig. 7 . There exists a phase shift as 
strength η increases. Under large η, the center com- 
ponent of the original Gaussian mixture model splits 
into two symmetric clusters, harming the modality 
of the original data. The emergence of this negative 
e!ect is tied to the locations of the components and 
the discretization step size in the backward sampling 
process. To the best of our knowledge, there are no 
principled methods for tuning the strength η in dif- 
ferent tasks, which might be encouraged by the ob- 
tained theoretical insights. 
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x∈arg max f *(x)

x ~ ( · | f*( · ) = fmax)

Conventional optimization:
high dimension, unknown objective, nonconvex

Conditional diffusion:
sampling from the learned conditional distribution

Figure 8. Reformulation of data-driven black-box optimization as conditional sampling 
in [67 ]. The conditional distribution takes the targeted function value as the condition- 
ing and is learned from a pre-collected data set. Reproduced with permission from Li 
et al. [67 ]. 

DIFFUSION MODEL FOR OPTIMIZATION 
This section introduces a novel avenue for opti- 
mization in high-dimensional complex and struc- 
tured spaces through di!usion models. We focus on 
data-driven black-box optimization where the goal 
is to generate new solutions that optimize an un- 
known objective function. Black-box optimization 
also known as model-based optimization in machine 
learning encapsulates various application domains 
such as reinforcement learning, computational biol- 
ogy and business management [&6 ,(. ,114 ]. 

Solving data-driven black-box optimization is dis- 
tinct from solving conventional optimization, as in- 
teractions with the objective function beyond a pre- 
collected data set are prohibitive, diminishing the 
possibility of sequentially searching for optimal so- 
lutions. Instead, people aim to extract pertinent in- 
formation from the pre-collected data set and di- 
rectly recommend solutions. To complicate matters, 
the solution space is often high dimensional with 
rich latent structures. For example, in drug discov- 
ery, molecule structures need to satisfy global and lo- 
cal regularities to be expressive in living bodies. This 
poses a critical requirement for solving data-driven 
black-box optimization: we need to capture the la- 
tent structures of data to avoid suggesting unrealistic 
solutions that deviate severely from the original data 
domain. 

To address the challenges, Li et al. [67 ] formu- 
lated data-driven black-box optimization as sampling 
from a conditional distribution as demonstrated in 
Fig. , . The objective function value is the condition- 
ing in the conditional distribution, meanwhile the 
distribution implicitly captures the latent structures 
of data. 

The pre-collected data set in [67 ] consists of two 
parts: a massive unlabeled part Dunlabel and a smaller 
labeled part Dlabel . By terming the objective function 
as a reward function Li et al. [67 ] considered the fol- 
lowing two types of label feedback in Dlabel . 
(1) Real-valued reward: the data set Dlabel consists of 

data and reward pairs where the reward is a real- 

valued noise-perturbed version of the underly- 
ing ground truth reward. 

(&) Human preference: the data set Dlabel consists of 
triples taking two comparable data points and 
a binary preference label. The preference label 
indicates that the corresponding data point is 
likely to have an edge in the underlying reward 
over the other one. 

Moreover, the data point x ∈ RD is assumed to con- 
centrate on a linear subspace, i.e. x = Az for some 
unknown matrix A ∈ RD +d , with z ∈ Rd being the 
latent variable. Therefore, newly generated samples 
should be kept close to the subspace to maintain high 
"delity. 

A semi-supervised learning algorithm is pro- 
posed in Fig. . . There are two training procedures: 
one in the "rst step for estimating the reward func- 
tion and the another in the third step for training 
the conditional di!usion model. In the fourth step, 
the target reward is set at a scalar value a , so that 
the generated samples follow the conditional distri- 
bution ˆ Pa = ˆ P (· | ̂ reward = a ) , where ˆ P and ̂  reward 
emphasize that the distribution and the reward are 
estimated, rather than the ground truth. One may be 
curious about the quality of the generated samples. 
In particular, the following two properties of the gen- 
erated samples are of particular interest: the reward 
levels of new samples and their level of "delity—how 
much the new samples deviate from the latent sub- 
space. 

The results in [67 ] provide a positive statisti- 
cal answer. For the reward levels of new samples Li 
et al. [67 ] de"ned 

SubOpt (a ) = a − Ex ∼ ˆ Pa [ V (x )] (&6) 
to measure the gap between the sample average re- 
ward and the target reward. In the language of bandit 
learning SubOpt is interpreted as a form of o!-policy 
sub-optimality. 

To demonstrate, Li et al. [67 ] considered data x = 
Az for some unknown matrix A ∈ RD +d with or- 
thonormal columns. Suppose that the reward func- 
tion V decomposes as 
V (x ) = g(AA, x ) ︸ ︷︷ ︸ 

≥0 , on - support reward + h ((I − AA, ) x ) ︸ ︷︷ ︸ 
≤0 , off - support penalty . 

(&7) 
We note that the reward function V consists of two 
components: the on-support reward g, which is non- 
negative and measures the quality of samples by 
projecting it onto the subspace spanned by matrix 
A ; and the o!-support penalty, which is nonpositive 
and discourages the generated samples extrapolating 
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Figure 9. The learning algorithm proposed in [67 ] consists of four steps. In the "rst step a reward model is learned from the 
labeled data Dlabel . In the second step, the learned reward model is deployed as a pseudo-labeler to label Dunlabel . In the 
third step, a conditional diffusion model is trained using the pseudo-labeled data. Lastly, in the fourth step, new samples 
are generated from the conditional distribution Pa by specifying a target reward value a. Reproduced with permission from Li 
et al. [67 ]. 
in the space outside the subspace spanned by matrix 
A . 

Running the algorithm in Fig. . generates high- 
"delity samples and gives 
SubOpt (a ) ≤ EPa [ | g − ˆ g | ] ︸ ︷︷ ︸ 

reward estimation error + | E ˆ Pa [ h ] | ︸ ︷︷ ︸ 
off−support penalty 

+ | EPa [ g] − E ˆ Pa [ g] | ︸ ︷︷ ︸ 
on −support diffusion error 

, (&,) 
where ˆ g is an estimated reward function and Pa = 
P (· | ̂ reward = a ) . 

The reward estimation error depends on the 
sample size in Dlabel , which is often the dominat- 
ing term. The on-support di!usion error and o!- 
support penalty depend on the sample size in Dunlabel 
and rely on a statistical analysis of conditional dif- 
fusion models for distribution estimation. There is 
also a subtlety in explicitly quantifying the three er- 
ror terms, namely, the distribution shift, which is the 
mismatch between the training data distribution and 
the target data distribution. Di!usion models are de- 
signed to generate similar samples to the training 
distribution; however, optimizing the reward func- 
tion drives the model to deviate from the training. 
In other words, the model needs to both ‘interpo- 
late’ and ‘extrapolate’. A higher value of a provides 
stronger guidance to the di!usion model, while the 
increasing distribution shift may hurt the generated 
samples’ quality. 

Through detailed analysis, Li et al. [67 ] instan- 
tiated the SubOpt bound to parametric and non- 
parametric settings. For example with a linear reward 
function g, the reward estimation error aligns with 
the optimal o!-policy bandit sub-optimality [11( ] 
where the distribution shift is explicitly computed 
and the dimension dependence is d instead of the 
large ambient dimension D . In the human preference 
setting, Li et al. [67 ] considered the Bradley–Terry–

Luce choice model [116 ] and derived a similar con- 
crete sub-optimality bound. 

FUTURE DIRECTIONS 
We discuss several future directions of di!usion 
models exploring their connections to stochastic 
control and distributional robustness; we also intro- 
duce discrete di!usion models. 

Connection to stochastic control 
In either unconditioned di!usion models or con- 
ditional di!usion models, generating samples us- 
ing the backward process ( & ) or ( ( ) can be viewed 
as a stochastic control problem [117 ]. The goal 
of stochastic control is to design the evolution of 
the controlled variable so that certain cost is min- 
imized. In di!usion models, the score function 
constitutes the control and steers the quality of the 
generated samples. In the simplest form of uncondi- 
tioned di!usion models, we de"ne the cost to be the 
distribution divergence between the generated dis- 
tribution and the data distribution, such as the to- 
tal variation distance and the Wasserstein distance. 
Then the score estimation essentially amounts to 
"nding the optimal control for minimizing such 
costs. 

When using conditional di!usion models for 
black-box optimization, the cost is the negative of a 
reward function and the conditional score function 
is the control. The theory in [67 ] chooses a proper 
target reward to design the control for optimizing 
the cost. Leveraging this control perspective a series 
of empirical results attempt to "ne-tune di!usion 
models by designing the control based on various 
cost forms. See the references and further discus- 
sions in the online supplementary material. In this 
regard principled methodologies and accompanying 
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theories can be motivated from the stochastic con- 
trol perspective, improving and analyzing di!usion 
models under various task objectives. 
Adversarial robustness and 
distributionally robust optimization 
Di!usion models exhibit the natural denoising prop- 
erty in the backward processes, which are leveraged 
for adversarial puri"cation and promoting robust- 
ness [11, ,11. ]. To i l lustrate, in robust classi"cation, 
a two-step classi"cation procedure is proposed. A 
trained conditional di!usion model is "rst deployed 
to generate new samples given the input adversar- 
ial examples for multiple times, hoping to purify the 
added noise in the input sample. Then the generated 
samples are fed into a trained classi"er to produce 
a predicted label. Because of the randomness in the 
di!usion models, multiple transformed samples of 
the same input adversarial example can be obtained. 
Therefore, a majority vote among the predicted la- 
bels is assigned as the label of the adversarial exam- 
ple. This method is motivated by a justi"cation on 
the promotion of robustness using di!usion models 
and empirically shown to be e!ective [11. ]. How- 
ever an end-to-end analysis is sti l l missing. 

We also expect a close connection between dif- 
fusion models and distributionally robust optimiza- 
tion (DRO). Di!usion models generate samples in 
the close vicinity of a target distribution, which can 
be viewed as providing a certain coverage of the dis- 
tributional uncertainty set in DRO. In this sense, dif- 
fusion models can potentially simulate the worst- 
case scenario in the uncertainty set. We expect the 
emergence of innovative methods and theories in the 
corresponding intersection area, where motivating 
attempts have been made in [1&) ]. 
Discrete diffusion models 
Discrete di!usion models analogous to the previous 
continuous counterparts, are designed to keep the 
"nite data support during the forward and backward 
processes. Instead of using continuous Gaussian 
noise to corrupt clean data, discrete di!usion re- 
sorts to continuous-time Markov processes for 
transforming clean data. The discrete nature has 
appealing alignment to real data characterized by a 
massive but "nite support, e.g. natural language rep- 
resented by word tokens and molecular structures. 
As reported in [1&1 ] discrete di!usion achieves 
competitive or better performance in language tasks 
with comparable sized models. 

We describe a discrete distribution by a probabil- 
ity vector pdata belonging to the simplex. Analogous 

to Gaussian noise corruption for continuous di!u- 
sion, we utilize a continuous-time Markov process 
driven by a time-dependent transition matrix Qt , i.e. 

d pt 
d t = Qt pt with p0 = pdata . (&.) 

The process above is known as the forward discrete 
di!usion process. Several design choices of Qt are 
summarized in [&. ] including discretized Gaussian, 
uniform and absorbing transitions. 

The discrete forward process ( &. ) also asserts a 
time reversal: 

d p← 
t 

d t = Q̄t p← 
t (-)) 

with 
[Q̄t ]i j =

 
   
   

[ pT−t ]i 
[ pT−t ] j [ QT −t ] ji if i - = j, 
−

∑ 
s - = i [ QT −t ]is [ pT−t ]s 

[ pT−t ]i if i = j. 
Here Q̄t is the backward transition matrix and [ ·]i 
(or [ ·]i j ) denotes the i th (or (i, j) th) entry. We ob- 
serve from the backward process ( -) ) that to gener- 
ate new samples, we only need to estimate the ratios 
[ pt ]i /[ pt ] j for t ∈ [0 , T ] . We can view this prob- 
ability ratio as an analogy to the score function in 
the continuous distribution. However, we note the 
caveats that estimating the ratios su!ers from the 
massive support size of the data distribution and that 
the magnitude of ratios can vary signi"cantly. It is 
also likely that a large fraction of the ratios are zero 
or approximately zero, inducing sparse structures. 
There are di!erent empirical methods for estimating 
the ratios based on di!erent loss functions. See the 
online supplementary material for references. 

From a theoretical stand point, discrete di!usion 
poses interesting open questions, such as how to ef- 
"ciently estimate the ratios using "nite samples, with 
potential sparse structures and i l l-spread ranges of 
ratios. More importantly, it remains unclear how to 
smartly design principled transition kernels relevant 
to data distributions. Nonetheless, assuming access 
to estimated ratios, Chen and Ying [1&& ] proved the 
"rst sampling theory of discrete di!usion models. 
Enforcing privacy in diffusion models 
Attracted by the diverse and high-"delity image gen- 
eration abilities di!usion models were initially be- 
lieved to protect the privacy and usage rights of 
real images [1&- ]. Unfortunately this claim seems 
to be super"cial and misleading. For instance, in 
image generation, stable di!usion does memorize 
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individual training data and generates them at test 
time. As reported in [1&- ], di!usion models leak 
more than twice as much training data as GANs, pos- 
ing an urgent call for privacy-enhancing techniques. 

Unlike GANs, di!usion models enjoy a 
regression-type training objective, i.e. the score 
estimation, which grants convenient access to pri- 
vacy enforcement. An inspiring attempt has been 
made in [1&4 , Algorithm 1], where a di!erentially 
private stochastic gradient descent algorithm is 
developed for optimizing the training objective. In 
each iteration, independent noise is injected into a 
stochastic gradient to ensure the Rényi di!erential 
privacy condition. This algorithm achieves state- 
of-the-art performance in common di!erentially 
private image generation benchmarks. 

Broadly speaking, di!usion models are poten- 
tially an ideal generative modeling tool for di!eren- 
tially private generative learning, owing to their clean 
regression-type training objective. We foresee fast fu- 
ture progress of di!erentially private di!usion mod- 
els for multi-modality data, given the versatility of 
di!usion models. There are sti l l several factors to 
consider for a better privacy-utility trade-o!: (1) the 
score blowup issue may interact with a proper noise 
injection for privacy; (&) the score neural network 
may allow architectural innovations for better pri- 
vacy protection. 

Contributions to arti!cial general 
intelligence 
Although di!usion models have shown promise in 
various "elds of arti"cial intelligence with multi- 
modality data, their role in achieving arti"cial gen- 
eral intelligence (AGI) is more nuanced. Current 
gaps are many faceted: di!usion models are typi- 
cally specialized for tasks, whereas AGI requires a 
broad understanding and the ability to perform a 
wide range of tasks; training di!usion models can 
be resource intensive, requiring massive data, which 
may limit their scalability for AGI purposes. 

While we view di!usion models on their own 
insu$cient for achieving AGI, they can contribute 
to this goal by generating high-quality synthetic 
data in diverse environments for multi-modal data 
and being integrated into other arti"cial intelligence 
techniques and paradigms. As mentioned in the 
subsection entitled ‘Conditional di!usion mod- 
els’, using reinforcement learning-based methods 
to "ne-tune di!usion models allows an e$cient 
adaptation with limited samples to downstream 
tasks. We expect these hybrid arti"cial intelligence 
techniques to make a solid contribution to the broad 
and complex objective of AGI. 

CONCLUSION 
In this paper, we surveyed how di!usion models 
generate samples, their wide applications and their 
existing theoretical underpinnings. We adopted a 
continuous-time description of the forward and 
backward processes in di!usion models and dis- 
cussed their training procedure, especially when 
there exists guidance to steer the sample genera- 
tion. We started with an exposure to theories of 
unconditional di!usion models, covering their score 
approximations, statistical estimations and sampling 
theories. Building upon insights from unconditional 
di!usion models, we then turned to conditional 
di!usion models, with a focus on their unique 
design properties and theories. Next, we made a 
connection between generative di!usion models 
to black-box optimization, paving a new avenue for 
high-dimensional optimization problems. Lastly, we 
discussed several trending future directions. 
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