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Abstract: This paper presents a closed-loop system diagnostic based on real-time estimation and moni-
toring of an inverse frequency response function for fault detection and isolation in an electrohydraulic
actuator. Firstly, an adaptive Kalman filter is incorporated into an indirect two-stage inverse model
estimation scheme to prevent covariance windup and enhance noise immunity. Secondly, rather than
using estimated inverse model parameters directly, an inverse frequency response function is computed
using the estimated parameters and monitored in real-time as a diagnostic residual, which is essential for
the proposed diagnostic. Numerical validation with an electrohydraulic actuator demonstrates the robust
fault-tracking performance, enabling robust fault detection and isolation.
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1. INTRODUCTION

A system diagnostic that aims to immediately detect and isolate
faults of a system when they occur plays an important role in
the field of industrial machinery Frank (1990); Chen and Patton
(2012). Reliable fault diagnosis enables timely intervention and
prevents minor faults from escalating into more serious and
costly issues. It also helps optimize system performance by
identifying inefficient configurations or misalignments. How-
ever, as the complexity of modern industrial machinery con-
tinues to grow, it becomes vulnerable to complicated fault
mechanisms, making the design of a robust system diagnostic
challenging.

An electrohydraulic actuator (EHA) is a powerful actuation de-
vice broadly used across various industries such as automotive,
aerospace, marine, agriculture, mining and construction. This
popularity stems from its high power density, load capacity,
flexible packaging, control accuracy, and efficient maintenance
Karpenko and Sepehri (2009); Boaventura et al. (2012). How-
ever, due to the presence of moving parts driven by highly pres-
surized working fluid, EHAs are susceptible to a range of po-
tential faults, including sealing failure and fluid contamination
with abrasive particles, air and water. These faults can adversely
affect performance, energy efficiency, system bandwidth, and
load capacity Eaton (1996). If the challenge of ensuring reli-
able diagnosis remains unsolved for contemporary industrial
equipment, it could result in significant repercussions. In the
most severe cases, these repercussions may include permanent
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damage, substantial downtime expenses, and severe harm to
operators Forbes Technology Council Post (2022).

Fault detection and isolation enable timely maintenance of
equipment, which helps improve overall efficiency and pro-
duction capability. Toward this end, a physics-based model is
essential for understanding fault mechanism if it is available.
If not available, likely due to system complexity, fault analysis
will rely solely on experimental data. However, collecting fault
data without prior knowledge of the fault mechanism is costly
and risky, especially for closed-loop systems.

Fault diagnostic usually can be seen as a three-step algorithm:
1) residual generator; 2) residual evaluator; 3) fault manager.
The residual generator obtains residuals using extracted fault
features. Then, the residual evaluator detects and locates faults
by comparing the residual with prescribed thresholds. The
fault manager takes control actions like alarming operators
or triggering fault-tolerant controls. Recently, residual evalu-
ators have been studied exclusively, especially employing ma-
chine learning and/or statistical techniques Wang et al. (2020);
Sivaram and Sun (2023).

Due to its significance on diagnostic robustness, residual gener-
ation is the primary scope of this work. There are two technical
categories for residual generation: 1) model-based approach;
2) signal processing-based approach. The former employs the
residual based on state estimation or parameter estimation tech-
niques, such as Lyapunov estimators Wu et al. (2012), Luen-
berger observers Khan et al. (2005); V. Mahulkar and Derriso
(2011), Kalman filters Nurmi and Mattila (2012), and recursive
parameter estimators Shi et al. (2005) to name a few. On the
other hand, the latter employs the residual based on signal
processing methods, including Fourier transform Yoon and Sun
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(2022), empirical modal decomposition Goharrizi and Sepehri
(2012) and wavelet Yazdanpanah Goharrizi and Sepehri (2010).

The authors have recently developed a novel closed-loop sys-
tem diagnostic based on inverse model estimation and real-time
monitoring of an inverse frequency response function (iFRF)
Yoon (2023). To summarize briefly, firstly, the inverse model
parameters are estimated by incorporating directional forgetting
recursive least squares (DFRLS) Kulhavy and Karny (1984)
into an indirect two-stage closed-loop system identification
scheme Van Den Hof and Schrama (1993). Secondly, the iFRF
is computed using the estimated inverse model parameters and
monitored in real-time for parametric fault diagnosis. The pro-
posed diagnostic illustrates promising capabilities, especially
in fault isolation, attributed to the iFRF, which reveals selective
sensitivity to different parametric faults. However, the diagnos-
tic performance turns out to be sensitive to input and output
noises, which may adversely impact its robustness in practical
applications.

In this work, the noise sensitivity of the previous method
is addressed by incorporating adaptive Kalman filter (AKF)
into an indirect two-stage inverse model estimation framework.
The AKF features anti-windup capability, keeping eigenval-
ues of the covariance matrix bounded even in scenarios lack-
ing sustained excitation, similar to DFRLS Gustafsson (2002);
Medvedev (2003); Evestedt and Medvedev (2006). Addition-
ally, it exhibits noise immunity, enabling robust inverse model
estimation. Then, the iFRF, using the estimated inverse model
parameters as a diagnostic residual, yields more comprehensive
information for fault detection and isolation compared to con-
ventional techniques, thereby enhancing the diagnostic robust-
ness. Numerical validation showcases the enhanced robustness
of the AKF-based inverse model estimation and subsequent
iFRF analysis against variations in operational conditions and
input/output noises, outperforming the previous approach based
on DFRLS.

The remainder of the paper is outlined as follows: In Sec. 2, a
physics-based inverse model is given together with brief sensi-
tivity analysis. In Sec. 3, the proposed diagnostic is presented
that encompassing two sequential steps. In Sec. 4, the effec-
tiveness of the proposed method is numerically illustrated with
application to an EHA. Finally, concluding remarks and future
work are given in Sec. 5.

2. PHYSICAL MODEL

Figure 1 depicts a schematic of the linear EHA (cylinder-type)
considered in this work. The voice coil motor (VCM) drives the
spool-type directional control valve (DCV), which regulates the
direction of the oil flow. In turn, this valve determines the re-
sulting pressure differential across the piston, which ultimately
drives the movement of the load.

A physics-based model of the EHA inherently exhibits nonlin-
ear behaviors, attributed to factors such as nonlinear valve flow
rate and friction. However, under appropriate assumptions, such
as considering a linear valve flow rate while operating the EHA
near equilibrium, and assuming a relatively high bandwidth of
the directional control valve Yoon (2023), a continuous trans-
fer function between the input (voice coil motor current), and
output (load displacement) can be obtained as follows:
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Fig. 1. A schematic of the linear electrohydraulic actuator.
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Here, the transfer function depends on the Laplace variable: s
and a diagnostic parameter vector k = [py,Cie,b, B]7. Note
that these parameters are carefully selected based on their
practical significance on system diagnostic, as discussed in
Eaton (1996); Wu et al. (2012); Yazdanpanah Goharrizi and
Sepehri (2010). Please refer to Table 1 for the nomenclature
of the model parameters used in (1).

Symbol | Description Symbol Description

mp Piston mass B Bulk modulus

by Viscous coefficient p Oil density

kp Spring coefficient Cy Discharge coefficient
Ap Cross-sectional area Cie Total leak coefficient
Vo Cylinder volume w DCYV area gradient
Ds Supply pressure Kn VCM gain

Table 1. Nomenclature of model parameters

The inverse transfer function, which is the reciprocal of (1), is
denoted as:

(Z—f},s + Cie) (mps® +bps+kp) +Avs

H(s,x) =
ApKnCaW 2

This inverse transfer function plays a crucial role in the pro-
posed robust diagnostic Yoon (2023). Fig. 2 depicts the Nyquist
plots of two fault sensitivities, defined as:

66(& Ko) =diag ([pm Cico bo ﬁOD VG(Sv K)|Ko

VH(s,K,) = diag ([pso Cieo bo Bo]) VH (5, K)|x,,
where VG(s, k)|, and VH (s, k)|, represent the Jacobian vec-
tors of (1) and (2) with respect to the parameters at their nomi-
nal values, respectively. The Nyquist plots provide insights into
the fault sensitivity of the inverse transfer function to differ-
ent parameters. Notably, the inverse transfer function exhibits
selective sensitivity to different parameters, which holds great
potential for parametric fault diagnosis. It is worth noting that
as frequency increases, the parametric fault selectivity becomes
clearer due to the non-causality of the inverse transfer function.

@)

The inverse transfer function of (2) is discretized using the
Tustin method to formulate a recursive parameter estimation
problem in Sec. 3. The input/output representation at discrete
time k for the discrete time system is given by:
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Fig. 2. Comparison of fault sensitivity functions, which are am-
plified gradient vectors with respect to the parameter vec-
tor: k = [py,Cie,bp, B]". VG(s,x,) (upper) vs VH(s,k,)
(lower)
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Here, ¢~ represents the unit time delay operator, and cq(k),
c1(k), ca2(k), and c3(k) are the discrete time model parameters
that depend on the physical model parameters given in Table 1
and sampling time Yoon (2023).

1

3. SYSTEM DIAGNOSTIC

Fig. 3 illustrates the overall structure of the proposed closed-
loop system diagnostic. The upper part (I) represents the feed-
back control responsible for operating the EHA as intended.
The lower part (II) depicts the system diagnostic, which uses
the closed-loop signals including the reference r(k), the control
input u(k), and the controlled output y(k).

The system diagnostic itself consists of four main components:
1) inverse model estimator: this component is tasked with es-
timating the iFRF robustly using the closed-loop signals cor-
rupted by input/output noises.; 2) residual generator: this com-
ponent generates the residual based on the estimated iFRF.; 3)
residual evaluator: this component detects and isolates paramet-
ric faults if present by classifying the residuals.; 4) fault alarm:
this components triggers alarms and allows for fault-tolerant
actions.

It is noted that the inverse model estimator and residual gen-
erator are the primary focus of this work, aiming to achieve
robust estimation of the iFRF and effective fault detection and
isolation capabilities despite the absence of persistent excitation
and the presence of input/output noise.

3.1 Inverse Model Estimation using AKF

Based on (3), the input/output relationship can be written as:
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Fig. 3. The structure of the proposed closed-loop diagnostic

n(k) =" (k)6 (k), @)

where

N (k) = ua (k) +3ug(k— 1) +3u,(k—2) + us(k—3)

o(k) = [y(k), y(k—1), y(k—2), y(k—3)]"

0(k) = [co(k), c1(k), ca(k), e3(k)]",
respectively. Note that in the closed-loop system depicted in
Fig. 3, the closed-loop input is corrupted by input and output
noises, denoted n, (k) and n,(k), respectively. To address this,
a filtered and uncorrelated control input u,(k) is used for
inverse model estimation instead of the raw control input u(k)
within the indirect two-stage closed-loop system identification

scheme Van Den Hof and Schrama (1993). Further details on
the filtering process can be found in Yoon (2023).

The objective of the inverse model estimator is to estimate 6 (k),
which can vary due to the occurrence of parametric faults, using
the available regressor vector @(k) and output 7 (k). To apply
the AKF, (4) is reformulated into a state-space model, assuming
a random walk uncertainties d (k) and v(k) as follows:

0(k+1)=06(k)+d(k) 4)

n(k) =" (k)0 (k) +v(k), ©)

where d(k) and v(k) are the random walk uncertainties that
are attributed to unknown parametric faults, and input/output

noises, respectively. The covariances of these uncertainties are
denoted by O = Cov(d(k)) and R = Cov(v(k)).

Equations (7)-(10) below are the formula for the standard
Kalman filter (KF).

0(k) = 0(k—1)+K(k)e(k) (7
e(k) =n(k) — (k)" 6(k—1) ®)
K(k) P(k—1)¢(k) ©)

" R+ o()TP(k—1)p(k)
P(k—1)p(k)@(k)TP(k—1)
R+ (k)T P(k)o(k)

where 6 (k) represents the parameter estimate, e(k) is the pre-
diction error, K (k) is the Kalman gain, and P(k) is the covari-
ance matrix. It is crucial to note that the effectiveness of the
standard KF relies on the observability. If the system of (5)
and (6) is observable, the standard KF ensures the optimal es-
timation of 6 (k). However, in fact, observability is conditional,
particularly if ¢@(k) undergoes persistent changes Gustafsson
(2002). If it is not observable, the covariance matrix P(k) may
increase unboundedly, leading to covariance windup, which can
result in long and poor transient behaviors in estimation.

Pk)=P(k—1)—

+0, (10
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Differently from the standard KF using the constant covariance
matrix Q in (10), the AKF employs the time-varying covariance
matrix Q(k) that is adaptively updated based on the desired pos-
itive definite matrix P, the covariance of the output uncertainty
v(k) denoted by R, and the output matrix ¢ (k). Q(k) is updated
using the following adaptation rule:

_ Pyo(k) " (k)Py
O = R o TR (k)

The convergence property of the covariance matrix P(¢) of the
AKF is briefly reviewed based on Gustafsson (2002); Evest-
edt and Medvedev (2006). Let e,(k) = P(k) — P; be the co-
variance matrix error. By applying matrix inversion lemma to
(P4 —Q(k)) and (P(k+1) — Q(k)), the covariance matrix error
at time k+ 1, denoted as e, (k+ 1), is given by:

ep(k+1) =A,(P(k)) ey (k)Ap (P) T, (12)

where A,(P(k)) = I+ P(k)o(k)R"'¢(k)T. This implies that
ep(k) converges to zero exponentially, which means that P(k)
converges to P;. Consequently, this achieves anti-windup ca-
pability regardless of the absence of persistent excitation. The
balance between noise immunity and convergence rate can be
adjusted by tuning the desired covariance matrix Py.

(1)

3.2 Inverse Frequency Response Function Monitoring

Once Q(k) = [¢(k), &1(k), é(k), é3(k)]” is available from (7),
the time-varying iFRF can be computed as:

o(k) +é1(k)g" +éa(k)g > +e3(k)g >

14+3¢7 1 4+3¢72+¢73

where ¢~ ! = exp (j27fs/f;), f; is the sampling frequency, and
fa 1s the predetermined monitoring frequency in which the
iFRF is analyzed. If any parametric fault occurs, i.e. the change
in , it must be retained by (k) and eventually by A (fy,k; k).

I:I(fdvk; K) =

; (13)

The diagnostic residual is defined as:

(k) = H(fa. ki) = H(fa: %), (14)
where H(fy, K,) represents the known nominal iFRF at f;. By
monitoring the residual y(k) in real-time, one can diagnose
whether a system has a fault (i.e. fault detection), and if so, what
the fault source is (i.e. fault isolation). The diagnostic residual
in (14) is a complex number, providing richer information
compared to a real-valued residual. Additionally, the residual
can be extended to a vector considering multiple frequencies
such as:

(k)
rky=1 + |=

(k) H(fa,, k%) = H(fa,3%)
to generate more information for robust system diagnosis.

H(fg,,k; k) —H(f1,5 %)
. c (Cnxl

4. NUMERICAL VALIDATION

The nominal parameters in Yoon (2023) are used in numerical
validation. The sampling frequency of the closed-loop system
is fy = 100 Hz. Random input/output noises are taken into
account in the closed-loop simulation: n, ~ .4#°(0,1e —8) and
ny ~ A4 (0,1e—7). The PI controller is tuned to ensure closed-
loop stability even in the presence of considered parametric
faults. Fig. 4 shows the reference profile, which repeats every
10 seconds for 60 seconds, along with the resulting output

15 T

Reference
Output

Output (mm)

50 51 52 53 54 55 56 57 58 59 60

Fig. 4. Simulation conditions including transient and steady
states: reference (dark gray) and controlled output (light

gray).

signal using the nominal model parameters. As the simulation
progresses, it gradually stabilizes, with the fitting degree of the
signal in the last 10 seconds being the most reliable. Based
on fault sensitivity analysis, parametric faults are injected with
sizes as shown in Table 2. Note that only one fault is injected at
a time.

Fault type Parameter Fault Size

Pump malfunction Ds -40%, -20%, +20%, +40%
Leakage Cie +10%, +20%, +30%, +40%
Friction b, x 10, %20, x30, x40

Qil contamination x0.005, x0.01, x0.1, x10

Table 2. Sizes of the parametric faults injected.

Fig. 5 compares the estimated inverse model parameters with
respect to the nominal model parameters using DFRLS (dark
gray) and AKF (light gray). It is evident that the AKF offers
a more robust estimation against input/output noise compared
to DFRLS. The estimated iFRF with the pump malfunction
(which is 40 % higher than the nominal) is shown in Fig. 6.
The fault is injected at 30 seconds and persists since then.
DFRLS and AKF demonstrate good fault-tracking capabilities
despite a slight bias in the imaginary part, which has a relatively
small impact compared to the real part. Fig. 6(b) illustrates how
the iFRF evolves in the complex plane when the fault occurs.
With both methods, the iFRFs converge quickly to the actual
nominal values (indicated by the red star) until 30 seconds,
and then to the abnormal values (indicated by the blue square)
thereafter. This clearly demonstrates that the fault impact can
be immediately captured by the iFRF for fault detection.

Fig. 7 shows the residuals in the complex plane during steady-
state with different faults of varying sizes at different three
diagnostic frequencies: f; = 1 Hz (1st row), 10 Hz (2nd row),
20 Hz (3rd row). Note that in the nominal system, the resid-
ual should ultimately converge to the origin. In the first row,
it is possible to differentiate between pump malfunction and
leakage, but distinguishing between friction and oil contami-
nation is challenging. Even with an increase of f; to 10 Hz,
a clear distinction remains elusive. However, as the frequency
increases further to 20 Hz, the differentiation between friction
and oil contamination becomes more pronounced. Distinct di-
agnostic residual patterns for each type and size of fault enable
identification and isolation of specific faults, demonstrating the
effectiveness of the proposed fault diagnosis method.
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Fig. 5. Nominal parameter estimation of DFRLS (dark gray)
and AKEF (light gray)

To quantify the robustness of iFRF estimation and parameter
estimation, the coefficient of variation (CV) are computed and
compared. CVs are defined as:

CVy = Ly o(@)

4 i=0 H (éi )
cv, - \/1 <o<Re<fg>> . cam(f;»)
2 \u(Re())  u(im(A))

where ¢ and U are the standard deviation and mean operator,
and “Re” and “Im” indicate the real- and imaginary part of a
complex number. The comparison of CVs is given in Fig. 8.
The iFRF estimate shows much lower CVs, regardless of the
estimation method, than the parameter estimate, which allows
for more robust residual generation. It is noteworthy that AKF

significantly reduces CV in both parameter estimate and iFRF
compared to DFRLS.

5. CONCLUSION

This paper presents a fault diagnostic method for an EHA in
closed-loop. The proposed diagnostic comprises two consecu-
tive elements: Firstly, an AKF facilitates the robust estimation
of inverse model parameters without encountering covariance
windup, even amidst non-persistent excitation and noisy sig-
nals. Secondly, it involves the computation and monitoring of
an iFRF, generating resilient residuals across multiple frequen-
cies, thereby enhancing fault isolation capabilities. Numerical
validation demonstrates the diagnostic robustness and rapid
fault-tracking, enabling early and dependable fault diagnosis of
EHAs. Further validation with multiple faults at a time will be
done. Also, exploring nonlinear inverse models in the frequency
domain to accurately capture fault impacts represents a promis-
ing avenue for future research.
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Fig. 6. iFRF traces at 1 Hz in complex domain (a), i.e. real
vs imaginary, and in time domain (b), i.e. real vs time &
imaginary vs time.
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