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Abstract

This paper introduces a general framework of Semiparametric TEnsor Factor Anal-
ysis (STEFA) that focuses on the methodology and theory of low-rank tensor decom-
position with auxiliary covariates. STEFA models extend tensor factor models by
incorporating auxiliary covariates in the loading matrices. We propose an algorithm of
Iteratively Projected SVD (IP-SVD) for the semiparametric estimation. It iteratively
projects tensor data onto the linear space spanned by the basis functions of covariates
and applies SVD on matricized tensors over each mode. We establish the convergence
rates of the loading matrices and the core tensor factor. The theoretical results only
require a sub-exponential noise distribution, which is weaker than the assumption of
sub-Gaussian tail of noise in the literature. Compared with the Tucker decomposi-
tion, IP-SVD yields more accurate estimators with a faster convergence rate. Besides
estimation, we propose several prediction methods with new covariates based on the

STEFA model. On both synthetic and real tensor data, we demonstrate the efficacy of
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the STEFA model and the IP-SVD algorithm on both the estimation and prediction

tasks.

1 Introduction

Nowadays large-scale datasets in the format of matrices and tensors (or multi-dimensional
arrays) routinely arise in a wide range of applications. The low-rank structure, among
other specific geometric configurations, is of paramount importance to enable statistically
and computationally efficient analysis of such datasets. The low-rank tensor factor models

assume the following noisy Tucker decomposition:

YV=Fx1A; Xo--- Xy Ay + €&, (1)

where ) is the M-th order tensor observation of dimension I; X --- X I, the latent tensor
factor F is of dimension Ry X --- X Ry, the loading matrix A,, is of dimension I, X R,,
with R, < I, for each m € [M], and the noise & is an M-th order tensor with the same
dimension of ). Tucker decomposition is a widely used form of tensor decomposition (Kolda
and Bader, 2009; De Lathauwer et al., 2000b) and has been studied from different angles in
mathematics, statistics and computer science. Particularly, the statistical and computational
properties of the decomposition have been analyzed in Zhang and Xia (2018); Richard and
Montanari (2014); Allen (2012a,b); Wang and Song (2017); Zhang (2019) under the general
setting and in Zhang and Han (2019) under the sparsity setting where parts of the loading
matrices {A,, : m € [M]} contain row-wise sparsity structures.

Tucker decomposition to the tensor factor model is similar to singular value decompo-
sition (SVD) to the classic vector factor model, the latter being one of the most useful
tools for modeling low-rank structures in biology, psychometrics, economics, business and
so on. Theoretical analyses on multivariate factor models assume i.i.d Gaussian noise at
early stages (Anderson and Rubin, 1956; Anderson, 1962) and later allow for variable-wise
and sample-wise correlations (Bai and Ng, 2002; Bai, 2003; Bai et al., 2012). Chapter 11 of

Fan et al. (2020) and the references therein provide a thorough review of recent advances



and applications of multivariate factor models. For 2nd-order tensor (or matrix) data, Wang
et al. (2019); Chen et al. (2019, 2020b) consider the matrix factor model which is a special
case of (1) with M = 2 and propose estimation procedures based on the second moments.
Later, Chen et al. (2022) extends the idea to the model (1) with arbitrary M by using the
mode-wise auto-covariance matrices.

While the vanilla tensor factor model (1) is neat and fundamental, it cannot incorpo-
rate any additional information that may be relevant. Nowadays, the boom of data science
has brought together informative covariates from different domains and multiple sources,
in addition to the tensor observation ). For example, the gene expression measurements
from breast tumors can be cast in a tensor format, and the relevant covariates of the cancer
subtypes are usually viewed as a partial driver of the underlying patterns of genetic variation
among breast cancer tumors (Schadt et al., 2005; Li et al.; 2016). In restaurant recommen-
dation system, online review sites like Yelp have access to shopping histories and friendship
networks of customers, as well as the cuisine and ratings of restaurants (Acar et al., 2011).
The covariate-assisted factor models have been explored for vector and matrix observations
(Connor and Linton, 2007; Connor et al., 2012; Fan et al., 2016; Mao et al., 2019). Their
results show that sharing relevant covariate information across datasets leads to not only a
more accurate estimation but also a better interpretation.

Inspired by those prior arts, we introduce a new modeling framework — Semi-parametric
TEnser Factor Analysis (STEFA) model — to leverage the auxiliary information provided
by mode-wise covariates. STEFA captures practically important situations in which the
observed tensor Y has an intrinsic low rank structure and the structure in m-th mode is
partially explainable by some relevant covariate X,,,. The model is semi-parametric in the
sense that it still allows covariate-free low-rank factors as in (1). In the special case when
X,»'s are unavailable, STEFA reduces to the classical tensor factor model (1). As to be shown
in Section 0, with auxiliary covariates, our STEFA model can outperform the vanilla tensor
factor model in many scenarios. The auxiliary information of X,, not only improves the

performances of estimating latent factors but also enables prediction on new input covariates,



which is an essential difference between our proposed framework and the existing tensor
decomposition literature (Richard and Montanari, 2014; Zhang and Xia, 2018; Zhang and
Han, 2019; Cai et al., 2019; Sun et al., 2017; Wang and Li, 2020; Zhou et al., 2021). Indeed,
unlike those tensor SVD or PCA models where estimating the latent factors usually only acts
as the proxy of dimension reduction, STEFA utilizes those estimators for prediction with new
observed covariates. Another popular way of incorporating auxiliary covariates information
is to couple tensors and matrix covariates together for joint factorization (Acar et al., 2011;
Song et al., 2019). Such method assumes that the covariate matrix and tensor share the
same loading matrix along one mode. Our method is different in that auxiliary covariates
can partially predict loading matrices through nonparametric function approximation. Hao
et al. (2021) also used additive model in nonparametric tensor regression. But those authors
dealt with tensor predictors and scalar responses, rather than a tensor of responses.

On the methodological aspect, we propose a computationally efficient algorithm, called
Iteratively Projected SVD (IP-SVD), to estimate both the covariate-relevant loadings and
covariate-independent loadings in STEFA. As shown in Section 4, a typical projected PCA
method from Fan et al. (2016), while computationally fast, is generally sub-optimal because
it ignores multi-dimensional tensor structures. The IP-SVD yields more accurate estima-
tors of both the latent factors and loadings by adding a simple iterative projection after
the initialization by projected PCA. On the other hand, the IP-SVD can be viewed as an
alternating minimization algorithm which solves a constrained tensor factorization program
where the low-rank factors are constrained to a certain functional space. The dimension of
this functional space, based on the order of sieve approximation, can be significantly smaller
than the ambient dimension which makes IP-SVD faster than the standard High-Order Or-
thogonal Iteration (HOOI) for solving the vanilla Tucker decomposition. As a result, IP-SVD
requires also weaker signal-to-noise ratio conditions for convergence in general.

Theoretically, we discovered interesting properties of STEFA that are different from those
of the vanilla tensor factor model (1). As proved in Richard and Montanari (2014); Zhang and

Xia (2018), the HOOI algorithm achieves statistically optimal convergence rates for model



1/4 where the formal definition of

(1) as long as the signal-to-noise ratio SNR 2 (1115 - - - I )
SNR is deferred to Section . However, due to the constraint of a low-dimensional (compared
with I,,,) functional space, the SNR condition required by IP-SVD in STEFA is SNR 2
(Jido--+J M)l/ 4 where J,, is the number of basis function used in functional approximation
and can be much smaller than I,,,. Note that this weaker SNR condition is sufficient even
for estimating the covariate-independent components. Surprisingly, it shows that covariate
information is not only beneficial to estimating the covariate-relevant components but also
to the covariate-independent components. Concerning the statistical convergence rates of
[P-SVD, there are two terms which comprise of a parametric rate and a non-parametric rate.
By choosing a suitable order for sieve approximation, we can obtain a typical semi-parametric
convergence rate for STEFA which fills a void of understanding non-parametric ingredients
of tensor factor models. On the technical front, investigating the theoretical properties of
STEFA is challenging due to the iterative nature of the estimation procedure, which involves
both a parametric and non-parametric component. Furthermore, our theoretical results
only require a sub-exponential tail on the noise, which is weaker than the Gaussian or sub-

Gaussian distributions of noise in all these prior works. This technical improvement may be

of independent interests.

Notation and organization. The following notations are used throughout the paper. We
use lowercase letter x, boldface letter x, boldface capital letter X, and calligraphic letter X
to represent scalar, vector, matrix and tensor, respectively. We denote [N] = {1,...,N}
for a positive integer N. For any matrix X, we use x;., x.;, and z;; to refer to its ¢-th
row, j-th column, and ij-th entry, respectively. All vectors are column vectors and row
vectors are written as x'. The set of N x K orthonormal matrices is defined as QV*%. We
denote 0;(X) as the i-th largest singular value of X, ||X]| as the spectral norm of X, i.e.,
IX]|| = 01(X), and ||X]||r as the Frobenius norm of X. In addition, we frequently use the
projection matrices Py = X (XTX)f1 X" and Px = I — Px where (XTX)f1 denotes the
Moore-Penrose generalized inverse.

The rest of this paper is organized as follows. Section 2 introduces the STEFA model and



a set of identification conditions. Section 3 proposes the IP-SVD algorithm to estimate the
STEFA model and considers prediction with new covariates. Section < establishes theoretical
properties of the estimators. Section 5 studies the finite sample performance via simulations.
Section 6 presents empirical studies of two real data sets. All proofs and technique lemmas

are relegated to the supplementary material.

2 STEFA: Semi-parametric TEnsor FActor model

In this section, we introduce the Semi-parametric TEnsor FActor (STEFA) model. We
present it with third-order tensors (M = 3) to simply notation while the properties hold for

general M. More information of tensor algebra can be found in Kolda and Bader (2009).

2.1 Tensor factor model

For a tensor § € R1*2%5 the mode-1 slices of S are matrices S;,.. € R2*% for any 4; € [[}]
and the mode-1 fibers of S are vectors s.;,;;, € R for any iy € [I] and i3 € [I3]. We
define its mode-1 matricization as a I; x IyI3 matrix M;(S) such that [/\/ll(‘5’)]1.171.#(1.3_1)12 =
Siyigis, for all iy € [I],49 € [I3], and i3 € [I3]. In other words, matrix M;(S) consists of all
mode-1 fibers of S as columns. For a tensor F € RFf1*F2xRs and a matrix A; € RIxFr

the mode-1 product is a mapping defined as x; : RFxR2xfs o ROxF1r y ROXF2XR3 g

.7:><1A1:[ R

i1 Qirry fmr2r3:|i1€[[1],7’2€[R2],7‘3€[R3]' In a similar fashion, we can define fibers,

mode matricization, and mode product for mode-2 and mode-3, respectively.

The widely used Tucker ranks (or multilinear ranks) of a tensor S is defined by the triplet
rank(S) := (Ry, Rs, R3) where R,,, = rank(M;(S)) for modes m = 1,2,3. The Tucker rank
(R1, Ry, R3) is closely associated with the Tucker decomposition. If a tensor S has an exact
tensor rank (Ry, Ry, R3), then there exists a core tensor F € RF1*E2xEs gych that S has
a Tucker decomposition S = F X1 Aj Xy Ay X3 Az where A, € RI=*En m ¢ [3], are

orthonormal matrices of the left singular vectors of M,,(S) respectively.



Given a tensor observation Y € RI¥2XIs o tensor factor model assumes that

y:S~|—5:]-"><1A1><2A2><3A3+€, (2)

where the latent tensor factor F is of dimension R; X Ry X Rj3, the loading matrices A, €
RIm>*Em are unknown deterministic parameters, and £ is the noise tensor. The low-rank
structure is captured by the assumption of R,, < I, along the m-th mode. Model (2)
encompasses the vector and the matrix factor models as special sub-cases: the vector factor
model (Fan et al., 2020) corresponds to the special case of Y = A1 F+E€ where Y, £ € R and
F € R% are all vectors (i.e. 1st-order tensor). The matrix factor model (Wang et al., 2019;
Chen et al., 2019; Chen and Fan, 2023) corresponds to the special case of Y = A; FAJ + &
where Y, £ € R"*%2 and F € Rf1*f2 are all matrices (i.e. 2nd-order tensors).

All the components on the right hand side of model (2) are not directly observable,
thus the tuples (.7-" x1 HT' xo Hy' x5 H3_1,A1H1,A2H2,A3H3) and (F,A;, Ay, A3) are
indistinguishable for any invertible matrix H,, € R®=*%m m € [3]. This is a common issue
with latent models since they can only be identified up to the columns space of A,, (Bai,
2003; Zhang and Xia, 2018; Fan et al.; 2020). To identify one representative matrix of the
column space A,,, we restrict our solution to the one that satisfies Assumption |. Lemma

confirms the validity of Assumption | as an identification condition for model (2).

Assumption 1 (Tensor Factor Model Identification Condition). We restrict our estimation
targets to the loading matrices and core tensor that satisfy (i) A} A, /L, = Ig, for all
m € [M] where Ig,, is an R, X R,, identity matriz; and (ii) M, (F) M (F)T is a diagonal

matrix with non-zero decreasing singular values for all m.

Lemma 1. Given an S € RV with Tucker ranks (Ry,- -+ , Ry) and Mp,(S)M,(S)T
having distinct non-zero singular values for all m, then there exist unique Aq,--- , Ay and

F satisfying Assumption | so that S = F X1 Ay Xg -+ X1 Ay,

INote that uniqueness is up to column-wise signs of A,,’s.



Model (2) can be estimated by solving the optimization program

. 2
FoAL AL A |V = F X1 Ay X3 Ag X3 Asllp, (3)

under the constraints in Assumption 1. It is highly non-convex and computationally NP-
hard. The higher order orthogonal iteration (HOOI) algorithm (De Lathauwer et al.; 2000a)
solves (3) by alternating minimization along the direction of A,,. Given an initial guess of
{A\m}ng, the algorithm update 1&1 to be the maximizing value Al = /1;-SVDp, (/\/ll (y)(112®
;&3)) where SVD,.(+) returns top-r left singular vectors of a given matrix. Then, the algo-
rithm proceeds to iteratively updating ;&m while fixing the other Kj, j # m until some
stopping criterion is satisfied. The performance of HOOI usually relies on the initial input
of {A, Y meinn)-

One way to measure the importance of each factor dimension along a mode is through
the mode-wise percentage explained variance. Suppose we are interested in the relative im-
portance of mode-1 factors, the total variance along mode-1 can be calculated by o? =
Tr (M (Y)M1(Y)"/(I:13)) and variances of the Ry factors of mode-1 are the diagonal
elements in the covariance matrix Xp; = M;(F)M;(F)"/(RyR3). Then the mode-1
percentage explained variances for each of the R; factors corresponds to each element in

diag (X 1) /o?, where diag(-) extracts R; diagonal elements from matrix 3.

2.2 Semiparametric tensor factor model

We now generalize the classic tensor factor model to integrate mode-wise auxiliary covariates.
For any iy € [[1], let x14, = [#14,1, -+ , %140, be a Dj-dimensional vector of covariates
associated with the 7;-th entry along mode 1. We assume that the mode-1 loading coefficient

a1, can be (partially) explained by x;;, such that

A1y = 910 (X14y) + Vi, 41 € [L1],71 € [Ry],

where g, : RP' — R is a function and 7, 4,,, is the part that cannot be explained by the

covariates. Under this assumption, the entries in the ¢;-th mode-1 slice, ¢, € [[;], can be



written as
Ri Rs Rj

Yivigiz = Z Z Z (91,m1 (X1y) + Viivrs) O2,i9r003.i5rs frirars T Eivigiss (4)

ri=1ro=1rz=1

for all is € [I5] and i3 € [I3]. Let X; be a I} x Dy matrix taking inl as rows, Gy (X;) be the
[1 X R1 matrix with its il—th row being [91,1 (Xl,il) y " 5y 91,Ry (Xl,i1>]7 and Fl be the Il X Rl

matrix of [y;4,,,], we can write compactly A; = G1(X;) + T’y and

YV=Fx1(Gy(Xy1)+T) xg Ay x5 A3+ €. (5)

This semi-parametric configuration is easily extendable to all modes of ). If any mode-m
loading entries a,,;,.r,, can be partially explained by a D,,-dimensional vector x,,;, ., i.e.

Amirm = 9m,rm (Xm,im) + Ymimrm then we have

y =F X1 (Gl (Xl) + Fl) X9 <G2 (Xg) + I‘2> X3 (Gg (Xg) + Fg) + (c:, (6)

where X,, is a I, X D,,, matrix taking X;,im as rows, G, (X,,,) be the I,, X R,,, matrix with its
im-th row being [gm.1 (Xm.in) s s Gm.Ro (Xmoin, )], and 'y, be the I, X R,;, matrix of [Yon.i |-
We refer to (0) as the Semiparametric TEnsor FActor (STEFA) Model. An an illustration of

model (D) is presented in Figure . When mode m has no covariates, we take G,,(X,,) = 0.

/01 (X1) \
g11(x1) - 91,R](X1)

A,

y = 91,1(7&3) IRy ("il) + 1-‘1 T ’ + g

&(X:,) - g1, (21,

Y

S
Figure 1: An illustration of the STEFA model (7).

If, additionally, mode m has no factor structure, we take A, = Ig, — the identity matrix. If

all modes have no covariates, then STEFA reduces to the classical tensor factor model (2).
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STEFA is a generalization of the semi-parametric vector factor model (Fan et al.; 2016) to

the tensor data. But it is more complex in computation and theoretical analysis.

Remark 1 (Multivariate functional SVD). In the field of functional data analysis, re-
searchers have studied multidimensional functional SVD (Silverman, 1996; Huang et al.,
2009) and functional PCA (Zhow and Pan, 201/; Wang and Huang, 2017). Specifically, the
two-way functional SVD views each entry y;,, of the data matriz Y € R1"¥!2 gs the evalua-
tion of an underlying function y(-,-) on a rectangular grid of sampling pints x1;, and Xa,,,
that is, Yi, iy =YX X24) = Dory Orgre (X1 ) g1 (X2,).

Let G1(X;) € RIXE be the matriz that contains gy ,(x14,) as its (i1,r)-th element,
G2 (Xy) € R2*% be the matriz that contains ga . (Xa4,) as its (ig,7)-th element, and D repre-
sent the diagonal matriz diag(oy,--- ,0r). Under the functional SVD assumption, the data

matrix has the following low-rank structure:

Y = G (X)) DGy (Xy)" =D x; G1(X)) x Go(Xy), (7)

which is equivalent to a special case of the STEFA model where M = 2, core tensor F € REXE
is diagonal, 'y =0 and T's = 0.

The estimation method for function SVD are mostly based on regularized SVD which
imposes the smoothness constraint on columns of G1(X1) and Ga(Xy). For the STEFA
model, we do not impose such constraints and our projection-based algorithm also estimate
the covariate independent component I',, that cannot be explained by the covariate.

In fact, model (7) can be extended to the higher-order setting with M > 3, which can
be viewed as a functional CP tensor decomposition (Kolda and Bader, 2009) and is an

interesting topic for future research.

Remark 2 (Tensor response regression). The STEFA model is related to a list of tensor
response regression models (Raskutti et al., 2019) with a low-rank coefficient tensor. Notably,
Sun and Li (2017) and Zhou et al. (2021) consider a model where response tensors ), €

RIxIv—1 gre related to a Dys-dimensional vector of covariate X, through
Vi =B xyx+ &, (8)

10



where B is a Iy X - - - X Iy _1 X Dy unknown parameter tensor of interest, and the noise tensor
& has i.i.d. standard Gaussian entries. Model (%) can be rearranged to a similar form as the
STEFA model. Specifically, we stack the tensor response Yy along a new M-th order and get
anew (It x -+ x Iy X T) tensor Y. We also stack the vector covariate x; together and

get a new (T x Dyy) matriz Xy Then, model (8) can be rewritten as

YV=8BxyXy+&. (9)

For high-dimensional data, the sparse or low-rank structure is assumed on the coefficient
tensor B to facilitate estimation. For example, Sun and Li (2017) and Zhow et al. (2021)
assume that B admits a rank-R CP decomposition structure. Alternatively, B can be assumed
to admit a rank-(Ry,- -+ , Ryr) Tucker decomposition structure (Raskutti et al., 2019) denoted
by B:=F X1 Ay Xo -+ Xp_1 Apy—1 X By, where F is a Ry X -+ X Ry tensor, A, are
I, X R, matrices for m € [M — 1] and By is a Dy x Ry matriz. Under such Tucker

low-rankness, model (9) can be further rewritten as

YV=Fx1Ay Xg- Xp—1 Ay X (XuBu) + &

which has the same form as a restricted STEFA model with Ay = XBas being exact linear

and non-existence of the covariate-independent component I'y;.

Remark 3 (Multiple-mode-covariate tensor regression). The multiple-mode-covariate (MMC)

tensor regression (Hu et al., 2022) with identity link function writes

y:BX1X1 XQXQ X3X3+g, (10)

where X, s the observable I, x D,, covariate matrix and B is a low-rank regression co-
efficient tensor. The MMC tensor regression model is a parametric model while the the
STEFA model is semi-parametric. The STEFA model is to the MMC' tensor regression as
the projected PCA is to the reduce-rank regression.

If we wish to make the parametric assumption that the true loading function g, (+) is

linear and no covariate-independent component, i.e. Y, v, = 0 in (1), the STEFA model

11



can be rewritten in the same form as (10). Specifically, the loading can be explicitly written

as A,, = X,,B,, where B,, € RP»*En_ The STEFA model can be rewritten as

y =F X1 (XlBl) X9 (X2B2> X3 (X3B3) +(C; =B X1 X1 X9 X2 X3 X3 —|—g, (11)

where B = F x1 By X9 By x Bs. Otherwise, the STEFA model is very different from the
MCC tensor regression since it allows any smooth function g, () and the ezistence of the
covariate-independent component Y i, r... Generally, the advantages of the STEFA model

are its non-parametric modeling on the covariates as well as its weak technical assumptions.

2.2.1 Identifiability conditions for STEFA

Similar to the tensor factor model (2), the identifiability is also an issue for STEFA. Note
that the factor loading A,,, in STEFA consists of two components G,,,(X,,,) and T';,,. A naive

generalization of Assumption | requires that

Ir, = A A, = (Gn(X,) + 1) (Gr(X) +T0) = Gp(Xon) "G (X)) +T) T,

where we assume that T' G,,,(X,,) = 0. While the above identification is theoretically valid,
such a condition imposes a constraint jointly for both the parametric and non-parametric
components and introduces unnecessary difficulty into the estimating procedures. Instead,

we propose the following identification condition for STEFA.

Assumption 2 (STEFA Identification Condition).  We restrict our estimation targets to

the loading matrices and core tensor that satisfy
(i) G} (Xn)G(Xin)/In = 1g,, and G (X,,)Ty, = 0 for all m € [M].

(i1) M (F)M(F)T is a diagonal matriz with non-zero decreasing singular values for all

m € [M].

Note that the identification condition G, (X,,)Gn(X,,)/In = Ig,, can be replaced with
T, /I, = Iz,. We choose the first equation just for simplicity because our method

starts with estimating the non-parametric component G,,(X,,). However, if some mode

12



m has no covariate information, then we have to replace the identification condition with

I‘TTHI‘m/Im = Ig,,. Also note that G, (X,,) is the I,,, X R,,, matrix of [gy. .. (Xm.i,,)] thus

imarm7
the identification condition is defined with respect to matrix G, (X,,) with a fixed I,,, not
on the functional form of g, ,,, (Xm.i,, ). Alternatively, one can consider a functional version
of identification conditions on ¢, ., (Xm., ) defined on a Hilbert space consisting of all the

square integrable functions. But the intricate combination of functional space and tensor

structure renders the problem even more difficult and thus will not be pursued here.

3 Estimation

In this section, we present a computationally efficient Iteratively Projected SVD (IP-SVD)
algorithm to estimate the STEFA model. Given the identification condition (Assumption 2),

we start with estimating the non-parametric component G,,(X,,).

3.1 Sieve approximation and basis projection

Our primary ingredient of estimating G,,,(X,,) is the sieve approximation which is a classical
method in non-parametric statistics (Chen, 2007). At this moment, we assume that the latent
dimensions Ry, Ry and R3 are known. In Section 3.3, we will discuss a method to consistently
estimate R, Ry and R3 when they are unknown.

Sieve approximation relies on a set of basis functions. Take mode 1 for illustration.

We denote {¢y;,(-)} as a set of basis functions on {f : RP* — R} which spans a

J1€lA]

complete space for {g1,, (-)} . Some widely-used basis functions are B-spline, Fourier

r1€[R1]
series, wavelets, and polynomial series (Chen, 2007, Section 2.3). We let ®;(X;) be the
I x J; matrix whose (i1, j1)-th element is ¢ j, (X1, ). We denote the .J; x Ry matrix of sieve
coefficients as By = [by 1, - , by g, |, and the I; x R; residual matrix as R;(X;), consisting
of approximation errors. Then, in the matrix form, we have G;(X;) = ®,(X;)B; + R4(X}),

where ®;(X;) can be constructed from covariates and R;(X;) shall be small for a large

enough J;. To this end, the factor loading A; can be written as A; = ®(X;)B;+R;(X;) +

13



I'; (illustrated in the big parentheses in Figure 2.) Generalizing to other modes m € [M],

/ @, (X1) \
$1(x1) e By (x1)

By

A
S =| ¢i0w) - b,() + R, (X,) + 5t :F
Qxh) () /

Figure 2: An illustration of sieve approximation in signal of the STEFA model. The first
loading matrices A; is decomposed into three part: the sieve approximation ®;(X;)B;, the
sieve residual R;(X;) and the covariate independent component T’y

we can define similar terms and write that

G (X)) = B, (X)) B + R (X,0).- (12)

Then, a general STEFA can be re-formulated as

y =F X1 (@1(X1)B1 —+ Rl(Xl) —+ Fl) Xo Xpm (@M<XM>BM —|—RM(XM) +FM) —|—g

In practice, to nonparametrically estimate g, ,,,(Xm.i,,) without suffering from the curse
of dimensionality when the dimension of x,,,, is large, we can assume g, ,,, (X, ) to be
structured. A popular example of this kind is the additive model: for each r,, € [R,,], there

are D,, univariate functions {gm,rmdm(‘)}dezl such that

D,
gm,rm<xm,im) = Z gm,rmdm (Imyzmdm> (13)
d

m=1

Each one dimensional additive component ¢y, r.. a,. (Z:,.4,,) can be estimated without curse of
dimensionality by the sieve approximation or other more complex functions. Possible data-

driven methods to estimate J's are discussed in Appendix 7?7 in the supplemental material.
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3.2 [Iteratively projected SVD

We propose an iteratively projected SVD (IP-SVD) algorithm “ to estimate the right hand
side of the STEFA model () from tensor ) and matrices of covariate X,, for m € [M].
For ease of notations, we write G,, and ®,, instead of G,,(X,,) and ®,,(X,,,) and define
P,=®,- (@I,;I’m)fl @; as the I,, X I, projection matrix onto the sieve spaces spanned
by the basis functions of X,, of all m € [M]. Algorithm | summarizes the whole procedure.
For ease of presentation, it is presented for the third order tensor or M = 3. But it is
representative for the general M setting. The outputs are estimators of the tensor factor F ,
covariate-relevant loadings ém, sieve coefficient matrices ]§m, full loading matrices Am and
covariate-independent loadings Ty, for all m € [M].

The algorithm is divided into two major blocks. The first block consists of the first four
steps, namely projected spectral initialization, projected power iteration, projection estimate
for the tensor factor and orthogonal calibration. Together, they estimate F and G, through
an iterative procedure. The first step of projected spectral initialization utilizes the fact
that the column space of each loading G,, is mainly a subspace of the basis projection
P,, by sieve approximation. It obtains a preliminary estimator for G, for each m € [3]
via sieve projection, matricization and singular value decomposition (SVD), specified in
equation (11). This step, in spirit, is similar to the projected PCA in (Fan et al., 2016).
This initial estimator G acts as a good starting point, but is sub-optimal in general. In the
second step of projected power iteration, we apply power iterations to refine the initialization.
Given rudimentary estimators ég_l) and égt_l), we further denoise ) by the mode-2 and 3
projections: Y Xo ég*lﬁ X3 ég*lﬁ. This refinement can significantly reduce the amplitude
of noise while reserving the mode-1 singular subspace. Iteratively for ¢ = 1, - tax, We
obtain an updated estimator GY for each m € [3] according to (15). This projected power
iteration algorithm is a modification of the classical HOOI algorithm (De Lathauwer et al.,
2000a). The additional projection P,, restricts the solution to be a linear function of sieve

basis functions. Empirically, the projected version of HOOI in this step converges very

2A Python library of IP-SVD is available at https://github.com/ElynnCC/STEFA-Code.git.
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fast within a few iterations. The output of this step is the final estimators ém = é%‘“‘""‘) for
m € [M]. In the third step, F is estimated via least squares, which amounts to the projection
in equation (16). The fourth step fixes a numerical solution of tensor factor and loadings
that satisfy Assumption 2 by orthogonal calibration. The orthogonal rotation matrices are
calculated by (17) and the ultimate estimator is given by equation (18).

The second main block of the algorithm takes care of the estimation of the sieve coefficient
matrices ﬁm, full loading matrices Km, and the covariate-independent loading matrices
fm for m € [M] in the fifth and sixth steps, respectively. The sieve coefficients B,, is
useful for prediction on new covariates. After obtaining am(Xm), sieve coefficients can be
estimated following the standard sieve approximation procedure. Indeed, we estimate ]§m
by equation (19). Then the mode-m loading function g,,(x) = (gm,1(X), - , gm,r., (X)) can
be estimated by g(x) = ®(x)B,, for any x in the domain of mode-m covariates. Further,
with the estimated (A}m and tensor factor F , We estimate Am by regression in (20) and f‘m
by projecting Am on the orthogonal column space of ®,, in (21).

The above procedure only involves matrix product and matrix SVD, which computes
fast. Without loss of generality, assume Iy > --- > I)y and R; > --- > Rjy;. The major
computation load comes from the first three three steps. Specifically, the projected spectral
initialization in the first step requires O(IZ1 - - - Is) flops; each iteration in the second step
requires O([y--- IRy Ry—1) flops; and the third step requires O(Iy--- Iy Ry -+ Ry)
flops. Distributed or parallel computing can be employed to speed up the computation

(De Almeida and Kibangou, 2014; Baskaran et al., 2017).

3.3 Estimating the Tucker ranks

In this section, we discuss the problem of estimating the Tucker ranks (R;, Rs, R3) when
they are unknown. Given ) = F X1 A X5 Ay X3 Az + & with the identifiable condition in

Assumption |, the mode-1 matricization of ) is

M) = AAM(F)(Ay @ As)" + My (E). (22)
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Algorithm 1: Iteratively Projected SVD (IP-SVD)

Input : Tensor Y € RI"*/2%%s matrices of covariate X,,, whose rows are X, ,
ranks R,,, and sets of basis functions {¢y,,. ()} for m € [3].
Output: 7, G,,, B,,, A,, and T,,, for m € [3].
1 For each m € [3], calculate the projection matrices P, = ®,, - ((I)Z;I}m)_l o'
where ®,,(X,,) is the I, X J,, matrix whose (i, jm)-th element is ¢, ;. (Xm.i,, )-
/* 1st step: Projected spectral initialization. x/
2 Let t = 0 and calculate

V=Yx1P; %3Py x3P; and G = /I, -SVDg (My(})). (14)

Jm€[Jm]

/* 2nd step: Projected power iterations. x/
3 fort=1,...,th.. do
4 Calculate

G = /T, - SVDg, (P1 M, (y 2o GEIT éEf‘”T)) ,
GY = \/I,-SVDg, <P2 M, (y i GOT &, égf‘”T)) : (15)
G = /T, - SVDp, (P3 M (y 1 GOT «, égt”)) .

/* 3rd step: Proiectioil estimate for tensor factor. x/

5 Calculate , with G, = G;”"”” (1 =1,2,3),
F=(LLE)™"-Yxi Gl x3GJ x3GJ. (16)
/* 4th step: Orthogonal calibration. */
¢ Calculate O\ = SVD i, (Mon(F) M (F)T), for cach m € [3]. (17)

7 Calculate the ultimate estimator by

F=Fx,0] x50] x30] and G,, = G,,0,,, for cach m € [3)]. (18)
/* 5th step: Covariate sieve coefficient matrices. */
8 Calculate ]/?;m _ [(I);Lq)m}_l (I);Lam (19)
/* 6th step: Full and covariate-independent loading matrices. */

9 Calculate

Qn =M, (7 X jtm (Gj/\/f_j)) V=Y Xjum Pj.
10 Calculate the full loading matrices by

A, =M, (3.)Q5(Q.QL) IV (20)

11 Calculate the covariate-independent loading matrices by

L,,=I-P,)A,, (21)

1=
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The first term in (22) is of rank R; when A; € R and R < I;. The second term in
(22) is a I; x IyI3 noise matrix with i.i.d entries. Viewing M;(F)(As ® A3)" as a whole,
equation (22) is a factor model and R is the corresponding unknown number of factors to be
determined. There exist many approaches in consistently estimating the number of factors
from the model (22). In particular, Lam and Yao (2012); Ahn and Horenstein (2013); Fan
et al. (2016) proposed to estimate number of factors by selecting the largest eigenvalue ratio
of My(Y)[M;1(P)]". Due to the noise term in (22), Fan et al. (2016) pointed out it is better
to work on the projected version of M;(}).

Suppose 37 = Y x1P; x3P5 x3Pj3 is the projected version of )). Then with Assumption 2,
EM (D) M D)T] = LEGIM(F)M(F)T G+ E[PLM,(E) (P2 @ Py) My ()] TP]] =
LIGIM (F)My(F)]"G] +02RyR3P 11,1, P has the same spectrum structure as E[M; (V) [M1 (V)] "]
but with a reduced noise term. Here ‘752 denotes the variance of the entries of £ and 17,4y, is
the I3 x I3 matrix with all entries equal to one. Denote by A\y(M,,, (V)M (P)]") the k-th
largest eigenvalue of the mode-m matricization of the projected tensor. The eigenvalue ratio

estimator of R,, is defined as

./ém = argimax )\k(Mm(j},)v[Mm(j},)v]T) (23)

1<k<kmaz )\k+1(Mm(y)[Mm(y)]T>

where k., is an upper bound on the number of factors, such as the nearest integer of
min {Im, Hn#m [n} /2, say.

The theoretical foundation for this estimator is partially provided in Fan et al. (2016).
Specifically, for each mode m, as long as there exists an o € (0, 1] such that all the R,,
eigenvalues of (Hn 4m I}f“) M (F)[M,(F)]T are bounded between two positive constants
Cmin and Cpez. The consistency of ﬁm is provided, in terms of ]P’[ﬁm = R,,] — 1, under
suitable conditions (e.g., sub-Gaussian noise and J,,, = o([rln/ ?)). However, while R,, works
reasonably well in simulation studies, it may be statistically sub-optimal for STEFA because
the multi-way tensor structure is under-exploited, i.e., the low-dimensional tensor-product

structure of row space of M,,,(}) is ignored. A statistically more efficient approach is to also

estimate ﬁl, e ,EM iteratively. The idea is similar to the iterative procedure to estimate
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the loadings in the tensor factor models instead of the single-step estimation as in the vector
factor models (Fan et al., 2016).

Specifically, we note that Y in (23) is a one-time projection onto the column space of

Py, -+ ,Py. To make the estimation of El, e ,EM iterative, J in (23) should be replaced
by a projection of the tensor onto the column spaces of éﬁ“, e ,éffl)fl, éfﬁfl), e ,ég\t[l)
when estimating }A%m form =1,---, M. However, in this case, establishing the consistency

theory jointly for all R, i.e., P[N*_,{R,, = R,,}] can be more challenging than that in the
PCA setting (Fan et al., 2016), due to the interplay between R,,’s and dependence among
}A%m’s. We leave the theoretical investigations of fzm for future work and suggest interested
readers to refer to a very recent work (Han et al., 2022) on the rank determination for tensor

factor model.

3.4 Prediction

The STEFA model can be applied to predict unobserved outcomes from the available data.
We illustrate the procedure of prediction along the first mode under model (). Prediction
along other modes can be done in a similar fashion. The task here is to predict a new
17" x Iy x I3 tensor Y™ with new covariate matrix X7 whose rows are /7" new covariate
{x15Y Yireprpew) along mode 1. Under the STEFA model (5), the tensor observation ) assumes
the following structure

y = F X1 @I(Xl)Bl X9 A2 X3 A§+f X1 A1 X9 A2 X3 A§+5,

sieve signal residual signal

where ®,(X;)B; is the part explained by the sieve approximation of X; and A; = Ry (Xy)+
I'; contains the sieve residual and the orthogonal part. In Section 3, we obtain estimators -
for the unknowns on the right hand side. Note that A; can be estimated as a whole whereas
its component R;(X;) and I'; are not separable. With new observation X7°", we estimate

the sieve signal using

S\new = j—'\- X1 (I)l(Xnew) ]/_5)1 X9 ;&2 X3 ;&3.

sieve
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For the residual part, we use the simple kernel smoothing over mode-1 using X; and X7“*.
Specifically, we have the residual signal estimator gq«esid —F X1 Kl X9 KQ X3 ;&3. Define the

kernel weight matrix W € R %1 with entry
Kh(dist(x’fjw, XlJ))

wij - I . new ’

Zj:l Kh(dZSt(Xl,i ;X15))

i € [I7"] and j € [I4].

where Kj,(+) is the kernel function, dist(-,-) is a pre-defined distance function such as the

Euclidean distance, and x; ; is the i-th row of X;. We estimate the new residual signal by

Snew gresid X1 W7 (24)

resid ~

the derivation of which is given in Section B of the supplementary material. Finally, our

prediction for new entries corresponding to new covariate matrix X7 is given by

Y = Sl + S (25)
Remark 4. The identification condition Assumption ” is not restrictive in the sense that it
is only used to help us separate the loadings and the factor, that is, fix a numerical solution
corresponding to a specific linear transformation among multiple equivalent ones. The signal
part S will not be affected by the specific linear transformation and thus the identification
Assumption 2 will not affect the prediction. Suppose the true decomposition of the signal

part S= Ssieve + Sresid 18

Ssieve = -7: X1 ‘1’1(X1)]§1 X9 Az X3 A:s, and  Syesia = JT X1 -/0\1 ) Az X3 A?);

where ]i", ]§1, Ag, and Ag are the true components. Our estimation targets are restricted
by Assumption | and 2 on observed discrete rows of Xy and they are linear transformations
of their true counterparts. That is, By := ]§1H1, A, = AQHQ, A; = AgHg, and F =
F X1 H1_1 X9 H2_1 X3 Hgl for some invertible matrices Hy, Hy, and Hs. Algorithm | outputs
one specific solution ﬁ,ﬁl,fl,gg,x&g such that Assumption ” is satisfied on the observed
Xy for ]§1 and f‘l, and Assumption | is satisfied for _?AQ and 1&3.

In Section /, our theoretical results show that the estimators output by the Algorithm

20



is close to the estimation targets that satisfy Assumption | and 2. As a result, ]§1 ~ ]§1H1,
;&2 ~ A.QHQ; ;&3 ~ A3H3, and F ~ F X1 Hfl X9 H;l X3 Hgl. For a new observation X7,

we have

3;2‘2156 =F X1 ¢I>1(X’few)]§1 X K2 X3 1&3
~ (Fxg Hi  xo Hyt s Hy ') xq (@1(X79)ByHY) X5 (AgHy) x5 (AsHs)
= F x1 &, (X7")BHH ! x5 (A,HoH, ) x5 (AsH3H; Y
=F X1 <I>1(X?ew)]§1 X9 Ag X3 Ag

o

— Snew

sieve*

Here, the linear transformations Hy, Hy and Hs will depend on X;. But the key point here
is that the respective Hy and Hi' transformation of]i" and Bol will canceled out and the

signal part as a whole will not be affected by any specific Hy or Xj.

Remark 5 (Comparison to the MMC tensor regression). IP-SVD aims to estimate both
the covariate-explainable and covariate-orthogonal components in the STEFA model while
the objective of the MMC tensor regression (Xu et al., 2019; Hu et al., 2022) is to estimate
the reduced-rank coefficients in a tensor regression with observed independent variables. For
prediction, the covariate-explainable component in the STEFA model is predicted by Sieve
approzimation and the covariate-orthogonal component is predicted by kernel approximation,
which are very different from the regression-based prediction in Xu et al. (2019). We re-
port a simulation in Appendix section 7?7 to show cases when STEFA performance better in

prediction.

4 Theoretical Results

In this section, we establish the statistical properties of the estimators in Algorithm | as-
suming data is generated from model (0). Lemma 2 and Corollary | provide error bounds
of the column spaces spanned by 6}7(7? for 0 <t < t,,42, Which concerns with the estimation

errors of the projected spectral initialization and the projected power iterations in Algorithm
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. Theorem | provides the estimation errors of the final estimators of CA}m and F from their
respective estimation targets G,, and F that satisfy identification condition Assumption
. Theorem 2 provides the errors for the covariate-independent loadings f‘m. We provide
discussions after each theorem, revealing some interesting observations in the interaction of
parametric, non-parametric estimations, and iterative tensor projection.
We impose two assumptions, respectively, on the smoothness of the loading functions and
on tail behavior of the noise. The smoothness assumption is standard in the non-parametric
literature, while the tail condition is weaker than what is usually assumed in the tensor

decomposition literature.
Assumption 3 (Smooth loading functions). We assume that, for all tensor modes m € [M],

(i) The loading functions gm.,. (Xm), Xm € Xm € RP™ belong to a Holder class AT (X,,)
(T-smooth) defined by

D _pn
Azwm):{gecq(xm):sup sup D" g(x)| < ¢, and sup sup 1290 g(")'gc},

[ <q XEXm [M=q W,vEX lu — VH’g

for some positive number ¢, where T = q + [ is assumed T > 2. Here, C1(X,,) is

the space of all q-times continuously differentiable real-value functions on X,,. The

differential operator D" is defined as D" = W and [n] = m + -+ np,, for
non-negatie integers ny, - -+ ,Np,, -
(i) The sieve coefficients byr.. = [Bmsm1 Omrmz =+ bmenan ] for all 1 < r, < Ry,

satisfy, as J,, — 0o,

2

JIm
SUD |G (%) = D b 550)| = O(7)

XGXm ‘7:1
where {qu()}j;"l is a set of basis functions, and J,, is the sieve dimension.

Assumption 3 imposes mild conditions on loading functions so that their sieve approxi-
mation errors are well controlled. It is satisfied if the loading functions gy, ., (X,,), m € [M],

belong to the Holder class (Tsybakov, 2008). The basis functions that satisfy Assumption
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include polynomial, wavelet basis, and B-splines (Chen, 2007). To nonparametrically es-
timate ¢y, (X,,) without the curse of dimensionality when x,, is multivariate, we could
impose certain low-dimensional structure on gy, ,, (X ), such as an additive structure used
in Fan et al. (2016). To emphasis the main theoretical founding, we use 7 as a given param-

eter in the following theorems and avoid dissecting it from the perspective of nonparametric

estimation.

Assumption 4 (Sub-exponential noise). Each entry e, of the noise tensor & are i.i.d.

sub-exponential random variables with E(e,) = 0 and Eexp(e,/Ko) < e for some constant

Ko = 0(1), for all w € [I1] x [I2] x [I3].

The independence condition in Assumption 4 is standard for the statistical analysis of
tensor factor model (Richard and Montanari, 2014; Zhang and Xia, 2018; Xia and Zhou,
2019; Han et al., 2020) and tensor time series (Chen et al., 2022; Han et al., 2020). However,
all these prior works assume the Gaussian or sub-Gaussian distributions of noise. Our
Assumption /1 is weaker, which requires only a sub-exponential tail on the noise. Note that
Assumption 4 implies that Var(e,) = O(1).

We first present the estimation errors related to the iterates of covariate-relevant loadings
GY for 0 < t < tyaz, which correspond to the rates of convergence of the eigen-space spanned
by the columns of Ggﬁ). For a clear presentation, the theorems are presented for the case of
M = 3. The results can be easily extended to higher order tensors with M > 3. Recall that
we write I,,,’s for the tensor dimensions, J,,’s for the sieve dimensions of covariate-relevant
component, and R,,’s for the Tucker ranks of covariate-independent component. We also
assume that Iy > I, > I3 and Ry > Ry > R3 for brevity of notations. The signal strength of
F is measured by Ay, = 1161%]\%03,” (/\/lm(}" )), which is the smallest singular value of all the
matricizations of F. The 7(?ondition number of F is defined as kg := Hé?ﬁ] | M (F) ||/ Amin-
Since the noise has a bounded variance under Assumption 4, the s?gnal strength A, is

regarded as the signal-to-noise ratio (SNR). See a similar definition in Zhang and Xia (2018).

Lemma 2 (Projected spectral initialization and projected power iterations). Suppose that

Assumptions 7 and / hold under model (0), the condition number kg = O(1), Jy < Jo < J3,
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and Rm S Jm ]f AV ]11213Amin Z CI (Iio\/ R1J1 10g2 Il + (R1J1J2J3)1/4 10g2 Il) and RmJT;T S
Ct for some large enough absolute constant Cy > 0. Then it holds with probability at least
1—7I;? that

A0 & VR log® I, R JiJyJslogt I _
—gogoT _ GmGTH <C 1J1 n n /_RmJ /2
m m Tm milp = 4 )\min Il 12[3 )\1211111[1 [2[3 m
(26)
for some absolute constant Cy > 0. Moreover, for allt =1,---  tyax, it holds with probability

at least 1 — 481,72,

1 ~ ~
5 GG -GG D)
F 2 m F
— \/JlRl +R1R2R3 log2 Il
+o9/R T+ :
i . Aminv' 11 215

max [ * égégﬁ — GmGTTnH < —-max [}

m

where Cy > 0 is an absolute constant. Therefore, after tynax = O(log(Amin/ 11215/ J1) + T

log(J1) + 1) idterations, it holds with probability at least 1 — 481, 2

\/JlRl + R1R2R3 10g2 [1
Amin V ]112]3

+ 2RI (28)

max I’;Ll Hégmax)é%max)—r _ Gmey—;H S Cé
m F

where Cf > 0 is an absolute constant.

Recall that 7 characterizes the smoothness of the covariate-relevant loading functions. As
shown in Lemma 2, if 7 is larger, the estimation error decreases. The projected initialization
GY in Algorithm | is obtained by the projected PCA (Fan et al., 2016). By Lemma 2,
GRGYT - GuG),
VI LI i > Cy(J1JaJ3) Y4 log? I + Chy/ Ty log? I, for Ry = O(1) and some absolute con-

a warm initialization satisfying I ! < 1/2 is guaranteed as long as

stants C and C,. Compared with the vanilla spectral initialization (Zhang and Xia, 2018;
Xia and Zhou, 2019; Richard and Montanari, 2014) that requires v/I; IoIsAmin > (I11o13)Y*
and sub-Gaussian noise, our projected spectral initialization requires a substantially weaker
condition on the signal strength when J,, < I,,. The logarithmic factors in Lemma

emerge from the sub-exponential tail of noise distribution, which has never been studied
in existing literature. Moreover, the initialization error (20) has two leading terms. When

the signal strength A, is only medium strong, that is, v/T1IolsAmin > (J1J2J3)'/* but
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VI I I < Jp, the second term in (26) dominates and the initialization error is at the
order of (RyJyJyJ5) 2 log (1) /(N2 11 Io13).

The initialization obtained by projected PCA (Fan et al., 2016) is sub-optimal for tensor
data and the IP-SVD refines it by projected power iteration. Equation (27) shows that the
error is decreasing after each mid-step projected power iteration. In the end, the error (28)
of the final estimator is at a smaller order of (J,R;)"/? 10g2(ll)/()\min(lllg_[g)l/z).

The estimation error in (28) of the final estimator is a mixture of two terms. The first term
can be viewed as a parametric rate and is related to the model complexity in approximating
G, by the column space of ®(X,,). Similar to usual parametric settings, the dimension of
the J; x Ry parameter matrix B; appears in the numerator of this first term. An interesting
fact is that the parametric estimation error decreases when the signal strength A.,;, increases,
and increases when the Sieve dimension J,, increases.

The second term in the estimation error of (28) can be viewed as a non-parametric
rate and is related to functional approximation errors which relies crucially on the Sieve
dimension. This rate is unaffected when signal strength A.;, changes, but decreases when
the Sieve dimension J,, increases. So there is a trade-off in choosing Sieve dimension in
order to balance the parametric and non-parametric rates. The following result establishes

the estimation error with the optimally-chosen Sieve dimension .J,,,.

Corollary 1. Under the conditions of Lemma ° and J, = (C'ﬁ(logQ(ll)/()\mm 11]2]3))_2/(”1)1 ,
it holds that, for some absolute constants Cs, C7, Cs > 0, with probability at least 1 — 4812,

log? I >+ Lo VR RyRslog® I
Aminv' 11 213 * NVl

max 1[Gl GT - GGl < o/ (

The first rate in Corollary | dominates whenever Ry, R3 = O(1). This rate is very typical
in non-parametric regression (Chen, 2007; Tsybakov, 2008) and it shows that the estimation
error of G decreases when the true loading functions are smoother in Assumption

Till now, we have shown that the space spanned by the columns of the loadings G,,, can
be consistently estimated. Next, we show that the columns of G,, and tensor factor F can

be determined up to a sign for the restricted estimation targets G,, and F that satisfy the
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identification condition Assumption 2. The concept of the eigengap of tensor F is needed

before we present those results. Here, we define

Egap(F) = min { min aj(/\/lm(f))—aj+1(./\/lm(.7:))},

1<Sm<M U 1<j<Rm

where we denote og,,+1 (M (F)) = 0. Intuitively, Egap(F) represents the smallest gap of
singular values of M,,,(F) for all m € [M]. The eigengap condition on Egap(F) is imposed

to ensure that the order of singular values will not be violated by small perturbations.

Theorem 1 (Covariate-relevant loadings and tensor factor). Suppose that the signal strength
satisfies /I Iy Is\min > Cy (/io\/lel log® I + (RyJyJoJ3) /4 log? [1> under model (0), the

conditions of Lemma ° and

Egap(F) > Ci\/ RS + R RaR3og*(1)/ /T ol + Codun R Ty ™/

hold for some absolute constants Cy,Cy,Cy > 0. Let F and @m be the estimators after
orthogonality calibration (15). Then there exist diagonal matrices {Sy, }meps) whose diagonal

entries are either —1 or 41 such that, with probability at least 1 — 4912,

B ~ JiRy + RiRyR3log” I 5 =72
I 1/2HGm_GmSmH <C \/ 1411 +C RiJ /
gﬁ?ﬁ m Pl AminV 111213 BV

and

\/JlRl + R1R2R3 10g2 [1

|~ F %181 %58 x5 Sslls < C VILT

+ CldminV/ R1J; 2

where C7,Cs, CL, Cg > 0 are absolute constants.

Here the columns of factor loadings G,, can be determined up to a sign which is com-

mon in matrix singular value decomposition. Similarly to Corollary 1, if we choose J; =<

((logZ([l)/()\min\/[11'2[3))_2/(T+1)1, Theorem | implies that

= . 10g2 Il TLH R1 R2R3 1Og4 Il 1/2
F = F =181 58 x5 Salls < Chv/RA - ( )7 )"
|| 1 1 2 2 3 3||F_ 7 1 Nmin \/11]—2]3 8 [112[3

The second term on the right hand side is negligible if Ainy/ 111213 > C’E’;(RQR;;)TT+1 log? .

So the first term dominates when R; = O(1). Moreover, the first term decreases when
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T increases implying that the core tensor can be more accurately estimated if the loading
functions are smoother.

Finally, we bound the estimation error for the covariate-independent components.

Theorem 2 (Covariate-independent loadings). Suppose the conditions of Theorem 1 hold

under model (). Then, for all m = 1,2,3, it holds with probability at least 1 — 5017 % that
- Ji Ry + RiRyR3log? I .,
Hrm B I‘mSmH < G|l - (\/ 11t + [ Ligfvz log™ 1y . /_RlJl /2>
F AminV 111213
VR + L R? + RPRyRylog®* I
/\min V -[2]3

+ Cy

where S,, is defined as in Theorem 1 and Cg,Cy > 0 are some absolute constants. By
choosing Jy < [(log®(11)/(Amin 11[2[3))_2/(T+1)1, we get, with probability at least 1 — 5012,
that

= 10g2 Il TL.H R1R2R3 10g2 ]1
rm—rmsmH < |t (VR (—) 4V 29
H Fo s/ < ! AminV 111213 AminV 111213 (29)
VR + JLR? + R2RyRslog®? I

/\minVIQI3

+ Cj

for some absolute constants Cg, C§ > 0.

The error bound (29) involves two terms. The second term is similar to (except a loga-
rithmic factor) the typical rate of tensor factor models (Zhang and Xia, 2018; Richard and
Montanari, 2014) if Iy > J; Ry 4+ R1 ReR3. However, there is a crucial difference in the STEFA
model since no condition is required for I',, (such as orthogonality of its columns). The first
term in (29) emerges from the estimation error of covariate-relevant component G,,. For
case of exposition, assume ||Ty|lr =< R)?||T\m|| and Ry = O(1). The rate (29) yields the

relative error of I',,, as

A~

ITs = TunSulle _ ( log® I ) , VTilog? I
T, =\ iV s " Amin VVIo T3] | Do

(30)

Therefore, the estimator fm is consistent in relative Frobenius-norm error if A\pinv/11lalz >
log® I and Ay || Do ||(Z213)"/% > ]11/2 log®? I). The former condition is mild in view of the

signal strength condition in Theorem |. The latter condition relies on the magnitude of
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T, ||, and it dominates the former one if ||T',,|| < I log~"/? I;. Basically, if ||T',,|| becomes
smaller, a larger signal strength A, is required to ensure the consistency of f‘m
Comparison with HOOI Ignoring the covariate information and assuming the orthogo-
nality of the columns of I',,, one can apply the higher-order orthogonal iteration (HOOI)
algorithm to estimate I';,, (additional treatments are perhaps necessary to separate I',, from
the covariate-relevant component G,,(X,,)). It is proved in Zhang and Xia (2018) that if
the SNR satisfies Amin||T1||[|Ta|l|Ts]| = Co(I;/? + (I1IoI3)"/*), the HOOI algorithm outputs

an estimator attaining, with high probability, a relative Frobenius-norm error rate as
~HOOI

r, -1,0, I
Tl Amin [T [ T2 | Ts
where O,,, is an orthogonal matrix that minimizes ||f:§)0| —TI',,0||r. For ease of comparison,

let us further assume ||I'y|| < ||T2|| < ||Ts]| and I} < Iy < I3. Comparing (31) to (30), if
T > ]11/ ? ie., the covariate-independent component has a signal strength (characterized
by ||T'1]|) stronger than the covariate-relevant one (that is simply ]11/ ? by Assumption 2) |
HOOI achieves a sharper error rate than our STEFA-based estimator. On the other hand,
STEFA can outperform HOOI when ||| < I,”>. Nonetheless, STEFA still enjoys a major
advantage over HOOI by exploiting the covariate information. Indeed, the auxiliary covari-

ates can potentially reduce the SNR requirement. Note that our Theorem 2 suggests that an

SNR. condition /T I3 I3 min > Co(J1J2J3) /4 suffices to estimate the covariate-independent

component, while HOOI requires an SNR. condition |Ty||||T2|||Tsl[Amin > Co(l1Io135)4.

Therefore, if Jy, Ja, J3 < I and ||| = 0(111/2), STEFA requires a weaker SNR condition.

5 Numerical studies

In this section, we use Monte Carlo simulations to assess the performances of the IP-SVD
algorithm on the STEFA model under different settings. In all examples, the observation
tensor ) is generated according to model (0), of which the dimensions of the latent tensor

factor and the covariates are fixed at R,, = R = 3 and D,, = D = 2. We generate the
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noise tensor £ with each entry &;,,,,, ~ N(0,1). The core tensor F is obtained from the
core tensor of the Tucker decomposition of a Ry X Ry X R3 random tensor with i.i.d. N (0, 1)
entries. The core tensor is further scaled such that Ay = min,, og, (Mm(F)) = (Inin)®,
where I,,;, = min{Iy, I, I3} with some desired value of a. This characterization of signal
strength was proposed in Zhang and Xia (2018) and we focus on the low signal-to-noise ratio

regime («a < 0.5), where HOOI is known to have unsatisfactory performance.

The explanatory variable matrix X,, € Rim*Pm i generated from independent uniform

distribution ¢(0, 1). We generate G, = [gimr,, (Xmi-)]; . by
Dy J*
Imrm, (Xm,im.) = fm,rm,o + Z Zfm,rm,dm,jl{‘]_lf)j(2xm,imdm - 1), (32)
dm=1 j=1

where &, 0 and & p g ~ N(0,1), J* is the true number of basis functions, x € (0,1)
is the decay coefficient to make sure convergence of sequences as J* increases, and P;(-) is
the j-th Legendre polynomial defined on [—1,1]. Note that J* denotes the true sieve order
used in simulation and the J used in IP-SVD is not necessarily same as J*. The generation
of T',, will be specified later in each setting. Whenever a non-zero I'), is generated, we
orthonormalize the columns of A, = G,, + T, such that A A,, is an identity matrix. Here
we abuse Assumption 2 a little bit in order to control the signal-to-noise ratio through the
magnitude of the core matrix F. The orthonormalized A,, and the original one differ by a
linear transformation of columns, which does not affect the Schatter g-sin # distance.

In what follows, we vary ([, Is, I3), o, G,, and T',, to investigate the effects of different
tensor dimensions, signal-to-noise ratios and semi-parametric assumptions on the accuracy
of estimating factor, loadings and loading functions. For the error of estimating the loading

A, we report the average Schatten g-sin f# norm (q = 2):

ﬁg(f&m) =

sin © (Am, Am)

, m € [3].

For the error of estimating the loading function g, ,(x), m € [M], we report

— f ‘/‘dm,r(X) - g&,T(X)de
J g3, ()] dx

E(/g\m,r) : , Tre [3]
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For the error of the estimation of a tensor )), we report the relative mean squared error

y-y
ReMSEy = Il

report results for the 1-st mode for conciseness. All results are based on 100 replications.

. For the setting where all three modes share similar properties, we only

Effect of growing dimensions and signal-to-noise ratio. In the first experiment,
we examine the effect of growing dimension I and different values of a. We fix R = 3,
J=J"=4T, =0, and set [, = I, = I3 = I. We vary I = {100,200,300} and
a = {0.1,0.3,0.5}. The mean and standard deviation of eg(&) are presented in Table
Since I; = I, = I3, we only report the Shatten’s ¢-sin ©-norm for _Kl as similar result holds
for A, and ;‘;3. It is clear that the IP-SVD significantly improves upon HOOI in Shatten’s
g-sin ©-norm (¢=2) under all settings. While both IP-SVD and HOOI perform better when
« increases and worse when dimension [ increases, the IP-SVD is more favorably affected by
increased o and less negatively affected by increased dimension I. The error in estimating
Gm,r(x) for the first mode m =1 is reported in Table 2, where the phenomenon is the same
as those for /5 (A) The supplementary material (Chen et al., 2020a, Section C) also reports
the same phenomenon for the unbalanced setting where I, I5, and I3 are different.

Table 1: The mean and standard deviation of the the average Schatten g-sin 6 loss 62(_&1)
and ReMSEjy, from 100 replications, under varying dimensions and signal-to-noise ratio.

o 0.1 0.3 0.5
I 100 200 300 100 200 300 100 200 300
SRS 1.305  1.303  1.292 | 0.866  0.621  0.574 | 0274  0.195  0.152
= (0.138)  (0.126)  (0.169) | (0.233)  (0.205)  (0.200) | (0.068)  (0.051)  (0.038)
2, ReMSEy | 2471 2382 2281 | 0934 0675 0588 | 0280 0.195  0.154
(0.519)  (0.519)  (0.483) | (0.283)  (0.212)  (0.179) | (0.065)  (0.044)  (0.035)
= (A 1.707  1.719  1.724 | 1.705 1719 1724 | 1.581  1.671  1.691
S (0.012)  (0.007)  (0.004) | (0.012)  (0.006)  (0.004) | (0.189)  (0.122)  (0.162)
T ReMSEy | 7.829 10.368 11.999 | 3.330  3.652  3.987 | 1.548 1576  1.556
(1.632)  (2.133)  (2.379) | (0.665) (0.798)  (0.849) | (0.323)  (0.278)  (0.269)

Effect of the number of fitting basis. In this experiment, we examine the effect of
different choices of the number of fitting basis J. Specifically, we fix I} = I, = I3 = [ = 200,

R =3 and set I';,, = 0. We vary SNR by changing a = 0.3,0.5. The loadings are simulated
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Table 2: Under varying dimensions and signal-to-noise ratio, the mean and standard devi-
ation of the function approximation loss £(gy,,), for model m = 1 and r € [3], from 100
replications. This results for modes m = 2, 3 are similar.

a=0.1 a=20.3 a=0.5

D B G G0 6w | 16w G2 (G | (G (G G
100 3 1.653 1.699 1.786 0.745 1.082 1.295 0.382 0.429 0.575
(1.028)  (0.749)  (0.740) | (1.224)  (1.141)  (1.014) | (1.098) (1.078)  (1.259)
200 3 1.479 1.715 1.792 0.524 0.898 1.016 0.134 0.127 0.270
(0.861)  (0.653)  (0.682) | (1.119)  (1.193)  (1.119) | (0.669)  (0.558)  (0.900)

300 3 1.500 1.781 1.834 0.410 0.832 1.063 0.100 0.190 0.063
(0.929)  (0.725)  (0.669) | (0.916)  (1.220)  (1.299) | (0.548)  (0.778)  (0.392)

according to the additive sieve structure as in (32) with fixed J* = 16. However, in the
estimation of Km, we use different numbers of sieve orders J = 2,4,8,16. The mean and
standard deviation of 62(:&1) and ReMSE, are reported in Table

A noteworthy observation is that increasing the sieve order J does not consistently en-
hance the performance. For both signal-to-noise strength in Table 3, J = 16 does not achieve
the best performance among all choices of J, even though the data is simulated with order
16. This reflects well the bias and variance trade-off. On one hand, increasing sieve order
J enhances the capability of G,, in capturing the parametric dependence between A,, and
X,». On the other hand, a large order J increases the Frobenius norm of the projected noise
|€ x1 Py x5 Py X3 P3|, which may result in a reduced signal-to-noise ratio. Large value of
« is more tolerant to this signal-to-noise decrease caused by large sieve order. As shown in
Table 3, the minimum error is obtained at J = 4 when o = 0.3, while J = 8 is the optimal
one when o = 0.5. These observations align with findings in the realm of semiparametric
studies. For example, extensive spline bases often exhibit overfitting tendencies and are

commonly employed alongside regularization techniques (Carroll and Ruppert, 2006).

Effect of the covariate-orthogonal loading. In this experiment, we examine the effect
of the covariate-orthogonal loading part I',,. To simulate nonzero I',, such that A,, satisfies
the identification condition, we first generate a matrix A,, with each elements drawn from

independent N (0,1), project it to the orthogonal complement of G,, and normalize each
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Table 3: The average spectral and Frobenius Schatten g-sin © loss for f&l and relative mean
square errors for ) under various settings.

(5(Ay) ReMSEy,
J 2 4 8 16 2 4 8 16

a=03] 1.024 0.910 1.093 1.486 0.886 0.872 1.154 1.781
(0.177)  (0.195)  (0.256)  (0.173) | (0.113)  (0.182)  (0.349)  (0.432)

a=0.5] 0.881 0.503 0.327 0.445 0.720 0.467 0.303 0.398
(0.153)  (0.116)  (0.057)  (0.101) | (0.080)  (0.073)  (0.053)  (0.102)

column. Specifically, the r-th column of T',, is obtained as

Yonr = (I- PGm))\m.r/ |I—Pg, )N ll, forr=1,... R,,

where Pg,, is the projection matrix of G,, and A, ., is the r-th column of A,,. We add
a scaling factor ;1 > 0 to controls the amplitude of the orthogonal part. Note that A, =
G,, + I';, generated in this way is not necessarily an orthogonal matrix. So a final QR
decomposition is conducted on A,, to orthonormalize the columns of A,,. Again, we note
that we orthonormalize A,, just in order to control the overall signal-to-noise ratio. In the
experiments, we fix I}y = [, = I3 = I = 200, R = 3 and o = 0.5 and change the values
of p. The magnitude or the Frobenious norm of I',, is controlled through the coefficient
. The errors under four different choices of p’s are reported in Table 1. Note that in the
simulation, A,, = G,, + I, is normalized such that the signal-to-noise ratio of the tensor )
can be controlled by the core tensor F. A larger value of ;4 indicates a smaller norm of the
projected tensor Y and results in a decreased signal-to-noise ratio in the projected model.

As demonstrated in Table 4, the error increases as p increases.

Table 4: The means and standard deviations of A; and ReMSEy under various settings.

1 0 0.01 0.1 1.0

((A;) | 0877 0851 0876 1.285
(0.101)  (0.125)  (0.117)  (0.132)

ReMSEy 1.043 0.985 1.031 2.157
(0.274)  (0.271)  (0.296)  (0.543)
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Effect of underlying g,,,, (). In this experiment, we exam the potential impact of using
the additive approximation (13) of G,,. Under the setting Iy = I, = I3 = 200, R = 3,
D=2 a=03,T, =0and J=J" =3, we simulate G,, according to the additive case
(32) and plot the true function g (x) and the estimated function g1,(x) in Figure 3. As
the additive assumption is valid for this case, the estimated function is pretty close the true

one.

Figure 3: (Left) g7 (x) generated under additive model. (Right) g;,(x) estimated under
additive assumption.

Further, we simulate the data such that the additive assumption (13) is not valid. Specif-
ically, we generate ¢y, (Xm.i,,.) in a multiplicative scheme such that
Dy,
gm77"m(xm7im‘) = H gmﬂ"mydm (xmyzmdm) (33)
dm=1
where ¢y r,.4,, 1S given by (32). We conduct the IP-SVD procedure using the additive
approximation (13). The true and estimated function of ¢; 1(x) are plotted in Figure 12 and
lc, respectively. The estimated function can capture some structures of the true function
but misses other details as we approximate it with the additive form. Figure 1h depicts the
projection of the true function g7, to the additive sieve space used in IP-SVD. The projection
is supposed to be the best function estimate that can be obtained from the additive sieve
basis. Note that A is identified up to an orthogonal matrix and so is G. To address this

potential problem of non-identifiability of g, 1, we calculate the best linear combination of
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Gir 7 =1,..., R, that is closest to gi; to mimic any potential orthogonal matrix applied
to G. The best linear combination is reported in Figure 1d. As one can see, Figure b
and ‘d are almost identical to each other. In conclusion, the projected Tucker under an
additive basis assumption can ideally recover at most the linear (and additive) part of the
true parametric component G,,. The performance of this approximation depends on the
deviation between the G,, and its projected version P,,G,,.

To assess the performance of IP-SVD when the additive assumption (13) becomes in-
valid, we repeat the experiment in Table | with exactly the same settings except that the
multiplicative scheme in (33) is used to generate G,,. The errors in estimating A,, and )
are reported in Table 5. Comparing Table | with Table 5, we observe that even when the
additive assumption in (13) is not valid, IP-SVD still performs better than HOOI. But the
improvement under misspecification is not as good as that under the valid additive assump-
tion. This shows empirically that even when the additive assumption is violated, IP-SVD
in general performances better than HOOI as long as the sieve basis used in IP-SVD can

partially explain the parametric part of A,, with respect to X,,.

0.8
10 00

(a) g7 (x) (b) P1g11(x) (d) Yo argrr(x)

Figure 4: (a) True function of g7,(x) (b) Projected version of gi (x) (c) Estimated g (x)
(d) Best linear combination of gy ,(x).
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Table 5: Under varying dimensions and signal-to-noise ratio. The mean and standard devi-
ation of /3(A;) and ReMSEy from 100 replications when the additive loading assumption is
replaced with the multiplicative assumption.

o 0.1 0.3 0.5
I 100 200 300 100 200 300 100 200 300
2 f(A) 1430 1450 1438 | 1225 1182  1.132 | 0853  0.796  0.820
% (0.103)  (0.126)  (0.115) | (0.165) (0.210)  (0.203) | (0.212)  (0.217)  (0.228)
2. ReMSEy | 2.596  2.395 2375 | 1189  1.095 0984 | 0.741  0.709  0.704
(0.521)  (0.579)  (0.482) | (0.210)  (0.175)  (0.157) | (0.117) (0.117)  (0.132)
= f(A) 1.705  1.720  1.723 | 1.705  1.720  1.724 | 1.568  1.653  1.663
S (0.012)  (0.006)  (0.005) | (0.012)  (0.005)  (0.004) | (0.213)  (0.168)  (0.188)
T ReMSEy | 8.092 10.108 12.049 | 3.263  3.874  3.911 | 1.528 1538  1.513
(1.686)  (2.596)  (2.701) | (0.672) (0.721)  (0.781) | (0.332)  (0.294)  (0.300)

6 Real data applications

6.1 Multi-variate Spatial-Temporal Data

In this section, we illustrate the usefulness of the STEFA model and the IP-SVD algorithm

on the Comprehensive Climate Dataset (CCDS) — a collection of climate records of North

America.

The dataset was compiled from five federal agencies sources by Lozano et al.

(2009)". Specifically, we show that we can use the STEFA and IP-SVD to estimate inter-

pretable loading functions, deal better with large noises and make more accurate predictions

than the vanilla Tucker decomposition.

Figure 5: The geological region for which the data is collected

The data contains monthly observations of 17 climate variables from 1990 to 2001 on a

3http://www-bcf.usc.edu/~1iu32/data/NA-1990-2002-Monthly.csv
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2.5 x 2.5 degree grid for latitudes in (30.475,50.475), and longitudes in (—119.75, —79.75).
Figure 5 plots the geological region which covers the majority of the continent of United
States and the southern part of Canada. The total number of observation locations is 125
and the whole time series spans from January, 1990 to December, 2001. Due to the data
quality, we use only 16 measurements listed in Table ¢ at each location and time point.
Thus, the dimensions our our dataset are 125 (locations) x 16 (variables) x 156 (time

points). Detailed information about data is given in Lozano et al. (2009).

Table 6: Variables and data sources in the Comprehensive Climate Dataset (CCDS)

Variables (Short name) Variable group Type Source
Methane (CH4) CHy

ﬁ?ﬁ?ﬁgﬁ?ﬁ&dﬁ (CO2) 622 Greenhouse Gases | NOAA
Carbon-Monoxide (CO) coO

Temperature (TMP) TMP

Temp Min (TMN) TMP

Temp Max (TMX) TMP

Precipitation (PRE) PRE .

Vapor (VAP) VAP Climate CRU
Cloud Cover (CLD) CLD

Wet Days (WET) WET

Frost Days (FRS) FRS

Global Horizontal (GLO) SOL

Direct Normal (DIR SOL .

Global Extratelgrestrzal (ETR) SOL Solar Radiation | NCDC
Direct Extraterrestrial (ETRN) SOL

We first focus on the spatial function structure of this data set. The covariates X € R!25%2

of the spacial dimension contain the latitudes and longitudes of all sampling locations, which
basically capture the spatial continuity of factor loadings on mode 1. The semi-parametric

form (5) for this application is written as

y =F X1 (@1(X)B1 +R1(X) +]_-‘1) X9 AQ Xgl—i—g. (34)

The first mode is the space dimension with loading matrix A; = ®,(X)B; + Ry(X) + I';.
The second mode is the variable dimension with A, as the variable loading matrix. The
third mode is the time dimension which we do not compress. So we use the identity matrix

I in place of Az. This is a matrix-variate factor model similar to Chen and Fan (2023) but
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incorporates covariate effects on the loading matrix in the spatial-mode. We normalized each

time series to have a unit ¢5 norm.

Climate variable and spatial factors. We use R;, Ry, R3 = 6,6,156 where the time
mode is not compressed and the other two latent dimensions are chosen according to the
literature (Lozano et al., 2009; Bahadori et al., 2014; Chen et al., 2020b). We use the
Legendre basis functions of order 5 for ®;(X) and number of basis J = 11. The slices
of latent tensor factor F, .., ry € [6], correspond to six spatial factors and the slices F.,.,.,
r9 € [6], correspond to the six climate variable factors. The meaning of the latent factors can
be inferred from their corresponding variable loading matrix A and spatial loading surfaces
in ®,(X)B;.

Figure 6 (a) shows the heatmap of the varimax-rotated loading matrix A,. It is clear
that the corresponding first climate factor weighted mostly on the four greenhouse gases.
Thus, the first climate factor can be interpreted as the greenhouse gas factor. Interestingly,
this greenhouse gas factor also loads heavily on cloud cover (CLD), echoing with a recent
scientific research on the observational evidence between greenhouse gas and cloud covers
(Ceppi and Nowack, 2021). In a similar way, the second to sixth climate variable factor can be
interpreted as temperature, precipitation (wet), frost, solar, and vapor factors, respectively.
The top six climate factors explain approximately 82.26% , 12.13%, 1.48%, 0.58%, 0.31%,
0.26% of the variance along the second (climate variable) mode of the tensor.

Figure 6 (b) presents six estimated bi-variate spatial loading surfaces corresponding to the
six columns of @1(X)]§1. The space loading surfaces captures the common spatial variances
in 16 environmental variables and they are highly nonlinear. More insights can be drawn
by juxtaposing the discovered loading surfaces with the geological map in Figure 5 with
aligned latitudes and longitudes. The high value (red) region in the first loading surface
corresponds to the Great Lakes region of U.S. and Canada, which was highly-populated and
has a well-developed industry in the 90’s. The second surface represents a south-to-north
gradient and a coast-to-inland gradient. The third surface has high values in the mountain

region of U.S. The discovered top three major loading surfaces have their sociological and
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Figure 6: (a) Heat map plots the varimax-rotated Kz. The first six variable factors explain
approximately 82.26% , 12.13%, 1.48%, 0.58%, 0.31%, 0.26% of the variance along the second
mode of the tensor ). (b) Six surfaces are the estimated space loading surfaces plotted
from six columns of @I(X) = Ql(X)ﬁl. From the top-left to the bottom right sub-figures
correspond to the first to the sixth space loading functions with decreasing singular values.
The coordinates of X and Y axis are aligned with the latitudes and longitudes in Figure 5.
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geological correspondences. Beyond those, the estimates are very noisy and interpretation
gets hard. The top sixth column of @(X)lﬁl explain approximately 93.16% , 2.39%, 0.75%,
0.42%, 0.18%, 0.14% of the variance along the first (spatial) mode of the tensor.

Fitting real data with different noise levels. In this section, we compare the vanilla
and projected Tucker decomposition by their performances in fitting signal with different
levels of noise. To generate different noise levels, we treat the estimated signal S\U and noise
EA'U from wvanilla Tucker decomposition as the true signal S and noise £ and calibrate the real
data with different noise amplifier a > 0. Specifically, the calibrated data is generated as
Y= 3\@ +a X é\v. The setting o = 1 corresponds to the original data. We compare the relative
mean square errors (ReMSE) of the signal estimator ReMSEg = ||S — §||2F/||S||§, for vanilla
and projected Tucker decomposition in Figure 7. For the vanilla Tucker decomposition, we
use the HOOI algorithm. For the projected Tucker decomposition, we use the same setting
as previously, that is, we use the Legendre basis functions of order 5 for ®(X), number of
basis J = 11 and latent dimensions Ry, Ry, R3 = 6,6,156. Two methods behave the same
in the noiseless case where o = 0. However, in the noisy setting where o > 0, the IP-SVD

outperforms the HOOI at all noise levels.

0.74 ——- Vanilla g
Projected Al /’/
0.6 e
//
@ o5 Rl
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Noise Amplifier

Figure 7: Relative mean square errors (ReMSE) by projected versus vanilla Tucker decompo-
sition with different noise amplifiers. The relative residual SS of the signal part is defined as
|S — S||F/||S||F where 8 := F x1 A; X2 As. The loading Ay, A, and factor F are estimated
by HOOI and IP-SVD, respectively, for vanilla and projected Tucker decomposition.
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Spatial prediction. In this section, we compare the prediction performances of the meth-
ods based vanilla and projected Tucker decomposition. The two prediction procedures are
presented in Section 3.4. We randomly choose the training set to be 50%, 67%, and 75%
of the whole data set. Table 7 shows the prediction errors, average over cross validations,
of the two methods respectively. It is clear that the STEFA model with projected Tucker

decomposition outperforms the vanilla methods.

Table 7: Relative prediction error (averaged value by cross validation). For ease of display,
the errors for Vanilla and Projected Tucker are reported as 100x the true value.

Training set proportion | 50% 67% 75%
Vanilla 3.52 348 3.05
Projected 3.20 3.23 3.01
Improvement 92.0% 7.2% 1.3%

Temporal-mode compression. Now we consider fitting the real data with a more com-

plex model where the mode corresponds to time is also compressed:

YV=Fx; (®:(X)B; + Ri(X) + T1) x5 Ay X3 (®3(t)B3 + R3(t) + T'3) + £. (35)

For the space mode, we use the same setting as previously, that is, we use the Legendre basis
functions of order 5 for ®;(X) and the number of basis J; = 11. For the time mode, we use
the sinusoidal basis functions of order 12 for ®3(¢) and the number of basis J; = 13. Figure

presents the first two columns of ®3(¢)B3 which explains approximately 80.69% and 0.14%
of the variance along time mode of the tensor. Each column of the loading matrix <I>3(t)]§3
can be interpreted from its temporal pattern. The first time loading corresponds to the
temporal mean since it is almost flat over time. The second time loading corresponds to a
linear trend component. This trend coincides with the annual greenhouse gas emission data
from U.S. environment protection agency, where the greenhouse gas emission has an overall
increasing trend from 1992 to 2002 with local peaks around 1995 and 2000. The other time

loading dimensions are less prominent as they account for a small portion of variations. As

4https://cfpub.epa.gov/ghgdata/inventoryexplorer
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a result, their corresponding interpretations are not obvious and we omit their plots here.

Time loading 1
0.08 'eeeeocs
0.06
0.1 Time loading 2
0.0
-0.1
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Figure 8: Top two functions of time that corresponds to the first two columns of ®3(¢)Bj.

6.2 Human Brain Connection Data

We illustrate another application of the STEFA model and IP-SVD to the human brain
connection data (Desikan et al.; 2006). This Human Connectome Project (HCP) dataset
consists of brain structural networks collected from 136 individuals. Each brain network is
represented as a 68 x 68 binary matrix, each entry of which encodes the presence or absence
of a fiber connection between 68 brain regions. Thus, the final observation ) is of dimension
68 x 68 x 136. Associated with 136 individuals, there are 573 features including ages, genders,
and various measurements of their brains. This dataset has been used in Hu et al. (2022)
for tensor regression and it is available in the R package tensorregress. We consider the
instance of the STEFA model with Az = ®3(X)B3+ R3(X) + I's. The covariate X contains
five features: gender (65 females vs. 71 males), age 22-25 (n = 35), age 26-30 (n = 58), and
age 31+ (n = 43). These categorical variables are coded using sum-to-zero contrasts and the
lower rank is set as (10, 10,4), the same as those set in Hu et al. (2022). As an illustration,
we choose ®3(X) generated by polynomial basis of order 1, which is a similar linear setting
as that in Hu et al. (2022) with identity link function.

Hu et al. (2022) consider a similar setting for tensor regression. However, there are two
major differences. First, they consider a generalized linear model (GLM) with a low-Tucker-
rank coefficient tensor that predict ) with given observations X and their estimation is based

on the maximum likelihood estimation. On the contrary, the STEFA model aims to discover
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the relationships between entries in ) (with the help of covariates X when available) without
using any distributional assumption. This relationship between entries in ) can also be used
to predict values by interpolation as proposed in Section 3.1. Second, the STEFA model
is comparable to MMC tensor regression only when the GLM linkage function is linear. In
such setting, the form of the tensor regression model in Hu et al. (2022) is equivalent to
assuming Az = ®3(X)Bj3 with ®3(X) = X in the STEFA model. It has two limitations:
only linear components of X is considered and the non-parametric residuals independent with
X are ignored. In contrast, the STEFA model and the IP-SVD estimate A3 which consists
of covariate-relevant ®3(X)Bj, the residual component R(X), as well as the orthogonal
-y i
of the STEFA and MMC tensor regression with the identity link in Table 8. The relative

component I's. We compare the relative mean squared error ReMSE,, =

mean squared error of the STEFA is smaller under all choices of basis functions. In fact, the
STEFA model complements the work in Hu et al. (2022) since the orthogonal I's can also

be included in their tensor regression models.

~ 2
Table 8: Relative mean squared error ReMSEy = Hy - yH /||Y||3 of the MMC with identity
F

link and the STEFA. Each columns corresponds to a type of basis function with its order in
the parentheses. The MMC and the STEFA use the same basis function in ®(X).

Polynomials (1) Polynomials (3) Legendre (5)
MMC (Identity link) 39.6% 39.5% 39.4%
STEFA 38.7% 38.4% 38.3%
Improvement 2.3% 2.8% 2.8%

The covariate-relevant ®3(X)Bj is determined by covariates specified by domain experts.
Researchers may be curious to identify features affecting brain connectivity other than those
already known in the field. Now we show that the residual f‘g = ;&3 — @3(X)]§3 obtained
by STEFA can be used to discover several features other than gender and age. Analogous
to the interpretation that the rows of the 136 x 4 loading matrix 1&3 can be reviewed as the
low-rank representation of 136 subjects in the latent factor space, matrices fg and </I;3 (X)ﬁg
can be interpreted, respectively, as covariate-independent and covariate-dependent low-rank

representations. The idea to identify important features left in the residual component
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is to first use fg in spectral clustering to divide 136 subjects into four groups, and then
use recursive feature elimination (RFE) to identify the top four important features that
differentiate these four groups. The identified top four important features that are disparate
across groups are the average thickness of the right transverse temporal gyri which has been
shown to be correlated with human acoustic processing (Warrier et al., 2009), the volumn of
accumbens area which is a key structure in mediating emotional and motivation processing,
modulating reward and pleasure processing, and serving a key limbic-motor interface (Cohen
et al., 2009; Salgado and Kaplitt, 2015), the unadjusted negative emotion affect related to
sadness, fear, and anger, and a personality raw score on being active or not. Section 77?7
provides another illustration of using the STEFA and IP-SVD for explanatory data analysis
to partitioning the brain connectivity according to the covariate-relevant loading ®3(X)Bj3.
These interesting discoveries from explanatory data analysis can be used as good starting

points for the following more rigorous scientific researches.

7 Discussion

This paper introduces a high-dimensional Semiparametric TEnsor FActor (STEFA) model
with nonparametric loading functions that depend on a few observed covariates. This model
is motivated by the fact that observed variables can partially explain the factor loadings,
which helps to increase the accuracy of estimation and the interpretability of results. We
propose a computationally efficient algorithm IP-SVD to estimate the unknown tensor factor,
loadings, and the latent dimensions. The advantages of IP-SVD are two-fold. First, unlike
HOOI which iterates in the ambient dimension, IP-SVD finds the principal components in
the covariate-related subspace whose dimension can be significantly smaller. As a result, IP-
SVD requires weaker SNR conditions for convergence. Secondly, the projection also reduces
the effect dimension size of stochastic noise and thus IP-SVD yields an estimate of latent
factors with faster convergence rates.

While tensor data is everywhere in the physical world, statistical analysis for tensor data is

still challenging. There are several interesting topics for future research. First, it is important
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to develop non-parametric tests on whether observed relevant covariates have explaining
powers on the loadings and whether they fully explain the loadings. However, under the
tensor decomposition setting, this is more challenging than a straightforward extension from
Fan et al. (2016). Second, we mentioned briefly that, when there are multiple observations,
one can apply IP-SVD on the sample covariance tensor. However, a more precise algorithm
is needed. Last but not the least, it is of great need to develop new methods to use STEFA

in tensor regression or other tensor data related applications.
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Appendix A Major Theoretical Proofs

Proof of Lemma ??7. Let § = F X1 ;&1 Xo oo X :&M be a Tucker decomposition of S such
that F € REvxBu g the core tensor, and for m € [M], A,, € RI*n is the m-mode
loading matrix satisfying Assumption ?7?(i).

Clearly, S = F x1 Ay X5 --- X7 Ay is a valid Tucker decomposition satisfying Assump-
tion ??(i) if and only if there exist orthogonal matrices H,, € Qftm*®= for all m € [M] such
that A,, = A,,H,, and F = F x, H| x5+ x,, H],. Moreover, then M,,(S)M,,(S)"/I,,
has the same singular values with M, (F)M,,(F)"

Now we are in the place to prove the lemma. Recall that any Tucker decomposition of
S satisfying Assumption ?7(i) are indexed by the set of orthogonal matrices (Hy,--- , Hyy)
in reference to the decomposition S = F X1 fAl Xo +o+ X ;&M. The corresponding core
tensor F is F = F xy H] X5 -+ xy HI,. The mode-m matricization of F is M,,(F) =
H;Mm(]? ) [@lE[MM 4m HIT] . Suppose for some H,,,, Assumption ??(i) is satisfied such that
Mo (F)Mum(F)T = HI M, (F)M,(F)TH,, = D,, for some diagonal matrix D,, with
non-zero decreasing diagonal entries. Then the diagonal entries of D,, are the eigenvalues of
Mm(j-: )/\/lm(j-: )T and the columns in H,, are the corresponding eigenvectors, because of the
equality /\/lm(j-: )/\/lm(]-ﬁ: )'H,, = H,,D,,. Note that D,, has the same singular values with
M (S)M,,(S)T. As a result, when the singular values of M,,(S)M,,,(S)" are distinct, the
eigenvalues and eigenvectors of /\/lm(j-: )/\/lm(]? )T can be uniquely identified (up to a global
sign), resulting in an unique H,,. Here, the uniqueness is up to a column-wise sign of H,,.

In conclusion, starting from an arbitrary Tucker decomposition & = F X1 Al Xo X s

Ay satisfying Assumption ??(i), by choosing the columns of H,, to be the eigenvectors of



/\/lm(j-: )/\/lm(j-: )T in descending order of eigenvalues, the Tucker decomposition with F =
.7?><1H1T X e XMHL, A= XlHl, e Ay = AMHM is the unique Tucker decomposition
satisfying both Assumptions 1(i) and 1(ii) when the eigenvalues of M,,(S)M,,(S)" are
distinct for all m € [M]. O

Proof of Lemma ??7. We prove the initialization error and convergence of IP-SVD separately.
Without loss of generality, we assume Ee? = 1 for all w € [I1] x [I3] x [I3].
We begin with the upper bound of the remainder term R, (X,,). By Assumption ??, for

each function m € [M] and 1 < 7, < Ry, |G (Xi0,) — B by (X2,,)] = O(Jm™?) which

m,"m

bounds the (i,,, r,)-th entry of R,,(X,,). Therefore, a simple fact is

R (X[ L = O (B - 1,7 (1)

for all m € [M].

Initialization error. Without loss of generality, we only prove the upper bound of
||é§0)é§°” — GG/ ||r. Recall that G; = ®,(X;)B; + R;(X;) where, by the definition of
®,(X;), we have ®,(X;)'T'; = 0. Let Gl/\/l_l denotes the top-R; left singular vectors
of ®(X;)B;. By Condition (1) and Davis-Kahan theorem (?) or spectral perturbation

formula (?),

1GiG] — G\G] |ls/I, = O(V/R, - J;7%) (2)

where we used the fact that o g, (®1(X1)B1/v11) > 1—0(\/R1-J1_T/2) > 1/2and ||Ry(Xy)|[r/V1i =

OWEy - J.).
Recall that y =F X1 (PlGl) X9 (PQGQ) X3 (P3G3) +5 X1 P1 X9 P2 X3 P3 and as a result

My(P) = PyGiM (F) ((P2Ga) © (P3Gy)) " + PiMy(E)(Py @ Py) T

where we denote ® the kronecker product. The projector matrix P,, € RIm*Im ywith

rank(P,,) = J,,. Denote the eigen-decomposition of P,, by P, = UmU; where U,TnUm =



I;,. Therefore, we write
P M, (E)(P2 ® P3) = Uy (U M, (€)(U; ® Uy)) (U, @ Us) '

In addition, we write
P1G1M1(f)((P2G2) ® (PSG?,))T = Pl‘I’l(Xl)BlMl(]:)((PzGQ) b2y (P3G3))T
PRy (X0) My (F) (P2Ga) ® (P3Gy))

where the left singular space of the first matrix is the same to column space of G1. Denote
the top-R; left singular vectors of P1G1 M, (F) ((PQGZ) ® <P3G3>)T by Gl/\/I_l Again by

Davis-Kahan theorem (?) or spectral perturbation formula (?), we have

GG — GG ||p/I; = O(rkor/Ry - J;™?) (3)

where kg is F’s condition number and we used the facts
o, (P1@1(X1)BIM(F) (P2G2) © (P3Gs)) ") 2hwin /oIy - o, (®1(X1)B1)

> AminV/ 111215/2

and
| PIR1(X)M(F) (P2G2) @ (P3Ga)) || =0 (soduin v/ ol - [Ra (X))

= O(koAmin/ Ril1 o 15 - J;7?).
For notational simplicity, we write ./\/ll(j)v) = A, +7Z, where A| = PlGlMl(f)((PQGQ) ®
(P3G3))T and Z; = Py M, (E)(Py®Ps3)T. Then, G1/+/T; are the top-Ry left singular vectors
of A; and are also the top-R; eigenvectors of AlAlT. Since (~;§0>/\/T1 are the top-R; left

singular vectors of /\/11(37), they are also the top-R; eigenvectors of Ml(ﬁ)/\/tf@) wheih

can be written as My (V)M (V) = AJA] + A\Z] +Z,A] + Z,Z]. Observe that

Z,Z] = U, (U] M, (E)(Uy © Us)) (UT M, (£)(Uy ® Usy)) U



Then, we can write

MiDIM] (D) = AJA] + L Py + AVZ] + 7oA + Z,Z] — J,J5P;.

By definition, the column space of G, is a subspace of the column space of Py, and
P@lAlAlTPél = A;A] where P, = éléf/h denotes the orthogonal projection onto
the column space of Gi.

We write
MM (V) = (A1AL + B JsPy) +(AZ] + ZiA]) + ZiZ] — BJsPr (4)

~~

M

Clearly, the top-R; left singular space of M is the column space of Co;rl and o, (M) —
UR1+1(M) =0Rr (AlAI) > )\2 [1[213.

min

The upper bounds on the spectral norm ||AZ] +Z,A] || and ||Z,Z] — J,J3P4|| are due

to the following lemma whose proof is postponed to Appendix

Lemma 1. Suppose that Assumption 7?7 holds. There exists an absolute constant C; > 0

such that with probability at least 1 — 2I;>
|ALZ] || < Carodmin(DI2L3) % - /Ty log? 1.
By Lemma |, the following bound holds with probability at least 1 — 21; 2
IA1Z] + Z1 AT || < CuroAmin(I Io13)"? - \/J log? .

Observe that
Z.\Z] — JyJsP,
~U, ((UTM4(E)(Uz  Us)) (U] My (€)(Uz @ Ug)) " = Lol UL

Lemma 2. Suppose that Assumption 77 holds. There exist absolute constants C3, Cy > 0 so



that
IP)(“ZlZ;r — J2J3P1H Z 03 J1J2J3 log4 ]1 + C4J1 10g5/2 Il) S 5[;2

By Lemma 2, with probability at least 1 — 51,2,
1212] — JoJsPi|| < Cs+/JyJaJslog! I + CyJylog™ .

We now continue from (1). By Davis-Kahan theorem (?) and Lemma | and 2, we get with

probability at least 1 — 7/, 2 that

VAT S0 G rov/RiJi log” I JiJoJ3) Y log" I + Jy log™? T
”GIGI —GgO)G ”F < 03 11 108 11 0431/2( 12 3) og” 11 + Jplog 1
Amin V11 Lo I3 N LTy

for some absolute constants C3, Cy > 0. Denote the above event by &;. Together with (2)

and (3), we get on event &; that
1GIGI =G G v/ 1y
VR Jilog® I RiJi(J1 V JaJs)log I -
SC{J’(KO 1J1 108 1_|_\/11 1 2.J3) log 1+/<;0\/E~J17/2>. (5)

)\min [11213 )\IanIl[ZIS

In view of (5), the initialization égo) is close to the truth as long as

Amlh&h20%@#&&b§h+ﬂhﬂhvbhﬁmbﬁh>

and J; > RS/TRVT. The proof is completed by assuming ko = O(1) and J; < Jy < Js.

Assuming warm initializations and iterates for CN-‘:,(J;_D, we prove the contraction property for

G
IP-SVD iterations. Without loss of generality, we fix an integer value of ¢t and prove

the contraction inequality (??) for m = 1. For notation simplicity, we denote
Err, = max, IGOGOT = GG ||p/ L.

By projected power iteration in Section 77, the scaled singular vectors éﬁt) is obtained



by
G/, = SVDRl(PIMl@J x2 Gy xg G m))

Recall A,, = G,, + T, for m =1,2,3 and

Y =F x1 (Gi +T1) X9 (Go +Tg) X3 (Gg + ') +€.
S

We then write
P, M, ()) s égq)T X égsq)T)

:PlMl(S X9 égt nT X3 G‘r(tL uT > + PlMl (g X9 ég nT X3 G(t I)T) (6)

By the fact P1I';y = 0, we obtain

PLM (8 2 GI Ty 6T = PLGLMA(F) (AT GE V) & (AJGE))
Observe that P1G; = ®(X;)B; + P;R;(X;). By Condition (1), we get
Ouin(P1G1/ V1) 2 0in (®1(X1)B/VT) = OB - /77 2 1= OWERy - I,

Recall that the column space of G' Visa subspace of ®,,(X,,) for all m = 1,2, 3, implying
that A;é(t Y =G, G Y and as a result

Tmin (AN GV = 0,1 (GLGETY) > Im\/ 1 |GEVGE YT - GG/ I > V21, /2

where the last inequality is due to the fact Hé&?”éﬁﬁ” — GG |/I, < 1/2 which

holds as long as the conditions of Lemma 7?7 hold and initializations are warm in that

||(N;re(79,)é£2ﬁ — GG ||/1,, <1/2 for all m € [M]. Therefore, we conclude that

T X3 éét—l)'l’)) > \/1._1;2[3 ) )\min\/I_IIQIZS‘

O min (PlMl(S xo GV ;

O’R1 (./\/ll(f)) Z



We now bound the operator norm of Py M; (€ x5 G(t DT, é:(;—l)T)' We write
PyM, (Ex:GY VT x5 GEUT) = PuM, (€ x5 (GO )T x4 (G508 )T)
FPIM(E %, <G26“* > x3 (GY™V — G304 ~")T)
+PIM; (€ x5 (GY Y = GoOF )T x5 GEYT) o

where Of ™ = argmingegr«n; |[GY " — G20l and Of ™V = argmingegrexns |G —

G;3O||p. Clearly,
[PLML(E x5 (G205 )T x5 (G305 N T) || =[IP1 ML (E)(G2 ® Gy)|
=[®1(®] ®1) '@ Mi(E)(G2 ® Gy)|

where we abuse the notation and write ®; = ®;(X;). Similarly, as the proof of Lemma 77,

denote U, the eigenvectors of Py so that UlTUl =1, Then,

[PLMG (€ x5 (G205 )T x5 (G3O5™)T) || = I[UT M4 (€)(G @ Gy)|

where the matrix U] M;(€)(Gy @ G3) has size J; x (RoR3).

Lemma 3. Suppose that Assumption 7?7 holds. There exist absolute constants Cs, Cg > 0 so

that

P (y|U1T/\/11(5)(G2 ® Gy)||//Iols > Cs\/Jilog I) + Cs\/RaRs log? 11) < o2I72,

By Lemma 3, we get that with probability at least 1 — 2I; % that

||P1M1(8 X9 (Gz(ﬂjgil)) O(t 1 )H/\/ IQ[g O <\/ Jl R2R3 lOg [1) (8)

We now bound the second and third terms on RHS of (7). Write
[PLM; (€ x5 (G205 )T x5 (GY ™V — G305~ T) |
=[[Uf Mi(6)(G2 @ (G — G308 ™).

Recall G3 = ®3B3+ R3 where we again abused the notation and dropped their dependences



on Xj3. Therefore,

IGY ™ = GoOf Ve — 1G5 = @4ByOL Ve /VE = OB - ;7). (9)

We obtain
[UI M) (Ga @ (G = G50§7))|
<|[UT M () (Gy @ (G — ®;B30( ™)) || + [|U] M1 (€) (G2 @ Ry)]|.

Note that the column space of CN-'wgt_l) belongs to the column space of ®3. Denote Uj the left

singular vectors of ®3B3. Then,
[UT M, () (G @ (GY ™ — @,B,0( 7))
< |G — @3B500 Y|y - sup U Mi(E)(G2 @ UzA)|

A€RI3* R || Al|p<1

=0(||GY™" = @,B30Y V|[p\/Is - v/ Ji + JsRs + RyRylog®? 1)), (10)

where the last inequality holds with probability at least 1 — 47 % and is due to Lemma

Lemma 4. Suppose that € has i.i.d entries satisfying Assumption ??. Define B(dy,ds) =

{A € R"*% ||A|lp < 1}. There ezist absolute constants Cy > 0 such that

G
IP’( sup HUIT./\/ll(ci’)(—2 ® UsA)|| > Civ/Ji + J3Rs + RaRylog®? Il) <4I7? (11)
AeB(J3,R3) \/I_Q

and

IP’( sup  ||[U{ My (E)(UsA @ U3B)|| > Con/Ji + JoRy + J3 Ry + RyRslog™? 11) < 4172
AE%(JQ,RQ)
BG%(J37R3)

(12)

Recall that Uy, Gy, R3 are deterministic matrices. Following the same treatment as in

the proof of Lemma |, we get with probability at least 1 — 21; 2,

HUIMl(S) (G2 &® R3) H < <R312[3>1/2J;T/2 . (Cg\/ Jl lOg [1 + 04\/ RQRg 10g2 Il) (13)



for some absolute constants C'5, Cy > 0.

Putting together (10) and (13), we get with probability at least 1 — 61; % that
[UT M1 () (G2 ® (G — G508 ™))

§C5(Errt,1 + v R3 : J;T/Q)\/]é[g . \/Jl + J3R3 + R2R3 10g3/2 [1. (14)

Similarly, we can show that with probability at least 1 — 81,2,

[P M, (Ex5(GY ™ — G,0Y )T x5 GYVT)|

<Cs(Ertsy + /R - Jy "IN/ Is - /Ji + J3R3 + RaRslog®? I, (15)

where we used the fact ||éét_1)||p < +/R3l3 and the fact that the column space of éét_l) is
a subspace of the column space of Us.

Therefore, by (%), (14) and (15), we conclude that with probability at least 1 — 161; >
that

[P M (E)GS ™ @ GY™)|| < Csv/Iols - /Iy + ReR3log? I
+ Co(Erryr + /Rody* + /Ry )/ I Is - /Jy + JsRy + RoRylog®* 1.

Now, we continue from (6). Recall that we denote G, /1) the top-R; left singular vectors of
P,G;. As shown in the proof of initialization, we have H(}l(Z‘r1T -GG/ ||p/L < 2\/R1Jf7/2.

Applying Daivs-Kahan theorem to (), we get with probability at least 1 — 16/, * that
VLI /TRy + RiRyR3log” I

IGVGHT — GG ||p/1, < Cy

)\min\/I_1[2[3
L (Err,_q + \/RQJQ_T/Q + \/Rng_T/Q)\/]zI?, IRy + J3B Ry + B RaRs log?? I
° )\min\/[_1[2]3

for some absolute constants Cy, Cs > 0.

Therefore, as long as ApinvV/I112l3 > Civ/J1 Ry + J3R1R3 + R1 Ry R3 log‘g/2 I, for a large

enough absolute constant Cf > 0, we get with probability at least 1 — 161, 2 that

IGVGY" — GG ||r /1)



B R 4 VR, + VR J; o VIR T Ry log? I
- 2 2 4 Aminv/T1 1213 '

In the same fashion, we can prove similar bounds of |\(§$?(§£?T —G,,G] ||p forallm = 1,2, 3.

Therefore, with probability at least 1 — 481, 2,

Err; 4 —r/2 — —r/2 VIR + RiRyR3log” I
Err, < (VR 4 SRy 4 ReJTT) 4 C ,
ms Ty TR o S S W/ 77

(16)

which proves the first claim of Lemma ?7?7. The same properties can be proved for all
iterations and all hold on the same event.

By the above contraction inequality in (10), after

tmax = O(log(Amin/ 11213/ J1) + 7 - log(J1) + 1)

iterations, we obtain

Ji R, + RiRoR3log? I . ., o
Eir,,,, = CyY = 11121.2;’30g L VR A Rdy T 4 Ry

which holds with probability at least 1 — 481, 2. The proof is concluded by noting that
J1XJ2XJ3aIldJ12JQZJ3. U]

In order to prove Theorem ??, we begin with proving the following result.

Lemma 5. (Factor tensor) Suppose that conditions of Lemma ?? hold. Then, with proba-

bility at least 1 — 491, that
||]'~—— F X1 6]— X9 6;— X3 6;”1:‘

ko - VJiR1 + RiRyR;3 108;2 L —7/2
<C 2o Aminy/ R dy 2.
<af VAL, ) 2R

where Oy, is an orthogonal matriz which realizes the minimium ming |G, — G, Ol|r and

Ci > 0 is an absolute constant.

10



Proof of Lemma 5. Recall that F= (LII3)™' Y x, élT X9 é; X3 é; and so that

ﬁ = (11[213)_1 - F X1 (éIGl) X9 (é;—Gg) X3 (é;Gg) + ([11213)_1 -E X1 é;l' X9 é;— X3 é;’—

where we used the fact é;I‘m = 0 since the column space of ém is a subspace of the column

space of ®,,(X,,). Recall that
G (GnGy, = GnGy) G/ I = GG (GG /17, — T,

where G:ném is an R, X R, matrix. Then, by Lemma ??, with probability at least 1—481; 2
that

~ ~ JiR +R1R2R310g211 )
GG, (GTG,)T/I2 —1 <c\/1 L /Ry I
GGG o) = Tl = 3 Ly P2V

It implies that for all m = 1,2, 3, there exists an orthonormal matrix O,, € OFm*Rm 5o that

~ ~ J Ry + RiRyR3log? I .
|GG 1~ O = A RO g

which holds with the same probability. Therefore,
ﬁ— F X1 GI X9 6;—X36;— = (Illglg)_l £ X1 é;r X9 é; X3 é;

+f< X1 (éIGl/Il) X (é;—Gg/IQ) X3 (é;—Gg/]g) — X16;r X9 6;— X3 6;)
(17)

Observe that
||]: X1 (éIG1/11 — 61|—> X9 (é;—Gg/Ig) X3 (é;)rGg,/Ig)HF
< [(G{G1/L = O )M (F)((G3 G/ Io) © (G5 G/ I3)) ||
< |MyUF)| - 1G] G /Ty — O ||

Ko * \/JlRl + R1R2R3 10g2 ]1
VI3

< C5 + 2/@0)\mm\/ R1J1_7/2.

11



As a result, we can show with probability at least 1 — 4812 that

|F(x1 (G G1/1) %2 (Gy G/ L) x5 (G3 Gy/I3) — x10] x50, x30;)||
ko -V Ry + RiRaR3log® I
VI 15

<C! + 6KoAmin/ R1J; . (18)

Observe that the rank of M, (5 X1 élT X9 é; X3 é;) is bounded by R;. Similarly,
1€ 1 GT x2 Gy x5 GI || = || M1 (€ x1 GT x5 GJ x5 G5,
<V - [ M (€ %1 GT %2 GI x5 GJ) ||

Lemma 6. Suppose that Assumption 77 holds and assume J; < Jo < J3 and J, > Ry >

Ry > Rs3. There exist absolute constants C; > 0 so that,

]P’(HMl(S x1 G %2 Gy x3 G )||/V I IIs > Cry/Ji Ry log*? 11) <72

By Lemma 6, with probability at least 1 — I; 2,

HMl((c: X1 éir X9 é; X3 é;)H/\/ [1[2[3 < Ci\/ JlRl 10g3/2 [1. (19)

for some absolute constant C] > 0.

Putting together (17), (15) and (19), we conclude that with probability at least 1 —491;

that
||ﬁ— F X1 6; X9 6;— X3 6;’—”}7
Rg * \/JlRl + R1R2R3 10g2 Il —7/2
<C + 6K0Amin V/ F1J ,
which proves Lemma 5. O

Proof of Theorem 7. Let 6m denote the left singular vectors of /\/lm(]?) for all m € [M],
and D,, denote the singular values of Mm(]? ). Similarly, denote D,, the singular values of

M, (F). Lemma 5 implies, with probability at least 1 — 491, 2, that

Ko * \/JlRl + R1R2R3 10g2 Il
v

1Dy, — f)m” < Cy + 6K Amin V R1J1_T/2

12



and
|01 M: (F)M (F) O] — My(F)M(F)|
= My (F)M(F)" = O] My (F)M.(F)T 0.

Denote H, = 0,04 so that Oy M, (F)M(F) O] — My (F)M] (F) = H,D*H] — D2
where we used Assumption ??. Denote e, = CskZAminv/J1R1 + R1R2R3 log2(11)/ 11515 +
6Kk202, /R1J;"/?. Then, by Lemma 5, we obtain with probability at least 1 — 49/;2 that

|H,DIH| — D?|| < <. (20)

Note that for each j = 1,- -+, Ry, we obtain ¢;(D?) — 0;41(D?) > A\pin - Egap(F). Under the
conditions of Theorem ?7?, it follows with probability at least 1 — 491; % that

min O‘j(D%) — O'j_:,_l(D%) Z Cllﬁg\/ Rl " Ea

1<G<Ry

for a large enough constant C; > 1 implying that the order of eigenvalues of D? will be
maintained in view of (20). By applying the Davis-Kahan theorem to each isolated eigen-
vector of H;D2H,, we can conclude that ||E]ﬁ]T —eje; || < 1/(2k§v/Ry) which holds for all
j=1,---, Ry where ﬁj denotes the j-th column of H, and e; denotes the j-th canonical ba-
sis vector. Indeed, it holds as long as the Egap(F) is large enough as stated in the conditions
of Theorem ??. It implies that there exists a 5; € {£1} so that ||ﬁ]'§] —ej|| < 1/7/2K3R,

for each j. Denote S; = diag(5, - , Sg,) so that
~ o~ B 5\ 1/2 )
JELS: =Ll < (D115 —esl?) < 1/(V26).
j=1

Note that, on the same event, |[H;D2H — D?||p < &, + ||D? — D2||p < 2¢, where the last
bound is due to Lemma 5. Since Dy is a diagonal matrix, |[H;D2H] — S;D?S,||p < 2e,.

Write

|HLDIH] — S,D3S] | > || (F — S1)D3S] + SiD}(H, - S1) 7w

13



—||(ﬁ1 - §1)]5§(ﬁ1 - g1)T||F > 2]|ﬁ1 - §1|’F0min(]~3%) - O(Hﬁ1 - §1|’%0max(ﬁ%))

> 2|/ H; — Si[[pomin(D}) — O (k5|[Hy — S [ i omin(DF))

where the last inequality holds with probability at least 1 — 491; % as long as ||D; — ]51“ <
Amin/4 which is guaranteed by the lower bound on Ay;,. It implies that

|H\D?H] — S;D?S/ [[r > (2 — V2)|[Hi — Si[[p0min(D?) > [[Hi — Si )2, /5.

Therefore, we conclude with probability at least 1 — 497, % that

~ < kIR, + RiRyRslog? I _r
||H1 — SlHF S 10606/)\1211in S 07 O\/ )1\ . 111]2215 & 41 + Cglﬁgv RlJl /2.

As a result, G = G,0, and then with probability at least 1 — 491; 2,
IG1 = GiSullp/v/Th </1Gy = GaH [/ v/Ty + |[Hy = Sy Je
=[|G1 = G10:04 [lp/v/I + [Hy — Sy ||s
=[Gy — G1Oullr/v/Ty + [Hy — Syl

2 log? I _
§C7KO\/JR1 + R1RsR3log” I " Csﬁ(g) /—R1J1 /2
)\min -[1-[2]3

where the last inequality is due to that O; realizes the minimum of ming |[|G; — G1O||s.
Clearly, the bounds can be proved identically for all ||ém -GSl / V-
At last, recall that F=Fx, 61T X9 6; X3 6; We conclude that with probability at
least 1 — 491, 2,
IF — F x1 81 X3 S5 x5 Ssllp = | F = F x1 H] x5 HJ x5 HJ [|r + O(Koca/Amin)
=||F x1 O] x5 05 x307 — F x1 H] x5 H} x3HJ |l + O(koca/Amin)
=||F = F x1 (04H]) x5 (0sHy) x5 (O5H) [l + Ok0za/Amin)
=||F = F x1 0/ x2 05 x3 04 [|lp + O(ri02a/Amin) = O((KoEa/Amin)

lig\/JRl + R1R2R3 10g2 Il —7/2
=0 0 3>\rnir1 RyJ i )
< NS o Amin V1 )
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which proves Theorem ?77. O

Proof of Theorem ?7. Without loss of generality, we prove the bound for m = 1. Recall by
definition that

fl = Pi—;'&l = Pf'./\/ll(y X9 P2 X9 Pg)./\/ll(ﬁ X9 ég X3 ag)T(Ml(ﬁ)MlT(ﬁ))_l/([zlg)

Since the column space of CA}m is a subspace of the column space of P,, so that CA};LI‘m =0,

we can write
My (Y x5 PoyxsP3) M (F x5 Gy x3 G3)T = My (V)(Py @ P3)(Gy @ Gg) M, (F)T
= M (Y)(G2 ® G3) M, (F)”
=(G1 + DM (F)((G5 G2) ® (Gg G3)) M (F)T + My (E)(Gy @ Gy) M, (F)T

and as a result
Ty =PiT M, (F)((GJ Ga) © (G] Gag) ) My (F)T (My(FYM[ (F)) ™" /(I 1)
+ PLEML(E)(Gy ® Ga) My (F) T (My(FYM] (F)) /(I 1s).

Under the conditions of Lemma ?? and by Theorem ??, we conclude with probability at
least 1 — 491, 2 that o, (Ml(]?)) > Amin/2. Now, it suffices to bound the spectral norm
P M (E)(Gy ® @g)Ml(]/-\')T(Ml(f)MlT(]?))_l Since the column spaces of G and G
are the subspaces of column spaces of ®5(X5) and ®3(X3), respectively, we have

[P M (E)(Gy @ Ga) Mi(F) T (My(F)M] (F)) /(L))

< MUF)T (MUFIMT (F)) ||/ (Fads) - sup P M (E)((UzA2) @ (UsAs)) B
A2€‘B(]2,R2),A3E‘B(J37R3)
BeB(R2R3,R1)

where U,, are the left singular vectors of ®,,(X,,) and B(d;,ds) = {B € R4*% : |B|| < 1}.

The following lemma is needed whose proof is reproducible by the proof of Lemma

Lemma 7. Suppose that Assumption 77 holds and assume J; < Jo < J3 and J; > Ry >

15



Ry > Rs. There exist an absolute constant Cy > 0 so that with probability at least 1 — I, 2,

sup HP{‘./\/h(S)((U2A2)®(U3A3))BH < 09\/[1 + J1Ry + RiRyR5 10g3/2 1.
AseB(J2,R2),A3€B(J3,R3)
BeB(R2R3,R1)

By Lemma 7, we get with probability at least 1 — I; % that

PEM()(Gz ® Go) My (F) T (My(F)M] (F)) ™/ (ls)|

VLR, + J1R? + R2RyR3log®* I,
)\min V I2[3

<c

where we used the fact H./\/ll(f)T(/\/l (F)M](F ) H < C7A\i, by Theorem ?? and condi-

min

tions of Lemma 77.
Since P{T; =T';, we get
P{TIM(F) ((Gg Go) ® (G5 Ga)) My (F) T (My(F)M (F)) /(L)
=TIML(F)((G] Go) ® (G Ga)) My (F) T (MU(FIM] (F)) /(1)
=T LMy (F) (82 ® Sg) M (F)T (My(FIM] (F))
+0(olITu ]| - (1G Ga/ o = Salr + G Ga /Ty — Sil))

where the last term is bounded in terms of Frobenius norm and S,, Sz are defined as in

Theorem ??7. Meanwhile,

HSIMl(ﬁ) — ./\/11(]:)(8; & S;—) S Hﬁ—f X1 81 X9 82 X3 SSHF

I

Therefore, by Theorem ??, with probability at least 1 — 497, % that

Ty My (F)(S4 @ S3)My(F)T (My(F)MT(F)) ™ —T48] )

= O( m1n||1—‘1” ||F F X1 Sl X2 SZ X3 S3|| )
3
. HO\/JlRl +R1PL2R3 log Il /2
= o(IIru| ) T OUm VR,
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Finally, we get with probability at least 1 — 50/, that

IT, — T4S{ v
8/ Ry + R1RyRslog” I ., RiL, + J1R? + R2RyR3log®* I
:O<||F1||‘<HO\/1 1+ [t g fvg log 1+/€g\/EJ1 /2>>+O<\/ 11y + Jihy + hylipliz log 1>
)\min 1112]3 )\min\/ ]213
which concludes the proof of Theorem ?? in view of J,, < I,,,. H

Appendix B Number of Basis Functions

Determination of the number of basis functions is an important task in non-parametric and
semi-parametric estimations. It is more challenging in the STEFA model. According to our
analysis in “Effect of the number of fitting basis” in the simulation section, the interactions
between the true number of basis, the working number of basis, the signal-to-noise ratio,
and the relative mean squared errors is not straightforward. Specifically, Table ?? shows
that increasing the sieve order J does not always improve the performance and J = 16 does
not achieve the best performance among all choices of J, even though the data is simulated
with order 16.

To start a formal investigation of this challenging problem, we can first take the perspec-

tive of a regression problem:

where ®,,, is an ensemble of basis functions, B,, is the coefficients and E,, is the residual.
An potential data-driven way to determine the sieve degree is to construct an F-test based
on the statistics (|| Pp,, Mm(V)||F — || Por, M (D) 1%)/1| P, M (Y)||% when comparing two
choices of sieve degrees (corresponding to ®,, and the reduced one ®/ ). However, strictly
speaking, the residual E,, is not of multivariate Gaussian and the coefficient matrix B,, is
restricted to a certain low rank structure due to the other modes in tensor ). The proper
test for this sieve determination needs further investigation and is beyond the current main

streamline of this paper.

In the simulation and real data analysis sections, we choose the sieve degree J in an
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ad-hoc way in the simulation. For instance the degree used in polynomial basis and B-spline
basis are chosen to accommodate one’s expectation on the smoothness of the function. The
impact of such ad-hoc choices of sieve degree J was investigated in Table 3 in the simulation
section, where an obvious bias-variance trade-off was observed. In real data analyses, we
choose the J that minimizes the relative mean squared errors.

Here, we present some additional empirical results of selecting the number of basis
through relative mean squared errors (ReMSE). In this simulation, we consider a three-
way tensor with fixed dimensions I1 = I, = I3 = 100, whose signal part can be decomposed
to a Tucker decomposition with rank R = (3,3,3). We fix the signal-to-noise ratio o = 1.5,
and simulate the parametric part of loading within the manifold space of Legendre function
of a two-dimensional X,,,m = 1,2,3. The magnitude of I',, is controlled by p as in Section
5. We consider three different magnitudes of I';,,’s and four different numbers of true basis J.
For each combination of (u, J), we simulate for 100 times and report the average number of
selected basis in Table | for four different methods, which minimize (a) in-sample ReMSE,;
(b) in-sample ReMSEg; (c) out-of-sample ReMSEy; and (d) out-of-sample ReMSEg, re-
spectively. We note that the ReMSE with respect to signal ReMSEg is only available in
simulation environment and the ReMSE with respect to observed tensors ReMSEjy, is more
practical in real data analysis.

Table | shows that selecting number of basis by minimizing in-sample ReMSE usually
leads to an over-estimation of J. However, selecting number of basis by minimizing out-of-
sample ReMSE usually produces more accurate results. Comparing the last two columns, we
notice that, as long as we use the out-of-sample ReMSE, it does not really matter whether we
use ReMSE with respect to observed noisy ) or the true signal S for all different combinations
of magnitudes of T',,, and number of true basis J. This observation provides empirical support
to using out-of-sample ReMSEy, to select J in real applications where ReMSEs can not be
calculated. Moreover, by comparing estimated J by minimizing out-of-sample ReMSE across
different true (u,J) combinations, we observe that out-of-sample J tends to give an under-

estimation of the true number of basis for the purpose of robustness when J is large.
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Truth | Average J by minimizing In-Sample | Average J by minimizing Out-of-Sample
uw J | ReMSEy ReMSEg ReMSEy, ReMSEg
0.1 2 3.97 3.31 2.00 2.00
0.1 4 8.00 6.52 4.00 4.00
0.1 8 16.00 13.70 8.02 8.02
0.1 16 32.00 28.32 11.38 11.38
03 2 3.97 3.76 2.00 2.00
03 4 7.99 7.62 4.00 4.00
03 8 16.00 15.60 7.81 7.81
0.3 16 32.00 31.60 8.35 8.34
0.5 2 3.99 3.96 2.00 2.00
0.5 4 8.00 7.90 4.00 4.00
05 8 15.99 15.93 6.79 6.78
0.5 16 32.00 31.86 6.88 6.88

Table 1: Average number of J of selected basis by the four methods over 100 repetitions.

Appendix C Kernel Smoothing with Tensor Factor Model

In this section, we derive the kernel smoothing formula (??) under the vanilla tensor factor
model. Under this setting, the relevant covariates X; is still available for the 1-st mode
and we would like to predict a new tensor Y% € R *2*I with new covariates X7V €
RIA“*P1 - However, we do not use the STEFA model to incorporate X; in the model.
Instead, we use an algorithm for solving noisy Tucker decomposition (??) and obtain an
estimator of the signal part S=F X1 Kl X9 _Kz X3 Ag. The informative covariates X; and
X7 are used non-parametrically.

Recall that we defined the kernel weight matrix W € R >t with entry
Kh(dist(x?j?”, Xl’j.))

= , ,L'Elne’w ande]
Zi[l:lKh(dZ'St(X?i?”’XLj.)) (7] J €[]

wij

where Kj,(+) is the kernel function, dist(,-) is a pre-defined distance function such as the
Euclidean distance, and x; ;. is the i-th row of Xj.

For each row of X7 we will predict a tensor slice Y?°¥ € R12X/3_ Let y?* = vec(Y"V),
Y £ My(Y)" = [y1---yy1,], consisting of the signal part S £ M(S)T = [s;---sy,] and the
noise part E £ M ()7 = [e;---ey,]. Define £, £ E[YTY] and I/ £ E [Y "y?*"]. The

)
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best linear predictor for y7** based on Y is

Snew —1§new
yrew =Y - B, (21)

With knowledge of covariates Xy, it is possible to estimate 3~ Dand X7 from X, and x7¢v.
However, in practice it involves inverting a I; x I; matrix 3, which may be computational
costly when I is large. The computational burden can be relieved by taking advantage of
the Tucker low-rank structure.

To estimate 37", we note that X" = E [(12/3) 7Y "sP®] where s is the signal part
of y7**. Thus, it can be estimated by f]?ew = ([o1. 3)*1YT§Q€“’. We use kernel predictors for

srev | that s, Z L 85 Ky (dist(x75Y, %3

“new

new — = W;;S;
> il Kh(dzst(X?i”“”,Xlg) Z "

(22)

With careful calculation, we have a simpler expression for y**. First, we have S['** = Sw;.

and

~—1anew

yrr = YS S = vS Y Sw = YE, Y YA Al w, = YA, Al w = Sw,. (23)

Equation (23) shows that, under the tensor factor model, we do not need to actually calculate
~—1

3., to obtain the best linear predictor (21). Kernel smoothing formula (??) is obtained by
applying (23) to each i-th row of X7* and stacking the resulting tensor slices ??ew along

the first mode for ¢ € I7°".

Appendix D More Simulation Results

D.1 Inequal Dimensions

In this section, we consider the setting where tensor ) has different dimensions, that is,
I, I, I3 are not equal. We fix R = 3, I; = 100 but vary « and Iy, I3 > I;. The ReMSE of
estimating the loading matrices A,, and the tensor ) are reported in Table

Although the dimensions for the three modes are artificially designed to be different in

this simulation, no significant difference between ﬁg(@m), m € [3] is observed. The error
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in estimating the loading matrices of the three modes appears to be symmetric. With a
fixed signal-to-noise ratio coefficient « and a fixed I,,;, = I, = 100, the performance of
both projected Tucker and vanilla Tucker decomposition is not sensitive to the other two

dimensions I, I3.

IP-SVD HOOI
eg(A1> »€2(A2) gQ(AS) RQMSEy gQ(Al) €2<A2) EQ(Ag) RGMSEy

(]1,[27]3) R (6]

100,100,200) 3 0.3 | 0.805 0.805 0.820 0.885 1.703 1.703 1.718 3.647
(0.260) | (0.242) | (0.253) | (0.283) | (0.014) | (0.016) | (0.007) | (0.782)
3 03] 0.824 0.850 0.859 0.930 1.704 1.703 1.725 4.329
(0.227) | (0.219) | (0.234) | (0.284) | (0.012) | (0.015) | (0.004) | (0.958)
3 03] 0.840 0.828 0.782 0.903 1.706 1.718 1.719 4.072
(0.223) | (0.213) | (0.208) | (0.264) | (0.014) | (0.006) | (0.006) | (0.802)
3 03] 0.840 0.857 0.853 0.935 1.705 1.718 1.725 4.711

)
100,100,400)
)
)
(0.222) | (0.239) | (0.221) | (0.259) | (0.011) | (0.005) | (0.003) | (0.910)
)
)
)
)

100,200,200

100,200,400

3 0.5] 0.264 0.278 0.274 0.279 1.641 1.635 1.655 1.715
(0.073) | (0.076) | (0.067) | (0.071) | (0.172) | (0.177) | (0.167) | (0.348)
3 0.5 0.274 0.282 0.271 0.280 1.695 1.688 1.715 1.981
(0.065) | (0.068) | (0.071) | (0.060) | (0.048) | (0.047) | (0.039) | (0.288)
3 05| 0.258 0.277 0.262 0.268 1.677 1.686 1.685 1.825
(0.061) | (0.062) | (0.068) | (0.063) | (0.095) | (0.117) | (0.124) | (0.323)
3 0.5] 0.273 0.270 0.262 0.271 1.692 1.704 1.712 2.063
(0.078) | (0.069) | (0.068) | (0.066) | (0.074) | (0.071) | (0.068) | (0.373)

100,100,400

(
(
(
(
(100,100,200
(
(100,200,200
(

100,200,400

Table 2: Unbalanced tensor dimensions. The average spectral and Frobenius Schatten g-
sin © loss (¢ = 2) for A,,, m € [3] and average Frobenius loss for )) under various settings.

D.2 Comparison to the MMC Linear Tensor Regression

In this section, we compare our approach (IP-SVD) to the MMC tensor regression method
of 7 on a linear tensor model. The 100 x 100 x 100 observed tensor ) is generated in the
same way as in Section 7?7 with a core tensor of 1 x 1 x 1. That is we set I; = I, = I3 = 100
and Ry = Ry = R3 = 1. Covariates X,,,, m = 1,2,3 of 100 x 1 are randomly sampled from
a uniform distribution on [0, 1] i.i.d.. The parametric loading matrix G,,, is quadratic with

respect to X, such that [G,,]; o< 1+ [X,.]i + [X,]?

7. The non-parametric loading matrix
I',, is added in a similar way to Section ??7. In summary, the observed tensor is generated

ding t
according to V=Fx1 A x9As x As + &, (24)

21



where
G, = Zm/||zm||7

Zo =14+ X, + X2,

and € is a I} x Iy x I3 tensor with i.i.d. standard Gaussian entries, F isa 1 x 1 x 1 (a
scalar) of value I* and X,,, has i.i.d. Uniform(0,1) entries. Again, we use « to control the
signal-to-noise ratio and use p to control the relative strength of non-parametric loading
parts.

Three models are used to fit ). IP-SVD(NP) model denotes the IP-SVD approach that
we fit Y with correctly specified ranks and sieve orders and with the non-parametric (NP)
loading parts as in (21). IP-SVD(P) model is a similar model of IP-SVD(NP) except that
we ignore the non-parametirc part I' and only fits the parametric (P) part A,, = G,,.
MMC-LTR model stands for the multiple-mode-covariate linear regression model from ?
where each A, is assumed to be linear in X,, (and therefore, misspecifies the model with
low sieve ranks). We report the relative MSE (ReMSE, averaged over 100 repetitions) of the
three methods for different signal-to-noise ratios (varying «/) and for different non-parametric

components (varying ) in Table

o 2 1

7 1 0.1 0 1 0.1 0
I[P-SVD(NP) 0.004 0.002 0.002 0.343 0.174 0.172
(1.5e-4)  (6.7e-5)  (6.6e-5) | (0.019)  (0.007)  (0.007)
IP-SVD(P) 0.931 0.170 2.6e-4 0.932 0.172 0.026
(0.002)  (0.001)  (6.7¢-5) | (0.002)  (0.001)  (0.007)

MMC-LTR 0.937 0.271 0.199 0.937  0.272 0.201
(0.008)  (0.112)  (0.138) | (0.008) (0.112)  (0.138)

Table 3: Mean and standard deviation of the Relative MSE for the three approaches under
different signal-to-noise ratios and different strength of non-parametric parts in 100 repeti-
tions.

When the relative strength of the non-parametric loading T, is strong (u = 1), we have

I[P-SVD(NP) > IP-SVD(P) > MMC-LTR, where > means “performs better than”, for both
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settings of moderate and strong signal-to-noise ratio. When the relative strength of the non-
parametric loading I',,, is weak (@ = 0.1) or non-existing (¢ = 0), the IP-SVD still performs
better than MMC-LTR. The IP-SVD(NP) has a disadvantage relative to IP-SVD(P) under
this setting, especially when the model is fully parametric (¢ = 0). However, when the
signal-to-noise ratio is strong o = 2, IP-SVD(NP) still performs the best in face of the weak
relative strength of the non-parametric loading T',,, (1 = 0.1).

We conclude at least for the specific setting with linear linkage function, nonlinear loading
factors and non-parametric loading parts, IP-SVD outperforms the tensor regression method
due to IP-SVD’s capability as a semiparametric model with sieve expansions. At the same
time, we acknowledge that the tensor regression method can handle more complicated linkage
functions such as logistic model and probit model. In general, the STEFA model as a

unsupervised method is a complement to the supervised MMC tensor regression model (7).

Appendix E Proofs of Technical Lemmas

Proof of Lemma 1. By the definitions of A; and Z;, we write

AZ] = PGiM(F)((P2Gs) ® (P3G3))T(U2 ® Us) (U, ® Us) ' M| (£)U,U] ) (25)

where U,,,U = P,,, U,, € Rim*/m and U] U,, =1, . It suffices to prove the upper bound
of [|B1(Uy ® U3)" M (£)U,|| where B; = A;(Uy ® Us) is an I; x (JyJ3) deterministic
matrix.

Denote E; = M| (§)U; € REB>XN . By Assumption ??, E; = (e1,--+ ,€1.1,7,) has

i.i.d. rows and each row is a J;-dimensional centered sub-exponential random vector in that

sup”vngllP’(Kv,el,j}\ > t) < exp(—Ct) forall j € [I115] (26)

for any ¢ > 1. Meanwhile, E(ey je{ ;) = I, for all j € [I13]. By (20), there exists an absolute
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constant C; > 0 so that

1

—([2[3J1)4' (27)

. 2J - >~
IP( max ey, (k)| > Cy 10g([213J1)) <
J€l ]

Ig[g],kE[Jl

Denote the above event by &,. We obtain max; ||e ;|| < C1v/J; log(lo13.J1) on €. Now, we
denote §; = Cy+/J; log(Io13J7).

Denote {ﬁgg}j}]&:[f the columns of (Uy @ U3)". We write

IPYE
Bi(U, @ Us) 'Ey =) Byling e/
j=1
Il IPYES
= Z B11N1237je;|:j]].(||917j|| S 51) + Z B11N123,jte]]-(||elaj|| > 51)’
j=1 =1

where the second term on the RHS is simply 0 on event &g. It suffices to bound the first

term, which is a sum of independent random matrices. Write

1213 1213
| " Buitsgel (el < 00)|| <|| D Bittas (] lllersl < 01) = Be 1(leryll < 60) |
j=1 j=1
IOYES
+ ‘ ZBlﬁQ&J'Ete]l(HelJH S 51) . (28)
j=1

Since Eem =0 and ||B1|| S ||A1|| S Iio/\min\/ 11]213, together with ( ), we get

1213
<IBull - Y Elleslli(lews] > 61) = LL[|Bul| - Ellesal|L(llesl| > 61)

Jj=1

<LL||By|| - EY*(Jlers|*) - PV ((ller ]l > 61)

1 Ko AminV 11121,
§[2IS/£O>\min \% [112[3 . 02 Jl . m : C2 0 I2I3J11 2 3.

I3
Z Blﬁ23,jEte L([le ]l < é1)
=1

oI
Z B1ﬁ23,j]Ee1T,jﬂ(||el,j|| > 1)
=1

Now it suffices to prove the upper bound of first term in RHS of (28), which is the spectral
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norm of the sum of independent random matrices. By definition,

|Buitas; (el 1(llersll < 81) — Ee (el < ) | < 2000 hmin VIR Ts, ¥ € [Ia1i]

and
‘ Iols

ZEB1U23]G1 ]el,ju;{i]BT 1([le]| < é1)

IxI3
ZEBIUZSJeIgel,]uS—SJB L([ler ]| > é1)

T T
eljel,Juzs JB

Ix13
<AL I Izkg) mm+ZHu23]H2 Muin 11203 - Ellen;[*1(]lew; | > 1)

1

<J1I€0/\ L I3 + <]2J3’£8)\2 Lilpls - Coy - m

min min

< 201 kg A2 L I s,

min

where the last inequality holds since I,,, > J,,. Similarly, we have

IOYES
| ZEeuuﬁjB Biiizge], - 1(]lewsll < 41) \

<IBuf + |

B B11123 ]el g

Ji5, B Biizg el - 1(lev | > 01)|

I>13

> Eei i, B Biile] - Lesll > o)
7j=1

IoI3
SRllﬁJO)\ [1[213 + Z 1123JB B1UQ3]E<6171,V>2 : ]l(||e1,1|| > 61)} S 2R1/€g>\ [1]2]3,

min min

where v is any fixed vector in R”t with unit norm.

Then, by matrix Bernstein inequality (?), with probability at least 1 — I; 2,

I
| S Bi(erstllless < 61) — Beys1(llel < o) )]
j=1
S Cllio)\mm(]lfglgg)l/Q(\/ Jl lOg Il —+ (51 lOg Il),

where we assumed R, < J,,. Since §; < /J;log(I;) and I, > J;, we get with probability
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at least 1 — 2772 that

|B1(Us ® Us) "By UL UY || < Ckiodmin(L11o13)"? - /Ty log? I

for some absolute constant C5 > 0.

Therefore, by (25), we get with probability at least 1 — 21; 2 that
AL Z] || < Curiodmin(I11213)% - /Ty log? I

for some absolute constant Cy > 0, which proves Lemma |. O]

Proof of Lemma °. Similarly as the proof of Lemma |, we denote E; = M;(£)(Us®Us) the
I} x (JoJ3) matrix with independent rows (eQTZ)I Here, ey; is a sub-exponential random
vector with Eegiem =15, and Eey; = 0.

Similarly, we denote {ti;}/1, the columns of U/ . Then, we write

U M ()(Uy @ Us) = Zueh

and as a result

(UT M (€)(Uy ® Uy)) (UT My (E)(Uy © Us)) | — Jo s,
I I T
—( Z wel,) (D wel,) — Lkl
] =1

( Z ue, €2, a, —Jy J31J1> Z uhe;leg il (29)

1<ii i<l

Observe that E Z Lue, i€, ] = JyJs31;,. Note that

Zulez Ze2 le J2J31J1 Z He211||2ﬁzfij — JQJgIJl.
i=1
Similarly as proof of Lemma [, denote 6, = C1+/JoJ5log I so that P(max; |lea;]| > 61) <
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(I, J5J3)73. Following the same treatment there, we can show that

J) 2 (Co/Tlog T + Clog 1)) < 1% (30)

Iy
§ ~ T ~T

P(H 111'8272-82’1'111' - J2J31J1
i=1

with Cy, C3 > 0 being absolute constants, where we used the facts (needed in matrix Bern-

stein inequality), with e; being the first column of M/ (&),

HZE (lleall = Jo ) Il 2] || = E(lleau 2 = )| S il i)
=1
E([less|* = JaJs)” = Elles ||* = (Jay)* V725 E(e? UnUgser)” — (J2Js)?
Uns= (s 250 R z
PE E(Z 81,1123g> > - (J2J3)2
7j=1
JoJ3

= Z E(e1, ugs ;)" + Z E(er, ugs ;) (e, ugs ) — (JoJs)?
Jj=1 1<j#j'<J2J3
JoJs

= Elenu )+ > [uas P uas > — (JoJs)
j=1 1<i#5 <23
JoJ3

= Z < er, Uz ;)" ||1123,j||4> + Uz |5/ Uzl — (J273)?

J2J3

= <]E(e1, gy )t — ||1123,j||4> = O(J2J3).
=1
We now deal with the second term in RHS of (29). Observe that

g<E2) = Z ﬁllﬁzz <e2,i1 ) 82,2'2>
1<iy#i2<Iy
is a generalized U-statistic. Let {627,5‘},{;1 be an independent copy of {e27z~}f;1. By the tail
probability of decoupling of U-statistics ((?, Theorem 3.4.1)), for all £ > 0,

T T
(” uZ1 2 <e2 i1y ©2,ip ‘ > t) < Cl (H uZl 2 <e2 117e2 i2
1<y #12<1Iy 1<y #12<1Iq

‘>CZ> (31)
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for some absolute constants C,Cy > 0. Clearly,

H Z ﬁllﬁ;l; <e2,i17 62,i2>

1<y #i2<I1

Iy
‘ < [|(U7E,) (UTE:) || + H Youa (e )| (32)
=1

By a similar treatment as in the proof of Lemma |, we get

P(|UEy| > C3v/J1log I + Cun/JoJslog? Iy) < I72.

Denote €; the above event. To get a sharp upper bound for ||(UTEy)(U{Ey)T|, we fix E,
and recall the definition U] Ey = U] M, (£)(U, ® Us). Define E; = U] M, (&) € R/1x(2h)

which has i.i.d. columns {e;;}22?. Denote {tig Z}IQI?’ the rows of Uy ® Usz. Then, we write

1213

(UTEo)(UEy)" = ey ligy (U Ey) "

=1

Similarly by the treatment of the proof of Lemma |, conditioned on EQ, we have

P(|(UIE)(UJEo) || > U] Es| - (Cay/Tilog I + Cun/ Ty log? ) | Es) < I72.

Together with the event &), we conclude that with probability at least 1 — 21>

[(UTEy) (U] Ey)T|| < ChJilog®? I + Cin/ Ty Jads logh I (33)

for some absolute constants Cj5, C'y > 0.

For the second term in (32), we still apply the truncation treatment as in the proof
of Lemma |. In this case, note that there exists an event &, with P(&,) > 1 — I;?
such that max;ep, [[€2:] < Cov/JoJ3log I;. Conditioned on €;, we have P(|(ey;, €2,)| >

Ci|€2,lllog I) < I;* for some absolute constant C} > 0. By a similar proof, we can obtain

(H teate

Putting (31), (33), (32), (31) together, we get

P(H Z ﬁ“ﬁZTQ <e2,i17e2,i2>

1<in#ia<h

> Cg J2J3 10g Il -+ 04\/ J2J3 10g3 Il) < 2[{2 (34)

] > O 1og™2 I + O/ T Jo s log? 11) <4172,

28



Then, together with (30) and (29), we get with probability at least 1 — 5/; 2 that
HZlZIT - J2J3P1H S 03 J1J2J3 10g4 [1 -+ C4J1 10g5/2 [1’

which proves Lemma 2. O

Proof of Lemma 5. The strategy is similar to that in the proof of Lemma |. Denote E; =
Mi(E)(G2® Gs) /v 15 the I x (RyRs) random matrices with i.i.d rows {e] I satisfying

E61 i = =0 and ]Ee1 Zel i IR2R3 Then

I
UIMl(g) G2®G3 \/ ]2]3U1 E1 ]ng-ZﬁieIi,
where {u , denotes the rows of U;. By a similar treatment, we have

IP( max ||e;||? > Oy ReR; log? 11) <t

1<i<hy

Denote the above event by &,. Define §; = C{v/RaR3log[; so that P(max; |e1,]| > 1) <

I7*. Then, we write

U M1(E)(Ga ® G3) = /L5 - Zuze“ (llevs] < 61) + /IoIs - Zu,e“ (levs]| > &)

(35)

The second term in RHS of (35) is simply 0 on event €. It suffices to investigate the first
term on RHS of (35). We will apply the matrix Bernstein inequality as in the proof of

Lemma |. Indeed, we can show that

I
P(H > tie] (llewil| < 1)
=1

> Cl\/ Jp lngl + CQ\/ R2R3 10g2 [1> < [fQ

for some absolute constants C,Cy > 0. Since the proof is identical to the proof of Lemma |,
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we skip it here. O

Proof of Lemma /. We only prove (11) since the proof of (12) is similar. We begin with a
standard discretization step, see (?, Lemma 5). There exists a subset ©;,3 C B(J3, R3) such
that log Card(®4/3) < ¢1J3R3 for some absolute constant ¢; > 0 and for any B € B(J3, Rs),

in |B - D <1/3.
oo le <1/

It is easy to show that

3
sup UL M (€)(Ge @ UsA)||/v/Ez < 5 - max [[UTMi(€)(Ge @ UsD)|/v/Ea
A€B(J3,R3) DEdL,

(36)

It suffices to prove the upper bound in RHS of (36). Under Assumption 7?7, there exists an

event &, with P(&,) > 1 — I;° in which

max el < Colog I
we[h]x[[ﬂx[lg]l | - 0 g !

for some absolute constant Cy > 0. Denote 6y = Cplog I; and [|€]| = max,, |e,|. We write

mmWﬂMﬂMQ@U@MM@S&%ﬂWH&@Mh®%mMWMS%WN@

DeDy 3

+ max [[UT My (€)(Ga @ UsD)1(||€]|e > 60)]|/ /T2 (37)

DeDyy3

Conditioned on event &g, the second term in RHS of (37) is simply 0. It suffices to prove

the upper bound of first term in RHS of (37). Write

guax [[U] M (€)(Ge ® UsD) (€] < 00)||/ VT2
< max [[UTE[M(E)L([€ ]| < 60)](G> ® UsD)||/ VD

+ e [U [M(@L(IE] < d0) ~ EMEL(IE ] < )] (G2 @ VD) (VT (38)
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To upper bound the first term in RHS of (38), note that Yw € [I1] x [I5] X [I3],

Cauchy-Scwharz 1/2
|Ee,1(|ew| < )| = |Een1(lew| > do)| < P2 (le,,| > do).

Then, the first term in RHS of (38) is bounded as

max ||[U]E[M;(E)L(||€]| < 5)] (G2 ® UsD)||/V/1I

DE@l/g
1/2

<IEM:(E)L([[E]loc < do)lr = Yo Pled>d) | < (LLLL®)Y =0

wE[Il]X[Iﬂ X[Ig]

(39)

We now continue the upper bound the second term in RHS of (38). Similarly, let %1 /3(J1)
and Ry 3(R2R3) the 1/3-net of B(J1,1) and B(Ry R, 1), respectively. Then, given any vector
u e B(Jy,1) and w € B(R2R3, 1), we have

min  |[lu—v| <1/3 and min  |[v—w| <1/3
V€m1/3 J1 Veml/B(RQRi%)
where || - || represents f,-norm for vectors. Meanwhile, log Card(R;/3(J1)) < ¢ Ji and

log Card(R1/3(R2R3)) < caRyR3 for some absolute constants ¢y, c; > 0. Then,

max U} [My(E)L(€]l < ) ~ EMy(E)L(€]l < 00)] (Ge © UaD)[|/V/Ea

De®y,

9
<5 hax  max u U [ M(E)L(|€]lee < o) — EM1(E)L(||€]|oe < 50)] (Gy @ UsD)w//I.
D€®1/3 u€m1/3(J1)
Weml/g(RzRg)

Now, we fix u,w and D, and prove a concentration inequality for the above RHS, then we
finish the proof by a union bound. Denote u = Uju € R and v = (G, ® UsD)w//I, €
R%%. Clearly, we have max {||u][, ||V} < 1. Now, we write

i [MyE) (€] < o) ~ EMIEI(IE ]l < 50)]7

= Z U(wr)0(wows) [ewL(len] < do) — EenL(le| < d)], (40)

w=(w1,w2,w3)€E[11] X [I2] X [I3]
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which is a sum of independent centered random variables. Observe that
(e )(u) [eu T (Jew] < do) — BeuL(Jew] < b)) | < 200fii(wn)[waws)l, Voo

implying that each term in RHS of (10) is a bounded random variable. By applying Hoef-
fiding’s inequality (?) to (10), we get

—2ot? )
45(2) zw ﬁ(wl)gﬁ(wgwg)Q

<2exp(—t*/(257)).

IP’(‘GT [My(E)L(IE]ls < do) — EMy(E)1([ ] < 50)}%“‘ > t) <2exp (

Since the cardinality of the product set of ©1 /3, R1/3(J1), Ri1/3(R2Rs3) is bounded by 3C0(JsRs+J1+RaRs)

for some absolute constant C{, we apply a union bound and get

G

Tr7T N < 2 >

P(nggﬁg e ‘u U [M(E)1(|E]|e < o) — EMy(E)1([[E]ln0 < 50)}(\/1—2 ®U3D)W‘ > t)
Weml/g,(RQRg)

2 t=2\/Cl(J1+J3R3+R2R3)50 10g1/2 I

t
SQ exp (—W + 01<J3R3 + Jl + R2R3)) S 2[1_2
0

implying that with probability at least 1 — 21; 2,

max [|UT [Mi(E)L(|€]loe < do) = EM(E)L(IE] o0 < 60)] (G2 ® UsD)||/ /T2

DeDy 3

< Cy\/Ji + JsRs + RyRylog®* I (41)

Putting together (11), (39), (38), (37) and (30), we conclude that with probability at least
1— 4172

sup  [[U{ Mi(E)(Ga @ UsA)||/V/ Iz < C3\/Ji + J3Rs + RyRylog®* I
AE‘B(Jg,R3)

for some absolute constant Cs > 0. This proves (11) of Lemma . O

Proof of Lemma 0. Recall by definition that é;é /I, = Ig, . Moreover, the column space
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of C‘rm is a subspace of column space of ®,,(X,,). Denote U,, € RIm>*Jm the left singu-
lar vectors of ®,,(X,,). Then, there exists a B,, € R/m*fn s that G,, = U,,B,, and
ﬁ;ﬁm /I, = Ig, where ]~3m is dependent with £ while U,, is independent with £. Denote
G(dy,dy) :={B € R"*% BB =1,,}. Then,

H./\/h(g X1 é;l’ Xgé;— Xgé;—)H - U _
VI SﬁmeggiﬁRm)\\Ml(ﬁxﬂUlBl) x5(UsB,) T x3(UsBs) ).

By choosing 1/5-nets of G(Ji1, R1),G(J2, R2) and G(J3, R3) (e.g., by the covering number of
Grassmannians in ?), respectively, we can reproduce the proof of Lemma /| and show that

with probability at least 1 — I; 2,

HMl(g X1 é]— X9 é;— X3 é;) || < Cl\/JlRl + J2R2 + J3R3 + R1 + RQRS log3/2 11

for some absolute constant C; > 0. Since J; < Jy < J3 and Ry > Ry > Rj3, we can simplify

the upper bound to C{v/J1 Ry log3/ 2 I, and finish the proof of Lemma 0. O

Appendix F More real data applications

F.1 Human Brain Connection Data

As an additional illustration of using the STEFA and IP-SVD for explanatory data analysis,
we consider partitioning the brain connectivity according to the 136 x 4 covariate-relevant
loading matrix ®3(X)Bj3. As mentioned in the main text, we choose ®3(X) generated by
polynomial basis of order 1, which is a similar linear setting as that in ? with identity
link function. Each column of ®3(X)Bj corresponds to one of the four directions with
largest variance among individual features in X. The meaning of each latent direction can
be inferred from Bj. Figure | presents the heat map of Bs, showing that the four factors
weight mostly on the four columns of ®3(X), namely, all-ones vector, female variable, and

Age 22-25 variable and 31+ variable, respectively. Then each factor is interpreted as the
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effects associated with global average, female, Age 22-25 variable and 31+.

0.15
1 1 I
0.10

- 0.05
Female
- 0.00
Age 31+ A 0.05
Age 22-25 1

I—O.lO
-0.15

Figure 1: Heat map of the coefficient B3 in the covariate-relevant loading with polynomial
basis of order one.

1 2 3 4
®3(X)Bs Factor

We obtained a 68 x 68 x 4 connectivity tensor by projecting the original connectivity
tensor on the column space of ®3(X)Bs3. As a result, the four slices along the third mode
corresponds to the connectivity matrix for each of the global average, female, Age 22-25
variable and 31+ effects. We divide the 68 regions of the brain into two clusters based on
the connectivity matrix for each of the effects. The clustering results are plotted in Figure

The connection within the same cluster is stronger than that between clusters. Some
connectivity patterns can be observed. For example, the global connection exhibits clear left
and right spatial separation and the age 22 - 25 group shows additional inter-hemispheric
connectivity. While such explanatory analysis can provide some interesting observation, more
rigorous methods, such as statistical testing procedures, need to be developed to support

any scientific claim. These are important directions for future statistics researches.
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(a) Global effect

c) Age 22-25

Figure 2: Partition of brain regions for each latent dimension corresponding to the covariate-
relevant loading.
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