
Semiparametric Tensor Factor Analysis by

Iteratively Projected SVD

Elynn Y. Chen1, Dong Xia2, Chencheng Cai3 and Jianqing Fan4,5

1New York University, USA,

2Hong Kong University of Science and Technology, China

3Washington State University, USA,

4 Fudan University, China; 5 Princeton University, USA

Abstract

This paper introduces a general framework of Semiparametric TEnsor Factor Anal-

ysis (STEFA) that focuses on the methodology and theory of low-rank tensor decom-

position with auxiliary covariates. STEFA models extend tensor factor models by

incorporating auxiliary covariates in the loading matrices. We propose an algorithm of

Iteratively Projected SVD (IP-SVD) for the semiparametric estimation. It iteratively

projects tensor data onto the linear space spanned by the basis functions of covariates

and applies SVD on matricized tensors over each mode. We establish the convergence

rates of the loading matrices and the core tensor factor. The theoretical results only

require a sub-exponential noise distribution, which is weaker than the assumption of

sub-Gaussian tail of noise in the literature. Compared with the Tucker decomposi-

tion, IP-SVD yields more accurate estimators with a faster convergence rate. Besides

estimation, we propose several prediction methods with new covariates based on the

STEFA model. On both synthetic and real tensor data, we demonstrate the e!cacy of

1Fan is the corresponding author. Email: jqfan@princeton.edu. 1,2 Equal contribution.
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the STEFA model and the IP-SVD algorithm on both the estimation and prediction

tasks.

1 Introduction

Nowadays large-scale datasets in the format of matrices and tensors (or multi-dimensional

arrays) routinely arise in a wide range of applications. The low-rank structure, among

other specific geometric configurations, is of paramount importance to enable statistically

and computationally e!cient analysis of such datasets. The low-rank tensor factor models

assume the following noisy Tucker decomposition:

Y = F →1 A1 →2 · · ·→M AM + E , (1)

where Y is the M -th order tensor observation of dimension I1 → · · ·→ IM , the latent tensor

factor F is of dimension R1 → · · · → RM , the loading matrix Am is of dimension Im → Rm

with Rm ↑ Im for each m ↓ [M ], and the noise E is an M -th order tensor with the same

dimension of Y . Tucker decomposition is a widely used form of tensor decomposition (Kolda

and Bader, 2009; De Lathauwer et al., 2000b) and has been studied from di”erent angles in

mathematics, statistics and computer science. Particularly, the statistical and computational

properties of the decomposition have been analyzed in Zhang and Xia (2018); Richard and

Montanari (2014); Allen (2012a,b); Wang and Song (2017); Zhang (2019) under the general

setting and in Zhang and Han (2019) under the sparsity setting where parts of the loading

matrices {Am : m ↓ [M ]} contain row-wise sparsity structures.

Tucker decomposition to the tensor factor model is similar to singular value decompo-

sition (SVD) to the classic vector factor model, the latter being one of the most useful

tools for modeling low-rank structures in biology, psychometrics, economics, business and

so on. Theoretical analyses on multivariate factor models assume i.i.d Gaussian noise at

early stages (Anderson and Rubin, 1956; Anderson, 1962) and later allow for variable-wise

and sample-wise correlations (Bai and Ng, 2002; Bai, 2003; Bai et al., 2012). Chapter 11 of

Fan et al. (2020) and the references therein provide a thorough review of recent advances
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and applications of multivariate factor models. For 2nd-order tensor (or matrix) data, Wang

et al. (2019); Chen et al. (2019, 2020b) consider the matrix factor model which is a special

case of (1) with M = 2 and propose estimation procedures based on the second moments.

Later, Chen et al. (2022) extends the idea to the model (1) with arbitrary M by using the

mode-wise auto-covariance matrices.

While the vanilla tensor factor model (1) is neat and fundamental, it cannot incorpo-

rate any additional information that may be relevant. Nowadays, the boom of data science

has brought together informative covariates from di”erent domains and multiple sources,

in addition to the tensor observation Y . For example, the gene expression measurements

from breast tumors can be cast in a tensor format, and the relevant covariates of the cancer

subtypes are usually viewed as a partial driver of the underlying patterns of genetic variation

among breast cancer tumors (Schadt et al., 2005; Li et al., 2016). In restaurant recommen-

dation system, online review sites like Yelp have access to shopping histories and friendship

networks of customers, as well as the cuisine and ratings of restaurants (Acar et al., 2011).

The covariate-assisted factor models have been explored for vector and matrix observations

(Connor and Linton, 2007; Connor et al., 2012; Fan et al., 2016; Mao et al., 2019). Their

results show that sharing relevant covariate information across datasets leads to not only a

more accurate estimation but also a better interpretation.

Inspired by those prior arts, we introduce a new modeling framework – Semi-parametric

TEnser Factor Analysis (STEFA) model – to leverage the auxiliary information provided

by mode-wise covariates. STEFA captures practically important situations in which the

observed tensor Y has an intrinsic low rank structure and the structure in m-th mode is

partially explainable by some relevant covariate Xm. The model is semi-parametric in the

sense that it still allows covariate-free low-rank factors as in (1). In the special case when

Xm’s are unavailable, STEFA reduces to the classical tensor factor model (1). As to be shown

in Section 6, with auxiliary covariates, our STEFA model can outperform the vanilla tensor

factor model in many scenarios. The auxiliary information of Xm not only improves the

performances of estimating latent factors but also enables prediction on new input covariates,
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which is an essential di”erence between our proposed framework and the existing tensor

decomposition literature (Richard and Montanari, 2014; Zhang and Xia, 2018; Zhang and

Han, 2019; Cai et al., 2019; Sun et al., 2017; Wang and Li, 2020; Zhou et al., 2021). Indeed,

unlike those tensor SVD or PCA models where estimating the latent factors usually only acts

as the proxy of dimension reduction, STEFA utilizes those estimators for prediction with new

observed covariates. Another popular way of incorporating auxiliary covariates information

is to couple tensors and matrix covariates together for joint factorization (Acar et al., 2011;

Song et al., 2019). Such method assumes that the covariate matrix and tensor share the

same loading matrix along one mode. Our method is di”erent in that auxiliary covariates

can partially predict loading matrices through nonparametric function approximation. Hao

et al. (2021) also used additive model in nonparametric tensor regression. But those authors

dealt with tensor predictors and scalar responses, rather than a tensor of responses.

On the methodological aspect, we propose a computationally e!cient algorithm, called

Iteratively Projected SVD (IP-SVD), to estimate both the covariate-relevant loadings and

covariate-independent loadings in STEFA. As shown in Section 4, a typical projected PCA

method from Fan et al. (2016), while computationally fast, is generally sub-optimal because

it ignores multi-dimensional tensor structures. The IP-SVD yields more accurate estima-

tors of both the latent factors and loadings by adding a simple iterative projection after

the initialization by projected PCA. On the other hand, the IP-SVD can be viewed as an

alternating minimization algorithm which solves a constrained tensor factorization program

where the low-rank factors are constrained to a certain functional space. The dimension of

this functional space, based on the order of sieve approximation, can be significantly smaller

than the ambient dimension which makes IP-SVD faster than the standard High-Order Or-

thogonal Iteration (HOOI) for solving the vanilla Tucker decomposition. As a result, IP-SVD

requires also weaker signal-to-noise ratio conditions for convergence in general.

Theoretically, we discovered interesting properties of STEFA that are di”erent from those

of the vanilla tensor factor model (1). As proved in Richard and Montanari (2014); Zhang and

Xia (2018), the HOOI algorithm achieves statistically optimal convergence rates for model
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(1) as long as the signal-to-noise ratio SNR ↭ (I1I2 · · · IM)1/4 where the formal definition of

SNR is deferred to Section 4. However, due to the constraint of a low-dimensional (compared

with Im) functional space, the SNR condition required by IP-SVD in STEFA is SNR ↭
(J1J2 · · · JM)1/4 where Jm is the number of basis function used in functional approximation

and can be much smaller than Im. Note that this weaker SNR condition is su!cient even

for estimating the covariate-independent components. Surprisingly, it shows that covariate

information is not only beneficial to estimating the covariate-relevant components but also

to the covariate-independent components. Concerning the statistical convergence rates of

IP-SVD, there are two terms which comprise of a parametric rate and a non-parametric rate.

By choosing a suitable order for sieve approximation, we can obtain a typical semi-parametric

convergence rate for STEFA which fills a void of understanding non-parametric ingredients

of tensor factor models. On the technical front, investigating the theoretical properties of

STEFA is challenging due to the iterative nature of the estimation procedure, which involves

both a parametric and non-parametric component. Furthermore, our theoretical results

only require a sub-exponential tail on the noise, which is weaker than the Gaussian or sub-

Gaussian distributions of noise in all these prior works. This technical improvement may be

of independent interests.

Notation and organization. The following notations are used throughout the paper. We

use lowercase letter x, boldface letter x, boldface capital letter X, and calligraphic letter X

to represent scalar, vector, matrix and tensor, respectively. We denote [N ] = {1, . . . , N}

for a positive integer N . For any matrix X, we use xi·, x·j, and xij to refer to its i-th

row, j-th column, and ij-th entry, respectively. All vectors are column vectors and row

vectors are written as x→. The set of N →K orthonormal matrices is defined as ON↑K . We

denote ωi(X) as the i-th largest singular value of X, ↔X↔ as the spectral norm of X, i.e.,

↔X↔ = ω1(X), and ↔X↔F as the Frobenius norm of X. In addition, we frequently use the

projection matrices PX = X
(
X→X

)↓1
X→ and P↔

X = I ↗ PX where
(
X→X

)↓1
denotes the

Moore-Penrose generalized inverse.

The rest of this paper is organized as follows. Section 2 introduces the STEFA model and
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a set of identification conditions. Section 3 proposes the IP-SVD algorithm to estimate the

STEFA model and considers prediction with new covariates. Section 4 establishes theoretical

properties of the estimators. Section 5 studies the finite sample performance via simulations.

Section 6 presents empirical studies of two real data sets. All proofs and technique lemmas

are relegated to the supplementary material.

2 STEFA: Semi-parametric TEnsor FActor model

In this section, we introduce the Semi-parametric TEnsor FActor (STEFA) model. We

present it with third-order tensors (M = 3) to simply notation while the properties hold for

general M . More information of tensor algebra can be found in Kolda and Bader (2009).

2.1 Tensor factor model

For a tensor S ↓ R
I1↑I2↑I3 , the mode-1 slices of S are matrices Si1:: ↓ R

I2↑I3 for any i1 ↓ [I1]

and the mode-1 fibers of S are vectors s:i2i3 ↓ R
I1 for any i2 ↓ [I2] and i3 ↓ [I3]. We

define its mode-1 matricization as a I1→I2I3 matrix M1(S) such that [M1(S)]i1,i2+(i3↓1)I2
=

si1i2i3 , for all i1 ↓ [I1], i2 ↓ [I2], and i3 ↓ [I3]. In other words, matrix M1(S) consists of all

mode-1 fibers of S as columns. For a tensor F ↓ R
R1↑R2↑R3 and a matrix A1 ↓ R

I1↑R1 ,

the mode-1 product is a mapping defined as →1 : R
R1↑R2↑R3 → R

I1↑R1 ↘≃ R
I1↑R2↑R3 as

F →1 A1 =
[∑R1

r1=1 ai1r1fr1r2r3
]
i1↗[I1],r2↗[R2],r3↗[R3]

. In a similar fashion, we can define fibers,

mode matricization, and mode product for mode-2 and mode-3, respectively.

The widely used Tucker ranks (or multilinear ranks) of a tensor S is defined by the triplet

rank(S) := (R1, R2, R3) where Rm = rank(Mj(S)) for modes m = 1, 2, 3. The Tucker rank

(R1, R2, R3) is closely associated with the Tucker decomposition. If a tensor S has an exact

tensor rank (R1, R2, R3), then there exists a core tensor F ↓ R
R1↑R2↑R3 such that S has

a Tucker decomposition S = F →1 A1 →2 A2 →3 A3 where Am ↓ R
Im↑Rm , m ↓ [3], are

orthonormal matrices of the left singular vectors of Mm(S) respectively.
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Given a tensor observation Y ↓ R
I1↑I2↑I3 , a tensor factor model assumes that

Y = S + E = F →1 A1 →2 A2 →3 A3 + E , (2)

where the latent tensor factor F is of dimension R1 → R2 → R3, the loading matrices Am ↓

R
Im↑Rm are unknown deterministic parameters, and E is the noise tensor. The low-rank

structure is captured by the assumption of Rm ↑ Im along the m-th mode. Model (2)

encompasses the vector and the matrix factor models as special sub-cases: the vector factor

model (Fan et al., 2020) corresponds to the special case of Y = A1F+E where Y , E ↓ R
I1 and

F ↓ R
R1 are all vectors (i.e. 1st-order tensor). The matrix factor model (Wang et al., 2019;

Chen et al., 2019; Chen and Fan, 2023) corresponds to the special case of Y = A1FA→
2 + E

where Y , E ↓ R
I1↑I2 and F ↓ R

R1↑R2 are all matrices (i.e. 2nd-order tensors).

All the components on the right hand side of model (2) are not directly observable,

thus the tuples
(
F →1 H

↓1
1 →2 H

↓1
2 →3 H

↓1
3 ,A1H1,A2H2,A3H3

)
and (F ,A1,A2,A3) are

indistinguishable for any invertible matrix Hm ↓ R
Rm↑Rm , m ↓ [3]. This is a common issue

with latent models since they can only be identified up to the columns space of Am (Bai,

2003; Zhang and Xia, 2018; Fan et al., 2020). To identify one representative matrix of the

column space Am, we restrict our solution to the one that satisfies Assumption 1. Lemma 1

confirms the validity of Assumption 1 as an identification condition for model (2).

Assumption 1 (Tensor Factor Model Identification Condition). We restrict our estimation

targets to the loading matrices and core tensor that satisfy (i) A→
mAm/Im = IRm for all

m ↓ [M ] where IRm is an Rm →Rm identity matrix; and (ii) Mm(F)Mm(F)→ is a diagonal

matrix with non-zero decreasing singular values for all m.

Lemma 1. Given an S ↓ R
I1↑···↑IM with Tucker ranks (R1, · · · , RM) and Mm(S)Mm(S)→

having distinct non-zero singular values for all m, then there exist unique1 A1, · · · ,AM and

F satisfying Assumption 1 so that S = F →1 A1 →2 · · ·→M AM .

1Note that uniqueness is up to column-wise signs of Am’s.

7



Model (2) can be estimated by solving the optimization program

min
F ,A1,A2,A3

↔Y ↗ F →1 A1 →2 A2 →3 A3↔2F , (3)

under the constraints in Assumption 1. It is highly non-convex and computationally NP-

hard. The higher order orthogonal iteration (HOOI) algorithm (De Lathauwer et al., 2000a)

solves (3) by alternating minimization along the direction of Am. Given an initial guess of

{Âm}m↘2, the algorithm update Â1 to be the maximizing value Â1 =
⇐
I1·SVDR1

(
M1(Y)(Â2⇒

Â3)
)
where SVDr(·) returns top-r left singular vectors of a given matrix. Then, the algo-

rithm proceeds to iteratively updating Âm while fixing the other Âj, j ⇑= m until some

stopping criterion is satisfied. The performance of HOOI usually relies on the initial input

of {Âm}m↗[M ].

One way to measure the importance of each factor dimension along a mode is through

the mode-wise percentage explained variance. Suppose we are interested in the relative im-

portance of mode-1 factors, the total variance along mode-1 can be calculated by ω2
1 =

Tr
(
M1(Y)M1(Y)→/(I2I3)

)
and variances of the R1 factors of mode-1 are the diagonal

elements in the covariance matrix !F,1 = M1(F)M1(F)→/(R2R3). Then the mode-1

percentage explained variances for each of the R1 factors corresponds to each element in

diag (!F,1) /ω2
1, where diag(·) extracts R1 diagonal elements from matrix !F,1.

2.2 Semiparametric tensor factor model

We now generalize the classic tensor factor model to integrate mode-wise auxiliary covariates.

For any i1 ↓ [I1], let x1,i1 = [x1,i11, · · · , x1,i1D1 ]
→ be a D1-dimensional vector of covariates

associated with the i1-th entry along mode 1. We assume that the mode-1 loading coe!cient

a1,i1r1 can be (partially) explained by x1,i1 such that

a1,i1r1 = g1,r1 (x1,i1) + ε1,i1r1 , i1 ↓ [I1], r1 ↓ [R1],

where g1,r1 : RD1 ↘≃ R is a function and ε1,i1r1 is the part that cannot be explained by the

covariates. Under this assumption, the entries in the i1-th mode-1 slice, i1 ↓ [I1], can be
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written as

yi1i2i3 =
R1∑

r1=1

R2∑

r2=1

R3∑

r3=1

(g1,r1 (x1,i1) + ε1,i1r1) a2,i2r2a3,i3r3fr1r2r3 + ϑi1i2i3 , (4)

for all i2 ↓ [I2] and i3 ↓ [I3]. Let X1 be a I1→D1 matrix taking x→
1,i1 as rows, G1 (X1) be the

I1 → R1 matrix with its i1-th row being [g1,1 (x1,i1) , · · · , g1,R1(x1,i1)], and ”1 be the I1 → R1

matrix of [ε1,i1r1 ], we can write compactly A1 = G1(X1) + ”1 and

Y = F →1 (G1 (X1) + ”1)→2 A2 →3 A3 + E . (5)

This semi-parametric configuration is easily extendable to all modes of Y . If any mode-m

loading entries am,imrm can be partially explained by a Dm-dimensional vector xm,im , i.e.

am,imrm = gm,rm (xm,im) + εm,imrm , then we have

Y = F →1 (G1 (X1) + ”1)→2 (G2 (X2) + ”2)→3 (G3 (X3) + ”3) + E , (6)

whereXm is a Im→Dm matrix taking x→
m,im as rows, Gm (Xm) be the Im→Rm matrix with its

im-th row being [gm,1 (xm,im) , · · · , gm,Rm(xm,im)], and ”m be the Im→Rm matrix of [εm,imrm ].

We refer to (6) as the Semiparametric TEnsor FActor (STEFA) Model. An an illustration of

model (5) is presented in Figure 1. When mode m has no covariates, we take Gm(Xm) = 0.
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⋯

⋯

⋯
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G# %#

$
Figure 1: An illustration of the STEFA model (5).

If, additionally, mode m has no factor structure, we take Am = IRm – the identity matrix. If

all modes have no covariates, then STEFA reduces to the classical tensor factor model (2).
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STEFA is a generalization of the semi-parametric vector factor model (Fan et al., 2016) to

the tensor data. But it is more complex in computation and theoretical analysis.

Remark 1 (Multivariate functional SVD). In the field of functional data analysis, re-

searchers have studied multidimensional functional SVD (Silverman, 1996; Huang et al.,

2009) and functional PCA (Zhou and Pan, 2014; Wang and Huang, 2017). Specifically, the

two-way functional SVD views each entry yi1i2 of the data matrix Y ↓ R
I1↑I2 as the evalua-

tion of an underlying function y(·, ·) on a rectangular grid of sampling pints x1,i1 and x2,i2,

that is, yi1,i2 := y(x1,i1 ,x2,i2) :=
∑R

r=1 ωrg1,r(x1,i1)g1,r(x2,i2).

Let G1(X1) ↓ R
I1↑R be the matrix that contains g1,r(x1,i1) as its (i1, r)-th element,

G2(X2) ↓ R
I2↑R be the matrix that contains g2,r(x2,i2) as its (i2, r)-th element, and D repre-

sent the diagonal matrix diag(ω1, · · · , ωR). Under the functional SVD assumption, the data

matrix has the following low-rank structure:

Y = G1(X1)DG2(X2)
→ = D→1 G1(X1)→G2(X2), (7)

which is equivalent to a special case of the STEFA model where M = 2, core tensor F ↓ R
R↑R

is diagonal, ”1 ⇓ 0 and ”2 ⇓ 0.

The estimation method for function SVD are mostly based on regularized SVD which

imposes the smoothness constraint on columns of G1(X1) and G2(X2). For the STEFA

model, we do not impose such constraints and our projection-based algorithm also estimate

the covariate independent component ”m that cannot be explained by the covariate.

In fact, model (7) can be extended to the higher-order setting with M ⇔ 3, which can

be viewed as a functional CP tensor decomposition (Kolda and Bader, 2009) and is an

interesting topic for future research.

Remark 2 (Tensor response regression). The STEFA model is related to a list of tensor

response regression models (Raskutti et al., 2019) with a low-rank coe!cient tensor. Notably,

Sun and Li (2017) and Zhou et al. (2021) consider a model where response tensors Yt ↓

R
I1↑···↑IM→1 are related to a DM -dimensional vector of covariate xt through

Yt = B →M xt + Et, (8)
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where B is a I1→· · ·→IM↓1→DM unknown parameter tensor of interest, and the noise tensor

Et has i.i.d. standard Gaussian entries. Model (8) can be rearranged to a similar form as the

STEFA model. Specifically, we stack the tensor response Yt along a new M-th order and get

a new (I1 → · · · → IM↓1 → T ) tensor Y. We also stack the vector covariate xt together and

get a new (T →DM) matrix XM . Then, model (8) can be rewritten as

Y = B →M XM + Et. (9)

For high-dimensional data, the sparse or low-rank structure is assumed on the coe!cient

tensor B to facilitate estimation. For example, Sun and Li (2017) and Zhou et al. (2021)

assume that B admits a rank-R CP decomposition structure. Alternatively, B can be assumed

to admit a rank-(R1, · · · , RM) Tucker decomposition structure (Raskutti et al., 2019) denoted

by B := F →1 A1 →2 · · · →M↓1 AM↓1 →M BM , where F is a R1 → · · · → RM tensor, Am are

Im → Rm matrices for m ↓ [M ↗ 1] and BM is a DM → RM matrix. Under such Tucker

low-rankness, model (9) can be further rewritten as

Y = F →1 A1 →2 · · ·→M↓1 AM↓1 →M (XMBM) + Et.

which has the same form as a restricted STEFA model with AM = XMBM being exact linear

and non-existence of the covariate-independent component ”M .

Remark 3 (Multiple-mode-covariate tensor regression). The multiple-mode-covariate (MMC)

tensor regression (Hu et al., 2022) with identity link function writes

Y = B →1 X1 →2 X2 →3 X3 + E , (10)

where Xm is the observable Im → Dm covariate matrix and B is a low-rank regression co-

e!cient tensor. The MMC tensor regression model is a parametric model while the the

STEFA model is semi-parametric. The STEFA model is to the MMC tensor regression as

the projected PCA is to the reduce-rank regression.

If we wish to make the parametric assumption that the true loading function gm,rm(·) is

linear and no covariate-independent component, i.e. εm,im,rm = 0 in (4), the STEFA model
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can be rewritten in the same form as (10). Specifically, the loading can be explicitly written

as Am = XmBm where Bm ↓ R
Dm↑Rm. The STEFA model can be rewritten as

Y = F →1 (X1B1)→2 (X2B2)→3 (X3B3) + E = B →1 X1 →2 X2 →3 X3 + E , (11)

where B = F →1 B1 →2 B2 → B3. Otherwise, the STEFA model is very di”erent from the

MCC tensor regression since it allows any smooth function gm,rm(·) and the existence of the

covariate-independent component εm,im,rm. Generally, the advantages of the STEFA model

are its non-parametric modeling on the covariates as well as its weak technical assumptions.

2.2.1 Identifiability conditions for STEFA

Similar to the tensor factor model (2), the identifiability is also an issue for STEFA. Note

that the factor loading Am in STEFA consists of two components Gm(Xm) and ”m. A naive

generalization of Assumption 1 requires that

IRm = A→
mAm = (Gm(Xm) + ”m)

→(Gm(Xm) + ”m) = Gm(Xm)
→Gm(Xm) + ”→

m”m,

where we assume that ”→
mGm(Xm) = 0. While the above identification is theoretically valid,

such a condition imposes a constraint jointly for both the parametric and non-parametric

components and introduces unnecessary di!culty into the estimating procedures. Instead,

we propose the following identification condition for STEFA.

Assumption 2 (STEFA Identification Condition). We restrict our estimation targets to

the loading matrices and core tensor that satisfy

(i) G→
m(Xm)Gm(Xm)/Im = IRm and G→

m(Xm)”m = 0 for all m ↓ [M ].

(ii) Mm(F)Mm(F)→ is a diagonal matrix with non-zero decreasing singular values for all

m ↓ [M ].

Note that the identification condition G→
m(Xm)Gm(Xm)/Im = IRm can be replaced with

”→
m”m/Im = IRm . We choose the first equation just for simplicity because our method

starts with estimating the non-parametric component Gm(Xm). However, if some mode
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m has no covariate information, then we have to replace the identification condition with

”→
m”m/Im = IRm . Also note that Gm (Xm) is the Im→Rm matrix of [gm,rm (xm,im)]im,rm , thus

the identification condition is defined with respect to matrix Gm (Xm) with a fixed Im, not

on the functional form of gm,rm (xm,im). Alternatively, one can consider a functional version

of identification conditions on gm,rm (xm,im) defined on a Hilbert space consisting of all the

square integrable functions. But the intricate combination of functional space and tensor

structure renders the problem even more di!cult and thus will not be pursued here.

3 Estimation

In this section, we present a computationally e!cient Iteratively Projected SVD (IP-SVD)

algorithm to estimate the STEFA model. Given the identification condition (Assumption 2),

we start with estimating the non-parametric component Gm(Xm).

3.1 Sieve approximation and basis projection

Our primary ingredient of estimating Gm(Xm) is the sieve approximation which is a classical

method in non-parametric statistics (Chen, 2007). At this moment, we assume that the latent

dimensions R1, R2 and R3 are known. In Section 3.3, we will discuss a method to consistently

estimate R1, R2 and R3 when they are unknown.

Sieve approximation relies on a set of basis functions. Take mode 1 for illustration.

We denote {ϖ1,j1(·)}j1↗[J1] as a set of basis functions on {f : RD1 ≃ R
I1}, which spans a

complete space for {g1,r1 (·)}r1↗[R1]
. Some widely-used basis functions are B-spline, Fourier

series, wavelets, and polynomial series (Chen, 2007, Section 2.3). We let #1(X1) be the

I1→J1 matrix whose (i1, j1)-th element is ϖ1,j1(x1,i1). We denote the J1→R1 matrix of sieve

coe!cients as B1 = [b1,1, · · · ,b1,R1 ], and the I1 → R1 residual matrix as R1(X1), consisting

of approximation errors. Then, in the matrix form, we have G1(X1) = #1(X1)B1+R1(X1),

where #1(X1) can be constructed from covariates and R1(X1) shall be small for a large

enough J1. To this end, the factor loading A1 can be written as A1 = #1(X1)B1+R1(X1)+
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”1 (illustrated in the big parentheses in Figure 2.) Generalizing to other modes m ↓ [M ],
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Figure 2: An illustration of sieve approximation in signal of the STEFA model. The first
loading matrices A1 is decomposed into three part: the sieve approximation #1(X1)B1, the
sieve residual R1(X1) and the covariate independent component ”1

we can define similar terms and write that

Gm(Xm) = #m(Xm)Bm +Rm(Xm). (12)

Then, a general STEFA can be re-formulated as

Y = F →1

(
#1(X1)B1 +R1(X1) + ”1

)
→2 · · ·→M

(
#M(XM)BM +RM(XM) + ”M

)
+ E .

In practice, to nonparametrically estimate gm,rm(xm,im) without su”ering from the curse

of dimensionality when the dimension of xm,im is large, we can assume gm,rm(xm,im) to be

structured. A popular example of this kind is the additive model: for each rm ↓ [Rm], there

are Dm univariate functions {gm,rmdm(·)}
Dm

dm=1 such that

gm,rm(xm,im) =
Dm∑

dm=1

gm,rmdm(xm,imdm). (13)

Each one dimensional additive component gm,rm,dm(ximdm) can be estimated without curse of

dimensionality by the sieve approximation or other more complex functions. Possible data-

driven methods to estimate J ’s are discussed in Appendix ?? in the supplemental material.
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3.2 Iteratively projected SVD

We propose an iteratively projected SVD (IP-SVD) algorithm 2 to estimate the right hand

side of the STEFA model (6) from tensor Y and matrices of covariate Xm for m ↓ [M ].

For ease of notations, we write Gm and #m instead of Gm(Xm) and #m(Xm) and define

Pm = #m ·
(
#→

m#m

)↓1
#→

m as the Im → Im projection matrix onto the sieve spaces spanned

by the basis functions of Xm of all m ↓ [M ]. Algorithm 1 summarizes the whole procedure.

For ease of presentation, it is presented for the third order tensor or M = 3. But it is

representative for the general M setting. The outputs are estimators of the tensor factor F̂ ,

covariate-relevant loadings Ĝm, sieve coe!cient matrices B̂m, full loading matrices Âm and

covariate-independent loadings ”̂m for all m ↓ [M ].

The algorithm is divided into two major blocks. The first block consists of the first four

steps, namely projected spectral initialization, projected power iteration, projection estimate

for the tensor factor and orthogonal calibration. Together, they estimate F̂ and Ĝm through

an iterative procedure. The first step of projected spectral initialization utilizes the fact

that the column space of each loading Gm is mainly a subspace of the basis projection

Pm by sieve approximation. It obtains a preliminary estimator for Gm for each m ↓ [3]

via sieve projection, matricization and singular value decomposition (SVD), specified in

equation (14). This step, in spirit, is similar to the projected PCA in (Fan et al., 2016).

This initial estimator G̃(0)
m acts as a good starting point, but is sub-optimal in general. In the

second step of projected power iteration, we apply power iterations to refine the initialization.

Given rudimentary estimators G̃(t↓1)
2 and G̃(t↓1)

3 , we further denoise Y by the mode-2 and 3

projections: Y→2 G̃
(t↓1)→
2 →3 G̃

(t↓1)→
3 . This refinement can significantly reduce the amplitude

of noise while reserving the mode-1 singular subspace. Iteratively for t = 1, · · · , tmax, we

obtain an updated estimator G̃(t)
m for each m ↓ [3] according to (15). This projected power

iteration algorithm is a modification of the classical HOOI algorithm (De Lathauwer et al.,

2000a). The additional projection Pm restricts the solution to be a linear function of sieve

basis functions. Empirically, the projected version of HOOI in this step converges very

2A Python library of IP-SVD is available at https://github.com/ElynnCC/STEFA-Code.git.
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fast within a few iterations. The output of this step is the final estimators G̃m = G̃(tmax)
m for

m ↓ [M ]. In the third step, F̂ is estimated via least squares, which amounts to the projection

in equation (16). The fourth step fixes a numerical solution of tensor factor and loadings

that satisfy Assumption 2 by orthogonal calibration. The orthogonal rotation matrices are

calculated by (17) and the ultimate estimator is given by equation (18).

The second main block of the algorithm takes care of the estimation of the sieve coe!cient

matrices B̂m, full loading matrices Âm, and the covariate-independent loading matrices

”̂m for m ↓ [M ] in the fifth and sixth steps, respectively. The sieve coe!cients Bm is

useful for prediction on new covariates. After obtaining Ĝm(Xm), sieve coe!cients can be

estimated following the standard sieve approximation procedure. Indeed, we estimate B̂m

by equation (19). Then the mode-m loading function gm(x) = (gm,1(x), · · · , gm,Rm(x)) can

be estimated by ĝ(x) = #(x)B̂m for any x in the domain of mode-m covariates. Further,

with the estimated Ĝm and tensor factor F̂ , we estimate Âm by regression in (20) and ”̂m

by projecting Âm on the orthogonal column space of #m in (21).

The above procedure only involves matrix product and matrix SVD, which computes

fast. Without loss of generality, assume I1 ⇔ · · · ⇔ IM and R1 ⇔ · · · ⇔ RM . The major

computation load comes from the first three three steps. Specifically, the projected spectral

initialization in the first step requires O(I21I2 · · · IM) flops; each iteration in the second step

requires O(I1 · · · IMR1 · · ·RM↓1) flops; and the third step requires O(I1 · · · IMR1 · · ·RM)

flops. Distributed or parallel computing can be employed to speed up the computation

(De Almeida and Kibangou, 2014; Baskaran et al., 2017).

3.3 Estimating the Tucker ranks

In this section, we discuss the problem of estimating the Tucker ranks (R1, R2, R3) when

they are unknown. Given Y = F →1 A1 →2 A2 →3 A3 + E with the identifiable condition in

Assumption 1, the mode-1 matricization of Y is

M1(Y) = A1M1(F)(A2 ⇒A3)
→ +M1(E). (22)
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Algorithm 1: Iteratively Projected SVD (IP-SVD)

Input : Tensor Y ↓ R
I1↑I2↑I3 , matrices of covariate Xm whose rows are xm,im ,

ranks Rm, and sets of basis functions {ϖm,jm(·)}jm↗[Jm] for m ↓ [3].

Output: F̂ , Ĝm, B̂m, Âm and ”̂m for m ↓ [3].

1 For each m ↓ [3], calculate the projection matrices Pm = #m ·
(
#→

m#m

)↓1
#→

m,
where #m(Xm) is the Im → Jm matrix whose (im, jm)-th element is ϖm,jm(xm,im).

/* 1st step: Projected spectral initialization. */

2 Let t = 0 and calculate

Ỹ = Y →1 P1 →2 P2 →3 P3 and G̃(0)
m =

√
Im · SVDRm(Mm(Ỹ)). (14)

/* 2nd step: Projected power iterations. */

3 for t = 1, . . . , tmax do
4 Calculate

G̃(t)
1 =

√
I1 · SVDR1

(
P1 · M1

(
Y →2 G̃

(t↓1)→
2 →3 G̃

(t↓1)→
3

))
,

G̃(t)
2 =

√
I2 · SVDR2

(
P2 · M2

(
Y →1 G̃

(t)→
1 →3 G̃

(t↓1)→
3

))
,

G̃(t)
3 =

√
I3 · SVDR3

(
P3 · M3

(
Y →1 G̃

(t)→
1 →2 G̃

(t)→
2

))
.

(15)

/* 3rd step: Projection estimate for tensor factor. */

5 Calculate , with G̃j = G̃tmax
j (j = 1, 2, 3),

F̃ = (I1I2I3)
↓1 · Y →1 G̃

→
1 →2 G̃

→
2 →3 G̃

→
3 . (16)

/* 4th step: Orthogonal calibration. */

6 Calculate
Ôm = SVDRm

(
Mm(F̃)Mm(F̃)→

)
, for each m ↓ [3]. (17)

7 Calculate the ultimate estimator by

F̂ = F̃ →1 Ô
→
1 →2 Ô

→
2 →3 Ô

→
3 and Ĝm = G̃mÔm, for each m ↓ [3]. (18)

/* 5th step: Covariate sieve coefficient matrices. */

8 Calculate
B̂m =

[
#→

m#m

]↓1
#→

mĜm. (19)

/* 6th step: Full and covariate-independent loading matrices. */

9 Calculate
Q̂m = Mm

(
F̂ →j ≃=m (Ĝj/

√
Ij)

)
, Ỹm = Y →j ≃=m Pj.

10 Calculate the full loading matrices by

Âm = Mm

(
Ỹm

)
Q̂→

m

(
Q̂mQ̂

→
m

)↓1

/
√
I↓m (20)

11 Calculate the covariate-independent loading matrices by

”̂m = (I↗Pm)Âm (21)
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The first term in (22) is of rank R1 when A1 ↓ R
I1↑R1 and R1 ↑ I1. The second term in

(22) is a I1 → I2I3 noise matrix with i.i.d entries. Viewing M1(F)(A2 ⇒ A3)→ as a whole,

equation (22) is a factor model and R1 is the corresponding unknown number of factors to be

determined. There exist many approaches in consistently estimating the number of factors

from the model (22). In particular, Lam and Yao (2012); Ahn and Horenstein (2013); Fan

et al. (2016) proposed to estimate number of factors by selecting the largest eigenvalue ratio

of M1(Y)[M1(Y)]→. Due to the noise term in (22), Fan et al. (2016) pointed out it is better

to work on the projected version of M1(Y).

Suppose Ỹ = Y→1P1→2P2→3P3 is the projected version of Y . Then with Assumption 2,

E[M1(Ỹ)[M1(Ỹ)]→] = I2I3G1M1(F)[M1(F)]→G→
1 + E[P1M1(E)(P2 ⇒P3)[M1(E)]→P→

1 ] =

I2I3G1M1(F)[M1(F)]→G→
1 +ω2

ωR2R3P11I3↑I3P
→
1 has the same spectrum structure as E[M1(Y)[M1(Y)]→]

but with a reduced noise term. Here ω2
ω denotes the variance of the entries of E and 1I3↑I3 is

the I3 → I3 matrix with all entries equal to one. Denote by ϱk(Mm(Y)[Mm(Y)]→) the k-th

largest eigenvalue of the mode-m matricization of the projected tensor. The eigenvalue ratio

estimator of Rm is defined as

R̂m = argmax
1↫k↫kmax

ϱk(Mm(Ỹ)[Mm(Ỹ)]→)

ϱk+1(Mm(Ỹ)[Mm(Ỹ)]→)
(23)

where kmax is an upper bound on the number of factors, such as the nearest integer of

min
{
Im,

∏
n ≃=m In

}
/2, say.

The theoretical foundation for this estimator is partially provided in Fan et al. (2016).

Specifically, for each mode m, as long as there exists an ς ↓ (0, 1] such that all the Rm

eigenvalues of
(∏

n ≃=m I1↓ε
n

)
Mm(F)[Mm(F)]→ are bounded between two positive constants

cmin and cmax. The consistency of R̂m is provided, in terms of P[R̂m = Rm] ≃ 1, under

suitable conditions (e.g., sub-Gaussian noise and Jm = o(I1/2m ) ). However, while R̂m works

reasonably well in simulation studies, it may be statistically sub-optimal for STEFA because

the multi-way tensor structure is under-exploited, i.e., the low-dimensional tensor-product

structure of row space of Mm(Ỹ) is ignored. A statistically more e!cient approach is to also

estimate R̂1, · · · , R̂M iteratively. The idea is similar to the iterative procedure to estimate
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the loadings in the tensor factor models instead of the single-step estimation as in the vector

factor models (Fan et al., 2016).

Specifically, we note that Ỹ in (23) is a one-time projection onto the column space of

P1, · · · ,PM . To make the estimation of R̂1, · · · , R̂M iterative, Ỹ in (23) should be replaced

by a projection of the tensor onto the column spaces of G̃(t)
1 , · · · , G̃(t)

m↓1, G̃
(t↓1)
m+1 , · · · , G̃

(t↓1)
M

when estimating R̂m for m = 1, · · · ,M . However, in this case, establishing the consistency

theory jointly for all R̂m, i.e., P[↖M
m=1{R̂m = Rm}] can be more challenging than that in the

PCA setting (Fan et al., 2016), due to the interplay between Rm’s and dependence among

R̂m’s. We leave the theoretical investigations of R̂m for future work and suggest interested

readers to refer to a very recent work (Han et al., 2022) on the rank determination for tensor

factor model.

3.4 Prediction

The STEFA model can be applied to predict unobserved outcomes from the available data.

We illustrate the procedure of prediction along the first mode under model (5). Prediction

along other modes can be done in a similar fashion. The task here is to predict a new

Inew1 →I2→I3 tensor Ynew with new covariate matrix Xnew
1 whose rows are Inew1 new covariate

{xnew
1,i1 }i1↗[Inew

1 ] along mode 1. Under the STEFA model (5), the tensor observation Y assumes

the following structure

Y = F →1 #1(X1)B1 →2 A2 →3 A3︸  
sieve signal

+F →1 $1 →2 A2 →3 A3︸  
residual signal

+E ,

where #1(X1)B1 is the part explained by the sieve approximation of X1 and $1 = R1(X1)+

”1 contains the sieve residual and the orthogonal part. In Section 3, we obtain estimators ·̂

for the unknowns on the right hand side. Note that $1 can be estimated as a whole whereas

its component R1(X1) and ”1 are not separable. With new observation Xnew
1 , we estimate

the sieve signal using

Ŝnew
sieve = F̂ →1 #1(X

new) B̂1 →2 Â2 →3 Â3.
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For the residual part, we use the simple kernel smoothing over mode-1 using X1 and Xnew
1 .

Specifically, we have the residual signal estimator Ŝresid = F̂ →1 $̂1 →2 Â2 →3 Â3. Define the

kernel weight matrix W ↓ R
Inew
1 ↑I1 with entry

wij =
Kh(dist(xnew

1,i ,x1,j))
∑I1

j=1 Kh(dist(xnew
1,i ,x1,j))

, i ↓ [Inew1 ] and j ↓ [I1].

where Kh(·) is the kernel function, dist(·, ·) is a pre-defined distance function such as the

Euclidean distance, and x1,i is the i-th row of X1. We estimate the new residual signal by

Ŝnew
resid = Ŝresid →1 W, (24)

the derivation of which is given in Section B of the supplementary material. Finally, our

prediction for new entries corresponding to new covariate matrix Xnew
1 is given by

Ŷnew = Ŝnew
sieve + Ŝnew

resid. (25)

Remark 4. The identification condition Assumption 2 is not restrictive in the sense that it

is only used to help us separate the loadings and the factor, that is, fix a numerical solution

corresponding to a specific linear transformation among multiple equivalent ones. The signal

part S will not be a”ected by the specific linear transformation and thus the identification

Assumption 2 will not a”ect the prediction. Suppose the true decomposition of the signal

part S̊ = S̊sieve + S̊resid is

Ssieve = F̊ →1 #1(X1)B̊1 →2 Å2 →3 Å3, and Sresid = F̊ →1 $̊1 →2 Å2 →3 Å3,

where F̊ , B̊1, Å2, and Å3 are the true components. Our estimation targets are restricted

by Assumption 1 and 2 on observed discrete rows of X1 and they are linear transformations

of their true counterparts. That is, B1 := B̊1H1, A2 := Å2H2, A3 = Å3H3, and F =

F̊→1H
↓1
1 →2H

↓1
2 →3H

↓1
3 for some invertible matrices H1, H2, and H3. Algorithm 1 outputs

one specific solution F̂ , B̂1, ”̂1, Â2, Â3 such that Assumption 2 is satisfied on the observed

X1 for B̂1 and ”̂1, and Assumption 1 is satisfied for Â2 and Â3.

In Section 4, our theoretical results show that the estimators output by the Algorithm 1
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is close to the estimation targets that satisfy Assumption 1 and 2. As a result, B̂1 ↙ B̊1H1,

Â2 ↙ Å2H2, Â3 ↙ Å3H3, and F̂ ↙ F̊ →1H
↓1
1 →2H

↓1
2 →3H

↓1
3 . For a new observation Xnew

1 ,

we have

Ŝnew
sieve = F̂ →1 #1(X

new
1 )B̂1 →2 Â2 →3 Â3

↙ (F̊ →1 H
↓1
1 →2 H

↓1
2 →3 H

↓1
3 )→1 (#1(X

new
1 )B̊1H1)→2 (Å2H2)→3 (Å3H3)

= F̊ →1 #1(X
new
1 )B̊1H1H

↓1
1 →2 (Å2H2H

↓1
2 )→3 (Å3H3H

↓1
3 )

= F̊ →1 #1(X
new
1 )B̊1 →2 Å2 →3 Å3

= S̊new
sieve.

Here, the linear transformations H1, H2 and H3 will depend on X1. But the key point here

is that the respective H1 and H↓1
1 transformation of F̊ and B̊1 will canceled out and the

signal part as a whole will not be a”ected by any specific H1 or X1.

Remark 5 (Comparison to the MMC tensor regression). IP-SVD aims to estimate both

the covariate-explainable and covariate-orthogonal components in the STEFA model while

the objective of the MMC tensor regression (Xu et al., 2019; Hu et al., 2022) is to estimate

the reduced-rank coe!cients in a tensor regression with observed independent variables. For

prediction, the covariate-explainable component in the STEFA model is predicted by Sieve

approximation and the covariate-orthogonal component is predicted by kernel approximation,

which are very di”erent from the regression-based prediction in Xu et al. (2019). We re-

port a simulation in Appendix section ?? to show cases when STEFA performance better in

prediction.

4 Theoretical Results

In this section, we establish the statistical properties of the estimators in Algorithm 1 as-

suming data is generated from model (6). Lemma 2 and Corollary 1 provide error bounds

of the column spaces spanned by G̃(t)
m for 0 ∝ t ∝ tmax, which concerns with the estimation

errors of the projected spectral initialization and the projected power iterations in Algorithm
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1. Theorem 1 provides the estimation errors of the final estimators of Ĝm and F̂ from their

respective estimation targets Gm and F that satisfy identification condition Assumption

2. Theorem 2 provides the errors for the covariate-independent loadings ”̂m. We provide

discussions after each theorem, revealing some interesting observations in the interaction of

parametric, non-parametric estimations, and iterative tensor projection.

We impose two assumptions, respectively, on the smoothness of the loading functions and

on tail behavior of the noise. The smoothness assumption is standard in the non-parametric

literature, while the tail condition is weaker than what is usually assumed in the tensor

decomposition literature.

Assumption 3 (Smooth loading functions). We assume that, for all tensor modes m ↓ [M ],

(i) The loading functions gm,rm(xm), xm ↓ Xm ↓ R
Dm belong to a Hölder class Aϑ

c (Xm)

(φ -smooth) defined by

Aϑ
c (Xm) =


g ↓ Cq(Xm) : sup

[ϖ]⇐q
sup
x↗Xm

|Dϖ g(x)| ∝ c, and sup
[ϖ]=q

sup
u,v↗Xm

|Dϖ g(u)↗Dϖ g(v)|
↔u↗ v↔ϱ2

∝ c


,

for some positive number c, where φ = q + ↼ is assumed φ ⇔ 2. Here, Cq(Xm) is

the space of all q-times continuously di”erentiable real-value functions on Xm. The

di”erential operator Dϖ is defined as Dϖ = ς[ω]

ςx
ω1
1 ···ςx

ωDm
dm

and [↽] = ↽1 + · · · + ↽Dm for

non-negative integers ↽1, · · · , ↽Dm.

(ii) The sieve coe!cients bm,rm = [bm,rm,1 bm,rm,2 · · · bm,rm,Jm ]
→ for all 1 ∝ rm ∝ Rm,

satisfy, as Jm ≃ ′,

sup
x↗Xm

gm,rm(x)↗
∑Jm

j=1
bm,rm,jϖj(x)


2

= O(J↓ϑ
m )

where {ϖj(·)}Jmj=1 is a set of basis functions, and Jm is the sieve dimension.

Assumption 3 imposes mild conditions on loading functions so that their sieve approxi-

mation errors are well controlled. It is satisfied if the loading functions gm,rm(xm), m ↓ [M ],

belong to the Hölder class (Tsybakov, 2008). The basis functions that satisfy Assumption 3
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include polynomial, wavelet basis, and B-splines (Chen, 2007). To nonparametrically es-

timate gm,rm(xm) without the curse of dimensionality when xm is multivariate, we could

impose certain low-dimensional structure on gm,rm(xm), such as an additive structure used

in Fan et al. (2016). To emphasis the main theoretical founding, we use φ as a given param-

eter in the following theorems and avoid dissecting it from the perspective of nonparametric

estimation.

Assumption 4 (Sub-exponential noise). Each entry ϑφ of the noise tensor E are i.i.d.

sub-exponential random variables with E(ϑφ) = 0 and E exp(ϑφ/K0) ∝ e for some constant

K0 = O(1), for all ⇀ ↓ [I1]→ [I2]→ [I3].

The independence condition in Assumption 4 is standard for the statistical analysis of

tensor factor model (Richard and Montanari, 2014; Zhang and Xia, 2018; Xia and Zhou,

2019; Han et al., 2020) and tensor time series (Chen et al., 2022; Han et al., 2020). However,

all these prior works assume the Gaussian or sub-Gaussian distributions of noise. Our

Assumption 4 is weaker, which requires only a sub-exponential tail on the noise. Note that

Assumption 4 implies that Var(ϑφ) = O(1).

We first present the estimation errors related to the iterates of covariate-relevant loadings

G̃(t)
m for 0 ∝ t ∝ tmax, which correspond to the rates of convergence of the eigen-space spanned

by the columns of G(t)
m . For a clear presentation, the theorems are presented for the case of

M = 3. The results can be easily extended to higher order tensors with M > 3. Recall that

we write Im’s for the tensor dimensions, Jm’s for the sieve dimensions of covariate-relevant

component, and Rm’s for the Tucker ranks of covariate-independent component. We also

assume that I1 ⇔ I2 ⇔ I3 and R1 ⇔ R2 ⇔ R3 for brevity of notations. The signal strength of

F is measured by ϱmin := min
m↗[M ]

ωRm

(
Mm(F)

)
, which is the smallest singular value of all the

matricizations of F . The condition number of F is defined as ⇁0 := max
m↗[M ]

↔Mm(F)↔/ϱmin.

Since the noise has a bounded variance under Assumption 4, the signal strength ϱmin is

regarded as the signal-to-noise ratio (SNR). See a similar definition in Zhang and Xia (2018).

Lemma 2 (Projected spectral initialization and projected power iterations). Suppose that

Assumptions 3 and 4 hold under model (6), the condition number ⇁0 = O(1), J1 ∞ J2 ∞ J3,
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and Rm ∝ Jm. If
⇐
I1I2I3ϱmin ⇔ C1

(
⇁0

⇐
R1J1 log

2 I1 + (R1J1J2J3)1/4 log
2 I1

)
and RmJ↓ϑ

m ∝

C↓1
1 for some large enough absolute constant C1 > 0. Then it holds with probability at least

1↗ 7I↓2
1 that

I↓1
m

G̃(0)
m G̃(0)→

m ↗GmG
→
m


F
∝ C4

⇐
R1J1 log

2 I1
ϱmin

⇐
I1I2I3

+

⇐
R1J1J2J3 log

4 I1
ϱ2
minI1I2I3

+
√
RmJ

↓ϑ/2
m



(26)

for some absolute constant C4 > 0. Moreover, for all t = 1, · · · , tmax, it holds with probability

at least 1↗ 48I↓2
1 ,

max
m

I↓1
m

G̃(t)
m G̃(t)→

m ↗GmG
→
m


F
∝ 1

2
·max

m
I↓1
m

G̃(t↓1)
m G̃(t↓1)→

m ↗GmG
→
m


F

(27)

+2
√
R1J

↓ϑ/2
1 + C ⇒

4

⇐
J1R1 +R1R2R3 log

2 I1
ϱmin

⇐
I1I2I3

,

where C ⇒
4 > 0 is an absolute constant. Therefore, after tmax = O(log(ϱmin

√
I1I2I3/J1) + φ ·

log(J1) + 1) iterations, it holds with probability at least 1↗ 48I↓2
1 .

max
m

I↓1
m

G̃(tmax)
m G̃(tmax)→

m ↗GmG
→
m


F
∝ C ⇒

5

⇐
J1R1 +R1R2R3 log

2 I1
ϱmin

⇐
I1I2I3

+ 2
√

R1J
↓ϑ/2
1 , (28)

where C ⇒
5 > 0 is an absolute constant.

Recall that φ characterizes the smoothness of the covariate-relevant loading functions. As

shown in Lemma 2, if φ is larger, the estimation error decreases. The projected initialization

G̃(0)
m in Algorithm 1 is obtained by the projected PCA (Fan et al., 2016). By Lemma 2,

a warm initialization satisfying I↓1
m

G̃(0)
m G̃(0)→

m ↗GmG→
m

 ∝ 1/2 is guaranteed as long as
⇐
I1I2I3ϱmin ⇔ C ⇒

4(J1J2J3)
1/4 log2 I1 + C ⇒

5

⇐
J1 log

2 I1 for R1 = O(1) and some absolute con-

stants C ⇒
4 and C ⇒

5. Compared with the vanilla spectral initialization (Zhang and Xia, 2018;

Xia and Zhou, 2019; Richard and Montanari, 2014) that requires
⇐
I1I2I3ϱmin ∈ (I1I2I3)1/4

and sub-Gaussian noise, our projected spectral initialization requires a substantially weaker

condition on the signal strength when Jm ↑ Im. The logarithmic factors in Lemma 2

emerge from the sub-exponential tail of noise distribution, which has never been studied

in existing literature. Moreover, the initialization error (26) has two leading terms. When

the signal strength ϱmin is only medium strong, that is,
⇐
I1I2I3ϱmin ∈ (J1J2J3)1/4 but
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⇐
I1I2I3ϱmin ↑ J1, the second term in (26) dominates and the initialization error is at the

order of (R1J1J2J3)1/2 log
4(I1)/(ϱ2

minI1I2I3).

The initialization obtained by projected PCA (Fan et al., 2016) is sub-optimal for tensor

data and the IP-SVD refines it by projected power iteration. Equation (27) shows that the

error is decreasing after each mid-step projected power iteration. In the end, the error (28)

of the final estimator is at a smaller order of (J1R1)1/2 log
2(I1)/

(
ϱmin(I1I2I3)1/2

)
.

The estimation error in (28) of the final estimator is a mixture of two terms. The first term

can be viewed as a parametric rate and is related to the model complexity in approximating

Gm by the column space of #(Xm). Similar to usual parametric settings, the dimension of

the J1→R1 parameter matrix B1 appears in the numerator of this first term. An interesting

fact is that the parametric estimation error decreases when the signal strength ϱmin increases,

and increases when the Sieve dimension Jm increases.

The second term in the estimation error of (28) can be viewed as a non-parametric

rate and is related to functional approximation errors which relies crucially on the Sieve

dimension. This rate is una”ected when signal strength ϱmin changes, but decreases when

the Sieve dimension Jm increases. So there is a trade-o” in choosing Sieve dimension in

order to balance the parametric and non-parametric rates. The following result establishes

the estimation error with the optimally-chosen Sieve dimension Jm.

Corollary 1. Under the conditions of Lemma 2 and J1 = ∋C6

(
log2(I1)/(ϱmin

⇐
I1I2I3)

)↓2/(ϑ+1)△,

it holds that, for some absolute constants C6, C7, C8 > 0, with probability at least 1↗ 48I↓2
1 ,

max
m

I↓1
m

G̃(tmax)
m G̃(tmax)→

m ↗GmG
→
m


F
∝ C7

√
R1

( log2 I1
ϱmin

⇐
I1I2I3

) ε
ε+1

+ C8

⇐
R1R2R3 log

2 I1
ϱmin

⇐
I1I2I3

.

The first rate in Corollary 1 dominates whenever R2, R3 = O(1). This rate is very typical

in non-parametric regression (Chen, 2007; Tsybakov, 2008) and it shows that the estimation

error of G̃(tmax)
m decreases when the true loading functions are smoother in Assumption 3.

Till now, we have shown that the space spanned by the columns of the loadings Gm can

be consistently estimated. Next, we show that the columns of Gm and tensor factor F can

be determined up to a sign for the restricted estimation targets Gm and F that satisfy the
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identification condition Assumption 2. The concept of the eigengap of tensor F is needed

before we present those results. Here, we define

Egap(F) = min
1⇐m⇐M

{
min

1⇐j⇐Rm

ωj

(
Mm(F)

)
↗ ωj+1

(
Mm(F)

)}
,

where we denote ωRm+1

(
Mm(F)

)
= 0. Intuitively, Egap(F) represents the smallest gap of

singular values of Mm(F) for all m ↓ [M ]. The eigengap condition on Egap(F) is imposed

to ensure that the order of singular values will not be violated by small perturbations.

Theorem 1 (Covariate-relevant loadings and tensor factor). Suppose that the signal strength

satisfies
⇐
I1I2I3ϱmin ⇔ C0

(
⇁0

⇐
R1J1 log

2 I1 + (R1J1J2J3)1/4 log
2 I1

)
under model (6), the

conditions of Lemma 2 and

Egap(F) ⇔ C1


J1R2

1 +R2
1R2R3 log

2(I1)/
√
I1I2I3 + C2ϱminR1J

↓ϑ/2
1

hold for some absolute constants C0, C1, C2 > 0. Let F̂ and Ĝm be the estimators after

orthogonality calibration (18). Then there exist diagonal matrices {Sm}m↗[3] whose diagonal

entries are either ↗1 or +1 such that, with probability at least 1↗ 49I↓2
1 ,

max
m↗[3]

I↓1/2
m

Ĝm ↗GmSm


F
∝ C7

⇐
J1R1 +R1R2R3 log

2 I1
ϱmin

⇐
I1I2I3

+ C8

√
R1J

↓ϑ/2
1

and

↔F̂ ↗ F →1 S1 →2 S2 →3 S3↔F ∝ C ⇒
7

⇐
J1R1 +R1R2R3 log

2 I1⇐
I1I2I3

+ C ⇒
8ϱmin

√
R1J

↓ϑ/2
1

where C7, C8, C ⇒
7, C

⇒
8 > 0 are absolute constants.

Here the columns of factor loadings Gm can be determined up to a sign which is com-

mon in matrix singular value decomposition. Similarly to Corollary 1, if we choose J1 ∞

∋
(
log2(I1)/(ϱmin

⇐
I1I2I3)

)↓2/(ϑ+1)△, Theorem 1 implies that

↔F̂ ↗ F →1 S1 →2 S2 →3 S3↔F ∝ C ⇒
7

√
R1ϱ

1
ε+1

min ·
( log2 I1⇐

I1I2I3

) ε
ε+1

+ C8

(R1R2R3 log
4 I1

I1I2I3

)1/2

.

The second term on the right hand side is negligible if ϱmin

⇐
I1I2I3 ⇔ C ⇒

8(R2R3)
ε+1
2 log2 I1.

So the first term dominates when R1 = O(1). Moreover, the first term decreases when
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φ increases implying that the core tensor can be more accurately estimated if the loading

functions are smoother.

Finally, we bound the estimation error for the covariate-independent components.

Theorem 2 (Covariate-independent loadings). Suppose the conditions of Theorem 1 hold

under model (6). Then, for all m = 1, 2, 3, it holds with probability at least 1↗ 50I↓2
1 that

”̂m ↗ ”mSm


F
∝ C8↔”m↔ ·

(⇐J1R1 +R1R2R3 log
2 I1

ϱmin

⇐
I1I2I3

+
√
R1J

↓ϑ/2
1

)

+ C9

√
R1I1 + J1R2

1 +R2
1R2R3 log

3/2 I1
ϱmin

⇐
I2I3

where Sm is defined as in Theorem 1 and C8, C9 > 0 are some absolute constants. By

choosing J1 ∞ ∋
(
log2(I1)/(ϱmin

⇐
I1I2I3)

)↓2/(ϑ+1)△, we get, with probability at least 1↗50I↓2
1 ,

that
”̂m ↗ ”mSm


F

∝ C ⇒
8↔”m↔ ·

√
R1

( log2 I1
ϱmin

⇐
I1I2I3

) ε
ε+1

+

⇐
R1R2R3 log

2 I1
ϱmin

⇐
I1I2I3


(29)

+ C ⇒
9

√
R1I1 + J1R2

1 +R2
1R2R3 log

3/2 I1
ϱmin

⇐
I2I3

for some absolute constants C ⇒
8, C

⇒
9 > 0.

The error bound (29) involves two terms. The second term is similar to (except a loga-

rithmic factor) the typical rate of tensor factor models (Zhang and Xia, 2018; Richard and

Montanari, 2014) if I1 ⇔ J1R1+R1R2R3. However, there is a crucial di”erence in the STEFA

model since no condition is required for ”m (such as orthogonality of its columns). The first

term in (29) emerges from the estimation error of covariate-relevant component Gm. For

ease of exposition, assume ↔”m↔F ∞ R1/2
1 ↔”m↔ and R1 = O(1). The rate (29) yields the

relative error of ”̂m as

↔”̂m ↗ ”mSm↔F
↔”m↔F

∝ C ⇒
8

( log2 I1
ϱmin

⇐
I1I2I3

) ε
ε+1

+ C ⇒
9

⇐
I1 log

3/2 I1
ϱmin

⇐
I2I3↔”m↔

. (30)

Therefore, the estimator ”̂m is consistent in relative Frobenius-norm error if ϱmin

⇐
I1I2I3 ∈

log2 I1 and ϱmin↔”m↔(I2I3)1/2 ∈ I1/21 log3/2 I1. The former condition is mild in view of the

signal strength condition in Theorem 1. The latter condition relies on the magnitude of
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↔”m↔, and it dominates the former one if ↔”m↔ ∝ I1 log
↓1/2 I1. Basically, if ↔”m↔ becomes

smaller, a larger signal strength ϱmin is required to ensure the consistency of ”̂m.

Comparison with HOOI. Ignoring the covariate information and assuming the orthogo-

nality of the columns of ”m, one can apply the higher-order orthogonal iteration (HOOI)

algorithm to estimate ”m (additional treatments are perhaps necessary to separate ”m from

the covariate-relevant component Gm(Xm)). It is proved in Zhang and Xia (2018) that if

the SNR satisfies ϱmin↔”1↔↔”2↔↔”3↔ ⇔ C0(I
1/2
1 + (I1I2I3)1/4), the HOOI algorithm outputs

an estimator attaining, with high probability, a relative Frobenius-norm error rate as

↔”̂
HOOI

m ↗ ”mOm↔F
↔”m↔F

∝ C ⇒⇒
8

⇐
I1

ϱmin↔”1↔↔”2↔↔”3↔
(31)

where Om is an orthogonal matrix that minimizes ↔”̂
HOOI

m ↗”mO↔F. For ease of comparison,

let us further assume ↔”1↔ ∞ ↔”2↔ ∞ ↔”3↔ and I1 ∞ I2 ∞ I3. Comparing (31) to (30), if

↔”1↔ ∈ I1/21 , i.e., the covariate-independent component has a signal strength (characterized

by ↔”1↔) stronger than the covariate-relevant one (that is simply I1/21 by Assumption 2) ,

HOOI achieves a sharper error rate than our STEFA-based estimator. On the other hand,

STEFA can outperform HOOI when ↔”1↔ ↑ I1/21 . Nonetheless, STEFA still enjoys a major

advantage over HOOI by exploiting the covariate information. Indeed, the auxiliary covari-

ates can potentially reduce the SNR requirement. Note that our Theorem 2 suggests that an

SNR condition
⇐
I1I2I3ϱmin ⇔ C0(J1J2J3)1/4 su!ces to estimate the covariate-independent

component, while HOOI requires an SNR condition ↔”1↔↔”2↔↔”3↔ϱmin ⇔ C0(I1I2I3)1/4.

Therefore, if J1, J2, J3 ↑ I1 and ↔”1↔ = O(I1/21 ), STEFA requires a weaker SNR condition.

5 Numerical studies

In this section, we use Monte Carlo simulations to assess the performances of the IP-SVD

algorithm on the STEFA model under di”erent settings. In all examples, the observation

tensor Y is generated according to model (6), of which the dimensions of the latent tensor

factor and the covariates are fixed at Rm = R = 3 and Dm = D = 2. We generate the
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noise tensor E with each entry ϑi1i2i3 ▽ N (0, 1). The core tensor F is obtained from the

core tensor of the Tucker decomposition of a R1→R2→R3 random tensor with i.i.d. N (0, 1)

entries. The core tensor is further scaled such that ϱmin ↬ minm ωRm(Mm(F)) = (Imin)ε,

where Imin = min{I1, I2, I3} with some desired value of ς. This characterization of signal

strength was proposed in Zhang and Xia (2018) and we focus on the low signal-to-noise ratio

regime (ς ↫ 0.5), where HOOI is known to have unsatisfactory performance.

The explanatory variable matrix Xm ↓ R
Im↑Dm is generated from independent uniform

distribution U(0, 1). We generate Gm = [gm,rm(xm,im·)]imrm
by:

gm,rm(xm,im·) = ξm,rm,0 +
Dm∑

dm=1

J↑∑

j=1

ξm,rm,dm,j⇁
j↓1Pj(2xm,imdm ↗ 1), (32)

where ξm,rm,0 and ξm,rm,dm,j ▽ N (0, 1), J⇑ is the true number of basis functions, ⇁ ↓ (0, 1)

is the decay coe!cient to make sure convergence of sequences as J⇑ increases, and Pj(·) is

the j-th Legendre polynomial defined on [↗1, 1]. Note that J⇑ denotes the true sieve order

used in simulation and the J used in IP-SVD is not necessarily same as J⇑. The generation

of ”m will be specified later in each setting. Whenever a non-zero ”m is generated, we

orthonormalize the columns of Am = Gm+”m such that A→
mAm is an identity matrix. Here

we abuse Assumption 2 a little bit in order to control the signal-to-noise ratio through the

magnitude of the core matrix F . The orthonormalized Am and the original one di”er by a

linear transformation of columns, which does not a”ect the Schatter q-sin θ distance.

In what follows, we vary (I1, I2, I3), ς, Gm and ”m to investigate the e”ects of di”erent

tensor dimensions, signal-to-noise ratios and semi-parametric assumptions on the accuracy

of estimating factor, loadings and loading functions. For the error of estimating the loading

Am, we report the average Schatten q-sin θ norm (q = 2):

▷2(Âm) :=
sin#

(
Âm,Am

)
2
, m ↓ [3].

For the error of estimating the loading function gm,r(x), m ↓ [M ], we report

▷(ĝm,r) :=

 ĝm,r(x)↗ g↼m,r(x)
2 dx

 g↼m,r(x)
2 dx

, r ↓ [3].
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For the error of the estimation of a tensor Y , we report the relative mean squared error

ReMSEY =
↔Ŷ↓Y↔

F
⇓Y⇓F

. For the setting where all three modes share similar properties, we only

report results for the 1-st mode for conciseness. All results are based on 100 replications.

E%ect of growing dimensions and signal-to-noise ratio. In the first experiment,

we examine the e”ect of growing dimension I and di”erent values of ς. We fix R = 3,

J = J⇑ = 4, ”m = 0, and set I1 = I2 = I3 = I. We vary I = {100, 200, 300} and

ς = {0.1, 0.3, 0.5}. The mean and standard deviation of ▷2(Â1) are presented in Table 1.

Since I1 = I2 = I3, we only report the Shatten’s q-sin#-norm for Â1 as similar result holds

for Â2 and Â3. It is clear that the IP-SVD significantly improves upon HOOI in Shatten’s

q-sin#-norm (q=2) under all settings. While both IP-SVD and HOOI perform better when

ς increases and worse when dimension I increases, the IP-SVD is more favorably a”ected by

increased ς and less negatively a”ected by increased dimension I. The error in estimating

gm,r(x) for the first mode m = 1 is reported in Table 2, where the phenomenon is the same

as those for ▷2(Â). The supplementary material (Chen et al., 2020a, Section C) also reports

the same phenomenon for the unbalanced setting where I1, I2, and I3 are di”erent.

Table 1: The mean and standard deviation of the the average Schatten q-sin θ loss ▷2(Â1)
and ReMSEY , from 100 replications, under varying dimensions and signal-to-noise ratio.

ω 0.1 0.3 0.5
I 100 200 300 100 200 300 100 200 300

IP
-S
V
D ε2(Â1) 1.305

(0.138)
1.303
(0.126)

1.292
(0.169)

0.866
(0.233)

0.621
(0.205)

0.574
(0.200)

0.274
(0.068)

0.195
(0.051)

0.152
(0.038)

ReMSEY 2.471
(0.519)

2.382
(0.519)

2.281
(0.483)

0.934
(0.283)

0.675
(0.212)

0.588
(0.179)

0.280
(0.065)

0.195
(0.044)

0.154
(0.035)

H
O
O
I ε2(Â1) 1.707

(0.012)
1.719
(0.007)

1.724
(0.004)

1.705
(0.012)

1.719
(0.006)

1.724
(0.004)

1.581
(0.189)

1.671
(0.122)

1.691
(0.162)

ReMSEY 7.829
(1.632)

10.368
(2.133)

11.999
(2.379)

3.330
(0.665)

3.652
(0.798)

3.987
(0.849)

1.548
(0.323)

1.576
(0.278)

1.556
(0.269)

E%ect of the number of fitting basis. In this experiment, we examine the e”ect of

di”erent choices of the number of fitting basis J . Specifically, we fix I1 = I2 = I3 = I = 200,

R = 3 and set ”m = 0. We vary SNR by changing ς = 0.3, 0.5. The loadings are simulated
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Table 2: Under varying dimensions and signal-to-noise ratio, the mean and standard devi-
ation of the function approximation loss ▷(ĝm,r), for model m = 1 and r ↓ [3], from 100
replications. This results for modes m = 2, 3 are similar.

I R
ς = 0.1 ς = 0.3 ς = 0.5

▷(ĝ1,1) ▷(ĝ1,2) ▷(ĝ1,3) ▷(ĝ1,1) ▷(ĝ1,2) ▷(ĝ1,3) ▷(ĝ1,1) ▷(ĝ1,2) ▷(ĝ1,3)
100 3 1.653

(1.028)
1.699
(0.749)

1.786
(0.740)

0.745
(1.224)

1.082
(1.141)

1.295
(1.014)

0.382
(1.098)

0.429
(1.078)

0.575
(1.259)

200 3 1.479
(0.861)

1.715
(0.653)

1.792
(0.682)

0.524
(1.119)

0.898
(1.193)

1.016
(1.119)

0.134
(0.669)

0.127
(0.558)

0.270
(0.900)

300 3 1.500
(0.929)

1.781
(0.725)

1.834
(0.669)

0.410
(0.916)

0.832
(1.220)

1.063
(1.299)

0.100
(0.548)

0.190
(0.778)

0.063
(0.392)

according to the additive sieve structure as in (32) with fixed J⇑ = 16. However, in the

estimation of Âm, we use di”erent numbers of sieve orders J = 2, 4, 8, 16. The mean and

standard deviation of ▷2(Â1) and ReMSEY are reported in Table 3.

A noteworthy observation is that increasing the sieve order J does not consistently en-

hance the performance. For both signal-to-noise strength in Table 3, J = 16 does not achieve

the best performance among all choices of J , even though the data is simulated with order

16. This reflects well the bias and variance trade-o”. On one hand, increasing sieve order

J enhances the capability of Gm in capturing the parametric dependence between Am and

Xm. On the other hand, a large order J increases the Frobenius norm of the projected noise

↔E →1 P1 →2 P2 →3 P3↔F , which may result in a reduced signal-to-noise ratio. Large value of

ς is more tolerant to this signal-to-noise decrease caused by large sieve order. As shown in

Table 3, the minimum error is obtained at J = 4 when ς = 0.3, while J = 8 is the optimal

one when ς = 0.5. These observations align with findings in the realm of semiparametric

studies. For example, extensive spline bases often exhibit overfitting tendencies and are

commonly employed alongside regularization techniques (Carroll and Ruppert, 2006).

E%ect of the covariate-orthogonal loading. In this experiment, we examine the e”ect

of the covariate-orthogonal loading part ”m. To simulate nonzero ”m such that Am satisfies

the identification condition, we first generate a matrix $m with each elements drawn from

independent N (0, 1), project it to the orthogonal complement of Gm and normalize each
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Table 3: The average spectral and Frobenius Schatten q-sin# loss for Â1 and relative mean
square errors for Y under various settings.

▷2(Â1) ReMSEY

J 2 4 8 16 2 4 8 16

ς = 0.3 1.024
(0.177)

0.910
(0.195)

1.093
(0.256)

1.486
(0.173)

0.886
(0.113)

0.872
(0.182)

1.154
(0.349)

1.781
(0.432)

ς = 0.5 0.881
(0.153)

0.503
(0.116)

0.327
(0.057)

0.445
(0.101)

0.720
(0.080)

0.467
(0.073)

0.303
(0.053)

0.398
(0.102)

column. Specifically, the r-th column of ”m is obtained as

ωm,·r = µ · (I↗PGm)εm,·r

↔(I↗PGm)εm,·r↔ , for r = 1, . . . , Rm,

where PGm is the projection matrix of Gm and εm,·r is the r-th column of $m. We add

a scaling factor µ ⊜ 0 to controls the amplitude of the orthogonal part. Note that Am =

Gm + ”m generated in this way is not necessarily an orthogonal matrix. So a final QR

decomposition is conducted on Am to orthonormalize the columns of Am. Again, we note

that we orthonormalize Am just in order to control the overall signal-to-noise ratio. In the

experiments, we fix I1 = I2 = I3 = I = 200, R = 3 and ς = 0.5 and change the values

of µ. The magnitude or the Frobenious norm of ”m is controlled through the coe!cient

µ. The errors under four di”erent choices of µ’s are reported in Table 4. Note that in the

simulation, Am = Gm +”m is normalized such that the signal-to-noise ratio of the tensor Y

can be controlled by the core tensor F . A larger value of µ indicates a smaller norm of the

projected tensor Ỹ and results in a decreased signal-to-noise ratio in the projected model.

As demonstrated in Table 4, the error increases as µ increases.

Table 4: The means and standard deviations of Â1 and ReMSEY under various settings.

µ 0 0.01 0.1 1.0

▷2(Â1) 0.877
(0.101)

0.851
(0.125)

0.876
(0.117)

1.285
(0.132)

ReMSEY 1.043
(0.274)

0.985
(0.271)

1.031
(0.296)

2.157
(0.543)
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E%ect of underlying gm,rm(·). In this experiment, we exam the potential impact of using

the additive approximation (13) of Gm. Under the setting I1 = I2 = I3 = 200, R = 3,

D = 2, ς = 0.3, ”m = 0 and J = J⇑ = 3, we simulate Gm according to the additive case

(32) and plot the true function g↼1,1(x) and the estimated function ĝ1,1(x) in Figure 3. As

the additive assumption is valid for this case, the estimated function is pretty close the true

one.

Figure 3: (Left) g↼1,1(x) generated under additive model. (Right) ĝ1,1(x) estimated under
additive assumption.

Further, we simulate the data such that the additive assumption (13) is not valid. Specif-

ically, we generate gm,rm(xm,im·) in a multiplicative scheme such that

gm,rm(xm,im·) =
Dm

dm=1

gm,rm,dm(xm,imdm). (33)

where gm,rm,dm is given by (32). We conduct the IP-SVD procedure using the additive

approximation (13). The true and estimated function of g1,1(x) are plotted in Figure 4a and

4c, respectively. The estimated function can capture some structures of the true function

but misses other details as we approximate it with the additive form. Figure 4b depicts the

projection of the true function g↼1,1 to the additive sieve space used in IP-SVD. The projection

is supposed to be the best function estimate that can be obtained from the additive sieve

basis. Note that A is identified up to an orthogonal matrix and so is G. To address this

potential problem of non-identifiability of g1,1, we calculate the best linear combination of
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ĝ1,r, r = 1, . . . , R, that is closest to g⇑1,1 to mimic any potential orthogonal matrix applied

to G. The best linear combination is reported in Figure 4d. As one can see, Figure 4b

and 4d are almost identical to each other. In conclusion, the projected Tucker under an

additive basis assumption can ideally recover at most the linear (and additive) part of the

true parametric component Gm. The performance of this approximation depends on the

deviation between the Gm and its projected version PmGm.

To assess the performance of IP-SVD when the additive assumption (13) becomes in-

valid, we repeat the experiment in Table 1 with exactly the same settings except that the

multiplicative scheme in (33) is used to generate Gm. The errors in estimating Am and Y

are reported in Table 5. Comparing Table 1 with Table 5, we observe that even when the

additive assumption in (13) is not valid, IP-SVD still performs better than HOOI. But the

improvement under misspecification is not as good as that under the valid additive assump-

tion. This shows empirically that even when the additive assumption is violated, IP-SVD

in general performances better than HOOI as long as the sieve basis used in IP-SVD can

partially explain the parametric part of Am with respect to Xm.

(a) g↼1,1(x) (b) P1g1,1(x) (c) ĝ1,1(x) (d)
∑R

r=1 arĝ1,r(x)

Figure 4: (a) True function of g↼1,1(x) (b) Projected version of g↼1,1(x) (c) Estimated g1,1(x)
(d) Best linear combination of ĝ1,r(x).
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Table 5: Under varying dimensions and signal-to-noise ratio. The mean and standard devi-
ation of ▷2(Â1) and ReMSEY from 100 replications when the additive loading assumption is
replaced with the multiplicative assumption.

ω 0.1 0.3 0.5
I 100 200 300 100 200 300 100 200 300

IP
-S
V
D ε2(Â1) 1.430

(0.103)
1.450
(0.126)

1.438
(0.115)

1.225
(0.165)

1.182
(0.210)

1.132
(0.203)

0.853
(0.212)

0.796
(0.217)

0.820
(0.228)

ReMSEY 2.596
(0.521)

2.395
(0.579)

2.375
(0.482)

1.189
(0.210)

1.095
(0.175)

0.984
(0.157)

0.741
(0.117)

0.709
(0.117)

0.704
(0.132)

H
O
O
I ε2(Â1) 1.705

(0.012)
1.720
(0.006)

1.723
(0.005)

1.705
(0.012)

1.720
(0.005)

1.724
(0.004)

1.568
(0.213)

1.653
(0.168)

1.663
(0.188)

ReMSEY 8.092
(1.686)

10.108
(2.596)

12.049
(2.701)

3.263
(0.672)

3.874
(0.721)

3.911
(0.781)

1.528
(0.332)

1.538
(0.294)

1.513
(0.300)

6 Real data applications

6.1 Multi-variate Spatial-Temporal Data

In this section, we illustrate the usefulness of the STEFA model and the IP-SVD algorithm

on the Comprehensive Climate Dataset (CCDS) – a collection of climate records of North

America. The dataset was compiled from five federal agencies sources by Lozano et al.

(2009)3. Specifically, we show that we can use the STEFA and IP-SVD to estimate inter-

pretable loading functions, deal better with large noises and make more accurate predictions

than the vanilla Tucker decomposition.

Figure 5: The geological region for which the data is collected

The data contains monthly observations of 17 climate variables from 1990 to 2001 on a

3
http://www-bcf.usc.edu/~liu32/data/NA-1990-2002-Monthly.csv
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2.5 → 2.5 degree grid for latitudes in (30.475, 50.475), and longitudes in (↗119.75,↗79.75).

Figure 5 plots the geological region which covers the majority of the continent of United

States and the southern part of Canada. The total number of observation locations is 125

and the whole time series spans from January, 1990 to December, 2001. Due to the data

quality, we use only 16 measurements listed in Table 6 at each location and time point.

Thus, the dimensions our our dataset are 125 (locations) → 16 (variables) → 156 (time

points). Detailed information about data is given in Lozano et al. (2009).

Table 6: Variables and data sources in the Comprehensive Climate Dataset (CCDS)

Variables (Short name) Variable group Type Source
Methane (CH4) CH4

Greenhouse Gases NOAA
Carbon-Dioxide (CO2) CO2

Hydrogen (H2) H2

Carbon-Monoxide (CO) CO
Temperature (TMP) TMP

Climate CRU

Temp Min (TMN) TMP
Temp Max (TMX) TMP
Precipitation (PRE) PRE
Vapor (VAP) VAP
Cloud Cover (CLD) CLD
Wet Days (WET) WET
Frost Days (FRS) FRS
Global Horizontal (GLO) SOL

Solar Radiation NCDC
Direct Normal (DIR) SOL
Global Extraterrestrial (ETR) SOL
Direct Extraterrestrial (ETRN) SOL

We first focus on the spatial function structure of this data set. The covariatesX ↓ R
125↑2

of the spacial dimension contain the latitudes and longitudes of all sampling locations, which

basically capture the spatial continuity of factor loadings on mode 1. The semi-parametric

form (5) for this application is written as

Y = F →1 (#1(X)B1 +R1(X) + ”1)→2 A2 →3 I+ E . (34)

The first mode is the space dimension with loading matrix A1 = #1(X)B1 +R1(X) + ”1.

The second mode is the variable dimension with A2 as the variable loading matrix. The

third mode is the time dimension which we do not compress. So we use the identity matrix

I in place of A3. This is a matrix-variate factor model similar to Chen and Fan (2023) but
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incorporates covariate e”ects on the loading matrix in the spatial-mode. We normalized each

time series to have a unit ▷2 norm.

Climate variable and spatial factors. We use R1, R2, R3 = 6, 6, 156 where the time

mode is not compressed and the other two latent dimensions are chosen according to the

literature (Lozano et al., 2009; Bahadori et al., 2014; Chen et al., 2020b). We use the

Legendre basis functions of order 5 for #1(X) and number of basis J = 11. The slices

of latent tensor factor Fr1::, r1 ↓ [6], correspond to six spatial factors and the slices F:r2:,

r2 ↓ [6], correspond to the six climate variable factors. The meaning of the latent factors can

be inferred from their corresponding variable loading matrix A2 and spatial loading surfaces

in #1(X)B1.

Figure 6 (a) shows the heatmap of the varimax-rotated loading matrix A2. It is clear

that the corresponding first climate factor weighted mostly on the four greenhouse gases.

Thus, the first climate factor can be interpreted as the greenhouse gas factor. Interestingly,

this greenhouse gas factor also loads heavily on cloud cover (CLD), echoing with a recent

scientific research on the observational evidence between greenhouse gas and cloud covers

(Ceppi and Nowack, 2021). In a similar way, the second to sixth climate variable factor can be

interpreted as temperature, precipitation (wet), frost, solar, and vapor factors, respectively.

The top six climate factors explain approximately 82.26% , 12.13%, 1.48%, 0.58%, 0.31%,

0.26% of the variance along the second (climate variable) mode of the tensor.

Figure 6 (b) presents six estimated bi-variate spatial loading surfaces corresponding to the

six columns of #1(X)B̂1. The space loading surfaces captures the common spatial variances

in 16 environmental variables and they are highly nonlinear. More insights can be drawn

by juxtaposing the discovered loading surfaces with the geological map in Figure 5 with

aligned latitudes and longitudes. The high value (red) region in the first loading surface

corresponds to the Great Lakes region of U.S. and Canada, which was highly-populated and

has a well-developed industry in the 90’s. The second surface represents a south-to-north

gradient and a coast-to-inland gradient. The third surface has high values in the mountain

region of U.S. The discovered top three major loading surfaces have their sociological and
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(a) Variable Factors (b) Spatial Factors

Figure 6: (a) Heat map plots the varimax-rotated Â2. The first six variable factors explain
approximately 82.26% , 12.13%, 1.48%, 0.58%, 0.31%, 0.26% of the variance along the second
mode of the tensor Y . (b) Six surfaces are the estimated space loading surfaces plotted
from six columns of Ĝ1(X) = #1(X)B̂1. From the top-left to the bottom right sub-figures
correspond to the first to the sixth space loading functions with decreasing singular values.
The coordinates of X and Y axis are aligned with the latitudes and longitudes in Figure 5.
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geological correspondences. Beyond those, the estimates are very noisy and interpretation

gets hard. The top sixth column of #(X)1B̂1 explain approximately 93.16% , 2.39%, 0.75%,

0.42%, 0.18%, 0.14% of the variance along the first (spatial) mode of the tensor.

Fitting real data with di%erent noise levels. In this section, we compare the vanilla

and projected Tucker decomposition by their performances in fitting signal with di”erent

levels of noise. To generate di”erent noise levels, we treat the estimated signal Ŝv and noise

Êv from vanilla Tucker decomposition as the true signal S and noise E and calibrate the real

data with di”erent noise amplifier ς > 0. Specifically, the calibrated data is generated as

Y = Ŝv+ς→Êv. The setting ς = 1 corresponds to the original data. We compare the relative

mean square errors (ReMSE) of the signal estimator ReMSES = ↔S ↗ Ŝ↔2F/↔S↔
2
F for vanilla

and projected Tucker decomposition in Figure 7. For the vanilla Tucker decomposition, we

use the HOOI algorithm. For the projected Tucker decomposition, we use the same setting

as previously, that is, we use the Legendre basis functions of order 5 for #(X), number of

basis J = 11 and latent dimensions R1, R2, R3 = 6, 6, 156. Two methods behave the same

in the noiseless case where ς = 0. However, in the noisy setting where ς > 0, the IP-SVD

outperforms the HOOI at all noise levels.

Figure 7: Relative mean square errors (ReMSE) by projected versus vanilla Tucker decompo-
sition with di”erent noise amplifiers. The relative residual SS of the signal part is defined as
↔S ↗ Ŝ↔2F/↔S↔

2
F where Ŝ := F̂→1 Â1→2 Â2. The loading A1, A2 and factor F are estimated

by HOOI and IP-SVD, respectively, for vanilla and projected Tucker decomposition.
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Spatial prediction. In this section, we compare the prediction performances of the meth-

ods based vanilla and projected Tucker decomposition. The two prediction procedures are

presented in Section 3.4. We randomly choose the training set to be 50%, 67%, and 75%

of the whole data set. Table 7 shows the prediction errors, average over cross validations,

of the two methods respectively. It is clear that the STEFA model with projected Tucker

decomposition outperforms the vanilla methods.

Table 7: Relative prediction error (averaged value by cross validation). For ease of display,
the errors for Vanilla and Projected Tucker are reported as 100→ the true value.

Training set proportion 50% 67% 75%
Vanilla 3.52 3.48 3.05

Projected 3.20 3.23 3.01
Improvement 9.0% 7.2% 1.3%

Temporal-mode compression. Now we consider fitting the real data with a more com-

plex model where the mode corresponds to time is also compressed:

Y = F →1 (#1(X)B1 +R1(X) + ”1)→2 A2 →3 (#3(t)B3 +R3(t) + ”3) + E . (35)

For the space mode, we use the same setting as previously, that is, we use the Legendre basis

functions of order 5 for #1(X) and the number of basis J1 = 11. For the time mode, we use

the sinusoidal basis functions of order 12 for #3(t) and the number of basis J3 = 13. Figure

8 presents the first two columns of #3(t)B3 which explains approximately 80.69% and 0.14%

of the variance along time mode of the tensor. Each column of the loading matrix #3(t)B̂3

can be interpreted from its temporal pattern. The first time loading corresponds to the

temporal mean since it is almost flat over time. The second time loading corresponds to a

linear trend component. This trend coincides with the annual greenhouse gas emission data

from U.S. environment protection agency4, where the greenhouse gas emission has an overall

increasing trend from 1992 to 2002 with local peaks around 1995 and 2000. The other time

loading dimensions are less prominent as they account for a small portion of variations. As

4https://cfpub.epa.gov/ghgdata/inventoryexplorer
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a result, their corresponding interpretations are not obvious and we omit their plots here.

Figure 8: Top two functions of time that corresponds to the first two columns of #3(t)B3.

6.2 Human Brain Connection Data

We illustrate another application of the STEFA model and IP-SVD to the human brain

connection data (Desikan et al., 2006). This Human Connectome Project (HCP) dataset

consists of brain structural networks collected from 136 individuals. Each brain network is

represented as a 68→ 68 binary matrix, each entry of which encodes the presence or absence

of a fiber connection between 68 brain regions. Thus, the final observation Y is of dimension

68→68→136. Associated with 136 individuals, there are 573 features including ages, genders,

and various measurements of their brains. This dataset has been used in Hu et al. (2022)

for tensor regression and it is available in the R package tensorregress. We consider the

instance of the STEFA model with A3 = #3(X)B3+R3(X)+”3. The covariate X contains

five features: gender (65 females vs. 71 males), age 22-25 (n = 35), age 26-30 (n = 58), and

age 31+ (n = 43). These categorical variables are coded using sum-to-zero contrasts and the

lower rank is set as (10, 10, 4), the same as those set in Hu et al. (2022). As an illustration,

we choose #3(X) generated by polynomial basis of order 1, which is a similar linear setting

as that in Hu et al. (2022) with identity link function.

Hu et al. (2022) consider a similar setting for tensor regression. However, there are two

major di”erences. First, they consider a generalized linear model (GLM) with a low-Tucker-

rank coe!cient tensor that predict Y with given observationsX and their estimation is based

on the maximum likelihood estimation. On the contrary, the STEFA model aims to discover
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the relationships between entries in Y (with the help of covariates X when available) without

using any distributional assumption. This relationship between entries in Y can also be used

to predict values by interpolation as proposed in Section 3.4. Second, the STEFA model

is comparable to MMC tensor regression only when the GLM linkage function is linear. In

such setting, the form of the tensor regression model in Hu et al. (2022) is equivalent to

assuming A3 = #3(X)B3 with #3(X) = X in the STEFA model. It has two limitations:

only linear components ofX is considered and the non-parametric residuals independent with

X are ignored. In contrast, the STEFA model and the IP-SVD estimate A3 which consists

of covariate-relevant #3(X)B3, the residual component R(X), as well as the orthogonal

component ”3. We compare the relative mean squared error ReMSEY =
Ŷ ↗ Y


2

F
/↔Y↔2F

of the STEFA and MMC tensor regression with the identity link in Table 8. The relative

mean squared error of the STEFA is smaller under all choices of basis functions. In fact, the

STEFA model complements the work in Hu et al. (2022) since the orthogonal ”3 can also

be included in their tensor regression models.

Table 8: Relative mean squared error ReMSEY =
Ŷ ↗ Y


2

F
/↔Y↔2F of the MMC with identity

link and the STEFA. Each columns corresponds to a type of basis function with its order in
the parentheses. The MMC and the STEFA use the same basis function in #(X).

Polynomials (1) Polynomials (3) Legendre (5)
MMC (Identity link) 39.6% 39.5% 39.4%

STEFA 38.7% 38.4% 38.3%
Improvement 2.3% 2.8% 2.8%

The covariate-relevant #3(X)B3 is determined by covariates specified by domain experts.

Researchers may be curious to identify features a”ecting brain connectivity other than those

already known in the field. Now we show that the residual ”̂3 = Â3 ↗ #̂3(X)B̂3 obtained

by STEFA can be used to discover several features other than gender and age. Analogous

to the interpretation that the rows of the 136→ 4 loading matrix Â3 can be reviewed as the

low-rank representation of 136 subjects in the latent factor space, matrices ”̂3 and #̂3(X)B̂3

can be interpreted, respectively, as covariate-independent and covariate-dependent low-rank

representations. The idea to identify important features left in the residual component
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is to first use ”̂3 in spectral clustering to divide 136 subjects into four groups, and then

use recursive feature elimination (RFE) to identify the top four important features that

di”erentiate these four groups. The identified top four important features that are disparate

across groups are the average thickness of the right transverse temporal gyri which has been

shown to be correlated with human acoustic processing (Warrier et al., 2009), the volumn of

accumbens area which is a key structure in mediating emotional and motivation processing,

modulating reward and pleasure processing, and serving a key limbic-motor interface (Cohen

et al., 2009; Salgado and Kaplitt, 2015), the unadjusted negative emotion a”ect related to

sadness, fear, and anger, and a personality raw score on being active or not. Section ??

provides another illustration of using the STEFA and IP-SVD for explanatory data analysis

to partitioning the brain connectivity according to the covariate-relevant loading #3(X)B3.

These interesting discoveries from explanatory data analysis can be used as good starting

points for the following more rigorous scientific researches.

7 Discussion

This paper introduces a high-dimensional Semiparametric TEnsor FActor (STEFA) model

with nonparametric loading functions that depend on a few observed covariates. This model

is motivated by the fact that observed variables can partially explain the factor loadings,

which helps to increase the accuracy of estimation and the interpretability of results. We

propose a computationally e!cient algorithm IP-SVD to estimate the unknown tensor factor,

loadings, and the latent dimensions. The advantages of IP-SVD are two-fold. First, unlike

HOOI which iterates in the ambient dimension, IP-SVD finds the principal components in

the covariate-related subspace whose dimension can be significantly smaller. As a result, IP-

SVD requires weaker SNR conditions for convergence. Secondly, the projection also reduces

the e”ect dimension size of stochastic noise and thus IP-SVD yields an estimate of latent

factors with faster convergence rates.

While tensor data is everywhere in the physical world, statistical analysis for tensor data is

still challenging. There are several interesting topics for future research. First, it is important
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to develop non-parametric tests on whether observed relevant covariates have explaining

powers on the loadings and whether they fully explain the loadings. However, under the

tensor decomposition setting, this is more challenging than a straightforward extension from

Fan et al. (2016). Second, we mentioned briefly that, when there are multiple observations,

one can apply IP-SVD on the sample covariance tensor. However, a more precise algorithm

is needed. Last but not the least, it is of great need to develop new methods to use STEFA

in tensor regression or other tensor data related applications.
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Appendix A Major Theoretical Proofs

Proof of Lemma ??. Let S = F̃ →1 Ã1 →2 · · ·→M ÃM be a Tucker decomposition of S such

that F̃ ↑ R
R1→···→RM is the core tensor, and for m ↑ [M ], Ãm ↑ R

Im→Rm is the m-mode

loading matrix satisfying Assumption ??(i).

Clearly, S = F →1 A1 →2 · · ·→M AM is a valid Tucker decomposition satisfying Assump-

tion ??(i) if and only if there exist orthogonal matrices Hm ↑ O
Rm→Rm for all m ↑ [M ] such

that Am = ÃmHm and F = F̃ →1 H↑
1 →2 · · ·→m H↑

M . Moreover, then Mm(S)Mm(S)↑/Im
has the same singular values with Mm(F)Mm(F)↑

Now we are in the place to prove the lemma. Recall that any Tucker decomposition of

S satisfying Assumption ??(i) are indexed by the set of orthogonal matrices (H1, · · · ,HM)

in reference to the decomposition S = F̃ →1 Ã1 →2 · · · →M ÃM . The corresponding core

tensor F is F = F̃ →1 H↑
1 →2 · · · →M H↑

M . The mode-m matricization of F is Mm(F) =

H↑
mMm(F̃)

[⊗
l↓[M ],l ↔=m H↑

l

]
. Suppose for some Hm, Assumption ??(i) is satisfied such that

Mm(F)Mm(F)↑ = H↑
mMm(F̃)Mm(F̃)↑Hm = Dm for some diagonal matrix Dm with

non-zero decreasing diagonal entries. Then the diagonal entries of Dm are the eigenvalues of

Mm(F̃)Mm(F̃)↑ and the columns in Hm are the corresponding eigenvectors, because of the

equality Mm(F̃)Mm(F̃)↑Hm = HmDm. Note that Dm has the same singular values with

Mm(S)Mm(S)↑. As a result, when the singular values of Mm(S)Mm(S)↑ are distinct, the

eigenvalues and eigenvectors of Mm(F̃)Mm(F̃)↑ can be uniquely identified (up to a global

sign), resulting in an unique Hm. Here, the uniqueness is up to a column-wise sign of Hm.

In conclusion, starting from an arbitrary Tucker decomposition S = F̃ →1 Ã1 →2 · · ·→M

ÃM satisfying Assumption ??(i), by choosing the columns of Hm to be the eigenvectors of
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Mm(F̃)Mm(F̃)↑ in descending order of eigenvalues, the Tucker decomposition with F =

F̃→1H↑
1 →2 · · ·→M H↑

M ,A1 = Ã1H1, · · · ,AM = ÃMHM is the unique Tucker decomposition

satisfying both Assumptions 1(i) and 1(ii) when the eigenvalues of Mm(S)Mm(S)↑ are

distinct for all m ↑ [M ].

Proof of Lemma ??. We prove the initialization error and convergence of IP-SVD separately.

Without loss of generality, we assume Eω2ω = 1 for all ε ↑ [I1]→ [I2]→ [I3].

We begin with the upper bound of the remainder term Rm(Xm). By Assumption ??, for

each function m ↑ [M ] and 1 ↓ rm ↓ Rm, |gm,rm(xim) ↔ b↑
m,rmωm(xim)| = O(J↗ε/2

m ) which

bounds the (im, rm)-th entry of Rm(Xm). Therefore, a simple fact is

↗Rm(Xm)↗2F/Im = O
(
Rm · J↗ε

m

)
(1)

for all m ↑ [M ].

Initialization error. Without loss of generality, we only prove the upper bound of

↗G̃(0)
1 G̃(0)↑

1 ↔G1G↑
1 ↗F. Recall that G1 = !1(X1)B1 +R1(X1) where, by the definition of

!1(X1), we have !1(X1)↑”1 = 0. Let Ǧ1/
↘
I1 denotes the top-R1 left singular vectors

of !1(X1)B1. By Condition (1) and Davis-Kahan theorem (?) or spectral perturbation

formula (?),

↗Ǧ1Ǧ
↑
1 ↔G1G

↑
1 ↗F/I1 = O

(√
R1 · J↗ε/2

1

)
(2)

where we used the fact that ϑR1

(
!1(X1)B1/

↘
I1
)
≃ 1↔O(

↘
R1·J↗ε/2

1 ) ≃ 1/2 and ↗R1(X1)↗F/
↘
I1 =

O(
↘
R1 · J↗ε/2

1 ).

Recall that Ỹ = F→1 (P1G1)→2 (P2G2)→3 (P3G3)+E→1P1→2P2→3P3 and as a result

M1(Ỹ) = P1G1M1(F)
(
(P2G2)⇐ (P3G3)

)↑
+P1M1(E)(P2 ⇐P3)

↑

where we denote ⇐ the kronecker product. The projector matrix Pm ↑ R
Im→Im with

rank(Pm) = Jm. Denote the eigen-decomposition of Pm by Pm = UmU↑
m where U↑

mUm =

2



IJm . Therefore, we write

P1M1(E)(P2 ⇐P3) = U1

(
U↑

1 M1(E)(U2 ⇐U3)
)
(U2 ⇐U3)

↑.

In addition, we write

P1G1M1(F)
(
(P2G2)⇐ (P3G3)

)↑
= P1!1(X1)B1M1(F)

(
(P2G2)⇐ (P3G3)

)↑

+P1R1(X1)M1(F)
(
(P2G2)⇐ (P3G3)

)↑

where the left singular space of the first matrix is the same to column space of Ǧ1. Denote

the top-R1 left singular vectors of P1G1M1(F)
(
(P2G2)⇐ (P3G3)

)↑
by G̊1/

↘
I1. Again by

Davis-Kahan theorem (?) or spectral perturbation formula (?), we have

↗G̊1G̊
↑
1 ↔ Ǧ1Ǧ

↑
1 ↗F/I1 = O(ϖ0

√
R1 · J↗ε/2

1 ) (3)

where ϖ0 is F ’s condition number and we used the facts

ϑR1

(
P1!1(X1)B1M1(F)

(
(P2G2)⇐ (P3G3)

)↑) ≃ϱmin

√
I2I3 · ϑR1

(
!1(X1)B1

)

≃ ϱmin

√
I1I2I3/2

and
∥∥∥P1R1(X1)M1(F)

(
(P2G2)⇐ (P3G3)

)↑∥∥∥
F
=O

(
ϖ0ϱmin

√
I2I3 · ↗R1(X1)↗F

)

= O(ϖ0ϱmin

√
R1I1I2I3 · J↗ε/2

1 ).

For notational simplicity, we write M1(Ỹ) = A1 + Z1 where A1 = P1G1M1(F)
(
(P2G2)⇐

(P3G3)
)↑

and Z1 = P1M1(E)(P2⇐P3)↑. Then, G̊1/
↘
I1 are the top-R1 left singular vectors

of A1 and are also the top-R1 eigenvectors of A1A↑
1 . Since G̃(0)

1 /
↘
I1 are the top-R1 left

singular vectors of M1(Ỹ), they are also the top-R1 eigenvectors of M1(Ỹ)M↑
1 (Ỹ) whcih

can be written as M1(Ỹ)M↑
1 (Ỹ) = A1A↑

1 +A1Z↑
1 + Z1A↑

1 + Z1Z↑
1 . Observe that

Z1Z
↑
1 = U1

(
U↑

1 M1(E)(U2 ⇐U3)
)(
U↑

1 M1(E)(U2 ⇐U3)
)↑

U↑
1 .

3



Then, we can write

M1(Ỹ)M↑
1 (Ỹ) = A1A

↑
1 + J2J3P1 +A1Z

↑
1 + Z1A

↑
1 + Z1Z

↑
1 ↔ J2J3P1.

By definition, the column space of G̊1 is a subspace of the column space of P1, and

P
G̊1

A1A↑
1 PG̊1

= A1A↑
1 where P

G̊1
= G̊1G̊↑

1 /I1 denotes the orthogonal projection onto

the column space of G̊1.

We write

M1(Ỹ)M↑
1 (Ỹ) =

(
A1A1 + J2J3P1

)
︸ ︷︷ ︸

M

+(A1Z
↑
1 + Z1A

↑
1 ) + Z1Z

↑
1 ↔ J2J3P1. (4)

Clearly, the top-R1 left singular space of M is the column space of G̊1 and ϑR1(M) ↔

ϑR1+1(M) = ϑR1(A1A↑
1 ) ≃ ϱ2

min · I1I2I3.

The upper bounds on the spectral norm ↗A1Z↑
1 +Z1A↑

1 ↗ and ↗Z1Z↑
1 ↔ J2J3P1↗ are due

to the following lemma whose proof is postponed to Appendix E.

Lemma 1. Suppose that Assumption ?? holds. There exists an absolute constant C1 > 0

such that with probability at least 1↔ 2I↗2
1 ,

↗A1Z
↑
1 ↗ ↓ C4ϖ0ϱmin(I1I2I3)

1/2 ·
√
J1 log

2 I1.

By Lemma 1, the following bound holds with probability at least 1↔ 2I↗2
1

↗A1Z
↑
1 + Z1A

↑
1 ↗ ↓ C4ϖ0ϱmin(I1I2I3)

1/2 ·
√
J1 log

2 I1.

Observe that

Z1Z
↑
1 ↔ J2J3P1

=U1

((
U↑

1 M1(E)(U2 ⇐U3)
)(
U↑

1 M1(E)(U2 ⇐U3)
)↑ ↔ J2J3IJ1

)
U↑

1 .

Lemma 2. Suppose that Assumption ?? holds. There exist absolute constants C3, C4 > 0 so

4



that

P
(
↗Z1Z

↑
1 ↔ J2J3P1↗ ≃ C3

√
J1J2J3 log

4 I1 + C4J1 log
5/2 I1

)
↓ 5I↗2

1 .

By Lemma 2, with probability at least 1↔ 5I↗2
1 ,

∥∥Z1Z
↑
1 ↔ J2J3P1

∥∥ ↓ C3

√
J1J2J3 log

4 I1 + C4J1 log
5/2 I1.

We now continue from (4). By Davis-Kahan theorem (?) and Lemma 1 and 2, we get with

probability at least 1↔ 7I↗2
1 that

∥∥G̊1G̊
↑
1 ↔ G̃(0)

1 G̃(0)↑
1

∥∥
F
↓ C3

ϖ0

↘
R1J1 log

2 I1
ϱmin

↘
I1I2I3

+C4R
1/2
1

(J1J2J3)1/2 log
4 I1 + J1 log

5/2 I1
ϱ2
minI1I2I3

for some absolute constants C3, C4 > 0. Denote the above event by E1. Together with (2)

and (3), we get on event E1 that

↗G1G
↑
1 ↔G̃(0)

1 G̃(0)↑
1 ↗F/I1

↓C ↘
3

(
ϖ0

↘
R1J1 log

2 I1
ϱmin

↘
I1I2I3

+

√
R1J1(J1 ⇒ J2J3) log

4 I1
ϱ2
minI1I2I3

+ ϖ0

√
R1 · J↗ε/2

1


. (5)

In view of (5), the initialization G̃(0)
1 is close to the truth as long as

ϱmin

√
I1I2I3 ≃ C ↘

1

(
ϖ0

√
R1J1 log

2 I1 +
(
R1J1(J1 ⇒ J2J3)

)1/4
log2 I1

)

and J1 ⇑ ϖ2/ε
0 R1/ε

1 . The proof is completed by assuming ϖ0 = O(1) and J1 ⇓ J2 ⇓ J3.

Assuming warm initializations and iterates for G̃(t↗1)
m , we prove the contraction property for

G̃(t)
m .

IP-SVD iterations. Without loss of generality, we fix an integer value of t and prove

the contraction inequality (??) for m = 1. For notation simplicity, we denote

Errt = max
m=1,2,3

↗G̃(t)
m G̃(t)↑

m ↔GmG
↑
m↗F/Im.

By projected power iteration in Section ??, the scaled singular vectors G̃(t)
1 is obtained

5



by

G̃(t)
1 /

√
I1 = SVDR1

(
P1M1

(
Y →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

))

Recall Am = Gm + ”m for m = 1, 2, 3 and

Y = F →1 (G1 + ”1)→2 (G2 + ”2)→3 (G3 + ”3)︸ ︷︷ ︸
S

+E .

We then write

P1M1

(
Y →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

)

=P1M1

(
S →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

)
+P1M1

(
E →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

)
. (6)

By the fact P1”1 = 0, we obtain

P1M1

(
S →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

)
= P1G1M1(F)

(
(A↑

2 G̃
(t↗1)
2 )⇐ (A↑

3 G̃
(t↗1)
3 )

)
.

Observe that P1G1 = !(X1)B1 +P1R1(X1). By Condition (1), we get

ϑmin

(
P1G1/

√
I1
)
≃ ϑmin

(
!1(X1)B1/

√
I1
)
↔O(

√
R1 · J↗ε/2

1 ) ≃ 1↔O(
↘
R1 · J↗ε/2

1 ).

Recall that the column space of G̃(t↗1)
m is a subspace of !m(Xm) for all m = 1, 2, 3, implying

that A↑
mG̃

(t↗1)
m = G↑

mG̃
(t↗1)
m and as a result

ϑmin

(
A↑

mG̃
(t↗1)
m

)
= ϑmin

(
G↑

mG̃
(t↗1)
m

)
≃ Im


1↔ ↗G̃(t↗1)

m G̃(t↗1)↑
m ↔GmG↑

m↗/Im ≃
↘
2Im/2

where the last inequality is due to the fact ↗G̃(t↗1)
m G̃(t↗1)↑

m ↔ GmG↑
m↗/Im ↓ 1/2 which

holds as long as the conditions of Lemma ?? hold and initializations are warm in that

↗G̃(0)
m G̃(0)↑

m ↔GmG↑
m↗/Im ↓ 1/2 for all m ↑ [M ]. Therefore, we conclude that

ϑmin

(
P1M1

(
S →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

))
≃

↘
I1I2I3
3

· ϑR1

(
M1(F)

)
≃ ϱmin

↘
I1I2I3
3

.

6



We now bound the operator norm of P1M1

(
E →2 G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

)
. We write

P1M1

(
E→2G̃

(t↗1)↑
2 →3 G̃

(t↗1)↑
3

)
= P1M1(E →2 (G2Õ

(t↗1)
2 )↑ →3 (G3Õ

(t↗1)
3 )↑

)

+P1M1

(
E →2 (G2Õ

(t↗1)
2 )↑ →3 (G̃

(t↗1)
3 ↔G3Õ

(t↗1)
3 )↑

)

+P1M1

(
E →2 (G̃

(t↗1)
2 ↔G2Õ

(t↗1)
2 )↑ →3 G̃

(t↗1)↑
3

)
(7)

where Õ(t↗1)
2 = argminO↓OR2→R2 ↗G̃(t↗1)

2 ↔G2O↗F and Õ(t↗1)
3 = argminO↓OR3→R3 ↗G̃(t↗1)

3 ↔

G3O↗F. Clearly,
∥∥P1M1(E →2 (G2Õ

(t↗1)
2 )↑ →3 (G3Õ

(t↗1)
3 )↑

)∥∥ =↗P1M1(E)(G2 ⇐G3)↗

=↗!1(!
↑
1 !1)

↗1!↑
1 M1(E)(G2 ⇐G3)↗

where we abuse the notation and write !1 = !1(X1). Similarly, as the proof of Lemma ??,

denote U1 the eigenvectors of P1 so that U↑
1 U1 = IJ1 . Then,

∥∥P1M1(E →2 (G2Õ
(t↗1)
2 )↑ →3 (G3Õ

(t↗1)
3 )↑

)∥∥ = ↗U↑
1 M1(E)(G2 ⇐G3)↗

where the matrix U↑
1 M1(E)(G2 ⇐G3) has size J1 → (R2R3).

Lemma 3. Suppose that Assumption ?? holds. There exist absolute constants C5, C6 > 0 so

that

P

(
↗U↑

1 M1(E)(G2 ⇐G3)↗/
√
I2I3 ≃ C5

√
J1 log I1 + C6

√
R2R3 log

2 I1
)
↓ 2I↗2

1 .

By Lemma 3, we get that with probability at least 1↔ 2I↗2
1 that

∥∥P1M1(E →2 (G2Õ
(t↗1)
2 )↑ →3 (G3Õ

(t↗1)
3 )↑

)∥∥/
√
I2I3 = O

(√
J1 ⇒ (R2R3) log

2 I1
)
. (8)

We now bound the second and third terms on RHS of (7). Write

∥∥P1M1

(
E →2 (G2Õ

(t↗1)
2 )↑ →3 (G̃

(t↗1)
3 ↔G3Õ

(t↗1)
3 )↑

)∥∥

=
∥∥U↑

1 M1(E)
(
G2 ⇐ (G̃(t↗1)

3 ↔G3Õ
(t↗1)
3 )

)∥∥.

Recall G3 = !3B3+R3 where we again abused the notation and dropped their dependences

7



on X3. Therefore,
↗G̃(t↗1)

3 ↔G3Õ
(t↗1)
3 ↗F ↔ ↗G̃t↗1

3 ↔!3B3Õ
(t↗1)
3 ↗F

/
√
I3 = O(

√
R3 · J↗ε/2

3 ). (9)

We obtain

∥∥U↑
1 M1(E)

(
G2 ⇐ (G̃(t↗1)

3 ↔G3Õ
(t↗1)
3 )

)∥∥

↓
∥∥U↑

1 M1(E)
(
G2 ⇐ (G̃(t↗1)

3 ↔!3B3Õ
(t↗1)
3 )

)∥∥+
∥∥U↑

1 M1(E)
(
G2 ⇐R3

)∥∥.

Note that the column space of G̃(t↗1)
3 belongs to the column space of !3. Denote U3 the left

singular vectors of !3B3. Then,

∥∥U↑
1 M1(E)

(
G2 ⇐ (G̃(t↗1)

3 ↔!3B3Õ
(t↗1)
3 )

)∥∥

↓ ↗G̃(t↗1)
3 ↔!3B3Õ

(t↗1)
3 ↗F · sup

A↓RJ3→R3 ,≃A≃F⇐1

↗U↑
1 M1(E)(G2 ⇐U3A)↗

=O
(
↗G̃(t↗1)

3 ↔!3B3Õ
(t↗1)
3 ↗F

√
I2 ·

√
J1 + J3R3 +R2R3 log

3/2 I1
)
, (10)

where the last inequality holds with probability at least 1↔ 4I↗2
1 and is due to Lemma 4.

Lemma 4. Suppose that E has i.i.d entries satisfying Assumption ??. Define B(d1, d2) :=

{A ↑ R
d1→d2 , ↗A↗F ↓ 1}. There exist absolute constants C1 > 0 such that

P

(
sup

A↓B(J3,R3)

∥∥U↑
1 M1(E)(

G2↘
I2

⇐U3A)
∥∥ ≃ C1

√
J1 + J3R3 +R2R3 log

3/2 I1
)
↓ 4I↗2

1 (11)

and

P


sup

A↓B(J2,R2)
B↓B(J3,R3)

∥∥U↑
1 M1(E)(U2A⇐U3B)

∥∥ ≃ C2

√
J1 + J2R2 + J3R3 +R2R3 log

3/2 I1


↓ 4I↗2

1 .

(12)

Recall that U1,G2,R3 are deterministic matrices. Following the same treatment as in

the proof of Lemma 1, we get with probability at least 1↔ 2I↗2
1 ,

∥∥U↑
1 M1(E)

(
G2 ⇐R3

)∥∥ ↓ (R3I2I3)
1/2J↗ε/2

3 ·
(
C3

√
J1 log I1 + C4

√
R2R3 log

2 I1
)

(13)

8



for some absolute constants C3, C4 > 0.

Putting together (10) and (13), we get with probability at least 1↔ 6I↗2
1 that

∥∥U↑
1 M1(E)

(
G2 ⇐ (G̃(t↗1)

3 ↔G3Õ
(t↗1)
3 )

)∥∥

↓C5(Errt↗1 +
√
R3 · J↗ε/2

3 )
√
I2I3 ·

√
J1 + J3R3 +R2R3 log

3/2 I1. (14)

Similarly, we can show that with probability at least 1↔ 8I↗2
1 ,

↗P1M1

(
E→2(G̃

(t↗1)
2 ↔G2Õ

(t↗1)
2 )↑ →3 G̃

(t↗1)↑
3

)
↗

↓C6(Errt↗1 +
√

R2 · J↗ε/2
2 )

√
I2I3 ·

√
J1 + J3R3 +R2R3 log

3/2 I1, (15)

where we used the fact ↗G̃(t↗1)
3 ↗F ↓

↘
R3I3 and the fact that the column space of G̃(t↗1)

3 is

a subspace of the column space of U3.

Therefore, by (8), (14) and (15), we conclude that with probability at least 1 ↔ 16I↗2
1

that

∥∥P1M1(E)(G̃(t↗1)
2 ⇐ G̃(t↗1)

3 )
∥∥ ↓ C3

√
I2I3 ·

√
J1 +R2R3 log

2 I1

+ C6(Errt↗1 +
√

R2J
ε/2
2 +

√
R3J

↗ε/2
3 )

√
I2I3 ·

√
J1 + J3R3 +R2R3 log

3/2 I1.

Now, we continue from (6). Recall that we denote G̊1/
↘
I1 the top-R1 left singular vectors of

P1G1. As shown in the proof of initialization, we have ↗G̊1G̊↑
1 ↔G1G↑

1 ↗F/I1 ↓ 2
↘
R1J

↗ε/2
1 .

Applying Daivs-Kahan theorem to (6), we get with probability at least 1↔ 16I↗2
1 that

↗G̃(t)
1 G̃(t)↑

1 ↔ G̊1G̊
↑
1 ↗F/I1 ↓ C4

↘
I2I3 ·

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+ C5
(Errt↗1 +

↘
R2J

↗ε/2
2 +

↘
R3J

↗ε/2
3 )

↘
I2I3 ·

↘
J1R1 + J3R1R3 +R1R2R3 log

3/2 I1
ϱmin

↘
I1I2I3

for some absolute constants C4, C5 > 0.

Therefore, as long as ϱmin

↘
I1I2I3 ≃ C ↘

5

↘
J1R1 + J3R1R3 +R1R2R3 log

3/2 I1 for a large

enough absolute constant C ↘
5 > 0, we get with probability at least 1↔ 16I↗2

1 that

↗G̃(t)
1 G̃(t)↑

1 ↔G1G
↑
1 ↗F/I1

9



↓Errt↗1

2
+

2
↘
R1J

↗ε/2
1 +

↘
R2J

↗ε/2
2 +

↘
R3J

↗ε/2
3

2
+ C ↘

4

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

.

In the same fashion, we can prove similar bounds of ↗G̃(t)
m G̃(t)↑

m ↔GmG↑
m↗F for all m = 1, 2, 3.

Therefore, with probability at least 1↔ 48I↗2
1 ,

Errt ↓
Errt↗1

2
+ (

√
R1J

↗ε/2
1 +

√
R2J

↗ε/2
2 +

√
R3J

↗ε/2
3 ) + C ↘

4

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

,

(16)

which proves the first claim of Lemma ??. The same properties can be proved for all

iterations and all hold on the same event.

By the above contraction inequality in (16), after

tmax = O(log(ϱmin

√
I1I2I3/J1) + ς · log(J1) + 1)

iterations, we obtain

Errtmax = C ↘↘
4

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+
√

R1J
↗ε/2
1 +

√
R2J

↗ε/2
2 +

√
R3J

↗ε/2
3

which holds with probability at least 1 ↔ 48I↗2
1 . The proof is concluded by noting that

J1 ⇓ J2 ⇓ J3 and J1 ≃ J2 ≃ J3.

In order to prove Theorem ??, we begin with proving the following result.

Lemma 5. (Factor tensor) Suppose that conditions of Lemma ?? hold. Then, with proba-

bility at least 1↔ 49I↗2
1 that

↗F̃ ↔ F →1 Õ
↑
1 →2 Õ

↑
2 →3 Õ

↑
3 ↗F

↓C1

(ϖ0 ·
↘
J1R1 +R1R2R3 log

2 I1↘
I1I2I3

)
+ 2ϖ0ϱmin

√
R1J

↗ε/2
1 .

where Õm is an orthogonal matrix which realizes the minimium minO ↗G̃m ↔ GmO↗F and

C1 > 0 is an absolute constant.
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Proof of Lemma 5. Recall that F̃ = (I1I2I3)↗1 · Y →1 G̃↑
1 →2 G̃↑

2 →3 G̃↑
3 and so that

F̃ = (I1I2I3)
↗1 · F →1 (G̃

↑
1 G1)→2 (G̃

↑
2 G2)→3 (G̃

↑
3 G3) + (I1I2I3)

↗1 · E →1 G̃
↑
1 →2 G̃

↑
2 →3 G̃

↑
3

where we used the fact G̃↑
m”m = 0 since the column space of G̃m is a subspace of the column

space of !m(Xm). Recall that

G↑
m

(
G̃mG̃

↑
m ↔GmG

↑
m

)
Gm/I

2
m = G↑

mG̃m(G
↑
mG̃m)

↑/I2m ↔ IRm

whereG↑
mG̃m is an Rm→Rm matrix. Then, by Lemma ??, with probability at least 1↔48I↗2

1

that

∥∥G↑
mG̃m(G

↑
mG̃m)

↑/I2m ↔ IRm

∥∥
F
↓ C5

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+ 2
√
R1J

↗ε/2
1 .

It implies that for all m = 1, 2, 3, there exists an orthonormal matrix Õm ↑ O
Rm→Rm so that

↗G̃↑
mGm/Im ↔ Õ↑

m↗F = C5

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+ 2
√

R1J
↗ε/2
1 ,

which holds with the same probability. Therefore,

F̃ ↔ F →1 Õ
↑
1 →2 Õ

↑
2 →3Õ

↑
3 = (I1I2I3)

↗1 · E →1 G̃
↑
1 →2 G̃

↑
2 →3 G̃

↑
3

+F
(
→1 (G̃

↑
1 G1/I1)→2 (G̃

↑
2 G2/I2)→3 (G̃

↑
3 G3/I3)↔→1Õ

↑
1 →2 Õ

↑
2 →3 Õ

↑
3

)
.

(17)

Observe that

∥∥F →1 (G̃
↑
1 G1/I1 ↔ Õ↑

1 )→2 (G̃
↑
2 G2/I2)→3 (G̃

↑
3 G3/I3)

∥∥
F

↓
∥∥(G̃↑

1 G1/I1 ↔ Õ↑
1 )M1(F)

(
(G̃↑

2 G2/I2)⇐ (G̃↑
3 G3/I3)

)∥∥
F

↓ ↗M1(F)↗ · ↗G̃↑
1 G1/I1 ↔ Õ↑

1 ↗F

↓ C5
ϖ0 ·

↘
J1R1 +R1R2R3 log

2 I1↘
I1I2I3

+ 2ϖ0ϱmin

√
R1J

↗ε/2
1 .
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As a result, we can show with probability at least 1↔ 48I↗2
1 that

∥∥F
(
→1 (G̃

↑
1 G1/I1)→2 (G̃

↑
2 G2/I2)→3 (G̃

↑
3 G3/I3)↔→1Õ

↑
1 →2 Õ

↑
2 →3 Õ

↑
3

)∥∥

↓C ↘
5

ϖ0 ·
↘
J1R1 +R1R2R3 log

2 I1↘
I1I2I3

+ 6ϖ0ϱmin

√
R1J

↗ε/2
1 . (18)

Observe that the rank of M1

(
E →1 G̃↑

1 →2 G̃↑
2 →3 G̃↑

3

)
is bounded by R1. Similarly,

∥∥E →1 G̃
↑
1 →2 G̃

↑
2 →3 G̃

↑
3

∥∥
F
=

∥∥M1

(
E →1 G̃

↑
1 →2 G̃

↑
2 →3 G̃

↑
3

)∥∥
F

↓
√
R1 ·

∥∥M1

(
E →1 G̃

↑
1 →2 G̃

↑
2 →3 G̃

↑
3

)∥∥.

Lemma 6. Suppose that Assumption ?? holds and assume J1 ⇓ J2 ⇓ J3 and J1 ≃ R1 ≃

R2 ≃ R3. There exist absolute constants C7 > 0 so that,

P

(∥∥M1

(
E →1 G̃

↑
1 →2 G̃

↑
2 →3 G̃

↑
3

)∥∥/
√
I1I2I3 ≃ C7

√
J1R1 log

3/2 I1
)
↓ I↗2

1 .

By Lemma 6, with probability at least 1↔ I↗2
1 ,

∥∥M1

(
E →1 G̃

↑
1 →2 G̃

↑
2 →3 G̃

↑
3

)∥∥/
√
I1I2I3 ↓ C ↘

1

√
J1R1 log

3/2 I1. (19)

for some absolute constant C ↘
1 > 0.

Putting together (17), (18) and (19), we conclude that with probability at least 1↔49I↗2
1

that

↗F̃ ↔ F →1 Õ
↑
1 →2 Õ

↑
2 →3 Õ

↑
3 ↗F

↓C8
ϖ0 ·

↘
J1R1 +R1R2R3 log

2 I1↘
I1I2I3

+ 6ϖ0ϱmin

√
R1J

↗ε/2
1 ,

which proves Lemma 5.

Proof of Theorem ??. Let Om denote the left singular vectors of Mm(F̃) for all m ↑ [M ],

and D̃m denote the singular values of Mm(F̃). Similarly, denote Dm the singular values of

Mm(F). Lemma 5 implies, with probability at least 1↔ 49I↗2
1 , that

↗Dm ↔ D̃m↗ ↓ C8
ϖ0 ·

↘
J1R1 +R1R2R3 log

2 I1↘
I1I2I3

+ 6ϖ0ϱmin

√
R1J

↗ε/2
1
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and

↗Õ1M1(F̃)M1(F̃)↑Õ↑
1 ↔M1(F)M1(F)↑↗

=↗M1(F̃)M1(F̃)↑ ↔ Õ↑
1 M1(F)M1(F)↑Õ1↗.

Denote H̃1 = Õ1
O1 so that Õ1M1(F̃)M1(F̃)↑Õ↑

1 ↔ M1(F)M↑
1 (F) = H̃1D̃2

1H̃
↑
1 ↔ D2

1

where we used Assumption ??. Denote ωϑ = C8ϖ2
0ϱmin

↘
J1R1 +R1R2R3 log

2(I1)/
↘
I1I2I3 +

6ϖ2
0ϱ

2
min

↘
R1J

↗ε/2
1 . Then, by Lemma 5, we obtain with probability at least 1↔ 49I↗2

1 that

↗H̃1D̃
2
1H̃

↑
1 ↔D2

1↗F ↓ ωϑ. (20)

Note that for each j = 1, · · · , R1, we obtain ϑj(D2
1)↔ϑj+1(D2

1) ≃ ϱmin ·Egap(F). Under the

conditions of Theorem ??, it follows with probability at least 1↔ 49I↗2
1 that

min
1⇐j⇐R1

ϑj(D
2
1)↔ ϑj+1(D

2
1) ≃ C1ϖ

2
0

√
R1 · ωϑ

for a large enough constant C1 > 1 implying that the order of eigenvalues of D2
1 will be

maintained in view of (20). By applying the Davis-Kahan theorem to each isolated eigen-

vector of H̃1D̃2
1H̃1, we can conclude that ↗h̃jh̃↑

j ↔ eje↑j ↗ ↓ 1/(2ϖ2
0

↘
R1) which holds for all

j = 1, · · · , R1 where h̃j denotes the j-th column of H̃1 and ej denotes the j-th canonical ba-

sis vector. Indeed, it holds as long as the Egap(F) is large enough as stated in the conditions

of Theorem ??. It implies that there exists a s̃j ↑ {±1} so that ↗h̃j s̃j ↔ ej↗ ↓ 1/
√
2ϖ4

0R1

for each j. Denote S̃1 = diag(s̃1, · · · , s̃R1) so that

↗H̃1S̃1 ↔ IR1↗F ↓
( R1

j=1

↗h̃j s̃j ↔ ej↗2
)1/2

↓ 1/(
↘
2ϖ2

0).

Note that, on the same event, ↗H̃1D̃2
1H̃

↑
1 ↔ D̃2

1↗F ↓ ωϑ + ↗D̃2
1 ↔D2

1↗F ↓ 2ωϑ where the last

bound is due to Lemma 5. Since D̃1 is a diagonal matrix, ↗H̃1D̃2
1H̃

↑
1 ↔ S̃1D̃2

1S̃1↗F ↓ 2ωϑ.

Write

↗H̃1D̃
2
1H̃

↑
1 ↔ S̃1D̃

2
1S̃

↑
1 ↗F ≃ ↗(H̃1 ↔ S̃1)D̃

2
1S̃

↑
1 + S̃1D̃

2
1(H̃1 ↔ S̃1)

↑↗F

13



↔↗(H̃1 ↔ S̃1)D̃
2
1(H̃1 ↔ S̃1)

↑↗F ≃ 2↗H̃1 ↔ S̃1↗Fϑmin(D̃
2
1)↔O

(
↗H̃1 ↔ S̃1↗2Fϑmax(D̃

2
1)
)

≃ 2↗H̃1 ↔ S̃1↗Fϑmin(D̃
2
1)↔O

(
ϖ2
0↗H̃1 ↔ S̃1↗2Fϑmin(D̃

2
1)
)

where the last inequality holds with probability at least 1↔ 49I↗2
1 as long as ↗D1 ↔ D̃1↗ ↓

ϱmin/4 which is guaranteed by the lower bound on ϱmin. It implies that

↗H̃1D̃
2
1H̃

↑
1 ↔ S̃1D̃

2
1S̃

↑
1 ↗F ≃ (2↔

↘
2)↗H̃1 ↔ S̃1↗Fϑmin(D̃

2
1) ≃ ↗H̃1 ↔ S̃1↗Fϱ2

min/5.

Therefore, we conclude with probability at least 1↔ 49I↗2
1 that

↗H̃1 ↔ S̃1↗F ↓ 10ωϑ/ϱ
2
min ↓ C7

ϖ2
0

↘
JR1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+ C8ϖ
2
0

√
R1J

↗ε/2
1 .

As a result, G1 = G̃1
O1 and then with probability at least 1↔ 49I↗2

1 ,

↗G1 ↔G1S̃1↗F/
√
I1 ↓↗G1 ↔G1H̃1↗F/

√
I1 + ↗H̃1 ↔ S̃1↗F

=↗G1 ↔G1Õ1
O1↗F/

√
I1 + ↗H̃1 ↔ S̃1↗F

=↗G̃1 ↔G1Õ1↗F/
√
I1 + ↗H̃1 ↔ S̃1↗F

↓C7
ϖ2
0

↘
JR1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+ C8ϖ
2
0

√
R1J

↗ε/2
1

where the last inequality is due to that Õ1 realizes the minimum of minO ↗G̃1 ↔ G1O↗F.

Clearly, the bounds can be proved identically for all ↗Gm ↔GmSm↗F/
↘
Im.

At last, recall that F = F̃ →1
O↑

1 →2
O↑

2 →3
O↑

3 . We conclude that with probability at

least 1↔ 49I↗2
1 ,

↗ F ↔ F →1 S1 →2 S2 →3 S3↗F = ↗ F ↔ F →1 H̃
↑
1 →2 H̃

↑
2 →3 H̃

↑
3 ↗F +O(ϖ0ωϑ/ϱmin)

=↗F̃ →1
O↑

1 →2
O↑

2 →3
O↑

3 ↔ F →1 H̃
↑
1 →2 H̃

↑
2 →3 H̃

↑
3 ↗F +O(ϖ0ωϑ/ϱmin)

=↗F̃ ↔ F →1 (O1H̃
↑
1 )→2 (O2H̃

↑
2 )→3 (O3H̃

↑
3 )↗F +O(ϖ0ωϑ/ϱmin)

=↗F̃ ↔ F →1 Õ
↑
1 →2 Õ

↑
2 →3 Õ

↑
3 ↗F +O(ϖ0ωϑ/ϱmin) = O((ϖ0ωϑ/ϱmin)

=O
(ϖ3

0

↘
JR1 +R1R2R3 log

2 I1↘
I1I2I3

+ ϖ3
0ϱmin

√
R1J

↗ε/2
1

)
,
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which proves Theorem ??.

Proof of Theorem ??. Without loss of generality, we prove the bound for m = 1. Recall by

definition that

”1 = P⇒
1
A1 = P⇒

1 M1(Y →2 P2 →2 P3)M1( F →2
G2 →3

G3)
↑(M1( F)M↑

1 ( F)
)↗1

/(I2I3).

Since the column space of Gm is a subspace of the column space of Pm so that G↑
m”m = 0,

we can write

M1(Y →2 P2→3P3)M1( F →2
G2 →3

G3)
↑ = M1(Y)(P2 ⇐P3)(G2 ⇐ G3)M1( F)↑

= M1(Y)(G2 ⇐ G3)M1( F)↑

=(G1 + ”1)M1(F)
(
(G↑

2
G2)⇐ (G↑

3
G3)

)
M1( F)↑ +M1(E)(G2 ⇐ G3)M1( F)↑

and as a result

”1 =P⇒
1 ”1M1(F)

(
(G↑

2
G2)⇐ (G↑

3
G3)

)
M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

/(I2I3)

+P⇒
1 M1(E)(G2 ⇐ G3)M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

/(I2I3).

Under the conditions of Lemma ?? and by Theorem ??, we conclude with probability at

least 1 ↔ 49I↗2
1 that ϑmin

(
M1( F)

)
≃ ϱmin/2. Now, it su!ces to bound the spectral norm

P⇒
1 M1(E)(G2 ⇐ G3)M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

. Since the column spaces of G2 and G3

are the subspaces of column spaces of !2(X2) and !3(X3), respectively, we have

∥∥P⇒
1 M1(E)(G2 ⇐ G3)M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

/(I2I3)
∥∥

↓
∥∥M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1∥∥/(I2I3) · sup

A2↓B(J2,R2),A3↓B(J3,R3)
B↓B(R2R3,R1)

↗P⇒
1 M1(E)

(
(U2A2)⇐ (U3A3)

)
B↗

where Um are the left singular vectors of !m(Xm) and B(d1, d2) = {B ↑ R
d1→d2 : ↗B↗ ↓ 1}.

The following lemma is needed whose proof is reproducible by the proof of Lemma 6.

Lemma 7. Suppose that Assumption ?? holds and assume J1 ⇓ J2 ⇓ J3 and J1 ≃ R1 ≃
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R2 ≃ R3. There exist an absolute constant C9 > 0 so that with probability at least 1↔ I↗2
1 ,

sup
A2↓B(J2,R2),A3↓B(J3,R3)

B↓B(R2R3,R1)

↗P⇒
1 M1(E)

(
(U2A2)⇐(U3A3)

)
B↗ ↓ C9

√
I1 + J1R1 +R1R2R3 log

3/2 I1.

By Lemma 7, we get with probability at least 1↔ I↗2
1 that

∥∥∥P⇒
1 M1(E)(G2 ⇐ G3)M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

/(I2I3)
∥∥∥
F

↓ C ↘
9

√
I1R1 + J1R2

1 +R2
1R2R3 log

3/2 I1
ϱmin

↘
I2I3

where we used the fact
∥∥M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1∥∥ ↓ C ↘

1ϱ
↗1
min by Theorem ?? and condi-

tions of Lemma ??.

Since P⇒
1 ”1 = ”1, we get

P⇒
1 ”1M1(F)

(
(G↑

2
G2)⇐ (G↑

3
G3)

)
M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

/(I2I3)

=”1M1(F)
(
(G↑

2
G2)⇐ (G↑

3
G3)

)
M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

/(I2I3)

=”1M1(F)
(
S2 ⇐ S3

)
M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1

+O
(
ϖ0↗”1↗ · (↗G↑

2 G2/I2 ↔ S2↗F + ↗G↑
3 G3/I3 ↔ S3↗F)

)

where the last term is bounded in terms of Frobenius norm and S2,S3 are defined as in

Theorem ??. Meanwhile,

∥∥S↑
1 M1( F)↔M1(F)

(
S↑
2 ⇐ S↑

3

)∥∥
F
↓ ↗ F ↔ F →1 S1 →2 S2 →3 S3↗F.

Therefore, by Theorem ??, with probability at least 1↔ 49I↗2
1 that

∥∥∥”1M1(F)
(
S↑
2 ⇐ S↑

3

)
M1( F)↑

(
M1( F)M↑

1 ( F)
)↗1 ↔ ”1S

↑
1

∥∥∥
F

= O
(
ϱ↗1
min↗”1↗ · ↗ F ↔ F →1 S1 →2 S2 →3 S3↗F

)

= O
(
↗”1↗ ·

ϖ3
0

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

)
+O

(
↗”1↗ · ϖ3

0

√
R1J

↗ε/2
1

)
.
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Finally, we get with probability at least 1↔ 50I↗2
1 that

↗”1 ↔ ”1S
↑
1 ↗F

=O


↗”1↗ ·

(ϖ3
0

↘
J1R1 +R1R2R3 log

2 I1
ϱmin

↘
I1I2I3

+ ϖ3
0

√
R1J

↗ε/2
1

)
+O

(√R1I1 + J1R2
1 +R2

1R2R3 log
3/2 I1

ϱmin

↘
I2I3

)

which concludes the proof of Theorem ?? in view of Jm ↓ Im.

Appendix B Number of Basis Functions

Determination of the number of basis functions is an important task in non-parametric and

semi-parametric estimations. It is more challenging in the STEFA model. According to our

analysis in “E”ect of the number of fitting basis” in the simulation section, the interactions

between the true number of basis, the working number of basis, the signal-to-noise ratio,

and the relative mean squared errors is not straightforward. Specifically, Table ?? shows

that increasing the sieve order J does not always improve the performance and J = 16 does

not achieve the best performance among all choices of J , even though the data is simulated

with order 16.

To start a formal investigation of this challenging problem, we can first take the perspec-

tive of a regression problem:

Mm(Y) = !mBm + Em,

where !m is an ensemble of basis functions, Bm is the coe!cients and Em is the residual.

An potential data-driven way to determine the sieve degree is to construct an F-test based

on the statistics (↗P!mMm(Y)↗2F ↔ ↗P!↑
m
Mm(Y)↗2F )/↗P⇒

!m
Mm(Y)↗2F when comparing two

choices of sieve degrees (corresponding to #m and the reduced one #↘
m). However, strictly

speaking, the residual Em is not of multivariate Gaussian and the coe!cient matrix Bm is

restricted to a certain low rank structure due to the other modes in tensor Y . The proper

test for this sieve determination needs further investigation and is beyond the current main

streamline of this paper.

In the simulation and real data analysis sections, we choose the sieve degree J in an
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ad-hoc way in the simulation. For instance the degree used in polynomial basis and B-spline

basis are chosen to accommodate one’s expectation on the smoothness of the function. The

impact of such ad-hoc choices of sieve degree J was investigated in Table 3 in the simulation

section, where an obvious bias-variance trade-o” was observed. In real data analyses, we

choose the J that minimizes the relative mean squared errors.

Here, we present some additional empirical results of selecting the number of basis

through relative mean squared errors (ReMSE). In this simulation, we consider a three-

way tensor with fixed dimensions I1 = I2 = I3 = 100, whose signal part can be decomposed

to a Tucker decomposition with rank R = (3, 3, 3). We fix the signal-to-noise ratio φ = 1.5,

and simulate the parametric part of loading within the manifold space of Legendre function

of a two-dimensional Xm,m = 1, 2, 3. The magnitude of ”m is controlled by µ as in Section

5. We consider three di”erent magnitudes of ”m’s and four di”erent numbers of true basis J .

For each combination of (µ, J), we simulate for 100 times and report the average number of

selected basis in Table 1 for four di”erent methods, which minimize (a) in-sample ReMSEY ;

(b) in-sample ReMSES ; (c) out-of-sample ReMSEY ; and (d) out-of-sample ReMSES , re-

spectively. We note that the ReMSE with respect to signal ReMSES is only available in

simulation environment and the ReMSE with respect to observed tensors ReMSEY is more

practical in real data analysis.

Table 1 shows that selecting number of basis by minimizing in-sample ReMSE usually

leads to an over-estimation of J . However, selecting number of basis by minimizing out-of-

sample ReMSE usually produces more accurate results. Comparing the last two columns, we

notice that, as long as we use the out-of-sample ReMSE, it does not really matter whether we

use ReMSE with respect to observed noisy Y or the true signal S for all di”erent combinations

of magnitudes of ”m and number of true basis J . This observation provides empirical support

to using out-of-sample ReMSEY to select J in real applications where ReMSES can not be

calculated. Moreover, by comparing estimated J by minimizing out-of-sample ReMSE across

di”erent true (µ, J) combinations, we observe that out-of-sample J tends to give an under-

estimation of the true number of basis for the purpose of robustness when J is large.
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Truth Average J by minimizing In-Sample Average J by minimizing Out-of-Sample
µ J ReMSEY ReMSES ReMSEY ReMSES
0.1 2 3.97 3.31 2.00 2.00
0.1 4 8.00 6.52 4.00 4.00
0.1 8 16.00 13.70 8.02 8.02
0.1 16 32.00 28.32 11.38 11.38
0.3 2 3.97 3.76 2.00 2.00
0.3 4 7.99 7.62 4.00 4.00
0.3 8 16.00 15.60 7.81 7.81
0.3 16 32.00 31.60 8.35 8.34
0.5 2 3.99 3.96 2.00 2.00
0.5 4 8.00 7.90 4.00 4.00
0.5 8 15.99 15.93 6.79 6.78
0.5 16 32.00 31.86 6.88 6.88

Table 1: Average number of J of selected basis by the four methods over 100 repetitions.

Appendix C Kernel Smoothing with Tensor Factor Model

In this section, we derive the kernel smoothing formula (??) under the vanilla tensor factor

model. Under this setting, the relevant covariates X1 is still available for the 1-st mode

and we would like to predict a new tensor Ynew ↑ R
Inew
1 →I2→I3 with new covariates Xnew

1 ↑

R
Inew
1 →D1 . However, we do not use the STEFA model to incorporate X1 in the model.

Instead, we use an algorithm for solving noisy Tucker decomposition (??) and obtain an

estimator of the signal part S = F →1
A1 →2

A2 →3
A3. The informative covariates X1 and

Xnew
1 are used non-parametrically.

Recall that we defined the kernel weight matrix W ↑ R
Inew
1 →I1 with entry

wij =
Kh(dist(xnew

1,i· ,x1,j·))
I1

i=1 Kh(dist(xnew
1,i· ,x1,j·))

, i ↑ [Inew1 ] and j ↑ [I1].

where Kh(·) is the kernel function, dist(·, ·) is a pre-defined distance function such as the

Euclidean distance, and x1,i· is the i-th row of X1.

For each row of Xnew
1 , we will predict a tensor slice Ynew

i ↑ R
I2→I3 . Let ynew

i = vec(Ynew
i ),

Y ↭ M1(Y)↑ = [y1 · · ·yI1 ], consisting of the signal part S ↭ M1(S)↑ = [s1 · · · sI1 ] and the

noise part E ↭ M1(E)↑ = [e1 · · · eI1 ]. Define #y ↭ E

Y↑Y


and #new

i ↭ E

Y↑ynew

i


. The
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best linear predictor for ynew
i based on Y is

ynew
i = Y ·#↗1

y #new
i . (21)

With knowledge of covariates X1, it is possible to estimate #↗1
y and #new

i from X1 and xnew
i· .

However, in practice it involves inverting a I1 → I1 matrix #y which may be computational

costly when I1 is large. The computational burden can be relieved by taking advantage of

the Tucker low-rank structure.

To estimate #new
i , we note that #new

i = E

(I2I3)↗1Y↑snewi


where snewi is the signal part

of ynew
i . Thus, it can be estimated by #

new

i = (I2I3)↗1Y↑snewi . We use kernel predictors for

snewi , that is,
snewi =

I1
j=1sjKh(dist(xnew

1,i· ,x1,j·))
I1

i=1 Kh(dist(xnew
1,i· ,x1,j·))

=
I1

j=1

wijsj. (22)

With careful calculation, we have a simpler expression for ynew
i . First, we have snewi = Swi·

and

ynew
i = Y#

↗1

y
#

new

i = Y#
↗1

y ·Y↑Swi· = Y#
↗1

y Y↑Y A1
A↑

1 wi· = Y A1
A↑

1 w = Swi·. (23)

Equation (23) shows that, under the tensor factor model, we do not need to actually calculate

#
↗1

y to obtain the best linear predictor (21). Kernel smoothing formula (??) is obtained by

applying (23) to each i-th row of Xnew
1 and stacking the resulting tensor slices Ynew

i along

the first mode for i ↑ Inew1 .

Appendix D More Simulation Results

D.1 Inequal Dimensions

In this section, we consider the setting where tensor Y has di”erent dimensions, that is,

I1, I2, I3 are not equal. We fix R = 3, I1 = 100 but vary φ and I2, I3 ≃ I1. The ReMSE of

estimating the loading matrices Am and the tensor Y are reported in Table 2.

Although the dimensions for the three modes are artificially designed to be di”erent in

this simulation, no significant di”erence between ↼2(Am), m ↑ [3] is observed. The error
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in estimating the loading matrices of the three modes appears to be symmetric. With a

fixed signal-to-noise ratio coe!cient φ and a fixed Imin = I1 = 100, the performance of

both projected Tucker and vanilla Tucker decomposition is not sensitive to the other two

dimensions I2, I3.

(I1, I2, I3) R φ
IP-SVD HOOI

↼2(A1) ↼2(A2) ↼2(A3) ReMSEY ↼2(A1) ↼2(A2) ↼2(A3) ReMSEY
(100,100,200) 3 0.3 0.805

(0.260)
0.805
(0.242)

0.820
(0.253)

0.885
(0.283)

1.703
(0.014)

1.703
(0.016)

1.718
(0.007)

3.647
(0.782)

(100,100,400) 3 0.3 0.824
(0.227)

0.850
(0.219)

0.859
(0.234)

0.930
(0.284)

1.704
(0.012)

1.703
(0.015)

1.725
(0.004)

4.329
(0.958)

(100,200,200) 3 0.3 0.840
(0.223)

0.828
(0.213)

0.782
(0.208)

0.903
(0.264)

1.706
(0.014)

1.718
(0.006)

1.719
(0.006)

4.072
(0.802)

(100,200,400) 3 0.3 0.840
(0.222)

0.857
(0.239)

0.853
(0.221)

0.935
(0.259)

1.705
(0.011)

1.718
(0.005)

1.725
(0.003)

4.711
(0.910)

(100,100,200) 3 0.5 0.264
(0.073)

0.278
(0.076)

0.274
(0.067)

0.279
(0.071)

1.641
(0.172)

1.635
(0.177)

1.655
(0.167)

1.715
(0.348)

(100,100,400) 3 0.5 0.274
(0.065)

0.282
(0.068)

0.271
(0.071)

0.280
(0.060)

1.695
(0.048)

1.688
(0.047)

1.715
(0.039)

1.981
(0.288)

(100,200,200) 3 0.5 0.258
(0.061)

0.277
(0.062)

0.262
(0.068)

0.268
(0.063)

1.677
(0.095)

1.686
(0.117)

1.685
(0.124)

1.825
(0.323)

(100,200,400) 3 0.5 0.273
(0.078)

0.270
(0.069)

0.262
(0.068)

0.271
(0.066)

1.692
(0.074)

1.704
(0.071)

1.712
(0.068)

2.063
(0.373)

Table 2: Unbalanced tensor dimensions. The average spectral and Frobenius Schatten q-
sin$ loss (q = 2) for Am, m ↑ [3] and average Frobenius loss for Y under various settings.

D.2 Comparison to the MMC Linear Tensor Regression

In this section, we compare our approach (IP-SVD) to the MMC tensor regression method

of ? on a linear tensor model. The 100 → 100 → 100 observed tensor Y is generated in the

same way as in Section ?? with a core tensor of 1→ 1→ 1. That is we set I1 = I2 = I3 = 100

and R1 = R2 = R3 = 1. Covariates Xm,m = 1, 2, 3 of 100 → 1 are randomly sampled from

a uniform distribution on [0, 1] i.i.d.. The parametric loading matrix Gm is quadratic with

respect to Xm such that [Gm]i ⇔ 1 + [Xm]i + [Xm]2i . The non-parametric loading matrix

”m is added in a similar way to Section ??. In summary, the observed tensor is generated

according to
Y = F →1 A1 →2 A2 →A3 + E , (24)
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where

Am = Gm + µ”m,

Gm = Zm/↗Zm↗,

Zm = 1 +Xm +X2
m,

and E is a I1 → I2 → I3 tensor with i.i.d. standard Gaussian entries, F is a 1 → 1 → 1 (a

scalar) of value Iϑ and Xm has i.i.d. Uniform(0,1) entries. Again, we use φ to control the

signal-to-noise ratio and use µ to control the relative strength of non-parametric loading

parts.

Three models are used to fit Y . IP-SVD(NP) model denotes the IP-SVD approach that

we fit Y with correctly specified ranks and sieve orders and with the non-parametric (NP)

loading parts as in (24). IP-SVD(P) model is a similar model of IP-SVD(NP) except that

we ignore the non-parametirc part ” and only fits the parametric (P) part Am = Gm.

MMC-LTR model stands for the multiple-mode-covariate linear regression model from ?

where each Am is assumed to be linear in Xm (and therefore, misspecifies the model with

low sieve ranks). We report the relative MSE (ReMSE, averaged over 100 repetitions) of the

three methods for di”erent signal-to-noise ratios (varying φ) and for di”erent non-parametric

components (varying µ) in Table 3.

φ 2 1
µ 1 0.1 0 1 0.1 0

IP-SVD(NP) 0.004
(1.5e-4)

0.002
(6.7e-5)

0.002
(6.6e-5)

0.343
(0.019)

0.174
(0.007)

0.172
(0.007)

IP-SVD(P) 0.931
(0.002)

0.170
(0.001)

2.6e-4
(6.7e-5)

0.932
(0.002)

0.172
(0.001)

0.026
(0.007)

MMC-LTR 0.937
(0.008)

0.271
(0.112)

0.199
(0.138)

0.937
(0.008)

0.272
(0.112)

0.201
(0.138)

Table 3: Mean and standard deviation of the Relative MSE for the three approaches under
di”erent signal-to-noise ratios and di”erent strength of non-parametric parts in 100 repeti-
tions.

When the relative strength of the non-parametric loading ”m is strong (µ = 1), we have

IP-SVD(NP) > IP-SVD(P) > MMC-LTR, where > means “performs better than”, for both

22



settings of moderate and strong signal-to-noise ratio. When the relative strength of the non-

parametric loading ”m is weak (µ = 0.1) or non-existing (µ = 0), the IP-SVD still performs

better than MMC-LTR. The IP-SVD(NP) has a disadvantage relative to IP-SVD(P) under

this setting, especially when the model is fully parametric (µ = 0). However, when the

signal-to-noise ratio is strong φ = 2, IP-SVD(NP) still performs the best in face of the weak

relative strength of the non-parametric loading ”m (µ = 0.1).

We conclude at least for the specific setting with linear linkage function, nonlinear loading

factors and non-parametric loading parts, IP-SVD outperforms the tensor regression method

due to IP-SVD’s capability as a semiparametric model with sieve expansions. At the same

time, we acknowledge that the tensor regression method can handle more complicated linkage

functions such as logistic model and probit model. In general, the STEFA model as a

unsupervised method is a complement to the supervised MMC tensor regression model (?).

Appendix E Proofs of Technical Lemmas

Proof of Lemma 1. By the definitions of A1 and Z1, we write

A1Z
↑
1 = P1G1M1(F)

(
(P2G2)⇐ (P3G3)

)↑
(U2 ⇐U3)

(
(U2 ⇐U3)

↑M↑
1 (E)U1U

↑
1

)
(25)

where UmU↑
m = Pm, Um ↑ R

Im→Jm and U↑
mUm = IJm . It su!ces to prove the upper bound

of ↗B1(U2 ⇐ U3)↑M↑
1 (E)U1↗ where B1 = A1(U2 ⇐ U3) is an I1 → (J2J3) deterministic

matrix.

Denote E1 = M↑
1 (E)U1 ↑ R

(I2I3)→J1 . By Assumption ??, E1 = (e1,1, · · · , e1,I2I3)↑ has

i.i.d. rows and each row is a J1-dimensional centered sub-exponential random vector in that

sup≃v≃⇐1 P
(
|↖v, e1,j↙| ≃ t

)
↓ exp(↔Ct) for all j ↑ [I2I3] (26)

for any t > 1. Meanwhile, E(e1,je↑1,j) = IJ1 for all j ↑ [I2I3]. By (26), there exists an absolute
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constant C1 > 0 so that

P

(
max

j↓[I2I3],k↓[J1]

e1,j(k)
 ≃ C1 log(I2I3J1)

)
↓ 1

(I2I3J1)4
. (27)

Denote the above event by E0. We obtain maxj ↗e1,j↗ ↓ C1

↘
J1 log(I2I3J1) on E0. Now, we

denote ↽1 = C1

↘
J1 log(I2I3J1).

Denote {ũ23,j}I2I3j=1 the columns of (U2 ⇐U3)↑. We write

B1(U2 ⇐U3)
↑E1 =

I2I3

j=1

B1ũ23,je
↑
1,j

=
I2I3

j=1

B1ũ23,je
↑
1,j (↗e1,j↗ ↓ ↽1) +

I2I3

j=1

B1ũ23,je
↑
1,j (↗e1,j↗ > ↽1),

where the second term on the RHS is simply 0 on event E0. It su!ces to bound the first

term, which is a sum of independent random matrices. Write

∥∥∥
I2I3

j=1

B1ũ23,je
↑
1,j (↗e1,j↗ ↓ ↽1)

∥∥∥ ↓
∥∥∥

I2I3

j=1

B1ũ23,j

(
e↑1,j (↗e1,j↗ ↓ ↽1)↔ Ee↑1,j (↗e1,j↗ ↓ ↽1)

)∥∥∥

+
∥∥∥

I2I3

j=1

B1ũ23,jEe
↑
1,j (↗e1,j↗ ↓ ↽1)

∥∥∥. (28)

Since Ee1,j = 0 and ↗B1↗ ↓ ↗A1↗ ↓ ϖ0ϱmin

↘
I1I2I3, together with (27), we get

∥∥∥
I2I3

j=1

B1ũ23,jEe
↑
1,j (↗e1,j↗ ↓ ↽1)

∥∥∥ =
∥∥∥

I2I3

j=1

B1ũ23,jEe
↑
1,j (↗e1,j↗ > ↽1)

∥∥∥

↓↗B1↗ ·
I2I3

j=1

E↗e1,j↗ (↗e1,j↗ > ↽1) = I2I3↗B1↗ · E↗e1,1↗ (↗e1,1↗ > ↽1)

↓I2I3↗B1↗ · E1/2
(
↗e1,1↗2

)
· P1/2

(
(↗e1,1↗ > ↽1

)

↓I2I3ϖ0ϱmin

√
I1I2I3 · C2

√
J1 ·

1

(I2I3J1)2
↓ C2

ϖ0ϱmin

↘
I1I2I3

I2I3J1
.

Now it su!ces to prove the upper bound of first term in RHS of (28), which is the spectral
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norm of the sum of independent random matrices. By definition,

∥∥∥B1ũ23,j

(
e↑1,j (↗e1,j↗ ↓ ↽1)↔ Ee↑1,j (↗e1,j↗ ↓ ↽1)

)∥∥∥ ↓ 2↽1ϖ0ϱmin

√
I1I2I3, ∝j ↑ [I2I3]

and
∥∥∥

I2I3

j=1

EB1ũ23,je
↑
1,je1,jũ

↑
23,jB

↑
1 · (↗e1,j↗ ↓ ↽1)

∥∥∥

↓
∥∥∥

I2I3

j=1

EB1ũ23,je
↑
1,je1,jũ

↑
23,jB

↑
1

∥∥∥+
∥∥∥

I2I3

j=1

EB1ũ23,je
↑
1,je1,jũ

↑
23,jB

↑
1 · (↗e1,j↗ > ↽1)

∥∥∥

↓J1I1I2I3ϖ
2
0ϱ

2
min +

I2I3

j=1

↗ũ23,j↗2ϖ2
0ϱ

2
minI1I2I3 · E↗e1,j↗2 (↗e1,j↗ > ↽1)

↓J1ϖ
2
0ϱ

2
minI1I2I3 + J2J3ϖ

2
0ϱ

2
minI1I2I3 · C2J1 ·

1

(I2I3J1)2
↓ 2J1ϖ

2
0ϱ

2
minI1I2I3,

where the last inequality holds since Im ≃ Jm. Similarly, we have

∥∥∥
I2I3

j=1

Ee1,jũ
↑
23,jB

↑
1 B1ũ23,je

↑
1,j · (↗e1,j↗ ↓ ↽1)

∥∥∥

↓
∥∥∥

I2I3

j=1

Ee1,jũ
↑
23,jB

↑
1 B1ũ23,je

↑
1,j

∥∥∥+
∥∥∥

I2I3

j=1

Ee1,jũ
↑
23,jB

↑
1 B1ũ23,je

↑
1,j · (↗e1,j↗ > ↽1)

∥∥∥

↓↗B1↗2F +
∥∥∥

I2I3

j=1

Ee1,jũ
↑
23,jB

↑
1 B1ũ23,je

↑
1,j · (↗e1,j↗ > ↽1)

∥∥∥

↓R1ϖ
2
0ϱ

2
minI1I2I3 +

I2I3

j=1

ũ↑
23,jB

↑
1 B1ũ23,jE↖e1,1,v↙2 · (↗e1,1↗ > ↽1)


↓ 2R1ϖ

2
0ϱ

2
minI1I2I3,

where v is any fixed vector in R
J1 with unit norm.

Then, by matrix Bernstein inequality (?), with probability at least 1↔ I↗2
1 ,

∥∥∥
I1

j=1

B1

(
e1,j (↗e1,j↗ ↓ ↽1)↔ Ee1,j (↗e1,j↗ ↓ ↽1)

)
ũ↑
j

∥∥∥

↓ C1ϖ0ϱmin(I1I2I3)
1/2

(√
J1 log I1 + ↽1 log I1

)
,

where we assumed Rm ↓ Jm. Since ↽1 ⇓
↘
J1 log(I1) and I1 > J1, we get with probability
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at least 1↔ 2I↗2
1 that

∥∥B1(U2 ⇐U3)
↑E1U1U

↑
1

∥∥ ↓ C3ϖ0ϱmin(I1I2I3)
1/2 ·

√
J1 log

2 I1

for some absolute constant C3 > 0.

Therefore, by (25), we get with probability at least 1↔ 2I↗2
1 that

↗A1Z
↑
1 ↗ ↓ C4ϖ0ϱmin(I1I2I3)

1/2 ·
√
J1 log

2 I1

for some absolute constant C4 > 0, which proves Lemma 1.

Proof of Lemma 2. Similarly as the proof of Lemma 1, we denote E2 = M1(E)(U2⇐U3) the

I1 → (J2J3) matrix with independent rows
(
e↑2,i

)I1
i=1

. Here, e2,i is a sub-exponential random

vector with Ee2,ie↑2,i = IJ2J3 and Ee2,i = 0.

Similarly, we denote {ũi}I1i=1 the columns of U↑
1 . Then, we write

U↑
1 M1(E)(U2 ⇐U3) =

I1

i=1

ũie
↑
2,i

and as a result

(
U↑

1 M1(E)(U2 ⇐U3)
)(
U↑

1 M1(E)(U2 ⇐U3)
)↑ ↔ J2J3IJ1

=
( I1

i=1

ũie
↑
2,i

)( I1

i=1

ũie
↑
2,i

)↑
↔ J2J3IJ1

=
( I1

i=1

ũie
↑
2,ie2,iũ

↑
i ↔ J2J3IJ1

)
+



1⇐i1 ↔=i2⇐I1

ũi1e
↑
2,i1e2,i2ũ

↑
i2 . (29)

Observe that E
I1

i=1 ũie↑2,ie2,iũ
↑
i = J2J3IJ1 . Note that

I1

i=1

ũie
↑
2,ie2,iũ

↑
i ↔ J2J3IJ1 =

I1

i=1

↗e2,i↗2ũiũ
↑
i ↔ J2J3IJ1 .

Similarly as proof of Lemma 1, denote ↽1 = C1

↘
J2J3 log I1 so that P(maxi ↗e2,i↗ ≃ ↽1) ↓
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(I1J2J3)↗3. Following the same treatment there, we can show that

P

(∥∥∥
I1

i=1

ũie
↑
2,ie2,iũ

↑
i ↔ J2J3IJ1

∥∥∥ ≃ (J2J3)
1/2

(
C2

√
J1 log I1 + C3 log

2 I1
))

↓ I↗2
1 (30)

with C2, C3 > 0 being absolute constants, where we used the facts (needed in matrix Bern-

stein inequality), with e1 being the first column of M1(E)↑,
∥∥∥

I1

i=1

E
(
↗e2,i↗2 ↔ J2J3

)2↗ũi↗2ũiũ
↑
i

∥∥∥ = E
(
↗e2,1↗2 ↔ J2J3

)2∥∥∥
I1

i=1

↗ũi↗2ũiũ
↑
i

∥∥∥

↓E
(
↗e2,1↗2 ↔ J2J3

)2
= E↗e2,1↗4 ↔ (J2J3)

2 U23=U2⇑U3= E
(
e↑1 U23U

↑
23e1

)2 ↔ (J2J3)
2

U23=(u23,j)
J2J3
j=1

= E

( J2J3

j=1

↖e1,u23,j↙2
)2

↔ (J2J3)
2

=
J2J3

j=1

E↖e1,u23,j↙4 +


1⇐j ↔=j↑⇐J2J3

E↖e1,u23,j↙2↖e1,u23,j↑↙2 ↔ (J2J3)
2

=
J2J3

j=1

E↖e1,u23,j↙4 +


1⇐j ↔=j↑⇐J2J3

↗u23,j↗2↗u23,j↑↗2 ↔ (J2J3)
2

=
J2J3

j=1

(
E↖e1,u23,j↙4 ↔ ↗u23,j↗4

)
+ ↗U23↗2F↗U23↗2F ↔ (J2J3)

2

=
J2J3

j=1

(
E↖e1,u23,j↙4 ↔ ↗u23,j↗4

)
= O(J2J3).

We now deal with the second term in RHS of (29). Observe that

g(E2) =


1⇐i1 ↔=i2⇐I1

ũi1ũ
↑
i2↖e2,i1 , e2,i2↙

is a generalized U-statistic. Let {ẽ2,i}I1i=1 be an independent copy of {e2,i}I1i=1. By the tail

probability of decoupling of U-statistics ((?, Theorem 3.4.1)), for all t > 0,

P

(∥∥∥


1⇐i1 ↔=i2⇐I1

ũi1ũ
↑
i2↖e2,i1 , e2,i2↙

∥∥∥ ≃ t
)
↓ C1 · P

(∥∥∥


1⇐i1 ↔=i2⇐I1

ũi1ũ
↑
i2↖e2,i1 , ẽ2,i2↙

∥∥∥ ≃ C2t
)

(31)

27



for some absolute constants C1, C2 > 0. Clearly,

∥∥∥


1⇐i1 ↔=i2⇐I1

ũi1ũ
↑
i2↖e2,i1 , ẽ2,i2↙

∥∥∥ ↓
∥∥(U↑

1 E2

)(
U↑

1 Ẽ2

)↑∥∥+
∥∥∥

I1

i=1

ũiũ
↑
i ↖e2,i, ẽ2,i↙

∥∥∥. (32)

By a similar treatment as in the proof of Lemma 1, we get

P
(
↗U↑

1 E2↗ ≃ C3

√
J1 log I1 + C4

√
J2J3 log

2 I1
)
↓ I↗2

1 .

Denote E1 the above event. To get a sharp upper bound for ↗(U↑
1 E2)(U↑

1 Ẽ2)↑↗, we fix E2

and recall the definition U↑
1 E2 = U↑

1 M1(E)(U2⇐U3). Define E1 = U↑
1 M1(E) ↑ R

J1→(I2I3),

which has i.i.d. columns {e1,i}I2I3i=1 . Denote {ũ↑
23,i}I2I3i=1 the rows of U2 ⇐U3. Then, we write

(U↑
1 E2)(U

↑
1 Ẽ2)

↑ =
I2I3

i=1

e1,iũ
↑
23,i(U

↑
1 Ẽ2)

↑.

Similarly by the treatment of the proof of Lemma 1, conditioned on Ẽ2, we have

P
(
↗(U↑

1 E2)(U
↑
1 Ẽ2)

↑↗ ≃ ↗U↑
1 Ẽ2↗ ·

(
C3

√
J1 log I1 + C4

√
J1 log

2 I1
)Ẽ2

)
↓ I↗2

1 .

Together with the event E1, we conclude that with probability at least 1↔ 2I↗2
1 ,

↗(U↑
1 E2)(U

↑
1 Ẽ2)

↑↗ ↓ C ↘
3J1 log

5/2 I1 + C ↘
4

√
J1J2J3 log

4 I1 (33)

for some absolute constants C ↘
3, C

↘
4 > 0.

For the second term in (32), we still apply the truncation treatment as in the proof

of Lemma 1. In this case, note that there exists an event E2 with P(E2) ≃ 1 ↔ I↗2
1

such that maxi↓[I1] ↗ẽ2,i↗ ↓ C0

↘
J2J3 log I1. Conditioned on ẽ2,i, we have P(|↖e2,i, ẽ2,i↙| ≃

C ↘
1↗ẽ2,i↗ log I1) ↓ I↗4

1 for some absolute constant C ↘
1 > 0. By a similar proof, we can obtain

P

(∥∥∥
I1

i=1

ũiũ
↑
i ↖e2,i, ẽ2,i↙

∥∥∥ ≃ C3

√
J2J3 log I1 + C4

√
J2J3 log

3 I1
)
↓ 2I↗2

1 . (34)

Putting (34), (33), (32), (31) together, we get

P

(∥∥∥


1⇐i1 ↔=i2⇐I1

ũi1ũ
↑
i2↖e2,i1 , e2,i2↙

∥∥∥ ≃ C ↘
3J1 log

5/2 I1 + C ↘
4

√
J1J2J3 log

4 I1
)
↓ 4I↗2

1 .
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Then, together with (30) and (29), we get with probability at least 1↔ 5I↗2
1 that

↗Z1Z
↑
1 ↔ J2J3P1↗ ↓ C3

√
J1J2J3 log

4 I1 + C4J1 log
5/2 I1,

which proves Lemma 2.

Proof of Lemma 3. The strategy is similar to that in the proof of Lemma 1. Denote E1 =

M1(E)(G2⇐G3)/
↘
I2I3 the I1→ (R2R3) random matrices with i.i.d rows {e↑1,i}I1i=1 satisfying

Ee1,i = 0 and Ee1,ie↑1,i = IR2R3 . Then,

U↑
1 M1(E)(G2 ⇐G3) =

√
I2I3U

↑
1 E1 =

√
I2I3 ·

I1

i=1

ũie
↑
1,i,

where {ũ↑
i }I1i=1 denotes the rows of U1. By a similar treatment, we have

P

(
max
1⇐i⇐I1

↗e1,i↗2 ≃ C1R2R3 log
2 I1

)
↓ I↗4

1 .

Denote the above event by E0. Define ↽1 = C ↘
1

↘
R2R3 log I1 so that P(maxi ↗e1,i↗ ≃ ↽1) ↓

I↗4
1 . Then, we write

U↑
1 M1(E)(G2 ⇐G3) =

√
I2I3 ·

I1

i=1

ũie
↑
1,i (↗e1,i↗ ↓ ↽1) +

√
I2I3 ·

I1

i=1

ũie
↑
1,i (↗e1,i↗ > ↽1).

(35)

The second term in RHS of (35) is simply 0 on event E0. It su!ces to investigate the first

term on RHS of (35). We will apply the matrix Bernstein inequality as in the proof of

Lemma 1. Indeed, we can show that

P

∥∥∥
I1

i=1

ũie
↑
1,i (↗e1,i↗ ↓ ↽1)

∥∥∥ ≃ C1

√
J1 log I1 + C2

√
R2R3 log

2 I1


↓ I↗2

1

for some absolute constants C1, C2 > 0. Since the proof is identical to the proof of Lemma 1,
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we skip it here.

Proof of Lemma 4. We only prove (11) since the proof of (12) is similar. We begin with a

standard discretization step, see (?, Lemma 5). There exists a subset D1/3 ′ B(J3, R3) such

that log Card(D1/3) ↓ c1J3R3 for some absolute constant c1 > 0 and for any B ↑ B(J3, R3),

min
D↓D1/3

↗B↔D↗F ↓ 1/3.

It is easy to show that

sup
A↓B(J3,R3)

∥∥U↑
1 M1(E)(G2 ⇐U3A)

∥∥/
√
I2 ↓

3

2
· max
D↓D1/3

∥∥U↑
1 M1(E)(G2 ⇐U3D)

∥∥/
√
I2.

(36)

It su!ces to prove the upper bound in RHS of (36). Under Assumption ??, there exists an

event E0 with P(E0) ≃ 1↔ I↗5
1 in which

max
ω↓[I1]→[I2]→[I3]

|eω| ↓ C0 log I1

for some absolute constant C0 > 0. Denote ↽0 = C0 log I1 and ↗E↗⇓ = maxω |eω|. We write

max
D↓D1/3

∥∥U↑
1 M1(E)(G2 ⇐U3D)

∥∥/
√

I2 ↓ max
D↓D1/3

∥∥U↑
1 M1(E)(G2 ⇐U3D) (↗E↗⇓ ↓ ↽0)

∥∥/
√
I2

+ max
D↓D1/3

∥∥U↑
1 M1(E)(G2 ⇐U3D) (↗E↗⇓ > ↽0)

∥∥/
√
I2. (37)

Conditioned on event E0, the second term in RHS of (37) is simply 0. It su!ces to prove

the upper bound of first term in RHS of (37). Write

max
D↓D1/3

∥∥U↑
1 M1(E)(G2 ⇐U3D) (↗E↗⇓ ↓ ↽0)

∥∥/
√
I2

↓ max
D↓D1/3

∥∥U↑
1 E


M1(E) (↗E↗⇓ ↓ ↽0)


(G2 ⇐U3D)

∥∥/
√
I2

+ max
D↓D1/3

∥∥U↑
1

[
M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)

]
(G2 ⇐U3D)

∥∥/
√
I2. (38)
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To upper bound the first term in RHS of (38), note that ∝ε ↑ [I1]→ [I2]→ [I3],

Eeω (|eω| ↓ ↽0)
 =

Eeω (|eω| > ↽0)
 Cauchy-Scwharz

↓ P
1/2(|eω| > ↽0).

Then, the first term in RHS of (38) is bounded as

max
D↓D1/3

∥∥U↑
1 E


M1(E) (↗E↗⇓ ↓ ↽0)


(G2 ⇐U3D)

∥∥/
√

I2

↓↗EM1(E) (↗E↗⇓ ↓ ↽0)↗F =






ω↓[I1]→[I2]→[I3]

P(|eω| > ↽0)




1/2

↓ (I1I2I3I
↗5
1 )1/2 = O(I↗1

1 ).

(39)

We now continue the upper bound the second term in RHS of (38). Similarly, let R1/3(J1)

andR1/3(R2R3) the 1/3-net ofB(J1, 1) andB(R2R3, 1), respectively. Then, given any vector

u ↑ B(J1, 1) and w ↑ B(R2R3, 1), we have

min
v↓R1/3(J1)

↗u↔ v↗ ↓ 1/3 and min
v↓R1/3(R2R3)

↗v ↔w↗ ↓ 1/3

where ↗ · ↗ represents ↼2-norm for vectors. Meanwhile, log Card(R1/3(J1)) ↓ c1J1 and

log Card(R1/3(R2R3)) ↓ c2R2R3 for some absolute constants c1, c2 > 0. Then,

max
D↓D1/3

∥∥U↑
1

[
M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)

]
(G2 ⇐U3D)

∥∥/
√
I2

↓9

2
max

D↓D1/3

max
u↓R1/3(J1)

w↓R1/3(R2R3)

u↑U↑
1

[
M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)

]
(G2 ⇐U3D)w/

√
I2.

Now, we fix u,w and D, and prove a concentration inequality for the above RHS, then we

finish the proof by a union bound. Denote ũ = U1u ↑ R
I1 and ṽ = (G2 ⇐U3D)w/

↘
I2 ↑

R
I2I3 . Clearly, we have max


↗ũ↗, ↗ṽ↗


↓ 1. Now, we write

ũ↑
[
M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)

]
ṽ

=


ω=(ω1,ω2,ω3)↓[I1]→[I2]→[I3]

ũ(ε1)ṽ(ε2ε3)

eω (|eω| ↓ ↽0)↔ Eeω (|eω| ↓ ↽0)


, (40)
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which is a sum of independent centered random variables. Observe that

ũ(ε1)ṽ(ε2ε3)

eω (|eω| ↓ ↽0)↔ Eeω (|eω| ↓ ↽0)

 ↓ 2↽0|ũ(ε1)||ṽ(ε2ε3)|, ∝ε

implying that each term in RHS of (40) is a bounded random variable. By applying Hoef-

fiding’s inequality (?) to (40), we get

P

(ũ↑M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)

ṽ
 ≃ t

)
↓2 exp

( ↔2t2

4↽20


ω ũ(ε1)2ṽ(ε2ε3)2

)

↓2 exp(↔t2/(2↽20)).

Since the cardinality of the product set ofD1/3,R1/3(J1),R1/3(R2R3) is bounded by 3C
↑
0(J3R3+J1+R2R3)

for some absolute constant C ↘
0, we apply a union bound and get

P

(
max

D↓D1/3

max
u↓R1/3(J1)

w↓R1/3(R2R3)

u↑U↑
1


M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)


(
G2↘
I2

⇐U3D)w
 ≃ t

)

↓2 exp


↔ t2

2↽20
+ C1(J3R3 + J1 +R2R3)


t=2

↘
C1(J1+J3R3+R2R3)ϖ0 log1/2 I1

↓ 2I↗2
1

implying that with probability at least 1↔ 2I↗2
1 ,

max
D↓D1/3

∥∥U↑
1


M1(E) (↗E↗⇓ ↓ ↽0)↔ EM1(E) (↗E↗⇓ ↓ ↽0)


(G2 ⇐U3D)

∥∥/
√
I2

↓ C1

√
J1 + J3R3 +R2R3 log

3/2 I1. (41)

Putting together (41), (39), (38), (37) and (36), we conclude that with probability at least

1↔ 4I↗2
1 ,

sup
A↓B(J3,R3)

∥∥U↑
1 M1(E)(G2 ⇐U3A)

∥∥/
√
I2 ↓ C3

√
J1 + J3R3 +R2R3 log

3/2 I1

for some absolute constant C3 > 0. This proves (11) of Lemma 4.

Proof of Lemma 6. Recall by definition that G̃↑
mG̃/Im = IRm . Moreover, the column space
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of G̃m is a subspace of column space of !m(Xm). Denote Um ↑ R
Im→Jm the left singu-

lar vectors of !m(Xm). Then, there exists a B̃m ↑ R
Jm→Rm so that G̃m = UmB̃m and

B̃↑
mB̃m/Im = IRm where B̃m is dependent with E while Um is independent with E . Denote

G(d1, d2) := {B ↑ R
d1→d2 ,B↑B = Id2}. Then,

∥∥M1

(
E →1 G̃↑

1 →2 G̃↑
2 →3 G̃↑

3

)∥∥
↘
I1I2I3

↓ sup
B̃m↓G(Jm,Rm)

∥∥M1

(
E→1(U1B̃1)

↑→2(U2B̃2)
↑→3(U3B̃3)

↑)∥∥.

By choosing 1/5-nets of G(J1, R1),G(J2, R2) and G(J3, R3) (e.g., by the covering number of

Grassmannians in ?), respectively, we can reproduce the proof of Lemma 4 and show that

with probability at least 1↔ I↗2
1 ,

∥∥M1

(
E →1 G̃

↑
1 →2 G̃

↑
2 →3 G̃

↑
3

)∥∥ ↓ C1

√
J1R1 + J2R2 + J3R3 +R1 +R2R3 log

3/2 I1

for some absolute constant C1 > 0. Since J1 ⇓ J2 ⇓ J3 and R1 ≃ R2 ≃ R3, we can simplify

the upper bound to C ↘
1

↘
J1R1 log

3/2 I1 and finish the proof of Lemma 6.

Appendix F More real data applications

F.1 Human Brain Connection Data

As an additional illustration of using the STEFA and IP-SVD for explanatory data analysis,

we consider partitioning the brain connectivity according to the 136 → 4 covariate-relevant

loading matrix !3(X)B3. As mentioned in the main text, we choose !3(X) generated by

polynomial basis of order 1, which is a similar linear setting as that in ? with identity

link function. Each column of !3(X)B3 corresponds to one of the four directions with

largest variance among individual features in X. The meaning of each latent direction can

be inferred from B3. Figure 1 presents the heat map of B3, showing that the four factors

weight mostly on the four columns of !3(X), namely, all-ones vector, female variable, and

Age 22-25 variable and 31+ variable, respectively. Then each factor is interpreted as the
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e”ects associated with global average, female, Age 22-25 variable and 31+.

Figure 1: Heat map of the coe!cient B3 in the covariate-relevant loading with polynomial
basis of order one.

We obtained a 68 → 68 → 4 connectivity tensor by projecting the original connectivity

tensor on the column space of !3(X)B3. As a result, the four slices along the third mode

corresponds to the connectivity matrix for each of the global average, female, Age 22-25

variable and 31+ e”ects. We divide the 68 regions of the brain into two clusters based on

the connectivity matrix for each of the e”ects. The clustering results are plotted in Figure

2. The connection within the same cluster is stronger than that between clusters. Some

connectivity patterns can be observed. For example, the global connection exhibits clear left

and right spatial separation and the age 22 - 25 group shows additional inter-hemispheric

connectivity. While such explanatory analysis can provide some interesting observation, more

rigorous methods, such as statistical testing procedures, need to be developed to support

any scientific claim. These are important directions for future statistics researches.
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(a) Global e!ect (b) Female e!ect

(c) Age 22-25 (d) Age 31+

Figure 2: Partition of brain regions for each latent dimension corresponding to the covariate-
relevant loading.
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