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Abstract

This paper presents a fast high-order method for the solution of two-dimensional problems of scatter-
ing by penetrable inhomogeneous media, with application to high-frequency configurations containing
(possibly) discontinuous refractivities. The method relies on a hybrid direct/iterative combination of
1) A differential volumetric formulation (which is based on the use of appropriate Chebyshev differen-
tiation matrices enacting the Laplace operator) and, 2) A second-kind boundary integral formulation
(which, once again, utilizes Chebyshev discretization, but, in this case, in the boundary-integral con-
text). The approach enjoys low dispersion and high-order accuracy for smooth refractivities, as well as
second-order accuracy (while maintaining low dispersion) in the discontinuous refractivity case. The so-
lution approach proceeds by application of Impedance-to-Impedance (ItI) maps to couple the volumetric
and boundary discretizations. The volumetric linear algebra solutions are obtained by means of a multi-
frontal solver, and the coupling with the boundary integral formulation is achieved via an application of
the iterative linear-algebra solver GMRES. In particular, the existence and uniqueness theory presented
in the present paper provides an affirmative answer to an open question concerning the existence of a
uniquely solvable second-kind ItI-based formulation for the overall scattering problem under considera-
tion. Relying on a modestly-demanding scatterer-dependent precomputation stage (requiring in practice
a computing cost of the order of O(Nα) operations, with α ≈ 1.07, for an N -point discretization and
for the relevant Chebyshev accuracy orders q used), together with fast (O(N)-cost) single-core runs for
each incident field considered, the proposed algorithm can effectively solve scattering problems for large
and complex objects possibly containing discontinuities and strong refractivity contrasts.

1 Introduction

This paper considers the problem of evaluation of wave scattering by penetrable inhomogeneous media
in two dimensions. This is a problem of fundamental importance in a wide range of applications, in-
cluding underwater acoustics, biological and medical imaging, seismology and geophysics, etc. In all of
these applications, it is highly desirable to utilize efficient and accurate numerical methods which can deal
with arbitrary scattering geometries and (often discontinuous) refractive index distributions, even in the
high-frequency regime. As is well known [27, 47, 49], this problem presents a number of challenges, as it
requires use of large numbers of discretization points and, for iterative solvers, increasingly large numbers
of iterations as the frequencies and/or refractive-index values increase. This paper presents a hybrid it-
erative/direct linear algebra formulation for this problem, which, like the approach [34, 35], combines a
volumetric differential formulation in a bounded region, and a surface boundary integral equation that
provides the coupling to the complementary unbounded exterior domain. Unlike the previous volumet-
ric/boundary formulation [34,35], which tackles the volumetric problem via a finite-element discretization,
further, the method proposed here utilizes (i) Polynomial approximation patches of accuracy of finite order
q (with, e.g., q = 10, 20, 40); (ii) A high-order boundary integral formulation, as well as, both, (iii) A mul-
tifrontal direct linear solver (the Intel MKL implementation of the multifrontal solver Pardiso [12,43,44]);
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and (iv) The iterative linear solver GMRES. Leveraging a new version of the smoothing technique [31],
finally, the proposed algorithm yields second-order convergence even for discontinuous refractivities. As
a result of these innovations, the proposed algorithm can be quite effective: after a modestly-demanding
precomputation stage, requiring a computing cost that grows nearly linearly with the number N of degrees
of freedom used (Figure 4a demonstrates a growth of the order of ≈ O(Nα) with α = 1.07), and at a cost
per GMRES iteration that grows essentially linearly with N , the proposed method can evaluate, with a
favorable number of iterations, scattering by configurations including large and complex objects as well as
strong refractivity contrasts and discontinuities—with high accuracy and in fast single-core runs. A variety
of numerical experiments have shown (cf. Figure 4 and its caption) that, as may be expected in view of
the algebraic character of the precomputation and iteration stages, for each order q and each discretization
size N , the associated computing times are essentially constant asymptotically as the frequency κ grows.

Figure 1: Left:: Scattering by an inhomogeneous region D = {x ∈ R2|n(x) 6= 1}. An incident wave ui satisfying (1)
impinges upon the inhomogeneity D, and thereby the scattered field us (satisfying (3)) results. Right: The unique
solution of the problem (1)-(3), i.e., the total wave u, which is equal to the sum of incident wave ui and scattered
wave us, is computed in a computational domain Ω (the square region, enclosed by dotted black lines ) containing
D, by solving an equivalent formulation (15)-(17) in Ω.

The problem we consider concerns scattering of an incident time-harmonic acoustic wave ui by a
bounded two-dimensional inhomogeneity D = {x : n(x) 6= 1} ⊂ R2, where n(x) denotes the (possibly
discontinuous) index of refraction, which is assumed to equal unity in the complement R2 \D of the closure
D of the set D, as depicted on the left portion of Figure 1. Throughout this paper it is assumed that ui

satisfies the free space Helmholtz equation

∆ui(x) + κ2ui(x) = 0, x ∈ R2, (1)

where κ is the wave number of the incoming wave ui. The total acoustic field u (which equals the sum
u = ui + us of the incident and scattered fields) satisfies the equation [23]

∆u(x) + κ2n2(x)u(x) = 0, x ∈ R2, (2)

and the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− iκus

)
= 0, (3)

where r = (x2
1 + x2

2)1/2 and i =
√
−1 is the imaginary unit.
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The simplest computational approaches to the problem (2)-(3) proceed by replacing the unbounded
propagation region by a bounded computational domain containing the scatterer D in its interior (which
results in the introduction of an artificial boundary), and then tackling the resulting bounded problem by
means of finite element or finite difference discretizations. These approaches yield sparse linear systems,
and, in order to satisfy the radiation condition (3), they rely on the use of absorbing boundary conditions.
The classical absorbing-boundary techniques [28] and the more recent PML approaches [11,21,32] generally
require, for accuracy, the use of a relatively large distance between scatterers and the absorbing boundary
regions, and, thus, relatively large computational domains—leading to large number of unknowns and
correspondingly large linear systems. In contrast, as illustrated in Example 4.4, the proposed approach
can utilize computational boundaries that lie arbitrarily close to the scattering surfaces. Further, although
square computational domains are considered in this paper for definiteness (as depicted on the right
portion of Figure 1 and described in detail in Section 2), the proposed algorithm can be generalized in
a straightforward manner to computational domains consisting of a union of disjoint square components
covering the region {n(x) 6= 1} occupied by the scatterer—thus leading, upon use of sufficiently small
square components, to computational domains tightly covering the scattering regions where the refractivity
is different from the free-space refractivity. Other absorbing-boundary approaches [30] allow for the use of
computational boundaries that lie near the scattering boundaries—at the expense of a degree of algorithmic
complexity. Additionally, the frequently used low-order finite-difference (FDM) and finite-element methods
(FEM) for the problem (2) generally suffer from significant dispersion errors [8], also known as pollution
error [6] (a problem which can be alleviated or even eliminated [40] by employing high-order finite elements),
and they lead to linear systems which require large numbers of iterations if treated by means of iterative
linear algebra solvers [26].

An alternative widely-used computational approach for the problem (2)-(3) relies on the equivalent
Lippmann-Schwinger volumetric integral equation [23,31]

u(x) + κ2

∫
D

Gκ(x− y)u(y)m(y)dy = ui(x), x ∈ R2, (4)

where Gκ(x) = i
4H

1
0 (κ|x|) denotes the radiating fundamental solution of Helmholtz equation in free space

and m(x) = 1 − n2(x) is the contrast function. This formulation offers several advantages; notably
this approach only requires discretization of the scattering region D, and the solutions thus obtained
automatically satisfy the Sommerfeld radiation condition (3). Additionally, equation (4) is a Fredholm
equation of the second kind, and, therefore, upon discretization, the condition number of the resulting linear
system remains essentially constant as the discretization is refined. Unfortunately, however, scattering
solvers based on volumetric integral equation formulations give rise to certain difficulties, since 1) The
resulting discrete linear systems, which are dense and non-Hermitian, cannot be effectively solved by means
of classical direct linear-algebra techniques except for problems that are acoustically small; and 2) The use
of iterative linear-algebra solvers for such volumetric formulations requires very large number of iterations
for convergence whenever the frequency or the contrast function m(x) (or both) are large. In recent years,
a number of algorithms, including direct and iterative solvers, have been proposed for the solution of
Lippmann-Schwinger equation, for instance, see [2,5,16,17,25,42,45] and references therein. The simplest
fast algorithms in this context, which rely on the use of equidistant grids and FFTs, only provide first
order convergence in presence of a discontinuous index of refraction. For instance, the scheme introduced
in [25] provides a fast high-order FFT-based method for smooth refractivities, but it does not yield higher-
order accuracy in presence of discontinuous refractive indices, and it requires large iteration numbers for
high-frequencies or high refractivity contrast. The algorithm introduced in [16] exhibits second order
convergence in the presence of discontinuous refractivity, but this approach does not address problem 2
above: the algorithm requires large iteration numbers for large frequencies. The recent fast algorithms [4,42]
provide convergence-order higher than two via special treatment at discontinuity boundaries, but they also
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suffer from large iteration numbers at high frequency. Recently preconditioning techniques were introduced
in [38,47,49], which were shown to reduce iteration numbers, even at high frequency. No reports have been
provided in either theoretical, graphical or tabular form, on the numerical accuracy of the solutions provided
by these methods. Further, the effectiveness of these methodologies is highly dependent on the smoothness
of the refractive-index function. For example, reference [38, Sec. 2.5] indicates that “if the [velocity] field
has... discontinuities neither will the Nyström method be able to give an accurate discretization scheme nor
can the sweeping factorization provide... an accurate approximating solution. Thus, for our preconditioner
to work, we require certain smoothness from the velocity fields”.

Methods which, like the one proposed in this paper, are based on a combination of a volumetric
differential formulation coupled with a boundary integral equation for physically-exact truncation of the
computation domain, have been proposed previously. The first such contributions were provided in [34,35],
and extensions to multi-domain iterative solvers in the context of finite-element discretizations can be found
in [9,10,13,20]. In these contexts, the interior volumetric PDE is generally discretized by means of FEM of
low order of accuracy, while boundary-element or Nyström discretizations are used in the discretization of
the boundary integral equation. As mentioned above, the use of low-order FEM methods leads to accuracy
degradation as the domain sizes grow, in view of the well known dispersion errors [6, 8] which requires
increases in the number of points per wavelength in order to maintain fixed accuracy as the wavenumber κ
grows. High-order methods greatly reduce dispersion and pollution errors, and they remain advantageous
even in presence of discontinuous PDE coefficients (Tables 7, 9 and 10). Indeed, the improved second-
order accurate spectral discretization we introduce for discontinuous-coefficient problems enjoys essentially
dispersionless performance—an important feature that is not obtained from commonly used low-order
finite-difference or finite-element methods.

A direct solver based on spectral discretizations of fixed order of accuracy, with computational com-
plexity of order O(N3/2), was introduced in [27]. The method achieves its operation count by decomposing
the domain in a number of spectral square patches that are organized in a tree structure, with a subse-
quent aggregation process, whereby certain “Impedance-to-Impedance” (ItI) maps for individual cells are
recursively merged into ItI maps for larger and larger rectangular groups of cells. Ultimately, when the
computational domain boundary is reached a boundary integral equation is used in conjunction with the
Dirichlet-to-Neumann map (DtN) of the complete domain to enact the interactions between the bounded
scatterer and the exterior domain. This algorithm can effectively treat high-frequency problems for which
the refractivity is smooth; the illustrations available in the literature do not include applications for which
refractivity discontinuities exist, but it is expected that the first-order accuracy would ensue in such cases.

The approach proposed in this paper is a fast hybrid direct/iterative method which is demonstrated to
run at a cost of O(Nα) operations with α ≈ 1.07, and which, as illustrated in Section 4, enjoys a number of
additional appealing features: the algorithm 1) Requires a small, essentially fixed, numbers of iterations as
the refractive index (and, thus, the interior wavelength) is increased while keeping the exterior wavelength
fixed (Table 10 below); 2) Requires significantly milder increases in iteration numbers (see Tables 7 and 9
and Remark 4 below) than other iterative solvers [16, 37] as the exterior frequency increases, in view of
its resolution of all interior multiple scattering events via a direct solver; 3) Exhibits very low dispersion;
and, 4) Converges with high-order accuracy for smooth refractivities, and with second-order accuracy
(maintaining low dispersion) for discontinuous refractivities, as discretizations are refined. This solver
relies on a general-purpose sparse direct solution technique for the volumetric interior problem that, in
particular, enforces the PDE at spectral cell boundaries by matching “transmission values” (that is, the
values of the solution and its normal derivative) at such boundaries; and it incorporates a second-kind
integral formulation in conjunction with an ItI map at the computational domain boundary (instead of
the possibly singular DtN map used in [27]). The algorithm is completed by means of the iterative linear-
algebra solver GMRES. In particular, the existence and uniqueness theory presented in the present paper
provides an affirmative answer to an open-question put forth in [27, Sec. 6], concerning the existence of a
uniquely-solvable second-kind formulation—which involves only ItI maps, and no DtN maps.

4



As indicated in Section 3, the proposed hybrid direct/iterative strategy provides significant advantages
over non-hybrid strategies in which either a fully iterative linear algebra solver is used, or a generic direct
fast sparse solver such as [24] is utilized. Indeed, a fully iterative solver would necessarily require large
numbers of iterations in order to account for the multiple scattering events that take place at boundaries of
discontinuity of the refractive-index function n. As demonstrated in Section 4 (example 4.2), on the other
hand, the coupling to the boundary integral solver destroys the sparsity inherent in the interior spectral
matrix, and can thereby significantly hinder an overall direct solver strategy. The proposed hybrid strategy
achieves the dual goal of maintaining a reduced iteration count (since the boundary integral equation,
which requires reduced iteration numbers, is the only equation that is solved iteratively) while maintaining
sparsity.

The overall proposed formulation can be used in conjunction with any adequate direct sparse linear
algebra solver for the volumetric portion of the algorithm. If the specialized Helmholtz direct linear-algebra
solver proposed in [27] were thus used, the resulting approach would accomplish three goals mentioned in
that reference, namely 1) Use of an exterior solver based on the ItI (instead of the Dirichlet-to-Neumann
map); 2) Employment of an overall formulation that is invertible for all frequencies; and 3) Use of an
iterative strategy for the solution of the integral equation portion of the method. As indicated above, in
this paper we utilize the Intel MKL implementation of the multifrontal solver Pardiso [12,43,44], which has
shown to provide excellent performance, at nearly linear computing cost, to tackle the volumetric portion
of the problem. In all, the proposed approach provides fast and essentially dispersionless solutions for
high-frequency and/or high-contrast problems, with high-order accuracy for smooth refractivities, and it
maintains second order accuracy for discontinuous refractive indexes n.

This paper is organized as follows. The proposed second-kind integro-differential formulation and
the associated solution-uniqueness proof are presented in Section 2. Section 3 then presents a detailed
description of the proposed algorithm, and Section 4 provides a variety of numerical results demonstrating
the character of the proposed methodology. Concluding remarks, finally, are presented in Section 5.

2 Uniquely-solvable, second-kind integro-differential hybrid formula-
tion

As discussed in the previous section, the proposed numerical method is based on a reformulation of the
problem (1)-(3) as a combination of a differential equation formulation in a volumetric region and a
boundary integral equation formulation on the boundary of the computational domain. To describe the
method we consider an open bounded “computational” domain Ω ⊂ R2 containing the inhomogeneity:
D ⊂ Ω. As mentioned in Section 1 and depicted on the right portion of Figure 1, throughout this paper
the domain Ω is taken to equal a square for simplicity, but the algorithm can easily be generalized to
allow for computational domains consisting of a union of disjoint square components tightly covering the
region {n(x) 6= 1}. Then the complete problem (1)-(3) is reformulated in terms of two main elements:
1) A Helmholtz equation with variable coefficients in the volumetric region Ω, and; 2) A boundary integral
equation on ∂Ω which couples the solution within Ω to the solution in the unbounded domain R2 \ Ω.
In order to proceed with this plan the following section first discusses a certain impedance-to-impedance
operators [27,34,35] associated with the Helmholtz problems in the interior and exterior of Ω.

2.1 Interior and Exterior Impedance-to-Impedance operators

Let Ω ⊂ R2 denote a bounded open domain with a Lipschitz boundary ∂Ω. Then, for each non-vanishing
real constant β, the “exterior” impedance operator Text : H−

1
2 (∂Ω)→ H−

1
2 (∂Ω) is defined by

Text[ψ](x) = uext(x)− iβ ∂uext
∂ν

(x), (5)
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where ν is the unit outward normal vector at ∂Ω and where uext ∈ H1
loc

(
R2 \ Ω

)
is the unique radiating

solution of the exterior problem:{
∆uext(x) + κ2uext(x) = 0, if x ∈ R2 \ Ω,

uext(x) + iβ ∂uext∂ν (x) = ψ(x), if x ∈ ∂Ω;
(6)

see [19, Theorem 2.3] and [39, Theorem 6.11] (cf. [33, Theorem 4.12] and [35, Sec. 3.2] where corresponding
results for smooth boundaries are provided). The definition of the “interior” impedance operator Tint :

H−
1
2 (∂Ω)→ H−

1
2 (∂Ω) is analogous:

Tint[φ](x) = uint(x)− iβ ∂uint

∂ν
(x), (7)

where uint ∈ H1(Ω) is the unique solution of the problem{
∆uint(x) + κ2n2(x)uint(x) = 0, for x ∈ Ω,

uint(x) + iβ ∂uint∂ν (x) = φ(x), for x ∈ ∂Ω.
(8)

2.2 Hybrid formulation

As is known [23, Theorem 2.5], any radiating solution uext of the Helmholtz equation over the exterior
domain R2 \ Ω may be represented by means of Green’s formula

uext(x) =

∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
uext(y)−Gκ(x− y)

∂uext

∂ν
(y)

)
ds(y), x ∈ R2 \ Ω (9)

which, utilizing the jump relations [23, Theorem 3.1] of the single- and double-layer potentials on ∂Ω yields
the relation

uext(x) =
uext(x)

2
+

∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
uext(y)−Gκ(x− y)

∂uext

∂ν
(y)

)
ds(y), for x ∈ ∂Ω. (10)

Similarly, an incident field ui (a function that satisfies equation (1) throughout R2) satisfies

0 =
ui(x)

2
+

∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
ui(y)−Gκ(x− y)

∂ui

∂ν
(y)

)
ds(y), for x ∈ ∂Ω. (11)

In the case uext equals the scattered field us resulting from the incident field ui, we may combine equa-
tions (10) and (11) and obtain the corresponding relation

u(x)

2
−
∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
u(y)−Gκ(x− y)

∂u

∂ν
(y)

)
ds(y) = ui(x), for x ∈ ∂Ω, (12)

for the total field u = ui + us. Clearly, defining, for x ∈ ∂Ω, φ(x) =
(
u(x) + iβ ∂u∂ν (x)

)
and

Aint
ext[φ](x) =

∫
∂Ω

(
1

2

∂Gκ(x− y)

∂ν(y)
(I + Tint) [φ](y)− 1

2iβ
Gκ(x− y) (I − Tint) [φ](y)

)
ds(y), (13)

equation (12) may be re-expressed in the form

1

4
(I + Tint) [φ](x)−Aint

ext[φ](x) = ui(x). (14)
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In particular it is easy to check that, given a solution u of (2)-(3) and defining φ = u+ iβ ∂u∂ν for x ∈ ∂Ω,
the pair of functions (u, φ) is a solution of the problem

∆u(x) + κ2n2(x)u(x) = 0, if x ∈ Ω, (15)

φ(x)−
(
u(x) + iβ

∂u

∂ν
(x)

)
= 0, if x ∈ ∂Ω, (16)

1

4
(I + Tint) [φ](x)−Aint

ext[φ](x) = ui(x) for x ∈ ∂Ω. (17)

As shown in the following section, equation (17) (and, thus, the full problem (15)–(17)) is uniquely
solvable—and the solution u must therefore coincide with the restriction to Ω of the solution of the original
inhomogeneous scattering problem (1)–(3). Once the solution u of (15)-(17) is obtained for x ∈ Ω, the
scattered field us (and hence the total field u = ui + us) at any point x ∈ R2 \ Ω can be easily obtained
by utilizing the representation formula (9) with uext = us. In other words, the hybrid integro-differential
problem (15)–(17) is equivalent to the original inhomogeneous scattering problem (2)-(3), as claimed.

Remark 1. The density function φ, which, per Theorem 1 below, is the unique solution of equation (17),
might in principle be expected to exhibit some sort of singularity at the corners of the square ∂Ω; see e.g. [29,
48]. However, in view of (16), the solution φ under consideration is actually an infinitely differentiable
(and, indeed, analytic) function along each one of the sides of the square ∂Ω. This follows from the relation
φ = u + iβ ∂u∂ν and the fact that the solution u is infinitely smooth (and, in fact, analytic) in a certain
neighborhood of ∂Ω within which the refractive index n is constantly equal to one.

2.3 Uniqueness

Theorem 1 (Uniqueness of solution for the second-kind hybrid volume-boundary formulation). Let φ ∈
H−

1
2 (∂Ω) denote a solution of equation (17) with ui = 0. Then φ = 0.

Proof. Letting uext ∈ H1
loc

(
R2 \ Ω

)
denote the radiating solution of (6) corresponding to the impedance

data ψ = φ on ∂Ω, the Green relation (10), with integral expressions interpreted as in [39, Thm. 4.4], may
be re-expressed in the form

1

4
(I + Text) [φ](x)−Aext

ext[φ](x) = 0 for x ∈ ∂Ω, (18)

where

Aext
ext[φ](x) =

∫
∂Ω

(
1

2

∂Gκ(x− y)

∂ν(y)
(I + Text) [φ](y)− 1

2iβ
Gκ(x− y) (I − Text) [φ](y)

)
ds(y). (19)

Equation (17) with ui = 0 and (18) can be recast in the forms

Tint[φ](x)

2
−
∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
− iηGκ(x− y)

)
Tint[φ](y)ds(y) = f(x), x ∈ ∂Ω, (20)

Text[φ](x)

2
−
∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
− iηGκ(x− y)

)
Text[φ](y)ds(y) = f(x), x ∈ ∂Ω, (21)

where

f(x) = −φ(x)

2
+

∫
∂Ω

(
∂Gκ(x− y)

∂ν(y)
+ iηGκ(x− y)

)
φ(y)ds(y), (22)

and where η = 1/β. Clearly, equations (20) and (21) are identical combined field integral equation of
second kind, with the same right hand side, for the unknowns Text[φ] and Tint[φ], respectively. Since, as
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is well known [23, p. 51], the combined field integral equation admits unique solutions, it follows that
Tint[φ] = Text[φ] or, equivalently,

uint(x)− iβ ∂uint

∂ν
(x) = uext(x)− iβ ∂uext

∂ν
(x) on ∂Ω, (23)

where uint is the solution of (8). But, from (8) and (6) we have

uint(x) + iβ
∂uint

∂ν
(x) = φ(x) = ψ(x) = uext(x) + iβ

∂uext

∂ν
(x) on ∂Ω, (24)

and, therefore, using (23) it follows that

uint(x) = uext(x) and
∂uint

∂ν
(x) =

∂uext

∂ν
(x) on ∂Ω. (25)

Let us now define

Uφ(x) =

{
uint(x) for x ∈ Ω

uext(x) for x ∈ R2 \ Ω.
(26)

Since uext is the radiating solution of (6) and uint is the solution of (8), on account of (25) it follows
that Uφ is the radiating solution of the Helmholtz problem (1)-(3) throughout R2 with ui = 0. Since this
problem admits a unique solution in H2

loc(R2) [23, Theorem 8.7] we conclude that Uφ vanishes identically.
In particular, it follows that uint = 0 throughout Ω and, thus, φ = 0 in ∂Ω in view of (24). The proof is
now complete.

Having established the well posedness of the second-kind hybrid formulation (15)-(17) we now present,
in the next section, the proposed numerical algorithm for the solution of this problem.

3 Numerical algorithm

The proposed algorithm relies on the formulation (15)–(17) in a computational domain Ω which, for
definiteness, throughout this paper is taken to equal the square Ω = (−a, a)2 with a value of a selected in
such a way that D ⊂ Ω. The algorithm consists of two main components, namely 1) A spectral volumetric
solver of fixed order of accuracy for the Boundary Value Problem (BVP) (8) in the domain Ω for given
impedance data φ ∈ H−1/2(∂Ω); and 2) A solver for the boundary integral equation (17) on ∂Ω, which
couples the solution within Ω to the solution in the exterior of that domain. In order to achieve second-
order convergence for discontinuous scatterers the algorithm utilizes a filtered Fourier-smoothing technique
outlined in Section 3.1.1. The overall hybrid approach is completed via an application of the iterative solver
GMRES, as detailed in Section 3.3. As mentioned in Section 1, the overall hybrid method meets the dual
goals of achieving reduced iteration numbers while maintaining the sparsity of the spectral matrix.

3.1 Volumetric boundary-value solver

This section describes our discretization and direct solution strategy for the BVP (8) for given values
of the impedance φ on ∂Ω. The presentation includes two subsections, covering the proposed filtered
Fourier smoothing technique that enables second-order convergence even for discontinuous scatterers (Sec-
tion 3.1.1), and the Chebyshev-based volumetric discretization used (Section 3.1.2).
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3.1.1 Filtered Fourier smoothing (FFS) of discontinuous refractivities

As is well known, discontinuities in the refractive-index n(x) give rise to severe restrictions on the order of
accuracy of the numerical solutions of the scattering problem (1)-(3): in such cases only first-order accuracy
is generally obtained. In the context of the volumetric Lippmann-Schwinger integral-equation solvers,
however, Reference [31] shows that full second order convergence can be reinstated for such problems by
means of an application of a certain Fourier-smoothing technique [17,31]. In detail, a quadratic convergence
rate toward the solution for the exact refractivity n(x) results in that context as the discontinuous contrast
function m(x) = 1 − n2(x) is replaced by truncations of its Fourier series of certain orders, with the
additional requirement that sufficiently accurate values of the Fourier coefficients for the exact discontinuous
function m(x) be used; see Remark 2 below. Since (15)–(17) is equivalent to the corresponding Lippmann-
Schwinger problem, the same conclusions hold in our present spectral context as well. In what follows we
present a new version of the Fourier-smoothing approach, which, incorporating a new filtering component
that eliminates a certain erratic convergence behavior in the un-filtered approach (see Table 8), is then
applied to the differential equations considered in this paper. The properties of the resulting Filtered Fourier
Smoothing (FFS) method are demonstrated in practice via a variety of numerical results in Section 4.

To introduce the method, letting m = 1− n2(x) we re-express the Helmholtz equation (2) in the form

∆w(x) + κ2(1−m(x))w(x) = 0; (27)

in our context the resulting procedure will be applied to the problem (8) to obtain the intermediate solutions
w = uint, and, once convergence has been achieved for the impedance data φ, to produce the corresponding
solution w = u of (15)–(16).

As is well known, the Fourier series of the (possibly discontinuous) function m(x) converges uniformly
to m(x) except on the discontinuity set, around which it suffers the well known Gibbs-ringing artifact.
Assuming, for notational simplicity, a square domain Ω of side 2a, the FFS approach proposed in this
section utilizes the order-F filtered truncated Fourier expansion

mF (x) =
F∑

`1=−F

F∑
`2=−F

c`1,`2e
πi
a

(`1x1+`2x2) (28)

of the 2a-biperiodic Fourier series of m in Ω, where x = (x1, x2) and where the filtered Fourier coefficient
c`1,`2 are given by

c`1,`2 =

(
1

4a2

∫ a

−a

∫ a

−a
m(x1, x2)e−

πi
a

(`1x1+`2x2)dx1dx2

)
exp

(
−α

((
2`1
F

)2p

+

(
2`2
F

)2p
))

. (29)

Here, p and α are the parameters in the exponential filter used; following [3], throughout this paper the
values p = 4 and α = 16 log 10 have been used.

Remark 2. Note that, for a discontinuous function m, evaluation of the integral (29) via an FFT would
yield only first-order accurate coefficients—and would ultimately reduce the accuracy the overall solver
to first order. A fast (O(F 2 logF )) algorithm for highly accurate evaluation of these coefficients follows
from application of the (one-dimensional) FC-based integration method presented in Appendix A to the
integral (29) in the x1 and x2 directions.

An additional difficulty associated with the smoothing algorithm still needs to be tackled since, un-
like the algorithm [31], our strategy relies on use of non-equispaced (Chebyshev) volumetric grids, and,
therefore, a straightforward evaluation of the Fourier series of the function mF (x) at the required N
discretization points, for which an FFT cannot be directly employed, generally requires an O(NF 2) com-
putational cost. Since, generically, F 2 = O(N), the overall O(N2) cost of the straightforward approach is
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unacceptably large within our scheme. One can easily expedite this computation, however, by means of
the FFT-refined trigonometric polynomial interpolation method presented in [15], which yields high-order
accuracy while maintaining computational efficiency. In our context, once accurate values of the Fourier
coefficients c`1,`2 have somehow been obtained, this interpolation approach can be performed as a two-step
procedure:

1. Evaluate the Fourier series mF (x) on a sufficiently fine equispaced refinement of the associated F 2-
point FFT grid. (In our examples the fine FFT grid is finer than the original grid by a factor of four
in each dimension.) This step can be performed by means of an FFT on a zero-padded version of
the sum (28), at a cost of O(F 2 logF ) operations.

2. In order to evaluate mF (x0) for x0 = (x0, y0) ∈ Ω, obtain the value of mF (x) at a number R of points
neighboring x0 in the fine grid mentioned in point 1., and interpolate to x0 by means of iterated
one dimensional polynomial interpolation; see e.g. [15]. (In our examples we have used fifth order
Lagrange polynomial interpolation.)

This procedure yields interpolating polynomials that accurately reproduce the exact values of the truncated
Fourier series at an O(N logN) computational cost.

3.1.2 Volumetric discretization

This section presents the proposed direct solution strategy for the numerical solution of the BVP (8). As
discussed in Section 3.1.1, discontinuities in the refractive index n(x), if any, are dealt with by utilizing
the modified BVP

∆w(x) + κ2
(
1−mF (x)

)
w(x) = 0, if x ∈ Ω, (30)

w(x) + iβ
∂w

∂ν
(x) = φ(x) if x ∈ ∂Ω (31)

instead of the BVP (8)—a procedure that, according to [17, Corollary 3.9] (cf. also [31]) leads to second-
order accurate approximations to the actual solutions of the original problem (8) instead of the first-order
convergence that would otherwise result. (Note that, interestingly, the proof and illustrations presented
in [17, Corollary 3.9] and [31] are given in the context of integral formulations of the problem. But, since
the integral-equation and PDE solutions for the Fourier-smoothed problem coincide, the improved approx-
imation order carries over, as indicated above and demonstrated in Section 4, to the present differential
formulation.)

For the discussion in the present section we assume that the impedance data φ in equation (31) is
known on ∂Ω. We wish to utilize a general-purpose fast sparse direct solver, such as, e.g., the multifrontal
algorithm [1, 12, 24], for the solution of our discrete version of (30)-(31). Naturally, the performance of
sparse linear-algebra solvers is highly dependent on the sparsity pattern of the coefficient matrix of the
linear system. In view of this fact, we seek to approximate all necessary differential operators in such a
way that the resulting linear system is as sparse as possible while maintaining essentially dispersionless
approximations and higher order accuracy.

To do this we approximate the unknown function w and its derivatives by means of local Chebyshev
representations. In detail, assuming, for notational simplicity, a square computational domain Ω, the
proposed BVP solver proceeds by first splitting Ω into a total of P × P mutually disjoint square patches
Ωi,j , 1 ≤ i, j ≤ P , such that

Ω =
P⋃

i,j=1

Ωi,j .

10



Then, the solution of (30)-(31) is obtained by solving the equivalent set of coupled transmission
problems

∆wi,j(x) + κ2(1−mF (x))wi,j(x) = 0, if x ∈ Ωi,j , (32)

wi,j(x) = wr,s(x) and
∂wi,j
∂νi,j

(x) =
∂wr,s
∂νr,s

(x) if x ∈ (Γi,j ∩ Γr,s) \ ∂Ω, (33)

wi,j(x) + iβ
∂wi,j
∂νi,j

(x) = φ(x), if x ∈ Γi,j ∩ ∂Ω, (34)

(1 ≤ i, r ≤ P, 1 ≤ j, s ≤ P , ), where wi,j = w
∣∣
Ωi,j

, and where νi,j denotes the outward unit normal vector

for the domain Ωi,j on the boundary Γi,j = ∂Ωi,j . For any pair of patches that share a common boundary,
the conditions (33) amount to a manifestation, valid for smooth solutions, of the (uniquely solvable) weak
formulation of equations (30)-(31) in a multi-patch decomposition; see e.g. equations (1.7) and (1.8) in
reference [35].

To obtain the desired solutions, for a given positive integer q we discretize the closure Ωi,j = [ai−1, ai]×
[bj−1, bj ] of the patch Ωi,j by means of the two-dimensional tensor product Ni,j =

{
xi,j,k,`

∣∣ 0 ≤ k, ` ≤ q}
Chebyshev mesh given by

xi,j,k,` =

(
ai−1 + ai

2
+
ai − ai−1

2
cos

(
πk

q

)
,
bj−1 + bj

2
+
bj − bj−1

2
cos

(
π`

q

))
.

Equations for the unknown values of wi,j(x) at the grid points x = xi,j,k,` (1 ≤ i, j ≤ P , 0 ≤ k ≤ q, 0 ≤
` ≤ q) are obtained by enforcing discrete versions of equations (32), (33), and (34), as appropriate, at
the discretization points xi,j,k,` (see Remark 3), via approximation of the necessary differential operators
∂/∂νi,j and ∆ by Chebyshev spectral differentiation matrices local to the relevant patch(es) Ωi,j . These
Chebyshev-based approximations of derivatives remain accurate even for large wavenumbers, and, when
used for discretization of the joint transmission problem (32)–(34), they give rise to a sparse linear systems
of the form

Aw = b, (35)

where the entries of the right hand side vector b associated with observation points xi,j,k,` ∈ Ω equal zero,
and where the entries corresponding to boundary points xi,j,k,` ∈ ∂Ω equal φ (xi,j,k,`). The unknown vector
w, on the other hand, contains the N unknowns wi,j,k,`, one corresponding to each point xi,j,k,`, where

N = (q + 1)2P 2; (36)

note that, in particular, different unknowns are used at single discretization points that are common to two
subdomain boundaries. Owing to its sparse nature, this linear system is suitable for treatment by sparse
linear solvers such as e.g. the multifrontal-based direct solver [1, 12,24].

Remark 3. As illustrated in Figure 2, the only non-zero entries in the equation associated with the point
xi,j,k,` correspond to discretization points lying on the grid lines that pass through xi,j,k,`. Two separate
unknowns are used at each patch-boundary discretization point, which are then set to be equal as part of
the equation system. Similarly, four separate unknowns are used at each patch corner point that is not
on ∂Ω, and two separate unknowns are used at each patch corner point that is on ∂Ω. This strategy is
used so as to render each patch discretization independent of all other patch discretizations at a minimal
increase in the number of unknowns. A question arises as to which of the two possible enforcements of
the matching normal derivative conditions in (33), either using horizontal or vertical normal derivatives,
are used at corner points. The indeterminacy is resolved in our algorithm by means of the arbitrary but
acceptable selection of horizontal normal derivatives in (33) at all corner points.
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Figure 2: Domain-partitioning setup: the computational domain Ω containing the inhomogeneity D is split into
P × P Chebyshev patches Ωi,j , 1 ≤ i, j ≤ P , (with P = 4 in this illustration). Derivatives at a given point
xi,j,k,` ∈ Ωi,j are evaluated as derivatives of the Chebyshev expansions obtained from function values along the lines
passing through xi,j,k,`. The unit normal vector νi,j on the boundary Γi,j of the patch Ωi,j points to the exterior of
the patch.

The discrete version of the impedance quantity Tint[φ] (equation (7)) which, for a given φ, is necessary
as part of the proposed iterative algorithm for the solution of (32)-(34) (see Section (3.3)), can readily
be obtained by differentiating the solution of the linear system (35) on the basis of the Chebyshev rep-
resentations introduced in Section 3.1.2. It is useful to note that, as indicated in Section 3.3, solutions
of the system (35) with various right-hand sides (one solution per iteration) are required as part of the
proposed iterative scheme. To obtain the necessary solutions at a reduced computing cost, in our algorithm
the LU factorization of the sparse matrix A, which is obtained by means of the efficient implementation
MKL Pardiso of the multi-frontal sparse solver [1, 12], is computed once and stored for repeated use in
multiple GMRES iterations, or, even, for multiple right-hand sides. The computational cost of assembly
of the matrix A and evaluation of its LU factorization, whose combination amounts to the most expensive
portion of the overall hybrid volumetric solver, is studied in Section 4. In particular, Figure 4 and Table 4
in that section demonstrate a computing cost of O(Nα) operations, with α ≈ 1.07, for this portion of the
algorithm, with a total number of the order of O(qN) of non-zero matrix entries.

3.2 High-Order Approximation of the Boundary Integral Operators

The proposed algorithm utilizes a fast, high-order Nyström integration algorithm for the evaluation of the
integral operators in equation (17). We note without a detailed proof that, in view of the smoothness of the
solution φ in a neighborhood of ∂Ω (Remark 1) together with stability theory (see e.g. [36, Th. 10.2]), the
Chebyshev approximation of the density φ that we utilize in this section gives rise to high-order accuracy
in the overall algorithm—as illustrated numerically in Table 6. In what follows we describe the associated
integration scheme and certain connections with the overall volumetric iterative solver of which it is a
component. Clearly, it is desirable for the underlying grid in the approximation of (17) to be a subset of
the volumetric (piece-wise Chebyshev) interior grid: otherwise an additional fast and accurate interpolation
procedure would be required for the evaluation of the integral density to the underlying quadrature points.
To avoid such additional difficulties while preserving maximal accuracy, we use a two-dimensional analog
of the rectangular polar integration scheme recently introduced in [14] for the solution of surface scattering
problems in the three dimensions. The resulting procedure is described in what follows.

In a first stage, the entire integration domain ∂Ω is covered by a set of non-overlapping boundary
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patches {γp}Pp=1 (P = 4P ), each one of which is the image of the interval [−1, 1] via a smooth invertible
mapping ξp. Using this covering and the parameterizations ξp, the integral operator that is used as part
of (17) can be decomposed in the form∫

∂Ω

(
∂Gκ(x− y)

∂ν(y)
η(y)−Gκ(x− y)ζ(y)

)
ds(y) =

P∑
p=1

Ip(x),

where

Ip(x) =

∫ 1

−1

(
∂Gκ (x− ξp(t))

∂ν (ξp(t))
η (ξp(t))−Gκ (x− ξp(t)) ζ (ξp(t))

) ∣∣∣∣∂ξp(t)∂t

∣∣∣∣ dt. (37)

An adequate choice of a methodology for the accurate evaluation of (37) depends on the relative position
of the target point x with respect to the integration patch γp. If the target point x is sufficiently far from
γp then the integrand in (37) is smooth and can be integrated with high-order accuracy by means of
any high-order quadrature rule. On the other hand, if the target point is either close to or within the
integration patch, the integrand is either singular or near singular, and hence a specialized quadrature rule
must be used for its accurate evaluation. Thus, depending upon the distance from the target point to the
integration patch, the overall integration approach relies on three different methods:

Evaluation of non-singular integrals: For target points x sufficiently far from the integration patch
we use the Clenshaw-Curtis quadrature which, as is known, enjoys high-order convergence for smooth
integrands [46], and whose discretization is taken to coincide with the restriction to γp of the volumetric
discretization ∪Pi,j=1 Ni,j .

Evaluation of singular integrals: For target points x in the integration patch, the accurate approxima-
tion of (37) becomes challenging in view of the integrand singularity. To deal with this difficulty, we first
replace the density functions η and ζ in (37) by their Chebyshev expansions and we thus obtain

Ip(x) =
M∑
`=0

c`I
1
p,`(x) +

M∑
`=0

d`I
2
p,`(x), (38)

where

I1
p,`(x) =

∫ 1

−1

∂Gκ (x− ξp(t))

∂ν (ξp(t))
T`(t)

∣∣∣∣∂ξp(t)∂t

∣∣∣∣ dt, (39)

I2
p,`(x) =

∫ 1

−1
Gκ (x− ξp(t))T`(t)

∣∣∣∣∂ξp(t)∂t

∣∣∣∣ dt, (40)

and where T` is the Chebyshev polynomial of degree `. The Chebyshev coefficients c`, d` can be obtained
accurately and efficiently by means of FFTs. Note that the integrals in equations (39) and (40) do not
depend on the density, and therefore, may be computed only once and stored for repeated use. In addition
to this, evaluation of these integrals does not require interpolation, even if refined meshes are used for their
evaluation, as the corresponding integrands are known analytically in the complete domain of integration.
However, evaluation of these integrals present certain difficulties owing to the weakly singular character of
the integral kernel. To resolve the integrand singularity in equations (39) and (40) we utilize changes of
variable whose Jacobian vanishes along with several of its derivatives at the singularity point. The idea is
not limited to the specific kernel presently under consideration, and it can be readily incorporated for a
general class of weakly singular kernels. Thus, we present our discussion in that general context.

Letting

I`(x) =

∫ 1

−1
Hκ (ξp(t0)− ξp(t))T`(t)

∣∣∣∣∂ξp(t)∂t

∣∣∣∣ dt, (41)
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where x = ξp(t0) and where Hκ (ξp(t0)− ξp(t)) is any weakly singular kernel, we re-express I` in the form

I`(x) =

∫ t0

−1
Hκ (ξp(t0)− ξp(t))T`(t)

∣∣∣∣∂ξp(t)∂t

∣∣∣∣ dt+

∫ 1

t0

Hκ (ξp(t0)− ξp(t))T`(t)

∣∣∣∣∂ξp(t)∂t

∣∣∣∣ dt. (42)

Both the first and second integrands in (42) are singular at t = t0. To resolve the singularity we use the
changes of variables [23]

t = t0 −
1 + t0
π

ωk

[π
2

(−τ + 1)
]

and t = t0 +
1− t0
π

ωk

[π
2

(τ + 1)
]

in the first and second integrals in (42), respectively, which, roughly speaking, distributes half of the
discretization points near the singular point t0, and the other half fairy uniformly throughout the integration
interval [23, p. 84]. Here, for 0 ≤ s ≤ 2π and for a given integer k > 1 we have set

ωk(s) = 2π
[v(s)]k

[v(s)]k + [v(2π − s)]k
, where v(s) =

(
1

k
− 1

2

)(
π − s
π

)3

+
1

k

(
s− π
π

)
+

1

2
.

It is easy to check that the Jacobians of these changes of variables vanish up to order k− 1 at the singular
point t = t0, which renders smooth integrands that can be integrated with high-order accuracy by means
of the Clenshaw-Curtis quadrature.

Evaluation of near-singular integrals: This case arises when the target point x is “very close” to, but
outside the integration patch γp. In this case, while the integrand in (37) is, strictly speaking, non-singular,
its numerical integration poses similar challenges to the singular case. To effectively treat this issue we
project the target point to the closest point to it on the integration patch and then follow the same strategy
used for singular integration by treating the projection point as the singular point.

3.3 Overall hybrid solver

As discussed in the Section 2, the proposed method obtains the solution of the scattering problem (2)-(3)
by solving the equivalent formulation (15)–(17). If the impedance data φ in (16) were known on ∂Ω then
the solution of the scattering problem (2)-(3) could be readily obtained by solving the BVP (15)-(16)
using the direct solution algorithm discussed in Section 3.1. To obtain φ on ∂Ω, equation (17) is solved
iteratively, where, for each iteration, the integral operator Aint

ext[φ] (defined in (13)) is evaluated via the
algorithm discussed in Section 3.2 in conjunction with the direct solution technique presented in Section 3.1
for the evaluation of the interior impedance operator Tint[φ] (equation (7)). Note that, per the first three
sentences in Remark 3 and in view of (36), the sparse N×N matrix A associated with the interior problem
(equation (35)) contains only 2(q + 1)N non-zero entries.

The main lines of the proposed overall hybrid solver are as follows:

1. Replace the discontinuous refractivity n2(x) in equation (15) by its filtered Fourier-smoothed version
1−mF (x) as discussed in Section 3.1.1.

2. Using either an initial guess (e.g. φ = ui(x)) or any improved guess for φ produced by the linear-
algebra solver GMRES, obtain the solution u = uint of the problem (15)-(16), and then use equa-
tion (7) to evaluate Tint[φ](x), and, thus, (I + Tint)[φ] and (I − Tint)[φ] on ∂Ω.

3. Evaluate the left hand side of equation (17), on the discretization of ∂Ω, by applying the methods in
Section 3.2 to integral densities equal to (I + Tint)[φ] and (I − Tint)[φ].

4. Pass the resulting residual (equal to the difference between the left-hand and the right-hand sides
in (17)) to the GMRES algorithm, to obtain a new approximation for the density φ.
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5. Check for convergence of the density φ to a given prescribed residual tolerance, and iterate by
returning to step 2 until convergence is achieved.

6. Solve the BVP (15)-(16) for the converged impedance function φ obtained per point 5. If desired, use
equation (9) with uext = 1

2(I + Tint)[φ] and ∂uext/∂ν = 1
2iβ (I − Tint)[φ] to produce u in the exterior

of Ω and/or, using the Green function asymptotics [23, Theorem 2.5], far field values for the solution
u.

4 Numerical results

This section presents results of numerical tests and examples that demonstrate the performance of the
scattering solvers introduced in the Section 3, with an emphasis on problems containing discontinuous
refractivities. All numerical results presented in this section were produced by means of a C++ imple-
mentation of the algorithms described in Section 3 on a single core of an Intel i7-4600M processor. The
relative error (in the near field) reported here was computed according to the expression

εN∞ =

max
1≤i≤N

∣∣uref(xi)− uapprox(xi)
∣∣

max
1≤i≤N

|uref(xi)|
,

where {xi ∈ Ω : 1 ≤ i ≤ N} is a listing of all volumetric Chebyshev discretization points xi,j,k,` considered
in Section 3.1.2, over all subdomains Ωi,j , and where uref is either a closed form solution, when available, or
a highly accurate numerical solution produced by the proposed algorithm on a fine discretization. GMRES
tolerances were prescribed in each case to achieve the desired solution error. Values of the coupling
parameter β in the range 10−5 ≤ β ≤ 10−3 were typically used: as shown in Figure 3 use of such values of
β suffices to eliminate difficulties arising from resonance. (Typically smaller values of β tend to give rise
to smaller numbers of iterations, while slightly larger values of β can result in somewhat higher accuracies;
we have found that use of large values of β, say, in the range 1 ≤ β ≤ 100, however, can significantly
increase the iteration numbers required to meet a prescribed GMRES tolerance and/or solution accuracy.)
In all of the tabulated results the acronyms “numIt” and “Order” denote the number of GMRES iterations
required to achieve the desired accuracy and the numerical order of convergence log

(
εN∞/ε

2N
∞
)
/ log(2)

respectively. In accordance with Section 3.1.2, P ×P denotes the total number of Chebyshev patches used
in the discretization of the computational domain Ω, each one of which contains q×q discretization points;
cf. Figure 2.

Example 4.1. (High-order Convergence for the Boundary Integral Operator)

This example illustrates the high-order convergence of the singular integration technique introduced in
Section 3.2. For our example we let κ = 5π, v(x) = ui(x) = eiκx1 and Ω = {(x1, x2)| − 1.5 ≤ x1, x2 ≤ 1.5},
and we evaluate numerically the integral

2

∫
∂Ω

{
Gκ(x− y)

∂v(y)

∂ν(y)
− Gκ(x− y)

∂ν(y)
v(y)

}
dy (43)

for x ∈ ∂Ω—whose exact value, in view of Green’s theorem, is eiκx1 . The corresponding results over
successive discretizations are presented in Table 1, clearly demonstrating high-order accuracy.

The proposed integration scheme additionally remains accurate for large frequencies. To illustrate this,
we have computed the integral (43) for various wavenumbers; the corresponding results are presented in
Table 2 for experiments with a fixed number of points per wavelength. Table 2 shows that, as claimed, the
proposed scheme does not deteriorate as the wavenumber is increased while keeping a constant number of
points per wavelength.
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Figure 3: Accuracy of the proposed hybrid solver for the problem (15)–(17), as a function of the impedance
parameter β defined in Section 2.1, with κ =

√
2π and n = 1 in the domain Ω = (−a, a) × (−a, a) with a = 1

(“resonant structure”, with interior eigenfunction sin(πx1) sin(πx2)) and a = 1.1 (“non-resonant structure”). In all
cases, resonant and non-resonant, the GMRES algorithm achieved the 10−12 tolerance imposed. As illustrated in
the figure, in non-resonant cases the error is essentially independent of β as β → 0—since in such cases the ItI map
Tint is well defined for all β, up to and including β = 0. In the resonant case, in contrast, use of a nonzero value of
β is necessary to ensure the map Tint is well defined and the algorithms accuracy does not deteriorate.

κ P q εN∞ Order

5π 8 6 2.7× 10−0 -
5π 8 12 5.1× 10−1 2.4
5π 8 24 2.7× 10−3 7.5
5π 8 48 3.9× 10−8 16.1
5π 8 96 4.9× 10−11 9.6
5π 8 192 1.2× 10−13 8.7

Table 1: Convergence study for the singular inte-
gration method introduced in Section 3.2. Numerical
errors were obtained by comparison against closed-
form values of the integral (43).

κ P q PPW εN∞
10π 12 30 6 2.3× 10−5

20π 24 30 6 2.6× 10−5

40π 48 30 6 2.7× 10−5

80π 96 30 6 2.9× 10−5

160π 192 30 6 3.0× 10−5

320π 384 30 6 3.1× 10−5

Table 2: Illustration of the proposed high-order integra-
tion scheme for large wavenumbers with a fixed number of
points per wavelength.

Example 4.2. (Sparsity and Efficiency of the Hybrid Approach)

As discussed in the introduction, use of the hybrid direct/iterative strategy, in which the boundary
integral equation is treated iteratively, provides a significant advantage over the corresponding direct
non-hybrid approach, in which a matrix is constructed for the (complete) coupled volume and boundary
discretization. This advantage arises mainly from sparsity: the matrix A (equation (35)) associated with
the hybrid approach is significantly sparser than the corresponding non-hybrid matrix, as the coupling
induced by the boundary integral operator introduces large numbers of nonzero matrix entries. As a result
(and as demonstrated below in this section) the hybrid approach lends itself much more effectively to
treatment via multifrontal linear-algebra solvers. To visualize the source of the sparsity enjoyed by the
matrix A we note that, in the non-hybrid approach, each boundary entry gives rise to an equation that
links all 4P (q + 1) boundary unknowns and, additionally, in view of equations (15) through (17), (q − 1)
interior unknowns per boundary unknown (as needed to compute the normal derivative at each boundary
point)—so that, in total, each equation resulting from a boundary point contains 4Pq(q + 1) nonzero
entries. This is in contrast to the equations arising from interior unknowns, each one of which contains
merely 2(q + 1) non-zero entries. The benefit provided by the hybrid method is that it decomposes the
problem into two parts: a first one that uses a direct solver for the sparse matrix associated with interior
unknowns, and a second one which treats the boundary unknowns by means of an iterative procedure.
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Table 3, which displays the total number “NNZ” of non-zero matrix entries contained in the matrices
treated by means of a direct solver for the hybrid and non-hybrid methods, demonstrates the sparsity
patterns achieved in practice by the proposed hybrid approach. As illustrated in Figure 4, further, such
sparsity patterns translate into fast pre-computation and solution times—which, in fact, grow nearly
linearly with the discretization size.

P × P q × q # Bdry. Unknowns Bdry. unknowns NNZ
4P (q + 1) Non-hybrid Hybrid

16× 16 10× 10 704 5, 451, 776 7744
32× 32 10× 10 1408 21, 807, 104 15488
64× 64 10× 10 2816 87, 228, 416 30976

128× 128 10× 10 5632 348, 913, 664 61952
256× 256 10× 10 11264 1, 395, 654, 656 123904

Table 3: Number NNZ of non-zero matrix entries associated with each boundary unknown for the non-hybrid and
hybrid algorithms, respectively, for various discretization sizes. The greatly enhanced sparsity pattern associated
with the hybrid method enables efficient use of multi-frontal linear-algebra solvers.

P × P N Pre-comp. (sec.) Per-it. time (sec.) Memory required (MB)
A/BIE LU-D LU-inv/It BIE/It Tot. A storage LU-D Ratio

16× 16 30,976 -/0.6 0.5 .04 .01 .05 - - -
32× 32 123,904 .03/3 2 .15 .06 0.21 - - -
64× 64 495,616 .12/12 10 .6 .3 0.9 502 1,497 2.98

128× 128 1, 982, 464 .46/46 46 3 1 4 12,99 8,104 6.24
175× 175 3, 705, 625 .88/87 93 5 2 7 2,222 15,617 7.03
200× 200 4, 840, 000 1.11/113 131 7 3 10 2,830 2,1250 7.50
256× 256 7, 929, 856 2.00/182 247 11 4 15 4,484 34,624 7.72
350× 350 14, 822, 500 4/340 541 22 7 29 8,175 66,410 8.12

Table 4: Computing times and memory required by the various portions of the hybrid algorithm on the computational
domain Ω = [−.5, .5]2 with κ = 800. Each one of the P × P Chebyshev patches used was discretized by means of a
q × q Chebyshev-point discretization with q = 10. The titles used are defined in the text. The BIE precomputation
cost can be essentially eliminated if an accelerated Green function method [7, 22] is utilized. As indicated in the
text, after the precomputation stages, small additional memory costs suffice to perform even very large numbers of
GMRES iterations, if needed.

Table 4 and its caption, in turn, report computing times and memory required to perform each one of the
various operations associated with the hybrid method. Thus, in particular, for a problem involving nearly 15
million unknowns, the single-core precomputation and per-iteration computing times amount to 344+541 ≈
900 sec. and 22 + 7 ≈ 30 sec. respectively, with a corresponding memory cost of (8, 175 + 66, 410 + 7, 500)
MB ≈ 82 GB. (The BIE precomputation time and memory cost, the latter one of which is not listed in
Table 4, but which amounts to e.g. 7,500 MB for the ≈ 15 million unknown problem, can be essentially
eliminated if an accelerated Green function method [7,22] is utilized.) An additional (small) memory cost
is associated with each GMRES iteration: in the ≈ 15 million unknown test case, for example, after an
initial integral equation setup memory cost of 1, 732 MB, every 100 iterations require a mere 25 MB of
additional memory. Thus, in view of Table 10 below, using this discretization a solution with an error of
the order of 10−3 for a domain spanning 350 wavelengths in diameter containing a discontinuous refractive
index can be obtained, on the basis of 12 iterations, in a single-core CPU time of ≈ 900 + 12 · 30 = 1, 260
secs. = 21 mins.
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(The titles used in Table 4 and 5 are defined as follows. The “Pre-comp” columns list the costs of
the various precomputation stages, namely “A”: computing time required to produce the interior matrix;
“BIE”: computing time required to evaluate all the necessary values of the Green function; and “LU-D”:
computing time required to obtain the LU decomposition of A by means of the multifrontal linear-algebra
software “Intel MKL PARDISO”. The “Per-it” columns lists costs necessary to perform each iteration,
namely “LU-inv/It”: computing time required at each iteration of the iterative hybrid algorithm to solve
equation (17) on the basis of the precomputed LU decomposition; and “BIE/It”: computing time required
to apply the discrete version of the integral operator Tint in equation (16), respectively; the column “Tot.”
lists total computing time per iteration. The “Memory required” column in Table 4 lists memory costs,
including“A storage”: Memory required for storage of the matrix A and associated data required by
the software“Intel MKL PARDISO”; and “LU-D”: Total memory required by the solver Pardiso for the
precomputation of the LU decomposition of the matrix A; the column “Ratio” lists the ratio of the memory
requirements in the two previous columns.)

(a) Pre-computation costs for q = 10, q = 20, and
q = 40.

(b) Time per GMRES iteration for q = 10, 20, and
q = 40.

Figure 4: Left: Pre-computation time in seconds (required to build the matrix A, to obtain its LU decomposition
and to produce the BIE Green-function precomputation), for q = 10, q = 20 and q = 40, as a function of N , with
κ = 800 and for all discretizations allowable within the available memory, vs. a curve O(Nα) with α = 1.07. Right:
Per-iteration time (in sec.) required by the hybrid algorithm with q = 10, q = 20 and q = 40, as a function of N , vs.
a line O(N)). As illustrated in Table 5, a variety of numerical experiments have shown that these computing times
are essentially constant asymptotically as κ grows.

P × P q × q κ Pre-comp. (in sec.) Per it. time
A/BIE LU-D Tot. (sec.)

256× 256 10× 10 10 2.00/134.74 246.52 383.26 15.20
256× 256 10× 10 100 2.00/174.89 246.74 423.63 15.28
256× 256 10× 10 200 2.00/181.32 246.56 429.88 15.42
256× 256 10× 10 400 2.00/180.03 246.18 428.21 15.49
256× 256 10× 10 800 2.00/181.89 247.74 431.63 15.49

Table 5: Pre-computation time for q = 10 for various values of κ with fixed N = P 2 × (q + 1)2 = 7, 929, 856.

Example 4.3. (Scattering by a Smooth Gaussian Bump)
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This example demonstrates the high-order convergence enjoyed by the proposed algorithm when applied
to smooth contrast functions m(x). In detail, we consider the total field u that arises under plane wave
excitation incident from the positive x1 axis, for the contrast function given by the smooth Gaussian
bump m(x) = −1.5e−60|x|2 . Numerical results for the domain Ω = (−0.5, 0.5)2 and κ = 20π, at various
discretization levels, are displayed in Table 6—clearly demonstrating the high-order convergence of the
proposed algorithm for smooth scattering media. The extremely low dispersion provided by the proposed
algorithm is demonstrated in Table 7 (see also Tables 9 and 10)—which shows that, for the same domain
Ω, the accuracy is maintained while keeping the number of points per wavelength fixed—even for large
frequencies.

κ P × P q × q εN∞ Order # Iter

20π 2× 2 10× 10 1.39× 10−0 - 28
20π 4× 4 10× 10 5.81× 10−1 1.22 28
20π 8× 8 10× 10 9.50× 10−3 5.93 28
20π 16× 16 10× 10 2.11× 10−5 8.81 28
20π 32× 32 10× 10 1.08× 10−7 7.61 28
20π 64× 64 10× 10 1.50× 10−10 9.49 28

Table 6: Convergence study for the smooth Gaussian bump test case. For these experiments the GMRES residual
tolerance and the coupling parameter β were set to 10−12 and 10−5, respectively.

Remark 4. It is important to note the relatively mild (roughly linear) increases in iteration numbers
demonstrated in Tables 7 and 9 as the incident frequency grows (cf. references [16, 37]). The observed
linear growth is purely associated with the spectral character of the boundary integral operators used, and
it results as the algorithm bypasses, by means of its interior direct solver component, the iterative resolution
of all interior multiple-scattering events that would otherwise require significantly larger iteration numbers.

κ P × P q × q N/ΓN εN∞ # Iter. Time (sec.)
pre-comp per. It.

50 10× 10 10× 10 14641/484 2.75× 10−5 14 .63 0.03

100 22× 22 10× 10 58564/968 6.66× 10−5 35 2.35 0.1

200 44× 44 10× 10 234256/1936 1.09× 10−4 76 9.68 0.41

400 88× 88 10× 10 937024/3872 2.12× 10−4 162 43 1.62

800 176× 176 10× 10 3748096/7744 3.54× 10−4 291 194 6.87

Table 7: Numerical solution for a problem of scattering by the smooth Gaussian bump example for a range of
frequencies, including high-frequency cases. Approximately 9.4 points per shortest wavelength (which occurs at
x = 0) were used for the κ = 50 through κ = 800 examples (for κ = 800 the computational domain is two-hundred
five shortest wavelengths in size). For these experiments both the GMRES residual and the coupling parameter β
were set to 10−5.

Example 4.4. (Fourier Smoothing and scattering by a discontinuous refractive index distribution)

This example demonstrates the character of the proposed Filtered Fourier Smoothing strategy (Sec-
tion 3.1.1) for penetrable inhomogeneous media with discontinuous refractivity—via an application to the
canonical problem of scattering by a circular scatterer. For this experiment we considered a circular scat-
terer D of diameter d = 1, and with discontinuous refractive index given by n2(x) = 2 for x ∈ D and
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n2(x) = 1 for x 6∈ D. The computational domain Ω = (−.51, .51) × (−.51, .51) was used. An incident
wave of the form ui(x) = J0(κ|x|) was assumed, where J0 is the Bessel function of the first kind of order
zero. With this incident wave a closed form expression for the solution of the problem (2)-(3) is known [5].
Table 8 presents errors obtained in the numerical solution with and without Fourier smoothing, and includ-
ing regular Fourier smoothing (FS) and filtered Fourier smoothing (FFS), for various discretization levels,
clearly demonstrating the quadratic convergence of the FFS-based approach, the slower and rather erratic
convergence in absence of Fourier smoothing, and the improvements resulting from the use of filtering.
Table 9, in turn, concerns the character of the FFS method under high-frequency illumination, displaying
fixed accuracies (of the order of three digits in this case), for the n2(x) = 2 scatterer D just considered and
for problems up to 276 · λint in diameter, where λint = 2π

nκd denotes the wavelength in the interior of D.
We note that a fixed accuracy is maintained using 11 points per wavelength, demonstrating, additionally,
the dispersionless character of the algorithm even under a discontinuous index of refraction, for which the
accuracy of the algorithm is reduced to second order. Table 10, finally, presents numerical results for highly
refractive scatterers. In contrast with the behavior observed in the case of high-frequency illumination, in
the present case, in which high-frequencies result from corresponding large refractive indexes, the iteration
numbers required to maintain accuracy remain fixed as the refractivity values are increased—on account
of the direct matrix solution used for the interior problem, and in spite of the resulting high-frequency
interior scattering phenomenology.

κd P × P q × q Without FS With FS (without filter) With FFS (incl. filter)
εN∞ Order εN∞ Order εN∞ Order

10π 3× 3 10× 10 8.80× 10−2 - 1.66× 10−1 - 2.14× 10−1 -
10π 6× 6 10× 10 1.27× 10−2 2.79 1.60× 10−2 3.37 4.60× 10−2 2.22
10π 12× 12 10× 10 1.22× 10−2 0.06 5.49× 10−4 4.86 1.43× 10−3 5.00
10π 24× 24 10× 10 3.30× 10−3 1.88 2.50× 10−4 1.13 3.18× 10−4 2.17
10π 48× 48 10× 10 2.66× 10−3 0.31 8.87× 10−5 1.49 5.09× 10−5 2.64
10π 96× 96 10× 10 5.72× 10−4 2.22 4.82× 10−5 0.87 1.23× 10−5 2.04
10π 192× 192 10× 10 1.69× 10−4 1.76 1.08× 10−5 2.15 3.00× 10−6 2.03

Table 8: Demonstration of the quadratic convergence of the FS and FFS-based hybrid solvers for a problem of
scattering by a circular inclusion of diameter d = 1 with ui(x) = J0(κ|x|) and with discontinuous refractive index is
given by n2(x) = 2 for x ∈ D and n2(x) = 1 for x 6∈ D. For these experiments the GMRES residual tolerance and
the coupling parameter β were set to 10−6 and 10−5, respectively. The beneficial effects of Fourier smoothing and
filtering, which lead to higher accuracies and a more predictable convergence behavior, can be clearly appreciated.

κ P × P q × q N/ΓN εN∞ # Iter. Time (sec.)
pre-comp per. It.

50 10× 10 10× 10 14641/484 2.02× 10−3 15 0.61 0.03

100 22× 22 10× 10 58564/968 2.55× 10−3 37 3 0.09

200 44× 44 10× 10 245025/1980 2.78× 10−3 69 11 0.42

400 88× 88 10× 10 980100/3960 3.80× 10−3 161 46 1.72

800 176× 176 10× 10 3920400/7920 2.81× 10−3 281 200 7.25

1200 264× 264 10× 10 8433216/11616 3.90× 10−3 400 470 16.3

Table 9: High-frequency scattering problem. Numerical solution, using FFS, for a problem of scattering by a circular
inclusion of diameter d = 1, with ui(x) = J0(κ|x|), and with n2(x) = 2 for x ∈ D and n2(x) = 1 otherwise. For
these experiments the GMRES residual tolerance and coupling parameter β were set to 10−5.
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P × P q × q N/ΓN ref-index # λint εN∞ # Iter. Time (sec.)
n(x) pre-comp per. It.

125× 125 10× 10 1890625/5500 50 125 3.43× 10−3 10 84 3.4

150× 150 10× 10 2722500/6600 60 150 4.52× 10−3 10 125 5.0

200× 200 10× 10 4840000/8800 80 200 4.15× 10−3 12 232 9.3

250× 250 10× 10 7562500/11000 100 250 3.73× 10−3 12 403 14.0

350× 350 10× 10 14822500/15400 140 350 3.34× 10−3 12 848 29.0

Table 10: Large contrast scattering problem. Numerical solution, using FFS, for a problem of scattering by a circular
inclusion of diameter d = 2 refractive index n(x) (resp. refractive index 1) in the interior (resp. the exterior) of the
inclusion, with ui(x) = J0(κ|x|), where κ = 5π. Three digit accuracy is maintained using 11 points per wavelength.
For these experiments the GMRES residual tolerance and coupling parameter β were set to 10−5.

Figure 5 provides a graphical depiction of the scattering pattern obtained for a circular scatterer D of
diameter d = 2, under incident illumination given by ui(x) = exp(iκx1), with κ = 100 and with n2(x) = 3
for x ∈ D and n2(x) = 1 for x outside D—for which we have d = 55λint. Using 12 points per wavelength
the method achieves three digits of accuracy for this problem in the near field in a two and half minutes
single-core computation, including both, precomputation and all necessary iterations.

(a) Real part of the total Field u. (b) Absolute value of the total field u.

Figure 5: Scattering of the plane wave exp(iκx1) with κ = 100 by a penetrable circular inclusion D of diameter
d = 55λint with n2(x) = 3 for x ∈ D and n2(x) = 1 otherwise. Using 12 points per wavelength and relying on
the FFS method, the algorithm produced this three-digit accurate solution in a two and half minutes single-core
computation.

Example 4.5. (Scattering by variable discontinuous refractivity)

Our next example demonstrates the properties of the solver, including FFS, when applied to a scatterer
containing continuously variable material properties as well as discontinuities across a material interface.
We thus consider the problem of evaluation of the total field u that results for the refractive-index distri-
bution

n2(x) =

{
3 + 2e−4|x|2 if x ∈ D,
1 otherwise,

(44)

where D is circular inclusion of unit radius, under the plane wave incidence ui(x) = exp(iκx1). Since
analytical solutions are not available in this case, we use numerical solution obtained on a finer grids for
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reference. The numerical results reported in Table 11 display errors that in fact decrease faster than the
quadratic rate expected from use of the FFS approach.

κd P × P q × q Without FFS With FFS
εN∞ Order εN∞ Order

10π 3× 3 10× 10 1.15× 100 - 1.06× 10−0 -
10π 6× 6 10× 10 1.45× 10−1 2.98 1.18× 10−1 3.16
10π 12× 12 10× 10 5.48× 10−2 1.40 1.28× 10−2 3.20
10π 24× 24 10× 10 1.48× 10−2 1.88 1.53× 10−3 3.06
10π 48× 48 10× 10 7.73× 10−3 0.93 3.34× 10−4 2.19
10π 96× 96 10× 10 4.24× 10−3 .86 7.62× 10−5 2.13
10π 192× 192 10× 10 8.32× 10−4 2.34 1.42× 10−5 2.42

Table 11: Convergence Study: Convergence of the proposed algorithm for scattering for a discontinuous-refractivity
problem as in (44). An incident plane wave incoming from the positive x-axis was used in this case. As noted in the
text, the errors decrease somewhat faster than the quadratic rate expected from use of the FFS approach.

Figure 6 displays near fields obtained for the discontinuous refractive-index (44) under wavenumbers
κ = 50 and κ = 150, for which the diameters of inhomogeneity are 36λmin and 108λmin, respectively,
where λmin denotes the smallest interior wavelength. In both the cases, the algorithm achieved three-digit
accuracy in the near field by using 11 points per λmin in single-core computations requiring one and thirteen
minutes, respectively.

(a) Gaussian Refractivity. (b) κ = 50, Real part of u (c) κ = 150, |u|.

Figure 6: Scattering of a plane wave exp(iκx1) by a the Gaussian refractivity profile (44) for κ = 50 and κ = 150.
In both cases, using the FFS method and 11 points per wavelength the algorithm produced three-digit accuracy in
a one and thirteen-minute computation respectively.

Example 4.6. (Scattering by geometries containing corners and cusps)

None of the algorithmic components, nor the resulting accuracies in the proposed method, are con-
strained in any way by the geometry of the scatterer. Without any additional effort, the approach can
easily deal with arbitrarily complicated geometries. To demonstrate this, we consider two additional geome-
tries, containing corner- and cusp-singularities, respectively. Once again the accuracy of any one solution
is evaluated by comparison with results obtained on finer grids. In both cases we compute the near field
solution u under the plane wave incidence ui(x) = exp(iκx1).
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κd P × P q × q εN∞ Order

12π 3× 3 10× 10 1.33× 100 -
12π 6× 6 10× 10 6.95× 10−2 4.26
12π 12× 12 10× 10 9.75× 10−3 2.83
12π 24× 24 10× 10 2.12× 10−3 2.20
12π 48× 48 10× 10 4.66× 10−4 2.18
12π 96× 96 10× 10 9.22× 10−5 2.34
12π 192× 192 10× 10 1.92× 10−5 2.26

Table 12: Convergence Study: Illustration of quadratic
convergence of the proposed algorithm for a geometry
containing a corner singularity.

κd P × P q × q εN∞ Order

12π 3× 3 10× 10 1.42× 100 -
12π 6× 6 10× 10 9.86× 10−2 3.84
12π 12× 12 10× 10 1.21× 10−2 3.02
12π 24× 24 10× 10 2.26× 10−3 2.42
12π 48× 48 10× 10 6.23× 10−4 1.85
12π 96× 96 10× 10 1.46× 10−4 2.09
12π 192× 192 10× 10 2.15× 10−5 2.76

Table 13: Convergence Study: Illustration of quadratic
convergence of the proposed algorithm for a geometry
containing a cusp singularity.

Table 12 presents numerical results for the scatterer D depicted in Figure 7(a), with n2(x) = 2 for
x ∈ D and one otherwise. The computed near field for κ = 200, which was determined to be accurate up
to three digits, is displayed in Figure 7(b). Table 13, in turn, presents numerical results for the scatterer D
depicted in Figure 8(a), which equals the region contained between the four unit discs centered at (1, 1),
(1,−1), (−1, 1) and (−1,−1), with κd = 12π, and with n2(x) = 2 for x ∈ D and n2(x) = 1 otherwise.
Figure 8(b), finally, displays the near field for this geometry, but with κ = 20π and n2(x) = 16 for x ∈ D
and one otherwise—thus yielding a scatterer 80λint in size. A two-digit solution was obtained using merely
nine points per wavelength and computing time of seven minutes.

(a) Square scatterer (b) Absolute value of the total field u.

Figure 7: Scattering by a geometry containing corner singularities, with n2(x) = 3 for x ∈ D and one otherwise.
For this experiment the incident field ui(x) = exp(iκx1) with κ = 200 was used. Errors of the order of 10−3 were
obtained in the near field solution and the total computing time is fourteen minutes.
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(a) Star-shaped geometry with cusp (b) Absolute value of total field u

Figure 8: Scattering of the incident field ui(x) = exp(iκx1), with κ = 20π, by a geometry containing cusp singu-
larities, with n2(x) = 16 for x ∈ D and n2(x) = 1 otherwise. Errors of the order of 10−2 were obtained in the near
field solution on the basis of nine points per interior wavelength.

5 Conclusions

This paper introduced a new methodology for solutions of two-dimensional problems of scattering by
penetrable inhomogeneous media with possibly discontinuous refractivity. The solver achieves high-order
convergence for smooth refractivities at nearly-linear computing cost, and, to the best the of our knowl-
edge, it is the first hybrid direct/iterative solver which yields second order convergence for discontinuous
refractivities, and for low- or high-frequencies alike. The method additionally enjoys very low dispersion
for either smooth or discontinuous refractive indexes, and it can natively and easily handle scatterers with
complicated geometric singularities, including e.g. as corners and cusps. Extensions of the proposed ap-
proach to electromagnetic and elastic wave scattering problems, as well as three-dimensional configurations
are envisioned.
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A Appendix: Fast and accurate computation of Fourier coefficients of
discontinuous functions

In order to enable fast and accurate evaluation of the Fourier coefficients of a given, possibly discontinuous,
function f in the interval [0, 2π], as needed in Section 3.1.1 (see Remark 2), we rely on the Fourier
continuation (FC) approach [3, 18]. For our description we assume that the function f has only one
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discontinuity, say, at x = a ∈ (0, 2π), but an arbitrary number of discontinuities may be treated in similar
fashion.

Let now f cj (j = 1, 2) denote dj-periodic Fourier continuation functions of the restrictions of the function
f to the intervals [0, a] and [a, 2π], respectively. We thus have

f cj (x) =
F∑

k=−F
cjke

2πikx
dj , (45)

where, following e.g. [3], the Fourier coefficients cjk are obtained in O(F logF ) operations by means of the
FC procedure and associated FFTs, and where the resulting functions f cj with j = 1, 2 approximate the
restrictions of the function f to the intervals [0, a] and [a, 2π], respectively, with high-order accuracy. Let

f` =
1

2π

∫ 2π

0
f(t)e−i`tdt =

1

2π

∫ a

0
f(t)e−i`tdt+

1

2π

∫ 2π

a
f(t)e−i`tdt (46)

denote the desired Fourier coefficient of f in the interval [0, 2π]. The two integrals on the right-hand
side of (46) can be computed with high accuracy by substituting f by f cj and exchanging integration and
summation. In the case of the first integral, for example, we have∫ a

0
f(t)e−i`tdt ≈

∫ a

0
f c1(t)e−i`tdt =

F∑
k=−F

c1
k

∫ a

0
e

2πk−`d1
d1

it
dt =

F∑
k=−F

c1
kb2πk−`d1 , (47)

where

b2πk−`d1 =

 d1
i(2πk−`d1)

(
e

2πk−`d1
d1

ia − 1

)
if (2πk − `d1) 6= 0,

a otherwise.

The summation in (47) is a discrete scaled convolution and can be obtained for all ` in O(F logF ) operations
by using FFT [41]. Thus highly-accurate values of the Fourier coefficients f` of the discontinuous function
f , for all `, −F ≤ ` ≤ F , can be produced in O(F logF ) operations.
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