


2

model to overcome these limitations (Fig 1):

• A distributed futures system for seamless injection of data

flow dependencies into arbitrary compute tasks to overlap

computation and communication;

• An object streaming interface that decouples event noti-

fications from bulk data transfer such that data producers

can unilaterally determine optimal transfer methods; and

• An ownership model that provides client-side mecha-

nisms for managing object lifetimes and preventing data

races in distributed task-based workflows.

Each pattern simplifies building sophisticated task-based

applications that are to execute across distributed or remote

compute resources (e.g., using FaaS or workflow systems).

For each, we discuss its requirements and the protocols used

to support it. Our reference implementations extend Proxy-

Store [15], our prior work, to leverage the existing low-level

proxy model within Python, a popular and pervasive language

for task-based distributed applications. The implementations

are available within ProxyStore v0.6.5 and later, available on

GitHub [21] and PyPI [22]. We evaluate our reference im-

plementation for each pattern using (1) synthetic benchmarks

across various FaaS and workflow systems and (2) our moti-

vating applications, for which we reduce workflow makespan

by 36% in 1000 Genomes, improve inference latency by

32% in DeepDriveMD, and optimize proxy lifetimes in MOF

Generation.

The rest of this paper is as follows: Sec II introduces our

motivating scientific applications; Sec III gives background

on our prior work, ProxyStore; Sec IV outlines the design and

implementation of each pattern; Sec V demonstrates synthetic

evaluations; Sec VI presents our experiences applying these

patterns to our motivating applications; Sec VII provides

context about related work; and Sec VIII summarizes our

contributions and future directions.

II. MOTIVATING APPLICATIONS

1000 Genomes: This bioinformatics pipeline [23] iden-

tifies mutational overlaps within the 2504 human genomes

sequenced by the 1000 Genomes Project [24]. It comprises five

stages: (1) fetch files, each containing all Single Nucleotide

Polymorphisms (SNPs) in a chromosome, chunk, and process

them in parallel to extract SNP variants by individual; (2)

merge individuals’ results of the prior stage; (3) score and

select SNP variants based on their phenotypic effect; (4)

compute overlap of selected SNP variants among pairs of

individuals and by chromosome; and (5) compute frequency of

overlapping variants. Executing scientific workflows in a FaaS

setting may be preferred when access to specialized hardware,

such as AI or quantum accelerators, or the ability to rapidly

scale up or down is required, but workflow execution on a FaaS

system poses challenges because FaaS systems rely on control

flow to determine when to submit tasks. From the application

perspective, however, the availability of dataÐthe data flowÐ

is the condition upon which tasks can be submitted. We use

the 1000 Genomes workflow as an example of the challenges

that arise when executing data flow oriented applications on

control flow-optimized systems.

DeepDriveMD: Molecular dynamics (MD) simulation acts

as a computational microscope [25] to enable the study of

complex biomolecular systems. However, many important phe-

nomena are difficult to sample using conventional MD, even

with powerful supercomputers [26]. DeepDriveMD [27], [28]

implements an emerging HPC paradigm in which machine

learning (ML) methods are used to track a simulated state

space and guide simulations toward a sampling objective. The

DeepDriveMD client submits discrete training, inference, and

simulation tasks and receives their results. This pattern causes

two challenges. First, all data must flow through the client

which limits performance at scale (e.g., data volume or task

frequency), so a mechanism is needed to alleviate data flow

burdens from the client when possible. Second, repeated tasks

perform redundant work. For example, each inference tasks

loads the latest ML model from disk, infers using the input

batch, and compiles the results which will later become the

input to a simulation task. This is inefficient because the same

model is loaded multiple times across tasks, tasks may execute

on different workers negating cache benefits, and every task

incurs non-trivial overheads for scheduling and execution.

Metal-Organic Framework (MOF) Generation: This

workflow [29] uses molecular diffusion models [30] to gen-

erate organic ligands, assemble MOF candidates, and employ

physics models to identify candidates best suited for storing

CO2. The workflow uses a central process, referred to as a

thinker [16], to determine which tasks to execute, and with

what parameters. A core computational challenge is ensuring

that the thinker has timely data, such as the latest diffusion

model results, when deciding the next task. Object proxies

have been used to improve thinker response time in similar

applications [16], [31], but knowing the lifetime of proxied

data is challenging in sophisticated workflows where the types

of tasks to be executed are not know ahead of time.

III. PROXYSTORE

In software design, a proxy is an object that functions as an

interface to another object [32]. A simple proxy will forward

operations on itself to the real or target object, but often a

proxy is used to provide extra functionality such as caching or

access control, in addition to forwarding operations [15]. For

example, distributed applications can use a proxy to invoke

methods on a remote object, and data-intensive applications

can use a virtual or lazy proxy which will perform just-in-

time resolution of large objects (i.e., load the object from a

remote location into local memory when first needed).

Lazy transparent object proxies can be used to communicate

objects efficiently in distributed applications [15]. Here, a

proxy refers to a target object stored in an arbitrary mediated

communication medium (e.g., an object store, database, file

system). The proxy forwards all operations on itself to the

target, but importantly is totally transparent in that the proxy

is an instance of the same type as the target. In Python, this

means that isinstance(p, type(t)) is true for a proxy p

and its target t. The proxy is lazy in that it performs just-in-

time resolution of the target. The target is not copied from

the mediated storage into local memory until an operation is







5

StreamProducer and StreamConsumer, that combine a mes-

sage stream broker for low-latency event metadata propagation

and a mediated communication channel for efficient bulk data

transfer. A StreamProducer is initialized with a Publisher

and a ProxyStore Store. The Publisher defines a protocol

for sending event messages to a stream. We provide shims

to many popular event streaming systems (Kafka [46], Redis

Pub/Sub and Queues [36], ZeroMQ [47]) which implement the

Publisher protocol. When a new object and optional metadata

are sent to the StreamProducer, (1) the object is put in the

store, (2) a new event containing the user provided metadata

and information about where the object is stored is created,

and (3) the event is published via the Publisher.

A StreamConsumer is initialized with a Subscriber, which,

like the Publisher, defines a protocol for receiving event mes-

sages from a stream (Listing 2). The StreamConsumer is an

iterable object, yielding proxies of objects in the stream until

the stream is closed. Calling next() on the StreamConsumer

waits for a new event metadata message via the Subscriber,

creates a proxy of the object using the event metadata, and

returns the proxy to the calling code. This process is efficient

because the bulk object data has not been read at this point;

rather, this will be delayed until the resolution of the proxy.

This model has many benefits: (1) communication mech-

anisms are abstracted from the stream consumer, (2) stream

objects are resolved only when actually needed (wherever the

proxy is resolved), (3) event message and bulk data transfer

are decoupled, allowing the application to better optimize both

forms of communication for the given application deployment

environment and object characteristics, and (4) it provides a

mechanism for implementing stateful actors in a workflow.

The ProxyStream interfaces support any combination of

single/multi producer/consumer that is supported by the as-

sociated Publisher and Subscriber implementations. The

StreamProducer supports mapping different stream topics to

Store instances, enabling further optimization of communica-

tion mechanisms; batching; and plugins for filtering, sampling,

and aggregation. The StreamConsumer support plugins for

filtering and sampling. ProxyStream is fault-tolerant provided

that the broker and communication channel are fault-tolerant.

ProxyStream can be integrated at the application or frame-

work level. Listing 2 depicts use of ProxyStream within a

Globus Compute application; we integrate ProxyStream within

the DeepDriveMD framework for the evaluation in Sec VI.

C. Ownership

A limitation of the proxy model is the need to manage

explicitly the lifetime of the associated target object. When a

proxy is shared with more than one process, it is challenging

to know when it is safe to free the target object. A ProxyStore

proxy acts like a C/C++ pointer or raw pointer in Rust;

thus, one process could prematurely free the target object,

causing what is equivalent to a null pointer exception in the

other process(es); delay freeing the object causing increased

memory usage; or forget to free the object causing a memory

leak. ProxyStore provides some guidance on using proxies

safely, but ultimately it is up to the programmer to use proxies

safelyÐa situation similar to C pointers.

To address this difficulty, we extend the proxy model with

two features not provided by ProxyStore: automatic deletion

of objects that have gone out of scope and safe support for

mutating objects. Inspired by Rust’s borrowing and ownership

semantics, our design works in distributed contexts; provides

different proxy types that can represent the owned, reference,

and mutable reference types; enforces ownership and borrow-

ing rules at runtime based on a proxy’s type; and performs

automatic dereferencing, coercion, and deletion.

Rust defines three ownership rules: (1) each value has an

owner, (2) there can only be one owner at a time, and (3)

a value is deleted when its owner goes out of scope [48]. A

reference allows a value to be borrowed without relinquishing

ownership. The reference rules are (1) at any given time, a

value can have either one mutable reference or any number

of immutable references and (2) references must always be

valid. The Rust compiler enforces these rules, and the language

provides data structures for runtime enforcement for more

complex scenarios that the compiler cannot reason about.

Applying these rules in a distributed application, such as a

computational workflow, can make memory management sig-

nificantly easier without the need to perform global reference

counting. Computations represented as directed acyclic graphs

(DAGs) are particularly well suited to this model. As objects

move from a parent DAG node to a child node, ownership can

either be transferred to the child or the child can be given a

borrowed reference. Thus, a node has full information about

what operations are safe on objects that it receives. Ownership

transfer means that the recipient node has full control over that

object; an immutable reference means that the node can only

read the object. A mutable reference means that the node has

sole access to modify the object, but the node cannot create

and share additional references: i.e., it is not allowed to pass

a reference to its own child node.

One challenge of this model is knowing when a reference to

an object goes out of scope, because this requires communica-

tion between the process that owns the object and the process

that has a reference. However, in a task-based workflow, it

is easy to reason that a reference passed to a task goes out

of scope when the task completes (assuming that the task is

well-behaved; an improperly behaved task would be one that,

for example, creates and stores a memory-to-memory copy

of the reference) and workflow systems already propagate

information about task completion.

A second challenge is representing the ownership or borrow-

ing of an object. The Rust compiler and dot operator abstracts

much of the nuance of dealing either with objects directly or

with their references [49]. In Python, for example, an object

T could be wrapped in a Owned[T], Ref[T], and RefMut[T],

in a similar manner to some Rust constructs. However, use

of these constructs would be cumbersome, as all referencing,

dereferencing, or coercion would have to be done manually.

The transparent object proxy is well-suited to solve these

object scope and reference representation problems. An object

that is proxied by a process becomes a shared object that is

stored on some global object store accessible by all processes

in the distributed environment (Listing 3). The target object

is serialized, put in the global store, and an OwnedProxy is



6

1 class Store(Generic[Connector ]):
2 def owned_proxy(obj , ...) -> OwnedProxy: ...
3

4 def into_owned(Proxy) -> OwnedProxy: ...
5 def borrow(OwnedProxy) -> RefProxy: ...
6 def mut_borrow(OwnedProxy) -> RefMutProxy: ...
7 def clone(OwnedProxy) -> OwnedProxy: ...
8 def update(OwnedProxy | RefMutProxy) -> None: ...

Listing 3. Proxy ownership model interfaces and functions. Functions are
preferred over methods on the associated proxy reference types to prevent
unintentionally clobbering a method of the same name on the target object.

returned. The OwnedProxy contains a reference to the global

object and, if the proxy has been resolved, a local copy of the

object upon which the proxy forwards operations to.

An OwnedProxy enforces the following rules [c.f. Rust’s

ownership rules]: (1) each object in the global store has an

associated OwnedProxy, (2) there can only be one OwnedProxy

for any object in the global store, and (3) when OwnedProxy

goes out of scope, the object is removed from the global store.

When invoking a task on an OwnedProxy (i.e., calling a

local or remote function), the caller can do one of four things:

• Yield ownership by passing the OwnedProxy to the task.

• Clone OwnedProxy and pass the cloned OwnedProxy to

the task. Cloning an OwnedProxy will create a new copy

of the object in the global store that will be owned by the

callee task while the caller still owns the original object.

• Make a RefProxy and pass the RefProxy to the task. The

caller still retains ownership, and the task can only read

the object via the RefProxy. The callee task can only

mutate its local copy, not the global copy. The caller’s

OwnedProxy, used to create the RefProxy, keeps track of

the references that it has created. Any number of tasks

can be invoked on a RefProxy at a time.

• Make a RefMutProxy and pass the RefMutProxy to the

task. The caller still retains ownership (essentially the

privilege to delete), but the callee task now has sole access

to modify the object in the global store. The caller’s

OwnedProxy marks that it has created a RefMutProxy

and thus cannot mutate itself until the callee task that

has the RefMutProxy completes. Only one task can be

invoked on a RefMutProxy at a time and a RefMutProxy

and RefProxy cannot exist at the same time.

The lifetimes of a RefProxy and RefMutProxy are strongly

coupled to those of the tasks they are passed to. Any violation

of these rules, such as an OwnedProxy that goes out of scope

or is deleted while a RefProxy or RefMutProxy exists, will

raise a runtime error. It is also possible to extend a static code

analysis tool to verify correctness prior to execution.

Execution engines typically use futures to encapsulate the

asynchronous execution of a task. Thus, we use callbacks on

the task result futures to indicate that the references associated

with a task have gone out of scope. The primary limitation of

this approach is that each execution engine has a different

syntax for submitting a task and getting back a future. Rather

than modify each engine, we provide a set of shims that

appropriately parse task inputs and construct a callback on

the task’s future that will propagate the necessary information

about references going out of scope. The StoreExecutor, an

interface provided by ProxyStore, wraps an execution engine

1 from proxystore.connectors import FooConnector
2 from proxystore.store import Store
3 from proxystore.store.lifetimes import LeaseLifetime
4

5 with Store('example ', FooConnector ()) as store:
6 lease = LeaseLifetime(store , expiry =10)
7 proxy = store.proxy('value ', lifetime=lease)
8 lease.extend (5)
9 time.sleep (20)

10 assert lease.done()
11 # Object associated with the proxy has been removed

Listing 4. Example usage of lifetimes when creating a proxy. A Lifetime
instance represents a physical or logical scope that will clean up all resources
(i.e., objects) that were associated with the lifetime when closed.

client (e.g., a Globus Compute, Dask, or Parsl client) and

automatically proxies task parameters and results based on

user-defined policies and manages references associated with

tasks [42]. The StoreExecutor is easy to use, but applications

requiring more fine-grain control can use the API in Listing 3.

The ownership model is not fault-tolerant when the client

crashes in a manner which prevents garbage collection, but the

model is compatible with fault-tolerant execution engines such

as those that automatically rerun tasks on failure. Since only

a single RefMutProxy can exist, the ownership model is not

optimal for applications with many concurrent writers to the

same object; a database, for example, may be more suitable.

So far, we have constricted ourselves to tasks (i.e., function

invocations) as the only region of code over which we can

define a lifetime; thus, all references to an object are equal to

the lifetime of the single task invoked on that reference. Yet

a workflow application may employ more complex lifetimes.

For example, a lifetime could be assigned to a set of tasks that

are a subgraph of the global DAG, and a programmer might

want to define references to global objects that are associated

with this custom lifetime. Using proxy references is a valid

solution but would require additional code to manage and map

references to the scopes contextual to the application.

We provide the Lifetime construct, an alternative to proxy

references, for managing object lifetimes in more complex sce-

narios. A lifetime, attached to one or more proxies upon proxy

creation, will clean up associated objects once the lifetime

has ended. We provide three Lifetime types and the API can

be extended to implement new types. The context-manager

lifetime enables mapping proxy lifetimes to discrete segments

of code, the time-leased lifetime will clean up associated

objects once the lease has expired and not been extended,

and the static lifetime persists objects for the remainder of the

program. Listing 4 provides a time-leased lifetime example.

V. EVALUATION

We conducted experiments on Polaris at the Argonne Lead-

ership Computing Facility. Polaris has 560 nodes intercon-

nected by an HPE Slingshot 11 network and a 100 PB

Lustre file system. Each node contains one AMD EPYC Milan

processor with 32 physical cores, 512 GB of DDR4 memory,

and four 40 GB NVIDIA A100 GPUs.

A. Task Pipelining with ProxyFutures

We first evaluate the effectiveness of ProxyFutures for

reducing workflow makespan via pipelining. We define a











11

reference counting by associating object lifetimes with tasks,

and our framework-agnostic approach means that object

scopes can be appropriately managed across complex, dis-

tributed applications.

VIII. CONCLUSION

The lazy object proxy is a powerful construct for building

distributed applications, providing benefits of both pass-by-

reference and pass-by-value while abstracting low-level com-

munication details from consumers. Here, we have applied

this construct to realize three powerful parallel programming

patterns: a compute framework agnostic distributed futures

system, a composable streaming interface for data-intensive

workloads, and an ownership model for object management

in distributed, task-based applications. We evaluated these

patterns through synthetic benchmarks and showcased three

classes of scientific applications that can benefit from the

proxy paradigm powered patterns. Specifically, we reduced the

1000 Genomes workflow makespan by 36%, reduced Deep-

DriveMD inference latency by 32%, and optimized memory

usage during MOF generation.

These patterns enable the development of robust, scal-

able, and portable applications. For example, ProxyFutures

empowers data flow dependencies between tasks executed

across different execution engines, such as when one engine

is used for local execution on a cluster and another for remote

execution on cloud resources. ProxyStream can support long-

running scientific campaigns by using cloud-hosted message

brokers for reliable metadata streaming and Globus Transfer

for federated, persistent bulk storage and efficient transfer.

The proxy ownership model provides automated wide-area

memory management for distributed and cross-site workflows.

In the future, we will investigate further programming patterns

that can be enhanced with the proxy paradigm. Our work

here serves as a reference for integrating these design patterns

into execution frameworks, such as Dask, Globus Compute,

or Parsl, and other high-performance computing toolkits. By

providing first-class support for these patterns directly within

commonly used frameworks, we expect to enable speedups in

many scientific applications.

ACKNOWLEDGMENTS

This research was supported in part by the National Science

Foundation under Grant 2004894 and the ExaWorks Project

and ExaLearn Co-design Center of the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the U.S.

Department of Energy Office of Science and the National

Nuclear Security Administration. We used resources provided

by the Argonne Leadership Computing Facility (ALCF), a

DOE Office of Science User Facility supported under Contract

DE-AC02-06CH11357, and the Chameleon testbed supported

by the National Science Foundation.

REFERENCES

[1] M. Rocklin, ªDask: Parallel computation with blocked algorithms and
task scheduling,º in 14th Python in Science Conference, vol. 130, 2015,
p. 136.

[2] ªAzure Functions,º https://azure.microsoft.com/en-us/services/
functions/. Accessed Jan 2023.

[3] ªGoogle Cloud Functions,º https://cloud.google.com/functions/. Ac-
cessed Jan 2023.

[4] ªAWS Lambda,º https://aws.amazon.com/lambda. Accessed Jan 2023.
[5] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,

L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, ªParsl: Pervasive parallel programming in Python,º in 28th

ACM International Symposium on High-Performance Parallel and

Distributed Computing, 2019. [Online]. Available: https://doi.org/10.
1145/3307681.3325400

[6] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, ªfuncX: A Federated Function Serving Fabric
for Science,º in 29th International Symposium on High-Performance

Parallel and Distributed Computing. ACM, 2020. [Online]. Available:
http://dx.doi.org/10.1145/3369583.3392683

[7] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny,
and K. Wenger, ªPegasus, a workflow management system for
science automation,º Future Generation Computer Systems, vol. 46,
pp. 17±35, 2015. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X14002015

[8] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, ªSwift: A language for distributed parallel scripting,º Parallel

Computing, vol. 37, no. 9, pp. 633±652, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819111000524

[9] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. F. ul Haq, M. I. ul Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas,
ªWindows Azure Storage: A highly available cloud storage service
with strong consistency,º in 23rd ACM Symposium on Operating

Systems Principles. ACM, 2011, p. 143±157. [Online]. Available:
https://doi.org/10.1145/2043556.2043571

[10] S. Ahuja, N. Carriero, and D. Gelernter, ªLinda and friends,º Computer,
vol. 19, no. 08, pp. 26±34, 1986.

[11] C. Docan, M. Parashar, and S. Klasky, ªDataSpaces: An interaction
and coordination framework for coupled simulation workflows,º
in 19th ACM International Symposium on High Performance

Distributed Computing. ACM, 2010, p. 25±36. [Online]. Available:
https://doi.org/10.1145/1851476.1851481

[12] M. F. Aktas, J. Diaz-Montes, I. Rodero, and M. Parashar, ªWA-
Dataspaces: Exploring the data staging abstractions for wide-area dis-
tributed scientific workflows,º in 46th International Conference on

Parallel Processing, 2017, pp. 251±260.
[13] J. Benet, ªIPFS - Content addressed, versioned, P2P file system,º 2014,

https://arxiv.org/abs/1407.3561.
[14] G. Biegel, V. Cahill, and M. Haahr, ªA dynamic proxy based architecture

to support distributed Java objects in a mobile environment,º in OTM

Conferences / Workshops, vol. 2519, 11 2002, pp. 809±826.
[15] J. G. Pauloski, V. Hayot-Sasson, L. Ward, N. Hudson, C. Sabino,

M. Baughman, K. Chard, and I. Foster, ªAccelerating Communications
in Federated Applications with Transparent Object Proxies,º in
Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, ser. SC ’23, New York,
NY, USA, 2023. [Online]. Available: https://doi.org/10.1145/3581784.
3607047

[16] L. Ward, G. Sivaraman, J. G. Pauloski, Y. Babuji, R. Chard,
N. Dandu, P. C. Redfern, R. S. Assary, K. Chard, L. A.
Curtiss, R. Thakur, and I. Foster, ªColmena: Scalable machine-
learning-based steering of ensemble simulations for high performance
computing,º in IEEE/ACM Workshop on Machine Learning in

High Performance Computing Environments. IEEE, 2021. [Online].
Available: http://dx.doi.org/10.1109/mlhpc54614.2021.00007

[17] H. Harb, S. N. Elliott, L. Ward, I. T. Foster, S. J. Klippenstein,
L. A. Curtiss, and R. S. Assary, ªUncovering novel liquid organic
hydrogen carriers: a systematic exploration of chemical compound
space using cheminformatics and quantum chemical methods,º
Digital Discovery, vol. 2, pp. 1813±1830, 2023. [Online]. Available:
http://dx.doi.org/10.1039/D3DD00123G

[18] N. Collier, J. M. Wozniak, A. Stevens, Y. Babuji, M. Binois, A. Fadikar,
A. WÈurth, K. Chard, and J. Ozik, ªDeveloping distributed high-
performance computing capabilities of an open science platform for
robust epidemic analysis,º 2023.



12

[19] G. Dharuman, L. Ward, H. Ma, P. V. Setty, O. Gokdemir, S. Foreman,
M. Emani, K. Hippe, A. Brace, K. Keipert, T. Gibbs, I. Foster,
A. Anandkumar, V. Vishwanath, and A. Ramanathan, ªProtein
generation via genome-scale language models with bio-physical
scoring,º in Proceedings of the SC ’23 Workshops of The International

Conference on High Performance Computing, Network, Storage,

and Analysis, ser. SC-W ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 95±101. [Online]. Available:
https://doi.org/10.1145/3624062.3626087

[20] J. G. Pauloski, V. Hayot-Sasson, M. Gonthier, N. Hudson, H. Pan,
S. Zhou, I. Foster, and K. Chard, ªTaPS: A Performance Evaluation
Suite for Task-based Execution Frameworks,º in IEEE 20th International

Conference on e-Science. New York, NY, USA: IEEE, 2024, pp. 1±10.
[21] ªProxyStore GitHub,º https://github.com/proxystore. Accessed July

2024.
[22] ªProxyStore PyPI,º https://pypi.org/project/proxystore/. Accessed July

2024.
[23] ª1000 Genomes Workflow,º https://github.com/pegasus-isi/

1000genome-workflow/. Accessed Mar. 2024.
[24] ª1000 Genomes Project,º https://www.internationalgenome.org/

1000-genomes-summary/. Accessed Mar. 2024.
[25] R. O. Dror, R. M. Dirks, J. Grossman, H. Xu, and D. E. Shaw,

ªBiomolecular simulation: A computational microscope for molecular
biology,º Annual review of biophysics, vol. 41, pp. 429±452, 2012.

[26] A. Hospital, J. R. Goñi, M. Orozco, and J. L. GelpÂı, ªMolecular dynam-
ics simulations: Advances and applications,º Advances and Applications

in Bioinformatics and Chemistry, pp. 37±47, 2015.
[27] H. Lee, M. Turilli, S. Jha, D. Bhowmik, H. Ma, and A. Ramanathan,

ªDeepDriveMD: Deep-learning driven adaptive molecular simulations
for protein folding,º in IEEE/ACM Third Workshop on Deep

Learning on Supercomputers. Los Alamitos, CA, USA: IEEE
Computer Society, nov 2019, pp. 12±19. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/DLS49591.2019.00007

[28] A. Brace, I. Yakushin, H. Ma, A. Trifan, T. Munson, I. Foster,
A. Ramanathan, H. Lee, M. Turilli, and S. Jha, ªCoupling streaming
AI and HPC ensembles to achieve 100±1000× faster biomolecular
simulations,º in 2022 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2022, pp. 806±816. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPS53621.2022.00083

[29] ªMOF Generation on HPC,º https://github.com/globus-labs/
mof-generation-at-scale/. Accessed Mar. 2024.

[30] H. Park, X. Yan, R. Zhu, E. A. Huerta, S. Chaudhuri, D. Cooper,
I. Foster, and E. Tajkhorshid, ªA generative artificial intelligence
framework based on a molecular diffusion model for the design
of metal-organic frameworks for carbon capture,º Communications

Chemistry, vol. 7, no. 1, Feb. 2024. [Online]. Available: http:
//dx.doi.org/10.1038/s42004-023-01090-2

[31] L. Ward, J. G. Pauloski, V. Hayot-Sasson, R. Chard, Y. Babuji, G. Sivara-
man, S. Choudhury, K. Chard, R. Thakur, and I. Foster, ªCloud services
enable efficient AI-guided simulation workflows across heterogeneous
resources,º in Heterogeneity in Computing Workshop. IEEE Computer
Society, 2023, https://arxiv.org/abs/2303.08803.

[32] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software, 1st ed.
Addison-Wesley Professional, 1994. [Online]. Available: http://www.
amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/
0201633612/ref=ntt at ep dpi 1

[33] M. Zvyagin, A. Brace, K. Hippe, Y. Deng, B. Zhang, C. O. Bohorquez,
A. Clyde, B. Kale, D. Perez-Rivera, H. Ma et al., ªGenSLMs: Genome-
scale language models reveal SARS-CoV-2 evolutionary dynamics,º The

International Journal of High Performance Computing Applications,
vol. 37, no. 6, pp. 683±705, 2023.

[34] A. Kamatar, M. Sakarvadia, V. Hayot-Sasson, K. Chard, and I. Foster,
ªLazy Python dependency management in large-scale systems,º in IEEE

19th International Conference on e-Science. IEEE, 2023, pp. 1±10.
[35] M. Copik, R. BÈohringer, A. Calotoiu, and T. Hoefler, ªFMI: Fast and

Cheap Message Passing for Serverless Functions,º Scalable Parallel
Computing Laboratory, ETH Zurich, Tech. Rep., 2022.

[36] ªRedis,º 2023, https://redis.io/. Accessed Mar 2023.
[37] Snap Inc., ªKeyDB: A database built for scale,º https://github.com/

Snapchat/KeyDB. Accessed Mar 2023.
[38] I. Foster, ªGlobus Online: Accelerating and democratizing science

through cloud-based services,º IEEE Internet Computing, vol. 15, no. 3,
pp. 70±73, 2011.

[39] K. Chard, S. Tuecke, and I. Foster, ªEfficient and secure transfer,
synchronization, and sharing of big data,º IEEE Cloud Computing,
vol. 1, no. 3, pp. 46±55, 2014.

[40] ªUCX-Py,º https://ucx-py.readthedocs.io/en/latest/. Accessed Mar 2023.
[41] ªPy-Margo,º https://github.com/mochi-hpc/py-mochi-margo. Accessed

Mar 2023.
[42] J. G. Pauloski, K. Rydzy, V. Hayot-Sasson, I. Foster, and K. Chard,

ªAccelerating Python Applications with Dask and ProxyStore,º 2024.
[Online]. Available: https://arxiv.org/abs/2410.12092

[43] ªC++ std::futures,º https://en.cppreference.com/w/cpp/thread/future. Ac-
cessed Oct 2024.

[44] ªPython Concurrent Futures,º https://docs.python.org/3/library/
concurrent.futures.html. Accessed Oct 2024.

[45] S. Wang, E. Liang, E. Oakes, B. Hindman, F. S. Luan, A. Cheng, and
I. Stoica, ªOwnership: A distributed futures system for Fine-Grained
tasks,º in 18th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 21). USENIX Association, Apr. 2021,
pp. 671±686. [Online]. Available: https://www.usenix.org/conference/
nsdi21/presentation/cheng

[46] ªApache Kafka,º 2024, https://kafka.apache.org/. Accessed Feb 2024.
[47] P. Hintjens, ZeroMQ: Messaging for Many Applications. O’Reilly

Media, Inc., 2013.
[48] ªThe Rust Language,º https://rust-lang.org. Accessed Feb 2024.
[49] ªRust Documentation: The Dot Operator,º https://doc.rust-lang.org/

nomicon/dot-operator.html. Accessed Feb 2024.
[50] A. Bauer, H. Pan, R. Chard, Y. Babuji, J. Bryan, D. Tiwari, I. Foster,

and K. Chard, ªThe Globus Compute Dataset: An open function-
as-a-service dataset from the edge to the cloud,º Future Generation

Computer Systems, vol. 153, pp. 558±574, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X23004703

[51] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta,
G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta,
K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf,
K. Wu, and S. Klasky, ªADIOS 2: The Adaptable Input Output
System. A framework for high-performance data management,º
SoftwareX, vol. 12, p. 100561, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352711019302560

[52] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, ªLessons learned
from the Chameleon testbed,º in USENIX Annual Technical Conference.
USENIX Association, July 2020.

[53] A. Brace, L. Ward, H. Ma, and A. Ramanathan,
ªDeepDriveMD,º Accessed Mar. 2024. [Online]. Available:
https://github.com/ramanathanlab/deepdrivemd

[54] H. C. Baker and C. Hewitt, ªThe incremental garbage collection
of processes,º in Proceedings of the 1977 Symposium on Artificial

Intelligence and Programming Languages. New York, NY, USA:
Association for Computing Machinery, 1977, p. 55±59. [Online].
Available: https://doi.org/10.1145/800228.806932

[55] D. P. Friedman and D. Wise, ªAspects of applicative programming for
parallel processing,º IEEE Transactions on Computers, vol. C-27, no. 4,
pp. 289±296, 1978.

[56] K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and
T. Wrigstad, ªGodot: All the benefits of implicit and explicit futures,º
in 33rd European Conference on Object-Oriented Programming

(ECOOP 2019), ser. Leibniz International Proceedings in Informatics
(LIPIcs), A. F. Donaldson, Ed., vol. 134. Dagstuhl, Germany:
Schloss Dagstuhl ± Leibniz-Zentrum fÈur Informatik, 2019, pp. 2:1±
2:28. [Online]. Available: https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.ECOOP.2019.2

[57] K. L. Clark and S. Gregory, ªA relational language for parallel pro-
gramming,º in Conference on Functional Programming Languages and

Computer Architecture, 1981, pp. 171±178.
[58] K. Clark and S. Gregory, ªParlog: Parallel programming in logic,º ACM

Transactions on Programming Languages and Systems, vol. 8, no. 1,
pp. 1±49, 1986.

[59] I. Foster and S. Taylor, Strand: New concepts in parallel programming.
Prentice-Hall, Inc., 1989.

[60] I. Foster, R. Olson, and S. Tuecke, ªProductive parallel programming:
The PCN approach,º Scientific Programming, vol. 1, no. 1, pp. 51±66,
1992.

[61] K. M. Chandy and C. Kesselman, ªCompositional C++: Compositional
parallel programming,º in International Workshop on Languages and

Compilers for Parallel Computing. Springer, 1992, pp. 124±144.
[62] ªPyTorch RPC,º https://pytorch.org/docs/2.2/rpc.html#torch.distributed.

rpc.rpc async. Accessed Feb 2024.



13

[63] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, ªRay: a
distributed framework for emerging AI applications,º in Proceedings

of the 13th USENIX Conference on Operating Systems Design and

Implementation, ser. OSDI’18. USA: USENIX Association, 2018, p.
561±577.

[64] ªRabbitMQ,º 2024, https://rabbitmq.com/. Accessed Feb 2024.
[65] T. Bicer, D. Gursoy, R. Kettimuthu, I. T. Foster, B. Ren, V. De Andrede,

and F. De Carlo, ªReal-time data analysis and autonomous steering of
synchrotron light source experiments,º in 2017 IEEE 13th International

Conference on e-Science (e-Science), 2017, pp. 59±68.
[66] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,

R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, ªSoftware as a service for data scientists,º Communications

of the ACM, vol. 55, no. 2, p. 81±88, feb 2012. [Online]. Available:
https://doi.org/10.1145/2076450.2076468

[67] R. Filguiera, I. Klampanos, A. Krause, M. David, A. Moreno, and
M. Atkinson, ªdispel4py: A Python framework for data-intensive sci-
entific computing,º in 2014 International Workshop on Data Intensive

Scalable Computing Systems, 2014, pp. 9±16.
[68] L. Liang, R. Filgueira, Y. Yan, and T. Heinis, ªScalable adaptive

optimizations for stream-based workflows in multi-HPC-clusters and
cloud infrastructures,º Future Generation Computer Systems, vol. 128,
pp. 102±116, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X21003824

[69] Message Passing Forum, ªMPI: A message-passing interface standard,º
University of Tennessee, USA, Tech. Rep., 1994.

[70] C. Herath and B. Plale, ªStreamflow programming model for data
streaming in scientific workflows,º in 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, 2010, pp. 302±311.
[71] J. Y. Choi, T. Kurc, J. Logan, M. Wolf, E. Suchyta, J. Kress, D. Pugmire,

N. Podhorszki, E.-K. Byun, M. Ainsworth, M. Parashar, and S. Klasky,

ªStream processing for near real-time scientific data analysis,º in 2016

New York Scientific Data Summit (NYSDS), 2016, pp. 1±8.
[72] J. Chung, W. Zacherek, A. Wisniewski, Z. Liu, T. Bicer, R. Kettimuthu,

and I. Foster, ªSciStream: Architecture and toolkit for data streaming
between federated science instruments,º in 31st International Symposium

on High-Performance Parallel and Distributed Computing. ACM,
2022, p. 185±198. [Online]. Available: https://doi.org/10.1145/3502181.
3531475

[73] A. R. Martinelli, M. Torquati, M. Aldinucci, I. Colonnelli, and B. Can-
talupo, ªCAPIO: a Middleware for Transparent I/O Streaming in Data-
Intensive Workflows,º in IEEE International Conference on High Per-

formance Computing, Data, and Analytics (HiPC). IEEE, 2023.
[74] C.-W. Lermen and D. Maurer, ªA protocol for distributed reference

counting,º in Proceedings of the 1986 ACM Conference on LISP

and Functional Programming, ser. LFP ’86. New York, NY, USA:
Association for Computing Machinery, 1986, p. 343±350. [Online].
Available: https://doi.org/10.1145/319838.319875

[75] D. I. Bevan, ªDistributed garbage collection using reference counting,º
in PARLE Parallel Architectures and Languages Europe: Volume II:

Parallel Languages Eindhoven, The Netherlands, June 15±19, 1987

Proceedings 1. Springer, 1987, pp. 176±187.
[76] J. M. Piquer, ªIndirect reference counting: A distributed garbage col-

lection algorithm,º in Parallel Architectures and Languages Europe:

Volume I: Parallel Architectures and Algorithms Eindhoven, The Nether-

lands, June 10±13, 1991 Proceedings. Springer, 1991, pp. 150±165.
[77] L. Moreau and J. Duprat, ªA construction of distributed reference

counting,º Acta Informatica, vol. 37, pp. 563±595, 2001.
[78] C. Gray and D. Cheriton, ªLeases: An efficient fault-tolerant mechanism

for distributed file cache consistency,º in 12th ACM Symposium on

Operating Systems Principles, ser. SOSP ’89. New York, NY, USA:
Association for Computing Machinery, 1989, p. 202±210. [Online].
Available: https://doi.org/10.1145/74850.74870


	Introduction
	Motivating Applications
	ProxyStore
	Proxy Patterns
	Distributed Futures
	Object Streaming
	Ownership

	Evaluation
	Task Pipelining with ProxyFutures
	Scalable Stream Processing
	Memory Management

	Applications
	Related Work
	Conclusion
	References

