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Abstract—Workflow and serverless frameworks have empow-
ered new approaches to distributed application design by ab-
stracting compute resources. However, their typically limited or
one-size-fits-all support for advanced data flow patterns leaves
optimization to the application programmer—optimization that
becomes more difficult as data become larger. The transparent
object proxy, which provides wide-area references that can
resolve to data regardless of location, has been demonstrated as
an effective low-level building block in such situations. Here we
propose three high-level proxy-based programming patterns—
distributed futures, streaming, and ownership—that make the
power of the proxy pattern usable for more complex and dynamic
distributed program structures. We motivate these patterns via
careful review of application requirements and describe imple-
mentations of each pattern. We evaluate our implementations
through a suite of benchmarks and by applying them in three
meaningful scientific applications, in which we demonstrate
substantial improvements in runtime, throughput, and memory
usage.

Index Terms—Distributed Computing, Futures, Streaming,
Memory Management, Open-source Software

I. INTRODUCTION

ASK-BASED programming paradigms, such as function-

as-a-service (FaaS) and workflows, have emerged as vital
methods for achieving computational flexibility and scalability.
Applications are written as compositions of many distinct
components, referred to as tasks, and FaaS platforms and
workflow systems, collectively referred to as execution en-
gines, abstract the complexities of executing tasks in parallel,
whether across personal, cloud, edge, and/or high-performance
computing (HPC) systems [1]-[6]. Such execution engines
have enabled a wide variety of innovative applications.

Yet as the scale and ambition of task-parallel applications
grows, they increasingly encounter difficulties due to the use of
shared storage for the exchange of intermediate data among
tasks—an approach commonly employed both by workflow
systems (e.g., Parsl [5], Pegasus [7], Swift [8]) and cloud-
hosted FaaS systems (e.g., AWS Lambda [4], Azure Func-
tions [9], Google Cloud Function [3]). Such uses of shared
storage can fail or become prohibitively expensive as the
number of tasks, the geographic distribution of tasks, the
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Fig. 1. Overview of the three proxy-based data flow patterns we design.

quantities of data exchanged, and the required speed of data
exchange grow.

Many researchers have investigated alternative mechanisms
for distributed and wide-area data management that circumvent
these limitations of shared storage. For example, Linda’s tuple
space model provides unified access to a shared distributed
memory space [10], DataSpaces provides a similar model
for large-scale applications [11], [12], and peer-to-peer sys-
tems like the InterPlanetary File System provide decentral-
ized content-addressed file sharing [13]. Another approach to
simplifying data sharing is the object proxy paradigm, which
provides transparent access and management for shared objects
in distributed settings. This mechanism, long used with Java’s
Remote Method Invocation (RMI) [14], is also supported in
Python via the ProxyStore system [15]. ProxyStore’s transpar-
ent object proxies provide lightweight, wide-area references to
objects in arbitrary data stores—references that can be com-
municated cheaply and resolved just-in-time via performant
bulk transfer methods in a manner that is transparent to the
consumer code. Recent work has shown how by decoupling
data flow complexities from control flow-optimized execution
engines [16]—[20], the object proxy paradigm can simplify
implementations of dynamic application structures such as ML
model training and inference.

Yet the object proxy paradigm remains a low-level abstrac-
tion that can be hard to use in practice due to the complexities
inherent in managing many references to remote objects. Thus,
we ask: Can we identify common high-level patterns that
build on the proxy model to accelerate and simplify devel-
opment of advanced applications? To this end, we review in
this paper three computational science applications previously
developed for workflow execution engines (/000 Genomes,
DeepDriveMD, MOF Generation), identify limitations in the
data flow patterns supported by those execution engines, and
propose three new programming patterns that extend the proxy



model to overcome these limitations (Fig 1):

o A distributed futures system for seamless injection of data
flow dependencies into arbitrary compute tasks to overlap
computation and communication;

o An object streaming interface that decouples event noti-
fications from bulk data transfer such that data producers
can unilaterally determine optimal transfer methods; and

e An ownership model that provides client-side mecha-
nisms for managing object lifetimes and preventing data
races in distributed task-based workflows.

Each pattern simplifies building sophisticated task-based
applications that are to execute across distributed or remote
compute resources (e.g., using FaaS or workflow systems).
For each, we discuss its requirements and the protocols used
to support it. Our reference implementations extend Proxy-
Store [15], our prior work, to leverage the existing low-level
proxy model within Python, a popular and pervasive language
for task-based distributed applications. The implementations
are available within ProxyStore v0.6.5 and later, available on
GitHub [21] and PyPI [22]. We evaluate our reference im-
plementation for each pattern using (1) synthetic benchmarks
across various FaaS and workflow systems and (2) our moti-
vating applications, for which we reduce workflow makespan
by 36% in 1000 Genomes, improve inference latency by
32% in DeepDriveMD, and optimize proxy lifetimes in MOF
Generation.

The rest of this paper is as follows: Sec II introduces our
motivating scientific applications; Sec III gives background
on our prior work, ProxyStore; Sec IV outlines the design and
implementation of each pattern; Sec V demonstrates synthetic
evaluations; Sec VI presents our experiences applying these
patterns to our motivating applications; Sec VII provides
context about related work; and Sec VIII summarizes our
contributions and future directions.

II. MOTIVATING APPLICATIONS

1000 Genomes: This bioinformatics pipeline [23] iden-
tifies mutational overlaps within the 2504 human genomes
sequenced by the 1000 Genomes Project [24]. It comprises five
stages: (1) fetch files, each containing all Single Nucleotide
Polymorphisms (SNPs) in a chromosome, chunk, and process
them in parallel to extract SNP variants by individual; (2)
merge individuals® results of the prior stage; (3) score and
select SNP variants based on their phenotypic effect; (4)
compute overlap of selected SNP variants among pairs of
individuals and by chromosome; and (5) compute frequency of
overlapping variants. Executing scientific workflows in a FaaS
setting may be preferred when access to specialized hardware,
such as Al or quantum accelerators, or the ability to rapidly
scale up or down is required, but workflow execution on a FaaS
system poses challenges because FaaS systems rely on control
flow to determine when to submit tasks. From the application
perspective, however, the availability of data—the data flow—
is the condition upon which tasks can be submitted. We use
the 1000 Genomes workflow as an example of the challenges
that arise when executing data flow oriented applications on
control flow-optimized systems.

DeepDriveMD: Molecular dynamics (MD) simulation acts
as a computational microscope [25] to enable the study of
complex biomolecular systems. However, many important phe-
nomena are difficult to sample using conventional MD, even
with powerful supercomputers [26]. DeepDriveMD [27], [28]
implements an emerging HPC paradigm in which machine
learning (ML) methods are used to track a simulated state
space and guide simulations toward a sampling objective. The
DeepDriveMD client submits discrete training, inference, and
simulation tasks and receives their results. This pattern causes
two challenges. First, all data must flow through the client
which limits performance at scale (e.g., data volume or task
frequency), so a mechanism is needed to alleviate data flow
burdens from the client when possible. Second, repeated tasks
perform redundant work. For example, each inference tasks
loads the latest ML model from disk, infers using the input
batch, and compiles the results which will later become the
input to a simulation task. This is inefficient because the same
model is loaded multiple times across tasks, tasks may execute
on different workers negating cache benefits, and every task
incurs non-trivial overheads for scheduling and execution.

Metal-Organic Framework (MOF) Generation: This
workflow [29] uses molecular diffusion models [30] to gen-
erate organic ligands, assemble MOF candidates, and employ
physics models to identify candidates best suited for storing
CO,. The workflow uses a central process, referred to as a
thinker [16], to determine which tasks to execute, and with
what parameters. A core computational challenge is ensuring
that the thinker has timely data, such as the latest diffusion
model results, when deciding the next task. Object proxies
have been used to improve thinker response time in similar
applications [16], [31], but knowing the lifetime of proxied
data is challenging in sophisticated workflows where the types
of tasks to be executed are not know ahead of time.

III. PROXYSTORE

In software design, a proxy is an object that functions as an
interface to another object [32]. A simple proxy will forward
operations on itself to the real or farget object, but often a
proxy is used to provide extra functionality such as caching or
access control, in addition to forwarding operations [15]. For
example, distributed applications can use a proxy to invoke
methods on a remote object, and data-intensive applications
can use a virtual or lazy proxy which will perform just-in-
time resolution of large objects (i.e., load the object from a
remote location into local memory when first needed).

Lazy transparent object proxies can be used to communicate
objects efficiently in distributed applications [15]. Here, a
proxy refers to a target object stored in an arbitrary mediated
communication medium (e.g., an object store, database, file
system). The proxy forwards all operations on itself to the
target, but importantly is totally transparent in that the proxy
is an instance of the same type as the target. In Python, this
means that isinstance(p, type(t)) is true for a proxy p
and its target 7. The proxy is lazy in that it performs just-in-
time resolution of the target. The target is not copied from
the mediated storage into local memory until an operation is
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Fig. 2. Overview of the ProxyStore interface and abstraction stack with our
contributions included in the shaded boxes.

invoked on the proxy. This proxy paradigm has both pass-by-
reference and pass-by-value semantics; unused copies of the
target object are not made when the proxy is passed between
processes but the actual consumer of the proxy is given a copy.

The benefits of moving data via proxies are numerous: pass-
by-reference reduces transfer overheads, no external informa-
tion is required to resolve a proxy, shims or wrapper functions
are eliminated, just-in-time resolution amortizes communica-
tion costs and avoids costs associated with unused objects,
and proxies enable automatic access control. As such, this
paradigm has been used to build a diverse suite of robust and
scalable scientific applications [15]-[19], [31], [33], [34].

ProxyStore [15] implements this proxy paradigm which we
use as the basis for our patterns’ reference implementations.
ProxyStore defines the factory, connector, and store con-
structs. The factory is a callable object that returns the target
object when invoked. ProxyStore creates a unique factory for
each target object containing the metadata and logic necessary
to retrieve the target from a remote location. This factory is
used to initialize a proxy, and a proxy is resolved once it has
invoked its factory to retrieve and cache the target locally.

The connector is a protocol that defines the low-level
interface to a mediated communication channel. A mediated
channel is one where the communication between a producer
and consumer is indirect, such as via a storage system [35].
This indirection is important because the process that creates a
proxy and the process that resolves a proxy may not be active
at the same time, in which case they could not communicate
via direct mechanisms. ProxyStore provides many connectors,
including interfaces to external mediated channels such as
shared file systems, object stores (Redis [36] and KeyDB [37]),
and peer-to-peer transfer systems (Globus Transfer [38], [39]
and ProxyStore Endpoints [15]) and bespoke mediated chan-
nels that can leverage high-performance networks through the
UCX [40] and Margo [41] libraries.

The high-level store interface, initialized with a connector,
is used to create proxies of objects. A proxy p can be created
from a target ¢ by calling Store.proxy(t). This method
(1) serializes t using the default ProxyStore or user-provided
serializer [42], (2) puts the serialized ¢ in the mediated channel
via the connector, (3) creates a factory with the appropriate
metadata about ¢ and the store/connector used, (4) initializes a
proxy with the factory, and (5) returns the proxy. This process
incurs some overhead but is trivial for larger objects. Prior
work [15], [16] found the performance benefits of proxies to
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Fig. 3. Four tasks executed in a sequential (above) or pipelined (below)
fashion. Each task produces data needed by the following task. The grey
region at the start of each task represents startup overhead before the input
data can be used. By enabling a successor task to start before its predecessor
has finished, futures enable overlapping of startup overhead with computation,
a form of pipelining.

from dask.distributed import Client

from proxystore.connectors.foo import FooConnector
from proxystore.store import Store

from proxystore.store.future import Future

def producer (future: Future[str]) -> None:
future.set_result('value')

def consumer (data:
assert data is

Proxy[strl) -> None:
'value'

with Store('example', FooConnector()) as store:
client = Client(...)
future: Futurel[str] = store.future()

t1
t2

client.submit(producer,
client.submit (consumer,

future)
future.proxy())

tl.result(), t2.result()

Listing 1. Example usage of the ProxyFuture interface within tasks executed
by Dask. A proxy created from a Future will block implicitly on the result of
the future when needed. This interface abstracts the low-level communication
away from the functions which set the result or consume the proxy.

outweigh proxy creation and resolution overhead for objects
larger than ~10 kB; the exact threshold depends on many
factors (e.g., connector choice, execution engine).

IV. PROXY PATTERNS

We describe the design of each of the three advanced pro-
gramming patterns that build on the aforementioned distributed
object proxy base. We discuss the details of our reference
implementations that extend ProxyStore, and Fig 2 describes
how these patterns fit into the existing ProxyStore stack. These
patterns are not mutually exclusive, but we discuss each in
isolation for clarity.

A. Distributed Futures

A future represents a value that will eventually be available;
the holder of a future can block on it until the value is resolved.
Futures simplify writing non-blocking compute (e.g., remote
procedure calls, database queries, or FaaS invocations) and I/O
(e.g., network requests or file system reads) operations. Execu-
tion engines use futures to represent eventual task results, and
this is valuable for representing long running remote execu-
tion or assembling applications with asynchronous callbacks.
However, the distributed futures provided by execution engines
have three key limitations: (1) these futures perform control
and data synchronization so data flow cannot be optimized
independent of control flow, such as to pipeline task execution
as in Fig 3; (2) the transfer mechanisms used by the future
cannot be optimized based on the type or location of data;
and (3) futures produced by execution engines are only usable




within the context of that execution engine (e.g., a future from
one engine cannot be sent as input to another).

We design a distributed futures system called ProxyFutures
that (1) supports explicit and implicit usage, arbitrary exe-
cution engines, arbitrary distributed memory backends, and
seamless injection of data flow dependencies, and (2) ad-
dresses a limitation of ProxyStore that a proxy cannot be
created before its target object exists. In ProxyFutures, a future
f is created for an eventual value x, and f can be used to create
any number of proxies py.

Consider an application with a main process M, a data
producing process P, and a data consuming process C. M
dispatches two tasks: Tp to P and T¢ to C. Tp is to produce a
value z to be consumed by T-; thus, T has a data dependency
on Tp. M can create a future f and associated proxy py,
and pass f and p; to Tp and T, respectively. When T
first resolves py, it blocks until Tp has set the result of f.
Importantly, T> can be started before 7' has finished or even
started. M, when creating f, can choose the communication
method to be used based on where P and C' are located and
what communication methods are available between them;
thus, the detailed communication semantics are abstracted
from Tp and T¢. The implicit nature of p, also means that
the code for T¢ can be invoked either on a value directly or
on a proxy of the value. This equivalence simplifies code and
testing and means that M can inject data flow dependencies
via a future into arbitrary third-party functions that expect to
receive data directly.

We implement this behavior by extending ProxyStore’s
Store interface to expose a future() method that returns a
Future object. The Future class exposes two main methods:
set result(obj: T), which sets the result of the future to
an object of type T and proxy(), which returns a Proxy[T].
When a proxy created via Future.proxy() is resolved, the
proxy blocks until the target value has been set via a call
to Future.set result(), as shown in Listing 1. Use of
ProxyFutures does not affect when a successor task starts;
scheduling is still managed by the execution engine and/or user
application. ProxyFutures are best integrated at the application
level so that developers can optimize task execution per their
application requirements and to express more complex data
dependencies than typically supported by execution engines.

Internally, communication between a Future and any child
proxy(s) is handled via the Store used to create the Future.
Thus, a future and associated proxies can be serialized and
sent to arbitrary processes on arbitrary machines. In con-
trast, many standard-library future implementations use non-
serializable async, thread, and inter-process synchronization
mechanisms (e.g., std: :future in C++ [43], concurrent and
async futures in Python [44]), while RPC-based futures are
only resolvable within the RPC framework (Dask futures [1]
or Ray ObjectRef's [45]). The self-contained properties of the
proxy mean that all logic for communication and resolution
are embedded within the future and proxy; the future creator
chooses communication methods on behalf of the process(es)
which might set or consume the result of the future.
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Fig. 4. The StreamProducer abstracts low-level communication details from
the StreamConsumer and transparently decouples metadata from bulk data
transfer. Yielding proxies, rather than objects directly, in the StreamConsumer
enables just-in-time resolution and pass-by-reference optimizations.
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from globus_compute_sdk import Executor
from proxystore.stream import (StreamProducer,
StreamConsumer , KafkaPublisher, KafkaSubscriber)

def producer () -> None:
store = {'topic': Store(..., FooConnector(...))}
publisher = KafkaPublisher(...)

with StreamProducer (publisher,
for item in ...:
producer.send('topic', item)

store) as producer:

def consumer () -> None:
subscriber = KafkaSubscriber('topic', ...)

with StreamConsumer (subscriber) as consumer:
for item in consumer:
assert isinstance(item, Proxy)
with Executor('<Endpoint UUID>') as client:
t1 = client.submit(producer)
t2 = client.submit(consumer)

tl.result(), t2.result()

Listing 2. Example using the ProxyStream interfaces to stream data between
two tasks executed remotely using Globus Compute. A Kafka broker is used
for metadata and an arbitrary FooConnector for bulk data transfer.

B. Object Streaming

High-performance stream processing applications dispatch
remote compute tasks on objects consumed from a stream,
but task dispatch can quickly become a bottleneck with high
throughput streams [27], [28], [33]. Consider the application
in Fig 4, where process A is a data generator that streams
chunks of data (i.e., arbitrary Python objects) to a dispatcher
process B, which for each data chunk dispatches a compute
task on a remote process C. Note that while the dispatcher
consumes from the stream, it does not need the actual chunk
of data; rather, it only needs to know that a chunk is ready
(and potentially have access to user-provided metadata) in
order to dispatch the task that will actually consume the
chunk. We design a system called ProxyStream to enable
scalable applications of this pattern. At its core, ProxyS-
tream uses a stream of proxies, rather than data chunks.
Bulk data are only transmitted between the data generator
and the process/node computing on the proxy of the chunk,
bypassing the intermediate dispatching process. ProxyStream
optimizes for both metadata and bulk data transfer, has broad
execution engine compatibility, provides a self-describing data
format, and supports various communication modules to take
advantage of high-performance networking stacks.

ProxyStream provides two high-level constructs, the




StreamProducer and StreamConsumer, that combine a mes-
sage stream broker for low-latency event metadata propagation
and a mediated communication channel for efficient bulk data
transfer. A StreamProducer is initialized with a Publisher
and a ProxyStore Store. The Publisher defines a protocol
for sending event messages to a stream. We provide shims
to many popular event streaming systems (Kafka [46], Redis
Pub/Sub and Queues [36], ZeroMQ [47]) which implement the
Publisher protocol. When a new object and optional metadata
are sent to the StreamProducer, (1) the object is put in the
store, (2) a new event containing the user provided metadata
and information about where the object is stored is created,
and (3) the event is published via the Publisher.

A StreamConsumer is initialized with a Subscriber, which,
like the Publisher, defines a protocol for receiving event mes-
sages from a stream (Listing 2). The StreamConsumer is an
iterable object, yielding proxies of objects in the stream until
the stream is closed. Calling next() on the StreamConsumer
waits for a new event metadata message via the Subscriber,
creates a proxy of the object using the event metadata, and
returns the proxy to the calling code. This process is efficient
because the bulk object data has not been read at this point;
rather, this will be delayed until the resolution of the proxy.

This model has many benefits: (1) communication mech-
anisms are abstracted from the stream consumer, (2) stream
objects are resolved only when actually needed (wherever the
proxy is resolved), (3) event message and bulk data transfer
are decoupled, allowing the application to better optimize both
forms of communication for the given application deployment
environment and object characteristics, and (4) it provides a
mechanism for implementing stateful actors in a workflow.

The ProxyStream interfaces support any combination of
single/multi producer/consumer that is supported by the as-
sociated Publisher and Subscriber implementations. The
StreamProducer supports mapping different stream topics to
Store instances, enabling further optimization of communica-
tion mechanisms; batching; and plugins for filtering, sampling,
and aggregation. The StreamConsumer support plugins for
filtering and sampling. ProxyStream is fault-tolerant provided
that the broker and communication channel are fault-tolerant.

ProxyStream can be integrated at the application or frame-
work level. Listing 2 depicts use of ProxyStream within a
Globus Compute application; we integrate ProxyStream within
the DeepDriveMD framework for the evaluation in Sec VI

C. Ownership

A limitation of the proxy model is the need to manage
explicitly the lifetime of the associated target object. When a
proxy is shared with more than one process, it is challenging
to know when it is safe to free the target object. A ProxyStore
proxy acts like a C/C++ pointer or raw pointer in Rust;
thus, one process could prematurely free the target object,
causing what is equivalent to a null pointer exception in the
other process(es); delay freeing the object causing increased
memory usage; or forget to free the object causing a memory
leak. ProxyStore provides some guidance on using proxies
safely, but ultimately it is up to the programmer to use proxies
safely—a situation similar to C pointers.

To address this difficulty, we extend the proxy model with
two features not provided by ProxyStore: automatic deletion
of objects that have gone out of scope and safe support for
mutating objects. Inspired by Rust’s borrowing and ownership
semantics, our design works in distributed contexts; provides
different proxy types that can represent the owned, reference,
and mutable reference types; enforces ownership and borrow-
ing rules at runtime based on a proxy’s type; and performs
automatic dereferencing, coercion, and deletion.

Rust defines three ownership rules: (1) each value has an
owner, (2) there can only be one owner at a time, and (3)
a value is deleted when its owner goes out of scope [48]. A
reference allows a value to be borrowed without relinquishing
ownership. The reference rules are (1) at any given time, a
value can have either one mutable reference or any number
of immutable references and (2) references must always be
valid. The Rust compiler enforces these rules, and the language
provides data structures for runtime enforcement for more
complex scenarios that the compiler cannot reason about.

Applying these rules in a distributed application, such as a
computational workflow, can make memory management sig-
nificantly easier without the need to perform global reference
counting. Computations represented as directed acyclic graphs
(DAGs) are particularly well suited to this model. As objects
move from a parent DAG node to a child node, ownership can
either be transferred to the child or the child can be given a
borrowed reference. Thus, a node has full information about
what operations are safe on objects that it receives. Ownership
transfer means that the recipient node has full control over that
object; an immutable reference means that the node can only
read the object. A mutable reference means that the node has
sole access to modify the object, but the node cannot create
and share additional references: i.e., it is not allowed to pass
a reference to its own child node.

One challenge of this model is knowing when a reference to
an object goes out of scope, because this requires communica-
tion between the process that owns the object and the process
that has a reference. However, in a task-based workflow, it
is easy to reason that a reference passed to a task goes out
of scope when the task completes (assuming that the task is
well-behaved; an improperly behaved task would be one that,
for example, creates and stores a memory-to-memory copy
of the reference) and workflow systems already propagate
information about task completion.

A second challenge is representing the ownership or borrow-
ing of an object. The Rust compiler and dot operator abstracts
much of the nuance of dealing either with objects directly or
with their references [49]. In Python, for example, an object
T could be wrapped in a Owned[T], Ref[T], and RefMut[T],
in a similar manner to some Rust constructs. However, use
of these constructs would be cumbersome, as all referencing,
dereferencing, or coercion would have to be done manually.

The transparent object proxy is well-suited to solve these
object scope and reference representation problems. An object
that is proxied by a process becomes a shared object that is
stored on some global object store accessible by all processes
in the distributed environment (Listing 3). The target object
is serialized, put in the global store, and an OwnedProxy is



class Store(Generic[Connector]):
def owned_proxy(obj, ...) -> OwnedProxy:

def
def
def
def
def

into_owned (Proxy) -> OwnedProxy:
borrow(OwnedProxy) -> RefProxy: .
mut_borrow(OwnedProxy) -> RefMutProxy:
clone (OwnedProxy) -> OwnedProxy: .
update (OwnedProxy | RefMutProxy) -> None:

Listing 3. Proxy ownership model interfaces and functions. Functions are
preferred over methods on the associated proxy reference types to prevent
unintentionally clobbering a method of the same name on the target object.

returned. The OwnedProxy contains a reference to the global
object and, if the proxy has been resolved, a local copy of the
object upon which the proxy forwards operations to.

An OwnedProxy enforces the following rules [c.f. Rust’s
ownership rules]: (1) each object in the global store has an
associated OwnedProxy, (2) there can only be one OwnedProxy
for any object in the global store, and (3) when OwnedProxy
goes out of scope, the object is removed from the global store.

When invoking a task on an OwnedProxy (i.e., calling a
local or remote function), the caller can do one of four things:

o Yield ownership by passing the OwnedProxy to the task.

¢ Clone OwnedProxy and pass the cloned OwnedProxy to
the task. Cloning an OwnedProxy will create a new copy
of the object in the global store that will be owned by the
callee task while the caller still owns the original object.

o Make a RefProxy and pass the RefProxy to the task. The
caller still retains ownership, and the task can only read
the object via the RefProxy. The callee task can only
mutate its local copy, not the global copy. The caller’s
OwnedProxy, used to create the RefProxy, keeps track of
the references that it has created. Any number of tasks
can be invoked on a RefProxy at a time.

o Make a RefMutProxy and pass the RefMutProxy to the
task. The caller still retains ownership (essentially the
privilege to delete), but the callee task now has sole access
to modify the object in the global store. The caller’s
OwnedProxy marks that it has created a RefMutProxy
and thus cannot mutate itself until the callee task that
has the RefMutProxy completes. Only one task can be
invoked on a RefMutProxy at a time and a RefMutProxy
and RefProxy cannot exist at the same time.

The lifetimes of a RefProxy and RefMutProxy are strongly
coupled to those of the tasks they are passed to. Any violation
of these rules, such as an OwnedProxy that goes out of scope
or is deleted while a RefProxy or RefMutProxy exists, will
raise a runtime error. It is also possible to extend a static code
analysis tool to verify correctness prior to execution.

Execution engines typically use futures to encapsulate the
asynchronous execution of a task. Thus, we use callbacks on
the task result futures to indicate that the references associated
with a task have gone out of scope. The primary limitation of
this approach is that each execution engine has a different
syntax for submitting a task and getting back a future. Rather
than modify each engine, we provide a set of shims that
appropriately parse task inputs and construct a callback on
the task’s future that will propagate the necessary information
about references going out of scope. The StoreExecutor, an
interface provided by ProxyStore, wraps an execution engine

from
from
from

proxystore.connectors import FooConnector
proxystore.store import Store
proxystore.store.lifetimes import LeaselLifetime
with Store('example', FooConnector()) as store:
lease = LeaselLifetime(store, expiry=10)
proxy = store.proxy('value', lifetime=lease)
lease.extend (5)

time.sleep(20)

assert lease.done()

Listing 4. Example usage of lifetimes when creating a proxy. A Lifetime
instance represents a physical or logical scope that will clean up all resources
(i.e., objects) that were associated with the lifetime when closed.

client (e.g., a Globus Compute, Dask, or Parsl client) and
automatically proxies task parameters and results based on
user-defined policies and manages references associated with
tasks [42]. The StoreExecutor is easy to use, but applications
requiring more fine-grain control can use the API in Listing 3.

The ownership model is not fault-tolerant when the client
crashes in a manner which prevents garbage collection, but the
model is compatible with fault-tolerant execution engines such
as those that automatically rerun tasks on failure. Since only
a single RefMutProxy can exist, the ownership model is not
optimal for applications with many concurrent writers to the
same object; a database, for example, may be more suitable.

So far, we have constricted ourselves to tasks (i.e., function
invocations) as the only region of code over which we can
define a lifetime; thus, all references to an object are equal to
the lifetime of the single task invoked on that reference. Yet
a workflow application may employ more complex lifetimes.
For example, a lifetime could be assigned to a set of tasks that
are a subgraph of the global DAG, and a programmer might
want to define references to global objects that are associated
with this custom lifetime. Using proxy references is a valid
solution but would require additional code to manage and map
references to the scopes contextual to the application.

We provide the Lifetime construct, an alternative to proxy
references, for managing object lifetimes in more complex sce-
narios. A lifetime, attached to one or more proxies upon proxy
creation, will clean up associated objects once the lifetime
has ended. We provide three Lifetime types and the API can
be extended to implement new types. The context-manager
lifetime enables mapping proxy lifetimes to discrete segments
of code, the time-leased lifetime will clean up associated
objects once the lease has expired and not been extended,
and the static lifetime persists objects for the remainder of the
program. Listing 4 provides a time-leased lifetime example.

V. EVALUATION

We conducted experiments on Polaris at the Argonne Lead-
ership Computing Facility. Polaris has 560 nodes intercon-
nected by an HPE Slingshot 11 network and a 100 PB
Lustre file system. Each node contains one AMD EPYC Milan
processor with 32 physical cores, 512 GB of DDR4 memory,
and four 40 GB NVIDIA A100 GPUs.

A. Task Pipelining with ProxyFutures

We first evaluate the effectiveness of ProxyFutures for
reducing workflow makespan via pipelining. We define a
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(b) Makespan vs. overhead fraction for no-proxy, proxy, ProxyFutures.
Fig. 5. Results for synthetic benchmark with 8 tasks, each sleeping for
1 s and communicating 10 MB to its successor, and with overhead fraction
f determining how much of the 1 s can be overlapped with its predecessor
task. (Top) Task execution schedules in four scenarios: sequential no proxy,
with delays due to workflow engine submission costs; sequential proxy,
with proxies enabling immediate task start after proxy is resolved; and two
pipelined ProxyFuture cases (f = 0.2 and f = 0.5), in which distributed
futures relax strict inter-task dependencies and enable pipelining to overlap
initial task overheads. The overhead and compute sleeps dominate in all
cases, while times to resolve task input data and receive task results increase,
with overhead fraction, while makespan decreases due to pipelining overlap.
(Bottom) Synthetic benchmark makespan vs. overhead fraction, for no proxy,
proxy, and ProxyFuture scenarios. Each value is averaged over five runs;
standard deviations are all less than 20 ms.

synthetic benchmark that submits n tasks in sequence, each
sleeping for s seconds and then producing d bytes to be
consumed by the next task. As in Fig 3, a fraction f of each
task is treated as startup overhead (e.g., library loading, model
initialization, state synchronization). Thus, each task sleeps
for f x s seconds, resolves its input data, and then sleeps for
the remaining (1 — f) x s seconds to simulate computation.
We compare three deployments: sequential without proxies
(No Proxy), sequential with proxies (Proxy), and pipelined
with ProxyFutures (ProxyFuture). In the first two, task ¢; is
submitted once the result of task ¢;_; is available, with in
No Proxy, the workflow engine handling data transfer, and in
Proxy, data transfer being offloaded from the workflow engine.
In ProxyFuture, tasks t;_; and ¢; share a proxy and future pair
and t; is submitted before ¢;_; is complete.

Setup: We run a Dask cluster on a single Polaris compute
node. In the Proxy and ProxyFuture deployments, a Redis
server running on the compute node is used as the mediated
communication channel for the proxies. We run n = 8 tasks
with intermediate data of d = 10 MB and task time of s =1 s;
the short task time is to focus on the time spent producing and
waiting on data. We vary overhead fraction f from 0 to 0.9.

Results: We plot in Fig 5a the start and end times of each

stage in each task’s lifecycle for each deployment, for f = 0.2,
and for ProxyFuture, also for f = 0.5. Each task incurs fixed
overhead and compute costs, of f and (1 —f) s, respectively.
Other costs include: submit, the time to submit and begin
execution; generate, the time to produce output data; and
receive, the time to receive the result by the client. Proxy and
ProxyFuture also incur resolve costs associated with the use of
proxies. Fig 5b shows the implications of these differences by
presenting average makespan as a function of task overhead
fraction for the three deployments. The use of proxies in
Proxy improves task submission time relative to No Proxy,
reducing makespan by 12%. The pipeline overlapping in
ProxyFuture enables close to the theoretical limit (dashed line)
as determined by inter-task data dependencies. For example,
the ideal makespan reduction of a pipeline execution is 20%
when f = 0.2; we observe 19.6% in ProxyFuture. The in-
creased divergence from the ideal reduction at larger overhead
fractions occurs because task submission and data transfer
costs become more significant as overlapping increases. Thus,
a subsequent task begins waiting on its future slightly before
the prior task has set the result of the future.

QOutcomes: DAG-based workflow execution models limit
optimization of task execution because a child task cannot start
until its parents have finished, even if the programmer knows
it may be beneficial to start it sooner. For example, module
loading can account for a significant portion of overall task
runtime. Loading TensorFlow on NERSC’s Perlmutter takes
5 s in the best case but nearly a minute when many workers
read files concurrently [34]. This is particularly noticeable
with smaller models where inference time can be measured
in fractions of a second. On Polaris, the machine used here,
we found that five common libraries (NumPy, Scikit-learn,
SciPy, PyTorch, TensorFlow) [50] require from 100 ms to 2 s
to import even under ideal conditions with a single worker.
Tasks must also often perform other work, such as file loading,
initializing model weights, or state synchronization, before
needing their input data. The ProxyFutures model provides
for seamless encoding of data dependencies and optimistic
task pipelining when tasks have nontrivial initial overheads.
While we used Dask and Redis in this experiment, our
approach will work with any task-based execution engine
and mediated communication channel. This engine-agnostic
approach will enable programmers to coordinate tasks across
multiple execution engines concurrently.

B. Scalable Stream Processing

Here we evaluate scalable stream processing with Proxy-
Stream. As in Fig 4, there is one data producer publishing
data of size d to the stream with a rate r (items per second). A
dispatch node consumes data from the stream and dispatches a
compute task for each data item on to a cluster of n workers.
Each compute task is simulated by a task which sleeps for
s seconds. The dispatcher executes on a login node, and given
n workers, one worker is allocated as the producer while the
remaining n — 1 workers are used to execute compute tasks.

Setup: We compare three streaming configurations. In Redis
Pub/Sub, data are published directly to a Redis pub/sub topic
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Fig. 6. Compute tasks completed per second as a function of stream item data size and number of workers. One worker generates data consumed by a central
dispatcher that launches simulated compute tasks (one second sleep tasks) for each item across the remaining n — 1 workers. At small data sizes (< 100 KB),
data transfer overheads are negligible and the dispatcher can keep up with incoming stream data; however, at large data sizes and worker counts, the dispatcher
becomes overwhelmed by the size of data transfers required for each task in the Redis Pub/Sub configuration. ProxyStream transparently decouples data flow
from control flow improving overall system performance as stream data sizes and the number of workers is increased.

that is consumed by the dispatcher before being sent to a
worker to be computed on. In ADIOS2, data are written step-
by-step to an ADIOS2 stream [51]. The dispatcher iterates on
steps and launches worker tasks which will read the data from
the ADIOS?2 stream at a specified step. In ProxyStream, data
are published to a StreamProducer which decouples metadata
from bulk data, sending metadata to a Redis Pub/Sub topic and
storing bulk data in a Redis Key/Value store. The dispatcher
consumes proxies of stream data via the StreamConsumer and
sends proxies to workers to be computed on. ADIOS2 and
ProxyStream avoid data transfers through the dispatcher.

We use Parsl’s HighThroughputExecutor, which can scale
to thousands of tasks per second, to manage task execution. We
set the producer’s data publishing rate r = (n—1)/s items per
second, where s = 1 s for all tasks. Assuming no overheads
in the system, this rate would keep each of the n — 1 compute
workers constantly fed with new data. A range of data sizes
d and workers n are evaluated to understand stream scaling
throughput limitations. We assign one worker per core so there
are at most 32 workers per node. We run each configuration
for between five and thirty minutes, depending on the scale,
which is long enough for the processing throughput (i.e., tasks
completed per second) to stabilize.

Results: Fig 6 shows the average compute tasks completed
per second. At the smallest data size, d = 100 kB, performance
is comparable between the three methods because data are not
large enough to stress the system. For larger worker counts
n and data sizes d, the default Redis Pub/Sub deployment
slows because the dispatcher becomes a bottleneck, processing
stream data at ~100 MB/s. This rate is slower than the
network connection between the Redis server and dispatcher
because the dispatcher must, for each stream item, receive and
deserialize the item from Redis; compose the task payload,
serializing the item again; and communicate the task payload
to a worker. Thus the dispatcher cannot process the incoming
stream data fast enough to keep workers fed with new tasks
when the number of workers or data size is sufficiently high.

ADIOS2 performs better than Redis Pub/Sub because we
configured workers to read items from the stream directly
based on a step index provided by the dispatcher, improving
the latency between the dispatcher receiving stream data and
launching a new task. However, ADIOS2 requires changes to
the worker task code not needed by the other two methods.

ProxyStream also alleviates data transfer and serialization
burdens from the dispatcher enabling performance on par
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Fig. 7. Average system memory usage over three runs of a simulated

MapReduce workflow. Shaded regions denote standard deviation in memory
usage. Memory management limitations in ProxyStore cause baseline memory
utilization to increase over time. Manual management can alleviate this
problem, but requires careful implementation and prior knowledge. In contrast,
our ownership model provides automated memory management equal to a
hand-tuned implementation and enforces a set of rules at runtime.

with or better than ADIOS2 but does so transparently without
needing changes to the worker task code. The peak processing
throughput of ProxyStream is 1.7x and 2.0x faster than
ADIOS2 for 1 MB and 10 MB item sizes, respectively.
Compared to the Redis Pub/Sub baseline, ProxyStream is 4.6 x
and 6.2x faster for 1 MB and 10 MB item sizes, respectively.
At d = 100 MB, the largest data size evaluated, and n = 256,
ProxyStream is 7.3x faster than Redis Pub/Sub. ProxyStream
and ADIOS2 perform similarly at this scale because other
aspects of the experimental configuration become bottlenecks.
Namely, task execution overheads and storing the data pro-
duced by the generator limit peak throughput. A faster data
storage system or multiple data generators would be needed to
achieve scaling beyond this point, and ProxyStream does sup-
port modular data storage and multi-producer configurations.
Outcomes: Streaming proxies, rather than data directly, en-
sures that objects in the stream are only resolved once needed,
thus avoiding overheads due to objects passing via interme-
diate processes. The StreamProducer and StreamConsumer
interfaces provide a mechanism for composing arbitrary mes-
sage brokers and mediated communication methods, permit-
ting developers to optimize application deployments without
altering task code. The resulting distributed applications are
more portable and generalizable to new hardware systems.

C. Memory Management

We evaluate the automatic memory management of the
proxy ownership model by comparing system memory usage
over a simulated workflow to ProxyStore’s default memory
management and a manual memory management approach



which relies on the a priori knowledge of the programmer to
free shared objects. We also compare to a baseline without any
proxies where data are sent directly along with task requests.

Setup: We execute a simulated workflow that imitates a
series of map-reduces across a local Dask cluster on a single
compute node of Polaris. We run the workflow using each
of the proxy memory management models, default, manual,
and ownership, and a baseline without proxies using Dask
for all data management. We record average memory usage
across three workflow executions for each configuration. Eight
consecutive map-reduces are performed where each of 32
mappers receives 100 MB and produces 10 MB. We choose
100 MB because the value is large enough to be observable in
the memory trace (i.e., larger than the baseline memory usage
fluctuations) but is also below the Redis default maximum
value size of 512 MB. A single reducer consumes data pro-
duced by all mappers. In addition to consuming and producing
data, each tasks sleeps for 5 s.

Results: Fig 7 presents the system memory usage traces
for each memory management model. The limited default
memory management of ProxyStore results in memory usage
slowly increasing throughout execution as shared objects are
created but never freed. The automated management of our
ownership model performs identically to manual management
and appropriately evicts objects as references go out of scope.

The “no proxy” baseline passes data directly to Dask and
utilizes Dask’s built-in distributed memory management. We
observe that Dask appropriately frees all task data; however,
the overall runtime is three times slower. The severe slow down
is because Dask’s graph serialization performs poorly with
large (>1 MB in our experience) arbitrary Python objects.
Dask is optimized for transferring arrays and dataframes, and
we found Dask’s performance to be similar to the proxy cases
when data were formatted as NumPy arrays.

Outcomes: Our ownership model presents a marked im-
provement in using proxies in distributed workflows. En-
forcing ownership rules at runtime makes it easy to reason
about what operations on shared objects are safe and prevents
programming mistakes which may lead to memory leaks.
Our reference implementation is designed to be agnostic to
the underlying task execution engine, but we believe that
incorporating this model directly into execution engines can
enable more powerful features.

VI. APPLICATIONS

1000 Genomes: We use the 1000 Genomes workflow to
investigate ProxyFutures as a mechanism for reducing task
overheads and extending data flow dependencies to FaaS sys-
tems. Tasks in the original 1000 Genomes workflow were im-
plemented as Bash scripts. We use the Python implementation
of 1000 Genomes, where tasks are implemented as functions,
to execute the workflow using a FaaS execution engine such
as Globus Compute (which we use in the experiments reported
here, due to its integration with HPC systems).

We evaluate the makespan of the resulting workflow, using
5% of the 1000 Genomes dataset, on a single compute-zen-3
node, with two 64-core CPUs and 256 GB memory, on
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reduces workflow makespan by starting computations when data are available
rather than when prior tasks complete.
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Fig. 9. Comparison of inference round-trip time between two DeepDriveMD
implementations: baseline and ProxyStream. The size of each batch increases
over time as the application accumulates more data points.

Chameleon Cloud’s CHI@TACC cluster [52]. Fig 8 shows
workflow stage start and end times for a baseline implemen-
tation, which uses Globus Compute’s native futures for data
synchronization between tasks, and a ProxyFutures implemen-
tation. As each stage can contain up to thousands of tasks, we
consolidate the tasks within stages for clarity. ProxyFutures
reduce workflow makespan by 36%, by better overlapping
task execution and communication costs across stages. More
specifically: (1) tasks within stages 1, 2, and 3 are better
overlapped, reducing the stage makespans by 47-48%; (2)
response time, the time between receiving a task result and
submitting another task, is improved (for example, by 54%
when starting stage 4); and (3) stages 4 and 5 are 5% faster
due to reduced data transfer overheads. We also note there are
no dependencies between tasks within stages 4 or 5, so these
stages do not benefit to the same degree as the earlier stages.

DeepDriveMD: We modify the Parsl implementation of
DeepDriveMD [53] to stream inference batches and results
to and from a single, persistent inference task with ProxyS-
tream. A persistent inference task eliminates task overheads
and enables reuse of models and caches. Streaming with
proxies reduces overheads in the DeepDriveMD client because
received inference results are immediately added to a queue
of simulation task inputs. In addition to ProxyStream, Proxy-
Futures are used to indicate availability of a new ML model
to the inference task and proxy references for management of
intermediate task data.

We compare the performance of DeepDriveMD to a version
that uses proxy patterns. We run each version for three hours
using 40 GPUs on Polaris, dedicating one GPU for inference,
one for training, and the remainder for simulations. Round-trip
inference time, shown in Fig 9, is reduced from an average
of 21.9+8.8 s to 15.0£8.4 s, a 32% improvement, and 21%
more inference batches were processed in the same wall time.
Reducing inference time is key to enabling greater simulation
throughput, such as when the number of simulation workers
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Fig. 10. Number of active proxies (i.e., proxies that still have a stored

target object) during the runtime of the MOF Generation application. Our
ownership model for proxies appropriately cleans up proxies when no longer
needed while maintaining the benefits of the pass-by-reference model.

is increased or simulation time is reduced.

MOF Generation: We modify the MOF Generation appli-
cation to communicate all task input and output data larger
than 1 kB via proxies. (The overhead of proxying simple
data types such as boolean flags or configuration strings is
greater than sending those objects directly.) We deploy the
application with default settings on ten Polaris nodes. We run
the application twice: with the standard proxy implementation
of ProxyStore and with our proxy ownership model. Here,
ownership was sufficient; we did not use the lifetimes model.
We record the number of actively proxied objects during the
application’s runtime. As shown in Fig 10, the ownership
model appropriately evicts proxied data when the lifetime
of the associated proxy ends without altering the runtime
behaviour of the application. Manual memory management is
possible, as discussed in Sec V-C, but automated management
is safer and makes adoption of advanced programming prac-
tices, such as those we present here, easier and more appealing.

VII. RELATED WORK

Futures are a pervasive programming abstraction for asyn-
chronous and concurrent programming [54], [55]. Implicit
futures act as references; any dereference blocks automatically
until the value is resolved [56]; thus, they typically require
language-level support [57]-[61]. Explicit futures provide a
public interface, such as a get method, that must be invoked
to block and retrieve the value; consequently, they can be
provided by languages and third-party libraries.

Explicit futures require control flow synchronization code,
which reduces code flexibility and complicates functions that
want to operate on a future or a value directly. Either two
implementations or multiple execution paths must be present
to support each case. Implicit futures are also inflexible
because they require that the language’s type system handle
the mechanics of lifting the value out of the future trans-
parently. Thus few languages support implicit futures, and
programmers have limited ability to modify the resolution and
lifting processes. ProxyFutures address these key limitations
by providing both an explicit mechanism, the Future, and an
implicit mechanism, the Proxy, for Python applications.

Distributed futures represent values that, when available,
may be located in remote process memory. Distributed futures
are often underpinned by a remote procedure call (RPC)
system, such as in Dask [1], PyTorch [62], and Ray [45], [63].
Because these futures are implemented by the RPC framework,
rather than the language, all are necessarily explicit futures,

and their use is limited to the confines of the framework. Thus,
for example, one cannot create a distributed future in Dask
or Ray and then invoke a serverless function with Globus
Compute [6] on that future. In contrast, ProxyFutures works
across frameworks and supports many mediated communica-
tion methods via a robust and extensible plugin system.

Streaming applications in which producers and consumers
generate and process data continuously are commonly ex-
ecuted at scale on high-performance and cloud computing
systems. Their persistence and resilience needs may be met
by message queuing systems such as Apache Kafka [46],
Redis [36], and RabbitMQ [64]. However, these systems typ-
ically optimize for high-throughput, low-latency transmission
of small, structured events, in order that these events can be
aggregated, filtered, or transformed, as in Kafka.

In contrast, high-performance science applications often
produce large raw or unstructured data accompanied by
structured metadata [65]. File-oriented distributed applications
often use GridFTP [39], [66]. Dispeldpy [67], [68] maps
abstract definitions of streaming workflows onto concrete
distributed execution frameworks, such as Python multipro-
cessing or MPI [69]. Streamflow [70] extends the DAG-based
workflow model to integrate continuous event processing.
ADIOS WASP [71], a data staging platform for scientific
stream processing, uses a self-describing file format and sup-
ports advanced networking technologies such as RDMA. The
SciStream middleware [72] enables fast, secure memory-to-
memory streaming between nodes that lack direct network
connectivity. CAPIO [73] provides a middleware layer for
injecting I/O streaming capabilities into file-based workflows.

Consuming an entire stream item (data and metadata) is
expensive when only metadata are needed for decision making
or data is to be forwarded to another application component.
ProxyStream decouples event metadata notification from bulk
data transfer. Streaming proxies allows data transfers to occur
when and where needed, with specifics of the message broker
and data storage abstracted from the program.

Garbage collection in distributed environments is challeng-
ing. Automatic techniques such as reference counting and trac-
ing garbage collectors exist, but often requires a priori knowl-
edge by the application programmer to add custom logic for
shared object management, and can be inefficient in distributed
environments [74]—[77]. Maintaining global reference counts
or traces adds network overheads, single sources of failure
(if reference counting is centralized), or atomicity/consistency
challenges (if reference counting is distributed).

Leases, a decentralized, time-based mechanism, can be used
to avoid maintaining a shared state across processes [78].
Task-based execution engines can avoid shared state problems
and the complexities of reference count message passing
because the central client or scheduler can act as a single
source of truth [1], [63]. The notion of ownership uses a
program’s inherent structure to decentralize state management.
In PyTorch RPC, each object has a single owner that maintains
the global reference count as remote processes need to access
the data [62]. Related work extends this concept to implement
distributed futures and task recovery in Ray [45].

Our proxy-based approach avoids the complexities of global



reference counting by associating object lifetimes with tasks,
and our framework-agnostic approach means that object
scopes can be appropriately managed across complex, dis-
tributed applications.

VIII. CONCLUSION

The lazy object proxy is a powerful construct for building
distributed applications, providing benefits of both pass-by-
reference and pass-by-value while abstracting low-level com-
munication details from consumers. Here, we have applied
this construct to realize three powerful parallel programming
patterns: a compute framework agnostic distributed futures
system, a composable streaming interface for data-intensive
workloads, and an ownership model for object management
in distributed, task-based applications. We evaluated these
patterns through synthetic benchmarks and showcased three
classes of scientific applications that can benefit from the
proxy paradigm powered patterns. Specifically, we reduced the
1000 Genomes workflow makespan by 36%, reduced Deep-
DriveMD inference latency by 32%, and optimized memory
usage during MOF generation.

These patterns enable the development of robust, scal-
able, and portable applications. For example, ProxyFutures
empowers data flow dependencies between tasks executed
across different execution engines, such as when one engine
is used for local execution on a cluster and another for remote
execution on cloud resources. ProxyStream can support long-
running scientific campaigns by using cloud-hosted message
brokers for reliable metadata streaming and Globus Transfer
for federated, persistent bulk storage and efficient transfer.
The proxy ownership model provides automated wide-area
memory management for distributed and cross-site workflows.
In the future, we will investigate further programming patterns
that can be enhanced with the proxy paradigm. Our work
here serves as a reference for integrating these design patterns
into execution frameworks, such as Dask, Globus Compute,
or Parsl, and other high-performance computing toolkits. By
providing first-class support for these patterns directly within
commonly used frameworks, we expect to enable speedups in
many scientific applications.
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