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Abstract

We propose the Factor Augmented sparse linear Regression Model (FARM) that not only en-
compasses both the latent factor regression and sparse linear regression as special cases but also
bridges dimension reduction and sparse regression together. We provide theoretical guarantees for
the estimation of our model under the existence of sub-Gaussian and heavy-tailed noises (with
bounded p1 ` #q-th moment, for all # ° 0) respectively. In addition, the existing works on super-
vised learning often assume the latent factor regression or sparse linear regression is the true under-
lying model without justifying its adequacy. To fill in such an important gap, we also leverage our
model as the alternative model to test the sufficiency of the latent factor regression and the sparse
linear regression models. To accomplish these goals, we propose the Factor-Adjusted deBiased
Test (FabTest) and a two-stage ANOVA type test respectively. We also conduct large-scale nu-
merical experiments including both synthetic and FRED macroeconomics data to corroborate the
theoretical properties of our methods. Numerical results illustrate the robustness and effectiveness
of our model against latent factor regression and sparse linear regression models.
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1 Introduction

Over the past two decades, along with the development of technology, datasets with high-dimensionality

in various fields such as biology, genomics, neuroscience and finance have been collected. One styl-

ized feature of the high-dimensional data is the high co-linearity across features. A common structure

to characterize the dependence across features is the approximate factor model [Bai, 2003, Fan et al.,

2013], in which the variables are correlated with each other through several common latent factors.

More specifically, we assume the observed d-dimensional covariate vector x follows from the model

x “ Bf ` u, (1.1)

where f is a K-dimensional vector of latent factors, B P RdˆK is the corresponding factor loading

matrix, and u is a d-dimensional vector of idiosyncratic component which is uncorrelated with f .

To tackle the high-dimensionality of datasets, various methods have been proposed. Among these,

dimensionality reduction and sparse regression are two popularly used ones to circumvent the curse of

dimensionality. They also serve as the backbones for many emerging statistical methods.

In terms of dimension reduction, the factor regression model is one of the most popular methods

and has been widely used [Stock and Watson, 2002, Bai and Ng, 2006, Bair et al., 2006, Bai and Ng,

2008, Fan et al., 2017b, Bing et al., 2019, Bunea et al., 2020, Bing et al., 2021]. It assumes that the

factors drive both dependent and independent variables as follows:

Y “ f
J
� ` ",

x “ Bf ` u. (1.2)

Here Y is the response variable and " P R is the random noise which is independent with the factor

f . When the factors are unobserved, one usually learns the latent factors based on observed x and

substitutes the sample version into the regression model (1.2). There are several methods for estimating

latent factors such as Principal Component Analysis (PCA) [Bai, 2003, Fan et al., 2013], maximum

likelihood estimation [Bai and Li, 2012], and random projections [Fan and Liao, 2020]. In particular,

when the leading Principal Components are used as an estimator for f , the sample version of (1.2)

reduces to the classical Principal Component Regression (PCR) [Hotelling, 1933].
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As for sparse regression, a commonly used model is the following (sparse) linear regression:

Y “ x
J
� ` ". (1.3)

In the high dimensional regime where the dimension d can be much larger than the sample size n, it is

commonly assumed that the population parameter vector � P Rd is sparse. Over the last two decades,

various regularized methods, which incorporate this notion of sparsity, have been proposed. See, for

instance, LASSO [Tibshirani, 1996], SCAD [Fan and Li, 2001], Least Angle Regression [Efron et al.,

2004], Dantzig selector [Candes and Tao, 2007], Adaptive LASSO [Zou, 2006], MCP [Zhang, 2010]

and many others. For more details, please refer to Fan et al. [2020b] for a comprehensive survey.

In this paper, we introduce the Factor Augmented sparse linear Regression Model (FARM) (1.4),

which incorporates both the latent factor and the idiosyncratic component into the covariates,

Y “ f
J
�

‹ ` u
J
�

‹ ` ",

x “ Bf ` u, (1.4)

where �‹ P RK and �
‹ P Rd are population parameter vectors quantifying the contribution of the latent

factor f and the idiosyncratic component u, respectively. Obviously, the factor regression model (1.2)

is a special case of (2.1) in which �
‹ “ 0. To better illustrate the difference between model (1.4) and

the sparse linear model (1.3), our model can be written in an equivalent form,

Y “ f
J
'

‹ ` x
J
�

‹ ` ",

x “ Bf ` u, (1.5)

where '
‹ “ �

‹ ´ B
J
�

‹ P RK quantifies the extra contribution of the latent factor f beyond the ob-

served predictor x. Therefore, FARM expands the space spanned by x into useful directions spanned

by f . It is clear that the sparse regression model (1.3) is also a special case of (1.4) with '
‹ “ 0. Thus,

our model is general enough to bridge the dimensionality reduction and the sparse regression.

The motivation of our factor augmented linear model (1.4) comes from two perspectives.

1. Firstly, it origins from Fan et al. [2020a]. In order to get precise estimation of �‹ based on highly

correlated variables, they study the sparse regression estimation by substituting (1.1) into (1.3)
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and obtain

Y “ pBf ` uqJ
�

‹ ` " “ f
JpBJ

�
‹q ` u

J
�

‹ ` ". (1.6)

We observe from (1.6), when the sparse linear regression is adequate, for a given �
‹, the re-

gression coefficient on f is fixed at �‹ “ B
J
�

‹. However, in reality, especially when the

variables are highly correlated, it is very likely that the leading factors possess extra contribu-

tions to the response instead of only a fixed portion B
J
�

‹. This results in our proposition of

model (1.4), where we augment the leading factors into sparse regression that expands the linear

space spanned by x into useful directions.

2. Secondly, it origins from the factor regression given in (1.2). In reality, the leading common

factors f indeed provides some important contributions to the response, but it is hard to believe

that they will have fully explanation power, especially when the effect of the factors is weak. Be-

sides, in real applications, several examples illustrate the poor performance of factor regression

model or PCR, see Jolliffe [1982] for more details. Thus, completely ignoring the idiosyncratic

component u will harm in model generalization. This also motivates us to propose model (1.4),

in which we augment the sparse regression by incorporating the idiosyncratic component u into

the original factor regression.

In this paper, we first study the properties of estimated parameters under the proposed model (1.4).

Specifically, we assume the factors given in (1.4) are unobserved and leverage PCA to estimate them.

Incorporated with penalized least-squares with the `1-penaly, we derive the `2-consistency results for

parameter vectors �‹ and �
‹. Going beyond the linear regression model and the least squares estima-

tion, our idea can be naturally extended to more general supervised learning models through different

loss functons. For instance, quantile regression [Belloni and Chernozhukov, 2011, Fan et al., 2014],

support vector machine [Zhang et al., 2016, Peng et al., 2016], Huber regression [Fan et al., 2017a, Sun

et al., 2020], generalized linear model [Van de Geer, 2008, Fan et al., 2020a] and many other variants.

In order to demonstrate the general applicability of our proposed methods, in our paper, we further

extend our model settings to robust regression. To be more specific, we only assume the existence
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of p1 ` #q-th moment of the noise distribution for some # ° 0. We adopt Huber loss together with

adaptive tuning parameters and `1-penalization to derive the consistency results for the parameters of

our interest. Besides the aforementioned extensions, it is worth to note that our model is also applica-

ble in the field of causal inference [Imbens and Rubin, 2015, Hernan and Robins, 2019]. To be more

specific, the latent factors f given in our model are able to be treated as the unobserved confounding

variables which affect both the covariate x and the response Y . From the causal perspective, we pro-

vide a methodology to conduct (robust) statistical estimation as well as inference of our model under

the existence of latent confounding variables.

The aforementioned works on factor regression and sparse linear regression mainly investigate the

theoretical properties based on the assumption that either of them is the true underlying model [Stock

and Watson, 2002, Tibshirani, 1996, Fan and Li, 2001, Zou, 2006, Bai and Ng, 2006, Zhang, 2010, Fan

et al., 2017b, 2020a, Bing et al., 2021]. However, whether a given model is adequate to explain a given

dataset plays a crucial role in the model selection step. This motivates us to fill the gap by leveraging

our model as the alternative one to perform hypothesis testing on the adequacy of the factor regression

model as well as the sparse linear regression model when covariates admit a factor structure.

For the hypothesis test on the adequacy of the latent factor regression model, we consider testing

the hypotheses

H0 : Y “ f
J
�

‹ ` " versus H1 : Y “ f
J
�

‹ ` u
J
�

‹ ` ". (1.7)

This amounts to testing H0 : �
‹ “ 0 under FARM model. To this end, we propose the Factor-

Adjusted deBiased Test statistic (FabTest) r�� which serves as a de-sparsify version of the estimator p��
obtained under `1-regularization. The asymptotic distribution of the proposed test statistic is derived

by leveraging the high-dimensional Gaussian approximation. The critical value controlling the Type-

I error is estimated based on the multiplier bootstrap method. As a byproduct, we are also able to

conduct entrywise and groupwise hypothesis testing on parameter �‹ by following similar de-biasing

procedure.

For validating the adequacy of the sparse linear regression model, we consider testing the hypothe-
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ses

H0 : Y “ x
J
�

‹ ` " versus H1 : Y “ f
J
'

‹ ` x
J
�

‹ ` ", (1.8)

or '‹ “ 0 under the FARM model. To tackle the testing problem, we propose a two-stage ANOVA

test. In the first stage, we use marginal screening [Fan and Lv, 2008] to pre-select a group of variables

which cope well the curse of high dimensionality. In the second stage, we derive the ANOVA-type

test statistic. Asymptotic null distribution and the power of the test statistic are derived. In addition,

we further extend the aforementioned two-stage ANOVA test to linear multi-modal models [Li and

Li, 2021], whose data framework has been well applied in a wide range of scientific fields (e.g multi-

omics data in genomics, multimodal neuroimaging data in neuroscience, multimodal electronic health

records data in health care).

In summary, our main contributions are as follows:

1. Motivated from the factor regression and sparse regression, we propose the Factor Augmented

(sparse linear) Regression Model (FARM) (1.4) [also (1.5)] and investigate in the parameter

estimation properties on �
‹ and �

‹ given in (1.4). Our work serves as an extension of Fan et al.

[2020a] to a general setting with weaker assumptions. It augments the sparse linear regression

in useful directions of common factors.

2. To further demonstrate the wide applicability of our methods, we extend our model to a more

robust setting, where we only assume the existence of p1 ` #q-th moment (# ° 0) of our noise

distribution. Leveraging the `1-penalized adaptive Huber estimation, we establish statistical

estimation results for our parameters of interest. Comparing with those closely related literature

[Fan et al., 2020a, 2021b], our assumption on the moment condition of the noise variable is the

weakest. Our robustified factor augmented regression also serves as an extension of Sun et al.

[2020] to a more general setting.

3. In terms of testing the adequacy of the factor regression, we propose the FabTest by incorpo-

rating the factor structure into the de-biased estimators [van de Geer et al., 2014, Zhang and

Zhang, 2014, Javanmard and Montanari, 2014]. Accompanied with Gaussian approximation,
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the asymptotic distribution of our test statistic is derived. As for implementation, we propose

the multiplier bootstrap method to estimate the critical value in order to control the Type-I error.

4. For testing the adequacy of sparse linear regression model, we propose a two stage ANOVA-type

testing procedure. Asymptotic distribution (under the null) and power (under the alternative) of

our constructed test statistic are investigated. In addition, we further extend the methodology to

the multi-modal sparse linear regression model [Li and Li, 2021], by testing whether the sparse

linear regression for some given modals is adequate.

5. We conduct large scale simulation studies for our proposed methodology using both synthetic

data and real data. Simulation results via synthetic data lend further support to our theoretical

findings. As for real data, we apply our methodology to the studies of the macroeconomics

dataset named FRED-MD [McCracken and Ng, 2016]. The experimental results also illustrate

the high efficiency and robustness of our model (FARM) against latent factor regression as well

as sparse linear regression.

1.1 Notation

For a vector � “ p�1, . . . , �mqJ P Rm, we denote its `q norm as }�}q “ p∞m
`“1 |�`|qq1{q, 1 § q † 8,

and write }�}8 “ max1§`§m |�`|. For any integer m, we denote rms “ t1, . . . ,mu. The sub-Gaussian

norm of a scalar random variable Z is defined as }Z} 2 “ inftt ° 0 : E exppZ2{t2q § 2u. For a

random vector x P Rm, we use }x} 2 “ sup}v}2“1 }vJ
x} 2 to denote its sub-Gaussian norm. Let It¨u

denote the indicator function and let IK denotes the identity matrix in RKˆK . For a matrix A “ rAjks,
we define }A}F “

b∞
jk A

2
jk, }A}max “ maxjk |Ajk| and }A}8 “ maxj

∞
k |Ajk| to be its Frobenius

norm, element-wise max-norm and matrix `8-norm, respectively. Moreover, we use �minpAq and

�maxpAq to denote the minimal and maximal eigenvalues of A, respectively. We use |A| to denote

the cardinality of set A. For two positive sequences tanun•1, tbnun•1, we write an “ Opbnq if there

exists a positive constant C such that an § C ¨ bn and we write an “ opbnq if an{bn Ñ 0. In addition,

an “ OPpbnq and an “ oPpbnq have similar meanings as above except that the relationship of an{bn
holds with high probability.
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1.2 RoadMap

The rest of this paper is organized as follows. We study the parameter estimation properties of our

proposed model (FARM) in section 2, where theoretical results of both regular and robust estimators

are analyzed. In section 3, we construct a de-biased test statistic to test the adequacy of latent factor

regression model. In addition, in section 4, we construct a two-stage ANOVA test to study the adequacy

of sparse linear regression under the setting with highly correlated features. Moreover, to corroborate

our theoretical findings, in section 5, we conduct exhaustive simulation studies. Last but not least, we

apply our methodology to study the real data FRED-MD in section 5.4.

2 Factor Augmented Regression Model

The primary objective of this section is to propose a regularized estimation method for our factor

augmented sparse linear model and investigate the corresponding statistical properties. Suppose we

observe n independent and identically distributed (i.i.d.) random samples tpxt, Ytqunt“1 from px, Y q,

which satisfy that

xt “ Bft ` ut and Yt “ f
J
t �

‹ ` u
J
t �

‹ ` "t, t “ 1, . . . , n, (2.1)

where f1, . . . ,fn P RK , u1, . . . ,un P Rd and "1, . . . , "n P R are i.i.d. realizations of f , u and ",

respectively. To ease the presentation, we rewrite (2.1) in a more compact matrix form as follows,

X “ FB
J ` U ,

Y “ F�
‹ ` U�

‹ ` E , (2.2)

where X “ px1, . . . ,xnqJ, F “ pf1, . . . ,fnqJ, U “ pu1, . . . ,unqJ, Y “ pY1, . . . , YnqJ and

E “ p"1, . . . , "nqJ. Throughout the whole paper, we assume we only get access to observations

tpxt, Ytqunt“1. Both the latent factors F and the idiosyncratic components U are unobserved and need

to be estimated from the observed predictors X . Thus, in the following, we shall first illustrate how to

estimate F and U and then proceed with the regularized estimation for model (2.2).
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2.1 Factor Estimation

Since only the predictor vector x is observable, the latent factor f and the corresponding loading

matrix B are not identifiable under the factor model (1.1). More specifically, for any non-singular

matrix S P RKˆK , we have x “ Bf ` u “ pBSqpS´1
fq ` u. To resolve this issue, we impose the

following identifiability conditions [Bai, 2003, Fan et al., 2013]:

Covpfq “ IK and B
J
B is diagonal.

Consequently, the constrained least squares estimator of pF ,Bq based on X is given by

p pF , pBq “ argmin
F PRnˆK ,BPRdˆK

}X ´ FB
J}2F

subject to
1

n
F

J
F “ IK and B

J
B is diagonal.

Elementary manipulation yields that the columns of pF {?
n are the eigenvectors corresponding to the

largest K eigenvalues of the matrix XX
J and pB “ p pF J pF q´1 pF J

X “ n´1 pF J
X . Then the least

squares estimator for U is given by pU “ X ´ pF pBJ “ pIn ´ n´1 pF pF JqX .

Before presenting the asymptotic properties of the estimators t pF , pB, pUu, we first impose some

regularity conditions.

Assumption 2.1. There exists a positive constant c0 † 8 such that }f} 2 § c0 and }u} 2 § c0.

Assumption 2.2. There exists a constant ⌧ ° 1 such that d{⌧ § �minpBJ
Bq § �maxpBJ

Bq § d⌧ .

Assumption 2.3. Let ⌃ “ Covpuq. There exists a constant ⌥ ° 0 such that }B}max § ⌥ and

E|uJ
u ´ trp⌃q|4 § ⌥d2.

Assumption 2.4. There exist a positive constant  † 1 such that  § �minp⌃q, }⌃}1 § 1{ and

min1§k,`§d Varpuku`q • .

Remark 1. Assumptions 2.1–2.4 are standard assumptions in the studies of large dimensional factor

model. We refer to Bai [2003], Fan et al. [2013] and Li et al. [2018] for more details.
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We next summarize the theoretical results related to consistent factor estimation in the following

proposition which directly follows from Lemmas D.1 and D.2 in Wang and Fan [2017].

Proposition 2.1. Assume that log n “ opdq. Let H “ n´1
V

´1 pF J
FB

J
B, where V P RKˆK

is a

diagonal matrix consisting of the first K largest eigenvalues of the matrix n´1
XX

J
. Then, under

Assumptions 2.1–2.4, we have

1. } pF ´ FH
J}2F “ OPpn{d ` 1{nq.

2. For any I Ä t1, 2, . . . , du, we have max`PI
∞n

t“1 |put` ´ ut`|2 “ OPplog |I| ` n{dq.

3. }HJ
H ´ IK}2F “ OPp1{n ` 1{dq.

4. max`Prds }pb` ´ Hb`}22 “ OPtplog dq{nu.

Remark 2. In practice, the number of latent factors K is typically unknown and it is an important

issue to determine K in a data-driven way. There have been various methods proposed in the literature

to estimate the number K [Bai and Ng, 2002, Lam and Yao, 2012, Ahn and Horenstein, 2013, Fan

et al., 2021a]. Our theories always work as long as we replace K by any consistent estimator pK, i.e.

we only require

Pp pK “ Kq Ñ 1, as n Ñ 8.

Thus, without loss of generality, we assume the number of factors K is known throughout all the

theories developed in this paper. As for the application part, throughout this paper, we utilize the

eigenvalue ratio method [Lam and Yao, 2012, Ahn and Horenstein, 2013] to select the number of

factors. More specifically, we let �kpXX
Jq denote the eigenvalues of the Gram matrix XX

J and the

number of factors is given by

pK “ argmax
K§K

�kpXX
Jq

�k`1pXXJq ,

where 1 § K § n is a prescribed upper bound for K.
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2.2 Regularization Estimation

Under the high dimensional regime where the dimension d can be much larger than the sample size n,

it is often assumed that only a small portion of the predictors contribute to the response variable, which

amounts to assuming that the true parameter vector �‹ is sparse. Then the regularized estimator for

the unknown parameter vectors �‹ and �
‹ of our factor augmented linear model is defined as follows:

p p��, p�q “ argmin
�PRd,�PRK

"
1

2n
}Y ´ pU� ´ pF�}22 ` �}�}1

*
, (2.3)

where � ° 0 is a tuning parameter.

We let rY “ pIn ´ pP qY denote the residuals of the response vector Y after projecting onto

the column space of pF , where pP “ n´1 pF pF J is the corresponding projection matrix. Recall that
pU “ pIn ´ pP qX . Hence pF J pU “ 0 and it is straightforward to verify that the solution of (2.3) is

equivalent to

p�� “ argmin
�PRd

"
1

2n
} rY ´ pU�}22 ` �}�}1

*
,

p� “ p pF J pF q´1 pF J
Y “ 1

n
pF J

Y .

For any subset S of t1, . . . , du, we define the convex cone CpS, 3q “ t� P Rd : }�Sc}1 § 3}�S}1u. For

simplicity of notation, we write

Vn,d “ n

d
`

c
log d

n
`

c
n log d

d
. (2.4)

To investigate the consistency property of p p��, p�q, we impose the following moment condition on the

random noise ".

Assumption 2.5. There exists a positive constant c1 † 8 such that }"} 2 § c1.

Theorem 2.2. Recall '
‹ “ �

‹ ´ B
J
�

‹ P RK
. Under Assumptions 2.1–2.5, we have

}p� ´ H�
‹}2 “ OP

#
1?
n

`
ˆ

1?
n

` 1?
d

˙
}'‹}2 ` }�‹}1

˜c
log |S‹|

n
` 1?

d

¸+
,
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where S‹ “ tj P rds : �‹
j ‰ 0u and |S‹| is its cardinality. Furthermore, if |S‹|

`
log d
n ` 1

d

˘
Ñ 0, then,

by taking � “ pI0{nq} pUJp rY ´ pU�
‹q}8 for some constant I0 • 2, we have p�� ´ �

‹ P CpS‹, 3q and

} p�� ´ �
‹}2 “ OP

˜c
|S‹| log p

n
` Vn,d}'‹}2

a
|S‹|

n

¸
. (2.5)

Remark 3. In most of literature investigating the regularized estimation of sparse linear regression

model (1.3), it is commonly assumed that the observed covariate vector x is a sub-Gaussian ran-

dom vector with bounded sub-Gaussian norm }x} 2 . See, for instance, Loh and Wainwright [2012],

Nickl and Van De Geer [2013], van de Geer et al. [2014], Zhang and Cheng [2017] and many others.

However, such assumption can be unreasonable in the presence of highly correlated covariates. To

see this, suppose now both f and u are Gaussian random vectors and the underlying x satisfies the

factor model (1.1). Then x is also a Gaussian random vector with Covpxq “ BB
J ` ⌃. Under

the pervasiveness condition (Assumption 2.2) and Assumption 2.4, it is straightforward to verify that

}x} 2 “
a
8{3�maxpBB

J ` ⌃q — d, which violates the assumption on bounded sub-Gaussian norm.

In contrast, our model can circumvent such issue because we decompose the covariate x into pf ,uq,

and we only need impose sub-Gaussian assumption on pf ,uq. As the sparse linear regression model

serves as a special case to our model, our model serves as a more robust choice to conduct parameter

estimation comparing with using linear regression directly, even if the sparse linear regression model

is adequate.

Remark 4. Theorem 2.2 substantially generalize the results in Fan et al. [2020a] with weaker as-

sumptions. First, we did not impose the irrepresentable condition on the design matrix U , only the

lower bound on ⌃ “ Covpuq is required. In addition, although Fan et al. [2020a] also decompose

the covariate x into pf ,uq in order to get precise estimator for �‹, they mainly focus on the linear

model Y “ x
J
�

‹ ` " which corresponds to the special case with '
‹ “ 0 in our results given in

Theorem 2.2.

Remark 5. We note that our study is very different from the related work by Fan et al. [2021b],

although they also study one kind of factor augment linear regression model. To be more specific, they

assume the response Yi,t is given in a penal form with i P rN s, t P rT s, which is generated from the
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model Yi,t “ �
J
i ft ` ui,t. Here ui,t, i P rN s, t P rT s is the idiosyncratic component. They incorporate

the sparse linear regression into their model by assuming ui,t “ �
J
i u´i,t ` ✏i,t, @i P rN s. Thus, their

factor augmented sparse linear regression model heavily relies on the penal data structure. In contrast,

we study the cross-sectional data and focus on different inference problems.

2.3 Factor Augmented Robust Linear Regression

In reality, datasets, especially collected from the field of finance, are often contaminated by noises with

relatively heavy tails. To resolve such issue, we leverage the adaptive Huber regression to study the

parameter of interest in our FARM under the existence of heavy-tailed noise [Sun et al., 2020].

We first introduce some notation and basic definitions. Let ⇢!p¨q denote the Huber function,

⇢!pzq “

$
&

%
z2{2, if |z| § !,

!z ´ !2{2, if |z| ° !,

where ! ° 0 is the robustification parameter which balances robustness and bias. Following the

intuition of (2.3), our factor augmented Huber estimator for p�‹,�‹q is given by

p p�h, p�hq “ argmin
�PRd,�PRK

#
1

n

nÿ

t“1

⇢!pyt ´ puJ
t � ´ pfJ

t �q ` �}�}1
+
, (2.6)

where � ° 0 is a tuning parameter. For simplicity of notation, we write p�h “ p p�J
h , p�J

h qJ P Rd`K and
r� “ p�‹J, r�JqJ P Rd`K , where r� “ pBJ

�
‹ ` n´1 pF J

F'
‹. The following theorem establishes the

statistical consistency of p�h.

Proposition 2.3. Assume that E|"|1`# † 8 for some constant # ° 0. Let

! —
ˆ

n

log d

˙ 1
1`p#^1q

and � —
ˆ
log d

n

˙ #^1
1`p#^1q

.

Furthermore, we assume that p|S‹| ` Kqplog dq3{2 “ opnq,

log n

n `
?
d

}'‹}2 “ op!q and Vn,d}'‹}2 “ Op! log dq. (2.7)

13



Then, under Assumptions 2.1–2.4, we have

} p�h ´ r�}1 “ OP

#
p|S‹| ` Kq

ˆ
log d

n

˙ #^1
1`p#^1q

+
.

We establish the `1-statistical rate for our parameters in model (1.4)[also (1.5)] by only assuming

the existence of p1 ` #q-th moment of the noise distribution. Specifically, when # • 1, the results

reduce to the same rates as the sub-Gaussian assumption of ". Our result serves as an extension of Sun

et al. [2020] to a more general setting by incorporating latent factors.

3 Is Factor Regression Model Adequate?

The latent factor regression is widely applied in many fields as an efficient dimension reduction

method. A natural question arises is whether the model is adequate and FARM (1.4) serves naturally

as the alternative model. To be more specific, we consider testing the hypotheses

H0 : �
‹ “ 0 versus H1 : �

‹ ‰ 0 (3.1)

in FARM (1.4). As the penalized least-squares estimator p�� is used for estimating �
‹, it creates biases

and make it difficulty for inferences. Thus, we first introduce a de-biased version of p�� given in (2.3).

3.1 Bias Correction

We begin with the construction of bias-corrected estimator for �
‹ following similar idea of Zhang

and Zhang [2014], van de Geer et al. [2014] and Javanmard and Montanari [2014]. Specifically, let
p⇥ P Rdˆd be an approximation for the inverse of the Gram matrix r⌃ “ n´1 pUJ pU , the de-biased

estimator for �‹ is then defined as

r�� “ p�� ` 1

n
p⇥ pUJpY ´ pU p��q. (3.2)

The rationale behind such construction is that we are able to decompose estimation error as

r�� ´ �
‹ “ 1

n
p⇥ pUJE ` 1

n
p⇥ pUJ

F'
‹ ` pId ´ p⇥r⌃qp p�� ´ �

‹q, (3.3)

14



after we expand Y according to (2.2) and replace X by X “ pF pB ` pU . The first term on the right

hand side of (3.3) quantifies the uncertainty of our estimator r�� and the last two terms are biases which

will be shown to be of smaller order.

One observes that constructing the de-biased estimator r�� given above requires an estimator p⇥.

There exist many methodologies devoting to estimating such precision matrix, for example, the node-

wise regression proposed in Zhang and Zhang [2014] and van de Geer et al. [2014], and the CLIME-

type estimator given in Cai et al. [2011], Javanmard and Montanari [2014] and Avella-Medina et al.

[2018]. In our work, we do not restrict p⇥ to be any specific one, but require to satisfy the following

general conditions.

Assumption 3.1. Let ⇥ “ ⌃´1 with ⌃ defined in Assumption 2.3. There exist positive ⇤max and �8

such that

}Id ´ p⇥r⌃}max “ OPp⇤maxq and } p⇥ ´ ⇥}8 “ OPp�8q.

Without loss of generality, here we assume that �8 § }⇥}8.

Remark 6. To give a concrete example, under the mild conditions therein, Assumption 3.1 is satisfied

with

⇤max “ O

ˆc
log d

n
` 1?

d

˙
and �8 “ O

ˆ
max
jPrds

|Sj|
c

log d

n
` 1

d

˙
,

by using node-wise regression [Zhang and Zhang, 2014, van de Geer et al., 2014], where |Sj| “
∞d

k“1 It⇥jk ‰ 0u quantifies the sparsity of j-th column of the precision matrix ⇥ for each 1 § j § d.

In Appendix C.1, we will provide a detailed analysis on estimating r⌃´1 via node-wise regression and

establish precise theoretical upper bounds for the statistical rates given in Assumption 3.1.

3.2 Gaussian Approximation

The goal of this section is to derive the asymptotic distribution of } r�� ´�
‹}8 in the high dimensional

setting. To this end, we apply the Gaussian approximation result given in Chernozhukov et al. [2013,

2017, 2020] for high dimensional random vectors. More specifically, we let Z “ pZ1, . . . , ZdqJ P Rd

15



be a zero-mean Gaussian random vector with the same covariance matrix as that of n´1{2⇥U
JE , that

is,

CovpZq “ Cov

ˆ
1?
n
⇥U

JE
˙

“ �2⇥. (3.4)

We next present the theoretical results on Gaussian approximation of our test statistics under some

mild conditions.

Theorem 3.1. Recall '
‹ “ �

‹ ´ B
J
�

‹ P RK
. We assume that plog dq5{n Ñ 0,

p⇤max|S‹| ` �8q log d Ñ 0 and

ˆ
Vn,d}'‹}2 `

c
n

d
`

a
log d

˙
}⇥}8

c
log d

n
Ñ 0, (3.5)

with Vn,d given by (2.4). Then under Assumption 3.1, we have

sup
x°0

ˇ̌
ˇP

´?
n} r�� ´ �

‹}8 § x
¯

´ P p}Z}8 § xq
ˇ̌
ˇ Ñ 0.

For any ↵ P p0, 1q, let c1´↵ denote the p1´↵q-th quantile of the distribution of }Z}8. Theorem 3.1

leads to an approximately level ↵ test for (3.1) as follows:

 8,↵ “ I
!?

n} r��}8 ° c1´↵
)
. (3.6)

3.3 Gaussian multiplier bootstrap

The critical value c1´↵ depends on the unknown �2 and ⇥, which can be estimated by the following

Gaussian multiplier bootstrap.

1. Generate i.i.d. random variables ⇠1, . . . , ⇠n „ Np0, 1q and compute

pL “ 1?
n

} p⇥ pUJ
⇠}8, where ⇠ “ p⇠1, ⇠2, . . . , ⇠nqJ.

2. Repeat the first step independently for B times and obtain pL1, . . . , pLB. Estimate the critical

value c1´↵ via 1 ´ ↵ quantile of the empirical distribution of the bootstrap statistics:

pc1´↵ “ inftt • 0 : HBptq • 1 ´ ↵u, where HBptq “ 1

B

Bÿ

b“1

I
!

pLb § t
)
.
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Reject the null hypothesis H0 when
?
n} r��}8{p� ° pc1´↵, for a given consistent estimator p� of �. To

validate the procedure, we need some additional conditions on p⇥ and p�.

Assumption 3.2. There exists a �max ° 0 such that } p⇥ ´ ⇥}max “ OPp�maxq.

Assumption 3.3. There exists a 0 † �� § 1 such that |p�{� ´ 1| “ OPp��q.

Remark 7. The estimation of �2 for high dimensional linear regression has been extensively in the

literature. For example, Fan et al. [2012] proposed refitted cross-validation to construct a consistent

estimator with clearly quantified uncertainty of p� in ultra-high dimension. In addition, Sun and Zhang

[2012] and Yu and Bien [2019] derived scaled-Lasso and organic Lasso respectively for estimating �.

Like our case of estimating ⇥, we also do not restrict estimating � by any fixed method mentioned

above, our theory works as long as the general condition of Assumption 3.3 holds.

Let P‹p¨q “ Pp¨|X,Y q denote the conditional probability. In the following theorem, we establish

the validity of the proposed bootstrap procedure.

Theorem 3.2. Let Assumptions 3.1–3.3 hold. Assume that

⇤max}⇥}8 ` �max ` �� “ o

ˆ
1

log d

˙
. (3.7)

Then, under conditions of Theorem 3.1, we have

sup
x°0

ˇ̌
ˇP

´?
n} r�� ´ �

‹}8 § x
¯

´ P‹
´

pL § x
¯ˇ̌

ˇ PÑ 0.

Remark 8. Following the same de-biasing procedure as given in (3.2), we are also able to construct

entrywise [Javanmard and Montanari, 2014] and groupwise [Zhang and Cheng, 2017, Dezeure et al.,

2017] simultaneous confidence intervals for �‹. For each 1 § j § d, a p1´↵q-confidence interval for

�‹
j is given by

CI↵p�‹
j q “

$
&

%
r�j,� ´ p�z1´↵{2

d
p⇥jj

n
, r�j,� ´ p�z1´↵{2

d
p⇥jj

n

,
.

- ,
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where z1´↵{2 is the p1´↵{2q-th quantile of standard normal distribution. For simultaneous groupwise

inference of �‹, let G be a subset of t1, . . . , du of interest and consider testing the hypotheses

H0,G : �‹
j “ �˝

j for all j P G versus H1,G : �‹
j ‰ �˝

j for some j P G.

In particular, when �˝
j “ 0 for all j P G, this reduces to testing the significance of a group of parame-

ters. We obtain that the asymptotic distribution of maxjPG
?
n|r�j,� ´ �‹

j | converges to the distribution

of maxjPG |Zj| by leveraging the Gaussian approximation. The remaining steps follow directly by

conducting the Gaussian multiplier bootstrap.

4 Is Sparse Linear Model Adequate?

Sparse linear regression, which serves as the backbone of high dimensional statistics, has been widely

applied in many areas of science, engineering, and social sciences. However, its adequacy has never

been validated. This section focuses on testing the adequacy of the sparse linear model.

4.1 Main Results

As mentioned in introduction, the proposed model (1.5) contains the sparse linear regression model as

a special case. Thus, we consider testing the hypotheses

H0 : Y “ x
J
�

‹ ` " versus H1 : Y “ f
J
'

‹ ` x
J
�

‹ ` ", (4.1)

which is equivalent to test whether '‹ “ �
‹ ´ B

J
�

‹ “ 0. Since B is an unknown dense matrix,

simultaneously testing this linear equation will suffer from the curse of dimensionality.

On the other hand, for any set S Ä rds with S‹ Ä S , we have B
J
S�

‹
S “ B

J
�

‹. Hence, it suffices

to compare the following two linear models in reduced dimension:

H0 : Y “ x
J
S�

‹
S ` " versus H1 : Y “ f

J
'

‹ ` x
J
S�

‹
S ` ". (4.2)

This hinges applying a sure screening method to reduce the dimensionality. There exist several meth-

ods which lead to the sure screening property. Among those, the commonly used one is the marginal
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screening method [Fan and Lv, 2008, Fan and Song, 2010, Zhu et al., 2011, Li et al., 2012, Liu et al.,

2014, Barut et al., 2016, Chu et al., 2016, Wang and Leng, 2016].

We propose an ANOVA-type test for (4.1) with two stages. In the first stage, the data set is split

into two data sets pY p1q,Xp1qq and pY p2q,Xp2qq, with sample sizes m and n´m, respectively. We use

pY p1q,Xp1qq to screen variables. Let pS1 denote the set of variables selected. In the second stage, we

leverage the selected pS1 and remaining data pY p2q,Xp2qq to perform hypothesis testing based on the

ANOVA-type test statistic for low-dimensional model (4.2) with S replaced by pS1. As the first step is

based on marginal screening and is relatively crude, the sample size m is relatively small in comparing

with the second step. We impose a general assumption on the set pS1.

Assumption 4.1 (Sure screening property). There exists a sn ° 0 such that

P
´

| pS1| § sn and S‹ Ä pS1

¯
Ñ 1, as n Ñ 8.

A simple procedure that satisfies the above assumption is the follow factor-adjusted marginal

screening based on the data pY p1q,Xp1qq.

1. Estimation. Compute the latent factor estimator pF p1q, idiosyncratic component pU p1q based on

X
p1q, and rY p1q “ pIm ´ pF p1qp pF p1qJ pF p1qq´1 pF p1qJqY p1q.

2. Marginal regression. Compute the least square estimate p�`,M “ pU p1qJ
`

rY p1q{p pU p1qJ
`

pU p1q
` q for

each 1 § ` § d.

3. Screening. Let pS1 :“ pS� “ t` P rds : |p�`,M | ° �u for some prescribed � ° 0.

Here pU p1q
` P Rd stands for the `-th column of the matrix pU p1q. We next provide a sufficient condition

for the Assumption 4.1 to hold.

Proposition 4.1. Assume that m “ opd log dq and there exists some positive constant c̄ † 1 such that

� † 1

1 ` c̄
min
`Prds

⌃J
` �

‹

⌃``
and

Vm,d

m
}'‹}2 ` }�‹}1

log d

m
` }�‹}2

c
log d

m
“ op�q. (4.3)

Here ⌃` denotes the `-th column of ⌃. Then, under the Assumptions 2.1–2.5, we have

P
´
S‹ Ä pS�

¯
Ñ 1, as m Ñ 8.

19



Furthermore, we assume that min`PS‹ |�‹
`,M :“ ⌃J

` �
‹{⌃``| • c‹m´

for some positive constant  †
1{2. Then for any � “ c˛m´

with c˛ § c‹{p1 ` c̄q, we have

P
"

| pS�| § c2˛m
2}⌃�

‹}22
�2minp⌃qp1 ´ c̄q2

*
Ñ 1 as m Ñ 8.

Remark 9. From the conclusion of Proposition 4.1, we obtain sure screening property by using our

first data set with sample size m “ n↵ for some ↵ † 1 as long as the signal satisfies min`PS‹ |�‹
`,M | •

c‹m´. Thus, the size of the remaining data set for constructing the test statistic in our second step is

n ´ n↵ « n. It is worth to note that this does not lose any efficiency in terms of the asymptotic power

in our hypothesis test when n goes to infinity.

Remark 10. Fan et al. [2020a] proposed a similar sure screening estimator which is a special case of

our Proposition 4.1 with '
‹ “ �

‹ ´ B
J
�

‹ “ 0. Moreover, we also provide an upper bound for the

number of selected variables whereas Fan et al. [2020a] only provided a sufficient condition for the

sure screening property.

Next, we proceed to the second stage of our hypothesis testing. In this step, we construct an

ANOVA test statistic for (4.2) with S replaced by pS1, which is given by

Qp2q
n “

››››

ˆ
In´m ´ P

Xp2q
pS1

˙
Y

p2q
››››
2

2

´
››››

ˆ
In´m ´ P pF p2q ´ P pU p2q

pS1

˙
Y

p2q
››››
2

2

. (4.4)

We then summarize our results on the asymptotic behaviors of Qp2q
n in the following Theorem 4.2.

Theorem 4.2. Let Assumptions 2.1–2.5 and Assumption 4.1 hold with

sn

ˆ
log d

n
` 1

d

˙
Ñ 0 and �� Ñ 0.

We obtain

sup
x°0

ˇ̌
P

`
Qp2q

n § xp�2|H0

˘
´ Pp�2

K § xq
ˇ̌

Ñ 0, as n Ñ 8.

Theorem 4.2 yields a level ↵ test for (4.1) with critical region
!
Qp2q

n ° p�2�2
K,1´↵

)
, where �2

K,1´↵

is the p1 ´ ↵q-th quantile of �2
K-distribution.
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Remark 11. Under stronger conditions such as irrepresentable condition [Zhao and Yu, 2006] or

RIP condition [Candes and Tao, 2007], the pS achieved by certain explicit regularization [Zhao and

Yu, 2006, Fan and Lv, 2011, Shi et al., 2019, Fan et al., 2020a] or implicit regularization accompanied

with early stopping and signal truncation [Zhao et al., 2019, Fan et al., 2021c] enjoys variable selection

consistency Pp pS “ S‹q Ñ 1. In this scenario, we take the test statistic as

Qn “
›››
´
P pF ` P pU pS

´ PX pS

¯
Y

›››
2

2

without using sample splitting. Under Assumptions 2.1–2.5, we obtain

sup
x°0

ˇ̌
P

`
Qn § xp�2|H0

˘
´ Pp�2

K § xq
ˇ̌

Ñ 0, (4.5)

by following similar proof idea with Theorem 4.2.

We now present the power of the test statistic (4.4).

Theorem 4.3. Define

Dp↵, ✓q “
"
' P RK :

n}'}2
1 ` Ksn}B}2max{�minp⌃q • �2p2 ` �qp�2

K,1´↵ ` �2
K,1´✓q

*
,

where � ° 0 is some constant, sn is the size of selected set from the first stage and K is the number of

factors. Assume that

}'‹}2
´a

n{d ` 1{?
n

¯
Ñ 0. (4.6)

Then, under the conditions of Theorem 4.2, we have

inf
'‹PDp↵,✓q

Pp ↵ “ 1|H1q • 1 ´ ✓.

Remark 12. Dataset with multiple types are now frequently collected for a common set of experimen-

tal subjects. This new data structure is also called multimodal data. It is worth to mention, the above

hypothesis test can be further extended to test the adequacy of multi-modal sparse linear regression

model [Li and Li, 2021]. To be more specific, we consider the hypothesis test as follows:

H0 : Y “
Lÿ

i“1

Xi�
‹
i `

Mÿ

i“L`1

Xi�
‹
i ` E versus H1 : Y “

Lÿ

i“1

pFi�
‹
i ` Ui�

‹
i q `

Mÿ

i“L`1

Xi�
‹
i ` E .
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We aim at simultaneously testing whether the sparse regression is adequate for the any given L modals.

Here Xi P Rnˆdi is generated from the i-th modal, and possesses its own factor structure Xi “
FiB

J
i ` Ui, i P rM s. Interested readers are referred to Appendix D.4 for more details.

5 Numerical Studies

5.1 Accuracy of Estimation

For data generation, we let number of factors K “ 2, dimension of covariate d “ 1000, �‹ “
p0.5, 0.5q, the first s “ 3 entries of �

‹ be 0.5 and remaining d ´ s entries be 0. Throughout this

subsection, we generate every entry of F ,U from the standard Gaussian distribution and let every

entry of B be generated from the uniform distribution Unif p´1, 1q. We choose the noise distribution

of " given in model (2.1) from (i) standard Gaussian, (ii) uniform, and (iii) t3 distribution respectively.

Distributions (i) and (ii) have sub-Gaussian tails. For these two cases, we select sample size n

so that s
a
log d{n takes uniform grids in r0.15, 0.5s . Then we generate n response variables from

model (2.1) and estimate our parameters via (2.3). The results are shown as the red lines in Figure 1.

They lend further support to our theoretical findings given in section 2 as the statistical rates there

are upper bounded by Ops
a
log d{nq. Moreover, we also show the estimation results by using Lasso

directly on measurements pX,Y q. Results are shown as the blue lines given in the first two figures in

Figure 1. Using Lasso directly on pX,Y q leads to much worse results due in part to the inadequacy

of the model. In addition, as shown in Fan et al. [2020a], even when the sparse regression model is

correct, we still have better estimation accuracy using factor adjusted regression.

Distribution (iii) has only the bounded second moment. Likewise, we select corresponding number

of observations n so that ps`Kq
a
log d{n takes uniform grids in r0.4, 0.7s. The reduced sample sizes

help reduce the computation cost on the regularized adaptive Huber estimation using cross-validation

to choose the parameter !. We compare the results for the robust estimator (2.6) with that of the

factor adjusted regression (2.3). The results are shown as the red and blue lines in part (c) of Figure 1

respectively. They provide stark evidence that it is necessary to conduct the robust version of factor
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(a) (b) (c)

Figure 1: Accuracy for p�� with distpp��, �‹q :“ }p�� ´ �‹}1 based on 500 replications. The light color

regions indicate the standard errors across the simulation. Figure (a) and (b) depict the estimation

results of model (1.4) with noise ✏ following the standard Gaussian and uniform distributions respec-

tively. In (a) and (b), the red lines denote the estimation results using the method (2.3) (labeled as

FA Lasso in the figure) and the blue lines represent the results using Lasso with data pX,Y q. In

Figure (c), the noise ✏ follows t3-distribution. The red line in (c) represents the result of robust factor

adjusted regression (Robust FA Lasso) via adaptive Huber estimation together with `1-penalty given

in (2.6) and the blue line represents the result achieved by using FA Lasso.

adjusted regression (2.6) when noises have heavy tails.

5.2 Adequacy of Factor Regression

Data Generation Processes. We choose n “ 200, K “ 2 and d either 200 or 500 and the matrix

X “ FB
J ` U using the following two models with entries of B generated from Unifp´1, 1q.

1. We generate every row of F P RnˆK ,U P Rnˆd from Np0, IKq and Np0, Idq respectively.

2. We let the t-th row ft P RK of F P RnˆK follow ft “ �ft´1 ` ⇠t where � P RKˆK with

�i,j “ 0.5|i´j|`1, i, j P rKs. In addition, t⇠tut•1 are drawn independently from Np0, IKq. We

generate every row of U from Np0,⌃q where ⌃i,j “ 0.6|i´j|, i, j P rds.

The response vector follows Y “ F�
‹ ` U�

‹ ` E in (4.1) with every entry of E P Rn being

generated independently from either from Np0, 0.52q or uniform distribution Unif p´
?
3{2,

?
3{2q.
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We set �‹ “ p0.5, 0.5q and �
‹ “ pw,w,w, 0, ¨ ¨ ¨ , 0q, where w • 0. When w “ 0, the null hypothesis

Y “ F�
‹ ` E holds and the simulation results correpond to the size of the test. Otherwise, they

correspond to the power of the test.

Implementation. We summarize the details of the proposed test

1. Estimate factor pF , loading matrix pB, and noise pU as in section 2.

2. For the given pU , we estimate p⇥ by using node-wise regression [van de Geer et al., 2014].

3. Use Lasso method to estimate p�� based on data p pU , rY q with � chosen by cross-validation.

4. Construct a de-biased r�� “ p�� ` n´1 p⇥ pUJpY ´ pU p��q .

5. Obtain pL “ 1{?
n} p⇥ pUJ rE}8 with every entry of rE simulated from Np0, 1q and repeat this

computation 1000 times to obtain the upper-↵ quantile pc1´↵ of pL.

6. Compute the test result ⇠↵ :“ It?
n} r��}8{p� ° pc1´↵u where p� is estimated by using refitted

cross-validation [Fan et al., 2012].

The size and the power are then calculated based on 2000 simulations with ↵ “ 0.05 .

Results. For n “ 200, K “ 2, d P t200, 500u and all w P t0, 0.05, 0.10, 0.15, 0.20u, we generate the

data from each model and compute the testing results based on 2000 simulaitons with ↵ “ 0.05. The

results are depicted in the Table 1. The column named Gaussianpiq, i P t1, 2u represents the simulation

results under model i with Gaussian noise. Similar labels applied to the uniform noise distribution.

Table 1 reveals that our test gives approximately the right size (subject to simulation error; see the

rows with w “ 0). This is consistent with our theoretical findings given in section 3. In addition,

when 0 † w † 0.2, the power of our test increases rapidly to 1 which reveals the efficiency of our test

statistic.

5.3 Adequacy of Sparse Regression

This subsection provides finite-sample validations for the results in section 4. We take the number of

data used for screening m “ rn0.8s, use Iterative Sure Independence Screening method [Fan and
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Gaussian (1) Gaussian (2) Uniform (1) Uniform (2)

p “ 200

w “ 0 0.044 0.047 0.046 0.048

w “ 0.05 0.067 0.119 0.065 0.108

w “ 0.10 0.326 0.714 0.311 0.653

w “ 0.15 0.859 0.989 0.854 0.984

w “ 0.20 0.998 1.000 0.996 1.000

p “ 500

w “ 0 0.043 0.040 0.048 0.436

w “ 0.05 0.067 0.080 0.059 0.071

w “ 0.10 0.253 0.632 0.237 0.563

w “ 0.15 0.787 0.974 0.780 0.962

w “ 0.20 0.993 1.000 0.987 1.000

Table 1: Simulation results of section 3 under different regimes.

Lv, 2008, Saldana and Feng, 2018, Zhang et al., 2019] to select pS1 and apply the refitted cross-

validation [Fan et al., 2012] to estimate �2. The size and the power of the test are computed based

on 2000 simulations.

Data Generation Processes. We let n “ 250, K “ 3 and d be either 250 or 600. The noises "

are i.i.d from Np0, 0.52q or Unif p´
?
3{2,

?
3{2q. The covariate X P Rnˆd follows the factor model

X “ FB
J ` U . We generate F , U and B in the same way as those in section 5.2. In addition, the

response variable follows Y “ F'
‹ ` X�

‹ ` E in (4.1) with �
‹ “ p0.8, 0.8, 0.8, 0.8, 0, ¨ ¨ ¨ , 0q and

'
‹ “ v ¨1Kˆ1 for several different values of v • 0. The case v “ 0 corresponds to the null hypothesis

and it is designed to test the validity of the size.

Results. For n “ 250, K “ 3, d P t250, 600u and v P t0, 0.04, 0.08, 0.12, 0.16u, we implement the

proposed method for every model in section 5.2. The simulation results are depicted in Table 2. The

column named Gaussian (or uniform) piq, i P t1, 2u represents the results under model i with Gaussian

(or uniform) noise mentioned in section 5.2. When v “ 0, the null hypothesis holds, our Type-I error

is approximately 0.05 which matches with the theoretical value. In addition, when we increase the size

of v from v “ 0.04 to v “ 0.16, the power of our test statistic increases sharply to 1, which reveals its

efficiency.
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Gaussian (1) Gaussian (2) Uniform (1) Uniform (2)

p “ 250

v “ 0 0.051 0.054 0.056 0.053

v “ 0.04 0.215 0.278 0.233 0.286

v “ 0.08 0.659 0.740 0.655 0.750

v “ 0.12 0.965 0.993 0.965 0.996

v “ 0.16 1.000 1.000 1.000 1.000

p “ 600

v “ 0 0.051 0.052 0.050 0.052

v “ 0.04 0.208 0.362 0.197 0.353

v “ 0.08 0.624 0.802 0.604 0.785

v “ 0.12 0.941 0.994 0.934 0.999

v “ 0.16 1.000 1.000 0.999 1.000

Table 2: Simulation results of section 4 under different regimes.

We next discuss the necessity of using sample splitting. Suppose we do not split samples and

use the whole dataset to do sure screening and construct the test statistic. This will result in the high

correlation between the selected set pS and covariates when pS is not a consistent estimator of S‹. In

this case, the asymptotic behavior of our test statistic is hard to capture. To demonstrate this point,

we simulate the null distribution of the test statistic constructed without using sample splitting and

compare it with the asymptotic distribution (�2
K) via the quantile-quantile plot in Figure 2. Figure 2

reveals that the test statistic constructed without using sample splitting has heavier right tail than that

of the �2
K distribution. The sizes of the test are much larger than the results in Table 2 when v “ 0.

5.4 Empirical Applications

In this section, we use a macroeconomic dataset named FRED-MD [McCracken and Ng, 2016] to

illustrate the performance of our factor augmented regression model (FARM) and investigate whether

the latent factor regression model and sparse linear model are adequate.

There are 134 monthly U.S. macroeconomic variables in this dataset. As they measure certain

aspects of economic health, these variables are driven by latent factors and hence correlated. They

can be well explained by a few principal components. In our study, we pick out two variables named
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Figure 2: Quantiles of the �2
K distribution against those of the test statistic without sample splitting.

The x-axis represents the quantiles of the test statistic whereas y-axis is the quantiles of �2
K distribution.

’HOUSTNE’ and ’GS5’ as our responses respectively and let the remaining variables be the covariates.

Here ’HOUSTNE’ represents the housing starts in the northeast region and ’GS5’ denotes the 5-year

treasury rate.

There exist significant structural breaks for many variables around the year of financial crisis in

2008 which makes our data non-stationary even after performing the suggested transformations. Thus,

we analyze the dataset in two separate time periods independently. Specifically, we study the monthly

data collected from February 1992 to October 2007 and from August 2010 to February 2020 respec-

tively after examing the missingness and stationarity of the data.

To illustrate the performance of our proposed FARM against the sparse linear model and latent

factor regression model, we first analyze the prediction results achieved by using these models. For

every given time period and model, we perform the prediction by using the moving window approach

with window size 90 months. Indexing the panel data from 1 for each of the two time periods, for

all t ° 90, we use the 90 previous measurements tpxt´90, Yt´90q, ¨ ¨ ¨ , pxt´1, Yt´1qu to train a model

(FARM, sparse linear regression model, or latent factor regression model) and output a prediction pYt

as well as the in-sample average Ȳt :“ 1
90

∞t´1
i“t´90 Yi. We measure the prediction accuracy by using
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out-of-sample R2:

R2 “ 1 ´
∞T

t“91pYt ´ pYtq2∞T
t“91pYt ´ Ȳtq2

,

where T denotes the number of total data points in a given time period. Table 3 presents the out-

of-sample R2 obtained by the aforementioned three models in the two time periods for predicting

’HOUSTNE’ and ’GS5’. Their detailed predictions are depicted in Figure 3 and Figure 4 respectively.

Both out-of-sample R2 and predictions depicted in Figures 3 and 4 show that FARM outperforms both

latent factor regression and sparse linear regression models.

Time period Data FARM SP Linear LA Factor

02.1992-10.2007
HOUSTNE 0.632 0.584 0.428

GS5 0.705 0.631 0.122

08.2010-02.2020
HOUSTNE 0.694 0.450 0.219

GS5 0.657 0.540 0.233

Table 3: Out-of-sample R2 for predicting ’HOUSTNE’ and ’GS5’ data using different models in

different time periods. LA Factor and SP Linear stand for latent factor regression and sparse linear

regression respectively.

We next conduct the hypothesis testing on the adequacy of latent factor regression and sparse linear

regression respectively by using FARM as the alternative model. As computing the bootstrap estimate

of the null distribution is expensive for testing the adequacy of the factor model, we only conduct the

hypothesis testing using the data in the entire two subperiods: 02.1992-10.2007 and 08.2010-02.2020.

The P-values for the tests are given in Table 4. Taking the significant level 0.05, the hypothesis testing

results indicate that the latent factor regression is not adequate for all four different settings in Ta-

ble 4. As for sparse linear regression, it is accepted only for studying ’HOUSTNE’ in the time period

02.1992-10.2007. These results match well with our prediction results.
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Figure 3: Out-of-sample prediction results for ’HOUSTNE’ data in time periods: August 1999 to

October 2007 (left panel) and Februrary 2018 to February 2020 (right panel). The black dash line

represents the true observed values, and the blue, purple, green and red dash lines represent the pre-

dictions made by using in-sample mean (moving average with a window of 90), FARM, sparse linear

model and latent factor regression model, respectively.
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Figure 4: Out-of-sample prediction results for ’GS5’ data in time periods: August 1999 to October

2007 (left panel) and Februrary 2018 to February 2020 (right panel). The same captions as those in

Figure 3 are used.
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Time period Data LA factor SP Linear

02.1992-10.2007
HOUSTNE 2.00 ¨ 10´3 5.75 ¨ 10´1

GS5 2.50 ¨ 10´3 8.73 ¨ 10´3

08.2010-02.2020
HOUSTNE † 10´3 2.00 ¨ 10´2

GS5 1.70 ¨ 10´2 2.94 ¨ 10´2

Table 4: p-values for testing the adequacy of the latent factor regression and sparse linear regression

models to explain ’HOUSTNE’ and ’GS5’ data in two different time periods. The LA Factor and

SP Linear have the same meaning as those in Table 3.

6 Conclusion

In this paper, we propose a model named Factor Augmented sparse linear Regression Model (FARM),

which contains the latent factor regression and the sparse linear regression as our special cases. The

model expands the space spanned by covariates into useful directions and hence use additional infor-

mation beyond the linear space spanned by the predictors. We provide theoretical guarantees for our

model estimation under the existence of light-tailed and heavy-tailed noises respectively. In addition,

we leverage our model as the alternative one to test the sufficiency of the latent factor regression model

and sparse regression model. We believe that the study is among the first of this kind. The practical

performance of our model estimation and our constructed test statistics are proven by extensive sim-

ulation studies including both synthetic data and real data. Moreover, it is worth to mention that our

model and methodology can be extended to more general supervised learning problems such as non-

parametric regression, quantile regression, regression and classification trees, support vector machines,

among others where the factor augmentation idea is always useful.
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