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Abstract

This paper considers ranking inference of n items based on the observed data on the top choice
among M randomly selected items at each trial. This is a useful modification of the Plackett-Luce
model for M -way ranking with only the top choice observed and is an extension of the celebrated
Bradley-Terry-Luce model that corresponds to M “ 2. Under a uniform sampling scheme in
which any M distinguished items are selected for comparisons with probability p and the selected
M items are compared L times with multinomial outcomes, we establish the statistical rates of
convergence for underlying n preference scores using both `2-norm and `8-norm, with the min-
imum sampling complexity. In addition, we establish the asymptotic normality of the maximum
likelihood estimator that allows us to construct confidence intervals for the underlying scores. Fur-
thermore, we propose a novel inference framework for ranking items through a sophisticated max-
imum pairwise difference statistic whose distribution is estimated via a valid Gaussian multiplier
bootstrap. The estimated distribution is then used to construct simultaneous confidence intervals
for the differences in the preference scores and the ranks of individual items. They also enable us
to address various inference questions on the ranks of these items. Extensive simulation studies
lend further support to our theoretical results. A real data application illustrates the usefulness of
the proposed methods convincingly.
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1 Introduction

The problem of ranking inference from pairwise comparisons or multiple partial rankings has drew

significant attention in recent years, as the ranking problem has always played an important role in

many applications such as individual choices in economics [Luce, 2012, McFadden, 1973], psychol-

ogy [Thurstone, 1927, 2017], online and offline recommendations [Baltrunas et al., 2010, Li et al.,

2019], and ranking of items such as journals [Stigler, 1994, Ji et al., 2022], websites [Dwork et al.,

2001], colleges and universities [Avery et al., 2013, Caron et al., 2014], sports teams [Massey, 1997,

Turner and Firth, 2012], election candidates [Plackett, 1975, Mattei and Walsh, 2013], and even alleles

in genetics [Sham and Curtis, 1995]. Previously the ranking problem has mostly focused on parameter

estimation and algorithm implementation; see for example Fürnkranz and Hüllermeier [2003], Negah-

ban et al. [2012], Azari Soufiani et al. [2013], Maystre and Grossglauser [2015], Jang et al. [2018]. In

addition, a large literature of empirical studies from the above areas of research focused on incorpo-

rating individual covariates for personalization [Turner and Firth, 2012, Li et al., 2019]. However, the

ranking inference has only received more attention in the statistics community recently.

One of the most celebrated models for ranking problems is the Bradley-Terry-Luce (BTL) model.

The model is frequently used to model pairwise comparisons. Specifically, consider a large col-

lection of n items whose true ranking is determined by some unobserved preference scores ✓˚
i for

i “ 1, . . . , n, for example, qualities of products, reputations of education institutes or abilities of

sports teams. The BTL model assumes that an individual or a random event ranks item i over j with

probability Ppitem i is preferred over jq “ e✓
˚
i {pe✓˚

i ` e✓
˚
j q. The underlying choice axiom states that

this probability does not depend on other items. Moreover, for simplicity, the BLT model does not

account for data heterogeneity and treats the preference of each individual or event as purely indepen-

dent Bernoulli. For the theoretical study, one may assume each pair pi, jq is compared with probability

p, and once compared, they are compared for L times. Given the model and the collected data of

pairwise comparisons, the statistical questions are straightforward: (a) What is the optimal statistical

rate of convergence for estimating ✓˚
i from the data? (b) What are the proper algorithms to achieve the

optimal rate? (c) What is the asymptotic distribution of an estimator p✓i of ✓˚
i ? (d) Furthermore, how
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can we carry out uncertainty quantification on ranks?

Questions (a) and (b) have been clearly addressed in Negahban et al. [2016] for the `2-loss of

estimating ⇡˚ “ r⇡˚
1 , . . . , ⇡

˚
nsJ, where ⇡˚

i “ e✓
˚
i { ∞

i e
✓˚
i . They proposed the rank centrality, an

efficient iterative spectral method. Chen et al. [2019] further studied the estimation of ⇡˚ under the

`8-norm. They delivered the key message that both the spectral method and the regularized maximum

likelihood estimator (MLE) can achieve the optimal statistical convergence rate under the `8-norm

and the sparsest possible sampling regime (p Á log n{n). Chen et al. [2020] further complements

and refines the results of Chen et al. [2019] by concluding that the vanilla MLE without regularization

can already achieve the optimal rate of convergence in both `2- and `8- norms for estimating ✓˚ “
r✓˚

1 , . . . , ✓
˚
nsJ and the condition for exact recovery of the top-K ranking for MLE is weaker in constant

than the spectral method.

Following (a) and (b), researchers also made recent progress on addressing (c) and (d) for the BLT

model. Specifically, Han et al. [2020] made contributions to show the asymptotic normality of the MLE

estimator with the sampling regime of p Á plog nq1{5{n1{10, while Gao et al. [2021] fully revealed the

asymptotic normality of both the MLE estimator and the spectral estimator under the assumption that

p Á plog nq1.5{n, where 1.5 may be further improved to 1` � for arbitrary � ° 0. The authors showed

that although the spectral method is optimal in the order of sample complexity, it is less efficient due to

its larger asymptotic variance than the MLE. Despite a great theoretical contribution to the asymptotic

normality, Gao et al. [2021] did not focus too much on the ranking inference problem (d) and only

treated (d) with a crude confidence interval bound. In this work, we will refine the analysis of ranking

inference for the MLE and therefore fill an important gap in the literature beyond the work of Gao et al.

[2021]. The ranking inference for the BLT model is also studied by Liu et al. [2022], but with a rather

strong assumption of L Á n2 log2 n, that is, each compared pair must be compared more than Cn2

times, which is barely possible in practical applications. In contrast, we only require L Á polyplog nq
in this work to carry out our rank hypothesis testing.

Another more general model that extends pairwise comparison is the Plackett-Luce (PL) model,

which assumes M -way full ranking. In the PL model, every time an individual provides a personal

ranking on all given M items. Denote this full ranking as i1 ° ¨ ¨ ¨ ° iM . It can be understood as
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M ´ 1 independent events that i1 is preferred over the set ti1, . . . , iMu, i2 is preferred over the set

ti2, . . . , iMu and so forth. The model assumes that

Ppi1 ° ¨ ¨ ¨ ° iMq “
M´1π

j“1

„
e
✓˚
ij {

Mÿ

k“j

e✓
˚
ik

⇢
.

Similar to the BLT model, each M -way comparison ti1, . . . , iMu is compared with probability p,

and once compared, they are ranked for L times. In practice, L can be different. Nevertheless, for

simplicity, in this work, we assume L is a shared quantity for each compared M item to ease the

presentation and computation. The set of all M -way comparisons forms a comparison hyper-graph,

which we will formally define later. When M “ 2, the PL model reduces to the BLT model. Again

we could ask the same four inference questions above for the PL model.

The PL model has garnered less attention due to the more complicated structure of multiple com-

parisons, although it fits in with more general and real settings, including for instance, multi-player

games and personal preferences with multiple products. Research papers on the inference problems

based on the PL model are relatively scarce. Maystre and Grossglauser [2015] introduced the itera-

tive Luce spectral ranking method and showed that it converges to the MLE without providing any

statistical rate. Jang et al. [2018] rigorously considered conditions for the exact recovery of top-K

ranking and applied the spectral method to achieve this exact recovery under the assumption that

p Á pM ´ 1q
b
log n{

`
n´1
M´1

˘
. However, according to Cooley et al. [2016], the sparsest regime that

we can have a connected hyper-graph is when p Á log n{
`

n
M´1

˘
. In this paper, we close this gap by

showing that we can achieve optimal estimation error based on the MLE under the sparsest regime

with p Á polyplog nq{
`
n´1
M´1

˘
, even in the harder situation than the traditional PL model when only

top choices are observed from the M -way comparisons. Moreover, it is worth noting that all afore-

mentioned works on M -way comparisons only focused on deriving first-order statistical rates of con-

vergence, and the corresponding asymptotic distributions have rarely been investigated. To fill in this

blank, we further derive the uncertainty quantification results in this sparest regime and apply them to

study the practical ranking inference.

More specifically, instead of working on the PL model, we consider the partial-ranking case in

which we only observe the top choice from the choice set ti1, . . . , iMu. This is motivated from two
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perspectives. On the one hand, many applications do not provide the full ranking among all the M

selected items, and only the top choice is known. For example, a multi-player game may stop once we

get the winner; a shopper may only choose the top item to purchase after presenting a set of products.

On the other hand, theoretically speaking, general M with full ranking gives a likelihood function that

does not provide much more insight beyond only considering the likelihood for the top choice. The

theory will be more concise and intuitive regarding the role of M as we will see in later sections. For

M “ 3, we will also present the asymptotic normality for the PL model when the full ranking of

M “ 3 items is available. For the PL model with general M ° 3, the MLE theory can be derived

similarly, but due to its more tedious notational details, we decide to omit it.

Therefore our main focus of the paper is the multiway comparison model with only the top choice

observed. Under this model, we apply the MLE method and analyze its statistical rates in both `2- and

`8- norms for estimating ✓˚ and show that they are optimal under the sparsest hyper-graph regime.

In specific, when M “ Op1q, we achieve the same statistical rate as the PL model presented in Jang

et al. [2018] but only requiring p Á polyplog nq{
`
n´1
M´1

˘
, even if we only observe the top choice. This

answers (a) and (b). Furthermore, to respond to the question in (c) for any M • 2, we establish the

asymptotic normality of the MLE p✓i, for all i P rns in the sparest regime where the sampling prob-

ability satisfies p Á polyplog nq{
`
n´1
M´1

˘
. Finally, for question (d), we address three detailed ranking

inference problems: (i) constructing valid confidence intervals for the ranks of a set of items, (ii)

testing if an item belongs to the top-K ranked items, (iii) providing a sure screening confidence set

that contains all the top-K ranked items with high confidence. All of these are important inference

questions in practice. For example, when high school seniors choose their colleges, they often care

about the confidence interval for the ranks of a few universities, whether a certain university is within

the top 50, and a list of universities that contain top 50 institutes with say a 95% confidence level.

In order to complete these tasks, based on the asymptotic normality of the MLE, we propose a novel

inference framework for ranking items through a sophisticated maximum pairwise difference statistic

whose distribution is estimated via a valid Gaussian multiplier bootstrap [Chernozhukov et al., 2017,

2019]. The estimated distribution is then used to construct simultaneous confidence intervals for the

differences in the preference scores and the ranks of individual items. They also enable us to address
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the above inference questions on the ranks of these items.

Our main contributions of the work are summarized as follows. Firstly, we study the performance

of the MLE on the more complicated general multiway comparison model with only top choice ob-

served and show that MLE can achieve the optimal sample complexity under the sparsest possible

regime. Secondly, we quantify the uncertainty of the MLE explicitly. Last but not least, we provide a

general framework to conduct effective inference of ranks based on the Gaussian multiplier bootstrap

and give answers to three crucial practical inference questions. Specifically, our proposed confidence

intervals constructed for individual ranks are provably narrower than the high confidence Bonferroni

adjustment in Gao et al. [2021].

1.1 Roadmap

In Section 2, we set up the model with some basic assumptions. Section 3 presents the performance

of parameter estimation and asymptotic distribution of the MLE, while Section 4 details newly the

proposed framework for constructing rank confidence intervals, rank testing statistics, and top-K sure

screening confidence set. Section 5 contains comprehensive numerical studies to verify theoretical

results and a real data example to illustrate the usefulness of our ranking inference methods. Finally

we conclude the paper with some discussions in Section 6. All the proofs are deferred to the appendix.

1.2 Notation

Throughout this work, we use rns to denote the index set t1, 2, ¨ ¨ ¨ , nu. For any given vector x P Rn

and q • 0, we use }x}q “ p∞n
i“1 |xi|qq1{q to represent the vector `q norm. For any given matrix

X P Rd1ˆd2 , we use } ¨ } to denote the spectral norm of X and write X • 0 or X § 0 if X or ´X

is positive semidefinite. For event A, IA denotes an indicator random variable which equals 1 if A is

true and 0 otherwise. In addition, we let rLp¨q,r2Lp¨q be the gradient and Hessian of a loss function

Lp¨q. For two positive sequences tanun•1, tbnun•1, we write an “ Opbnq or an À bn if there exists a

positive constant C such that an § C ¨ bn and we write an “ opbnq if an{bn Ñ 0. Similarly we have

an “ ⌦pbnq or an Á bn if an{bn • c with some constant c ° 0. We use an “ ⇥pbnq (or an — bn) if
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an “ Opbnq and an “ ⌦pbnq. Given n items, we use ✓˚
i to indicate the underlying preference score of

the i-th item. Define r : rns Ñ rns as the rank operator on the n items which maps each item to its

population rank based on the preference scores. We write the rank of the i-th item as ri or rpiq. By

default, we consider ranking from the largest score to the smallest score.

2 Multiway Comparison Model

We first introduce the formulation of the ranking problem for the multiway comparison model. The

model consists of three key components.

• Preference scores: For a given group of n items, they are associated n preference scores

✓˚ “ r✓˚
1 , ¨ ¨ ¨ , ✓˚

nsJ,

which are assumed to fall within a range,

✓˚
i P r✓L, ✓U s, @i P rns.

with the condition number  :“ ✓U ´ ✓L. This paper considers the case where  is a fixed

constant independent of n. This represents a more challenging scenario in which all items under

comparison have preference scores in the same order. Otherwise, we could apply a simple

screening to easily differentiate obvious winners or losers and redo the analysis within only

items with scores of the same order.

• Comparison hypergraph: Let G “ pV , Eq be a comparison hypergraph, where the vertex set

V “ t1, 2, ¨ ¨ ¨ , nu denotes the n items of interest. M different items pi1, ¨ ¨ ¨ , iMq are compared

if pi1, ¨ ¨ ¨ , iMq falls within the edge set E of a M -way hypergraph. We assume a hyper-edge

connecting any set pi1, ¨ ¨ ¨ , iMq of size M with probability p. Let Ai1¨¨¨iM take value 1 if item set

pi1, ¨ ¨ ¨ , iMq is compared and 0 otherwise. Then it is a sequence of realizations from independent

Bernoulli random variables with parameter p representing whether pi1, ¨ ¨ ¨ , iMq is connected in

the hypergraph. When M “ 2, the hypergraph becomes the well-known Erdos-Renyi graph.
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• Multinomial Comparisons: For each pi1, ¨ ¨ ¨ , iMq P E , we observe L independent comparisons

among items in ti1, ¨ ¨ ¨ , iMu and let typ`q
i1 , ¨ ¨ ¨ , yp`q

iM
u be the `-th outcome of the comparison. If

the most preferred item is ik, then yp`q
ik

“ 1 and the others are zero. Thus, for each ` P rLs,
typ`q

ik
, k P rM su follows the multinomial distribution independently with probability

!
pik “ e✓

˚
ik

∞M
j“1 e

✓˚
ij

, k P rM s
)
.

Further define yik “ 1
L

∞L
l“1 y

p`q
ik

. We also denote yp`q
ik

as yp`q
ik,pi1,¨¨¨ ,ik´1,ik`1,¨¨¨ ,iM q when we need

to emphasize that ik is preferred over the remaining items ti1, ¨ ¨ ¨ , ik´1, ik`1, ¨ ¨ ¨ , iMu. But we

prefer the shorter notation when it is clear from the context on the comparison set.

Throughout the paper, we consider M “ Op1q. This assumption is trivially satisfied in many

practical applications. For example, in a multi-player game, the number of teams or contestants who

compete with each other in every game is typically a fixed number or has a fixed upper bound. A

student who faces the selection of education programs may only get offers from a few institutes. In a

recommendation system such as an online shopping platform, due to the limited space of a webpage,

only a fixed number of items can be exhibited on the first page, and a shopper may seldom turn to the

second page to make the purchasing decision. Moreover, in all these examples, we typically only have

access to the most preferred item instead of knowing the full ranking of all M items. Even when we

observe the full ranking, it may not be trusted as much as the top preference due to the challenges to

give full ranking of multiple items.

This paper aims to provide the statistical estimation and uncertainty quantification of the underlying

scores of all items. More importantly, we study statistical inference for ranks, which is very much

underdeveloped for the multiway comparison model.

3 Estimation and Uncertainty Quantification

In this section, we utilize the MLE to derive an estimator for the underlying scores t✓˚
i uni“1 of n items

and establish the statistical convergence rates and asymptotic normality.
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3.1 Statistical Estimation

The negative-log-likelihood function for our multiway comparison model is given by

`np✓q “ ´
ÿ

i1‰¨¨¨‰iM

Ai1¨¨¨iM

„ Mÿ

k“1

yik log

ˆ
e✓ik

∞M
j“1 e

✓ij

˙⇢
. (1)

Here the expression (1) is mainly for the purpose of theoretical analysis. For computation of the

MLE, the first summation is over all trials of multiway comparisons and the second sum has only one

non-vanishing term.

From the above likelihood function, ✓˚ is only identifiable up to additive shift. We assume 1J✓˚ “
0 for model identifiability. Thus, the parameter space for ✓˚ is the following ⇥pq for some positive

fixed constant  † 8, where

⇥pq “
"
✓ P Rn : max

1§m§n
✓m ´ min

1§m§n
✓m §  and 1J✓ “ 0

*
. (2)

Thus, the MLE is given by

p✓ “ argmin
1J✓“0

`np✓q. (3)

The next theorem gives the rate of convergence for p✓.

Theorem 1. If p Á polyplog nq{
`
n´1
M´1

˘
, then the MLE defined in (3) satisfies

}p✓ ´ ✓˚}22 À n`
n´1
M´1

˘
pL

, (4)

}p✓ ´ ✓˚}28 À log n`
n´1
M´1

˘
pL

. (5)

Theorem 1 presents the `2- and `8- statistical convergence rates for p✓ when one chooses the most

preferred item among M given items. This coincides with the best rate one can hope for if we ignore

the logarithmic term. To understand this from the information perspective, note that the parameter

✓i appears only in the comparisons when item i is involved and the expected number of comparisons

involving item i is
`
n´1
M´1

˘
pL for all i P rns. Therefore, the best estimation error of ✓i we can achieve

is Opp
`
n´1
M´1

˘
pLq´1{2q for all i P rns, which matches the obtained bound for }p✓ ´ ✓˚}8 if we ignore
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the logarithmic term. It is also worth mentioning that when M “ 2, our model reduces to the well-

known BTL model. The `2- and `8- statistical rates also match those in estimating BTL model that

are optimal up to logarithm terms [Chen et al., 2019, 2020].

We hope to point out that when M “ Op1q, our `2- and `8- statistical rates are identical to those

in Jang et al. [2018] for the M -way comparisons in the PL model via the spectral method. This

reveals that only picking the top item, instead of full ranking of all M items, is sufficient to recover the

underlying scores with same order of accuracy. In addition, note that the hypergraph with edge size of

M items is connected with high probability when p Á log n{
`

n
M´1

˘
by Cooley et al. [2016]; otherwise

there will be isolated points and the corresponding items are never ranked. Our assumption on the

sampling probability p Á polyplog nq{
`
n´1
M´1

˘
matches the lower bound on sampling probability up to

logarithmic terms, whereas Jang et al. [2018] requires p Á plog n{
`
n´1
M´1

˘
q1{2, a order of magnitude

larger than ours.

The next corollary provides the conditions on the recovery of the top-K items when there exists a

gap between the scores of the true K-th and pK ` 1q-th items.

Corollary 1. Under the conditions of Theorem 1, if we have ✓˚ P ⇥pq with ✓˚
pKq ´ ✓˚

pK`1q • �, we

are able to recover the true top-K items when the sample complexity satisfies
ˆ
n ´ 1

M ´ 1

˙
pL Á �´2 ¨ log n.

Here ✓˚
piq denotes the underlying score of the item with true rank i for i P rns.

This corollary follows directly from Theorem 1. Note that when M “ 2, the requirement for

sample complexity exactly reduces to that in Chen et al. [2019], which is minimax optimal up to

logarithm factors.

3.2 Uncertainty Quantification

This subsection aims at providing uncertainty quantification of estimator p✓. We follow the idea pro-

posed in Gao et al. [2021], depicting the asymptotic behavior of every element of p✓ via the likelihood

function.
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Before proceeding, we first separate out the likelihood terms involving the m-th entry ✓m. Fixing

other components ✓´m “ t✓i : i ‰ mu, we define

`pmq
n p✓m | ✓´mq “ ´M

ÿ

pi1‰¨¨¨‰iM´1q‰m

Ai1¨¨¨iM´1m

„ M´1ÿ

k“1

yik log

ˆ
e✓ik

∞M´1
j“1 e✓ij ` e✓m

˙
(6)

` ym log

ˆ
e✓m

∞M´1
j“1 e✓ij ` e✓m

˙⇢
.

Again this includes all terms in the likelihood function (1) that has the information of ✓m. Let

f pmqp✓m | ✓´mq be the gradient of `pmq
n p✓m | ✓´mq w.r.t. ✓m, which is given by

f pmqp✓m | ✓´mq “ M
ÿ

pi1‰¨¨¨‰iM´1q‰m

Ai1¨¨¨iM´1m

"
e✓m

∞M´1
j“1 e✓ij ` e✓m

´ ym

*
. (7)

In addition, we also define gpmqp✓m | ✓´mq as the second derivative of `pmq
n p✓m | ✓´mq w.r.t. ✓m, which

is given by

gpmqp✓m | ✓´mq “ M
ÿ

pi1‰¨¨¨‰iM´1q‰m

Ai1¨¨¨iM´1m

" M´1ÿ

j“1

e✓m`✓ij

p∞M´1
j“1 e✓ij ` e✓mq2

*
. (8)

Then, to maximize the likelihood, p✓m must be the minimzer of `pmq
n p✓ | p✓´mq. By Taylor expansion of

`pmq
n p✓ | p✓´mq, a good proxy to p✓m ´ ✓˚

m is its score function ´f pmqp✓m̊ | p✓´mq
gpmqp✓m̊ | p✓´mq , which is approximately the

same as ´f pmqp✓m̊ | ✓˚
´mq

gpmqp✓m̊ | ✓˚
´mq . This leads us to consider the heuristic expression

p✓m ´ ✓˚
m “ ´f pmqp✓˚

m | ✓˚
´mq

gpmqp✓m̊ | ✓˚
´mq ` �m, (9)

where we expect �m to be of smaller order. The asymptotic distribution of p✓m ´ ✓˚
m will then follow

from that of ´f pmqp✓m̊ | ✓˚
´mq

gpmqp✓m̊ | ✓˚
´mq . The following theorem makes the above heuristic discussion rigorous.

Theorem 2. If p Á polyplog nq{
`
n´1
M´1

˘
, the MLE defined in (3) enjoys

p✓m ´ ✓˚
m “ ´f pmqp✓˚

m | ✓˚
´mq

gpmqp✓m̊ | ✓˚
´mq ` �m,

for all m P rns with }�}8 “ opp1{
`
n´1
M´1

˘
pLq1{2q where � “ p�1, ¨ ¨ ¨ , �nq. In addition,

⇢mp✓qpp✓m ´ ✓˚
mq Ñ Np0, 1q,
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for all m P rns with

⇢mp✓q “
„

L

pM ´ 1q!
ÿ

pi1‰¨¨¨‰iM´1q‰m

Ai1¨¨¨iM´1m

" M´1ÿ

j“1

e✓m`✓ij

p∞M´1
j“1 e✓ij ` e✓mq2

*⇢1{2
, (10)

for both ✓ P t✓˚, p✓u.

Theorem 2 presents the asymptotic distribution for every element of p✓, by approximating p✓m ´ ✓˚
m

by the score function ´f pmqp✓m̊ | ✓˚
´mq

gpmqp✓m̊ | ✓˚
´mq . Although a series of works have studied the ranking estimation

problem under pairwise or general multiway comparison [Maystre and Grossglauser, 2015, Jang et al.,

2018], results on uncertainty quantification are still very much underdeveloped. To our best knowl-

edge, existing literature only has results on quantifying the uncertainty of the BTL model [Gao et al.,

2021]. We take one step further to unravel the uncertainty of the preference score estimator p✓ presented

in Theorem 2 for the more general M -way comparison with M • 2.

We comment on the connections of our results with several related literature. Firstly, compared

with Liu et al. [2022] who study the asymptotic distribution of their estimator via the Lagrangian debi-

asing method, we have no requirement on the number of comparisons L for establishing the asymptotic

distribution whereas they require L Á n2. Secondly, compared with Han et al. [2020], who established

the asymptotic results in the regime when p Á 1{n1{10, we allow much sparser regime for the com-

parison hypergraph, namely, we allow p Á polyplog nq{
`
n´1
M´1

˘
. This matches the sparsest sampling

regime up to logarithm terms. In addition, when M “ 2, our model reduces to the BTL model whose

uncertainty quantification is provided by Gao et al. [2021] with the requirement of p Á polyplog nq{n.

As we mentioned in Section 3.1, the statistical rate achieved under our top choice multiway com-

parison model is the same as that in estimating the conventional PL model up to logarithm terms.

Hence the difference in the asymptotic behaviors under these two models lies in their different asymp-

totic variances. In specific, for any fixed M , when the underlying scores t✓˚
i uni“1 are of the same order,

we sacrifice a factor of order M in our asymptotic variance compared with using the PL model. We

want to emphasize that our analyzing techniques can be easily extended to the scenario where one

ranks the top-k items for any k § M given the M items. This includes the PL model as a particular

case with k “ M . We present a formal theorem on the asymptotic normality of the MLE for the

12



PL model with M “ 3 in Appendix B.8. The corresponding theorem for the PL model with general

M “ Op1q can be derived similarly, and we leave the details to the interested readers. As we ar-

gued, we often only have access to top choices in reality. More importantly, studying the top choice in

multiway comparison already conveys our key messages clearly without excessive technicality.

4 Ranking Inferences

In many real applications, people have access to ranking-related data and problems. For instance,

multiple sources such as US News and Times Higher Education publish global university rankings

every year; sports team rankings are an essential part of our everyday chat; companies try to hire the

best candidates based on the evaluations of their interviewers. Most current practical usage of ranks

only involves estimating preference scores and displaying the estimated ranks. However, we often lack

the tools to address basic inference questions such as the following.

• Is Team A indeed significantly stronger than Team B? Can one build an efficient confidence

interval for the ranks of a few items of interest?

• Is the offer from a university truly a good choice to accept? How can we tell whether an item is

among the top-K ranking with high confidence?

• How many candidates should a company hire to ensure all the best candidates are selected? How

do we get a confidence set of items to ensure the screening of the top-K items?

In this section, we hope to address all these critical statistical inference questions for ranks. To this

end, we introduce a novel inference framework for the population ranks trmumPM simultaneously,

where M is any subset of rns of interest and rm,m P rns is the true rank in descending order of the

m-th item according to its underlying preference score ✓˚
m.

13



4.1 Two-Sided Confidence Intervals

In this subsection, we propose a general framework for constructing two-sided confidence intervals

for ranks based on the MLE estimator p✓ “ pp✓1, . . . , p✓nqJ given in (3). To construct the simultaneous

confidence intervals for the ranks, a direct approach is to derive the asymptotic distribution of the

corresponding empirical ranks tprmumPM and figure out the critical value. However, as prm is an integer

which depends on all p✓1, . . . , p✓n for any m P M, this is nontrivial.

By exploiting the mutual relationship between the scores and the ranks, we observe that construct-

ing confidence intervals for the ranks can be reduced to constructing simultaneous confidence intervals

for the pairwise differences between the population scores, whose empirical counterpart’s distribution

is easier to depict. Therefore, to circumvent the difficulty of deriving the distribution of ranks di-

rectly, we work on the statistics of estimated scores tp✓mumPrns instead. Next, we will illustrate the key

intuition of our approach via the following example.

Example 1 (Simultaneous rank confidence intervals). Let M “ tmu for some 1 § m § n be the

item of interest. We consider constructing the p1 ´ ↵q ˆ 100% confidence interval for the population

rank rm, where ↵ P p0, 1q is a prescribed significance level. Let trCLpk,mq, CUpk,mqsuk‰m denote the

simultaneous confidence intervals of t✓˚
k ´ ✓˚

muk‰m such that with probability at least 1 ´ ↵, we have

all ✓˚
k ´ ✓˚

m P rCLpk,mq, CUpk,mqs. Observe that CUpk,mq † 0 (resp. CLpk,mq ° 0) implies ✓˚
k † ✓˚

m

(resp. ✓˚
k ° ✓˚

m). Counting the number of items ranked lower than item m by using confidence upper

bounds and the number of items ranked above item m by using the confidence lower bounds, we can

get a confidence interval for rm. In other words,

P
˜
1 `

ÿ

k‰m

ItCLpk,mq ° 0u § rm § n ´
ÿ

k‰m

ItCUpk,mq † 0u
¸

• 1 ´ ↵. (11)

This yields a p1 ´ ↵q ˆ 100% confidence interval for rm.

We now formally introduce the procedure to construct the confidence intervals for multiple ranks

trmumPM simultaneously. Motivated by Example 1, the key step is to construct the simultaneous

14



confidence intervals for the pairwise score differences t✓˚
k ´ ✓˚

mumPM,k‰m. Towards this end, define

T⌘ “ max
mPM

max
k‰m

ˇ̌
ˇ̌
ˇ

?
Ltp✓k ´ p✓m ´ p✓˚

k ´ ✓˚
mqu

⌘mk

ˇ̌
ˇ̌
ˇ . (12)

Here t⌘mku1§k‰m§n is a sequence of positive normalizing constants introduced to account for different

scales of tp✓k ´ p✓m ´p✓˚
k ´✓˚

mqu1§k‰m§n. A natural choice of t⌘mkut1§k‰m§nu is the uniform consistent

estimators of the standard deviations tp�mku of tp✓k ´ p✓mut1§k‰m§nu, where

p�2
mk “ MpM ´ 1q!

gpmqpp✓m|p✓´mq
` MpM ´ 1q!

gpkqpp✓k|p✓´kq
. (13)

For any ↵ P p0, 1q, let ⇣1´↵ denote a consistent estimate of the p1 ´ ↵q quantile of the asymptotic

distribution of T⌘ such that

PpT⌘ § ⇣1´↵q Ñ 1 ´ ↵. (14)

Then, motivated by Example 1, the p1 ´ ↵q ˆ 100% simultaneous confidence intervals for trmumPM

are given by trR˛
mp⌘, ⇣1´↵q,R7

mp⌘, ⇣1´↵qsumPM, where

R
˛
mp⌘, ⇣1´↵q “ 1 `

ÿ

k‰m

I
"

p✓k ´ p✓m ° ⌘mk?
L

ˆ ⇣1´↵

*
,

R
7
mp⌘, ⇣1´↵q “ n ´

ÿ

k‰m

I
"

p✓k ´ p✓m † ´⌘mk?
L

ˆ ⇣1´↵

*
. (15)

In view of (11) and (14), the constructed simultaneous confidence intervals satisfy that

P
`
XmPMtR˛

mp⌘, ⇣1´↵q § rm § R
7
mp⌘, ⇣1´↵qu

˘
• 1 ´ ↵ ´ op1q.

As noted in (14), the key step for constructing the confidence interval of ranks of interest is to pick

the critical value ⇣1´↵. In the next subsection, we propose to estimate ⇣1´↵ via the Gaussian multiplier

bootstrap procedure.

4.2 Gaussian Multiplier Bootstrap

We now present our proposed estimate of the critical value ⇣1´↵ for T⌘, which satisfies (14). We begin

by introducing some notations and definitions. For each 1 § ` § L, define

⇠m` “ M

gpmqp✓m̊|✓˚
´mq

ÿ

pi1‰¨¨¨‰iM´1q‰m

Ai1¨¨¨iM´1m

$
&

%
e✓m̊

∞M´1
j“1 e

✓˚
ij ` e✓m̊

´ yp`q
m

,
.

- . (16)
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In addition, let ⇠m :“ f pmqp✓m̊|✓˚
´mq

gpmqp✓m̊|✓˚
´mq “ 1

L

∞L
`“1 ⇠m` for each m P rns. Theorem 2 ensures that p✓m ´ p✓k ´

p✓˚
m ´ ✓˚

kq « 1
L

∞L
`“1p⇠k` ´ ⇠m`q uniformly for all 1 § k ‰ m § n. Consequently, we obtain

T⌘ « max
mPM

max
k‰m

1?
L

ˇ̌
ˇ̌
ˇ

Lÿ

`“1

ˆ
⇠k` ´ ⇠m`

⌘mk

˙ˇ̌
ˇ̌
ˇ . (17)

Notice that t⇠k` ´ ⇠m`u1§`§L is a sequence of i.i.d. zero-mean random variables with conditional vari-

ance �2
mk “ Varp⇠k` ´ ⇠m`|Aq where Varp¨ |Aq denotes the conditional variance given a fixed compar-

ison hypergraph, i.e.

A “ tAi1¨¨¨iM u where recall Ai1¨¨¨iM “ 1 if pi1, ¨ ¨ ¨ , iMq P E . (18)

In what follows, we also write T “ T⌘ for simplicity.

Since the dimension of the random vectors tp⇠k` ´ ⇠m`qmPM,k‰mu1§`§L is pn ´ 1q|M| and is

usually much larger than L (we only require polyplog nq{L Ñ 0 in Theorem 3 below), the classical

multivariate central limit theorem cannot be utilized here to derive the asymptotic distribution of T .

Instead, we shall invoke the high dimensional Gaussian approximation result [Chernozhukov et al.,

2017, 2019] which quantifies the distance between the distribution functions of T and its Gaussian

analogue. Nevertheless, the asymptotic distribution of T still depends on the unknown population

scores t✓˚
mumPrns and the covariance structure of the random vector p⇠m` ´ ⇠k`qmPM,k‰m. To approx-

imate the asymptotic distribution of T , we apply a practically feasible Gaussian multiplier bootstrap

procedure [Chernozhukov et al., 2017, 2019]. First define the empirical version of ⇠m` as follows,

p⇠m` “ M

gpmqpp✓m|p✓´mq
ÿ

pi1‰¨¨¨‰iM´1q‰m

Ai1¨¨¨iM´1m

$
&

%
e

p✓m

∞M´1
j“1 e

p✓ij ` ep✓m
´ yplq

m

,
.

- .

Let !1, . . . ,!L P R be i.i.d. standard normal random variables. Then, in view of (17), the bootstrap

counterpart of T is defined as

G “ max
mPM

max
k‰m

1?
L

ˇ̌
ˇ̌
ˇ

Lÿ

`“1

˜
p⇠k` ´ p⇠m`

p�mk

¸
!`

ˇ̌
ˇ̌
ˇ .

For any ↵ P p0, 1q, let G1´↵ denote the p1 ´ ↵q-th quantile of G, that is,

G1´↵ “ inftz P R : PpG § z|Y,Aq • 1 ´ ↵u. (19)
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Here Pp¨ |Y,Aq denotes the conditional probability where all randomness from Y “ typ`q
ik

: ik P
ti1, ¨ ¨ ¨ , iMu, ` P rLsu and A defined in (18) is fixed.

Theorem 3. Assume polyplog nq{L Ñ 0. Then, under the conditions of Theorem 2, we have
ˇ̌
ˇ̌
ˇP

#
max
mPM

max
k‰m

ˇ̌
ˇ̌
ˇ

?
Ltp✓k ´ p✓m ´ p✓˚

k ´ ✓˚
mqu

p�mk

ˇ̌
ˇ̌
ˇ ° G1´↵

+
´ ↵

ˇ̌
ˇ̌
ˇ Ñ 0. (20)

Theorem 3 indicates that the estimated critical value G1´↵ from the Gaussian multiplier bootstrap

indeed controls the significance level of the simultaneous confidence intervals for ranks in M to the

prespecified level ↵. To make the inference valid, we do require L to grow faster than polyplog nq.

So our current proposal does not work for say L “ 1, where each comparison set is only ranked by

one single individual. Fortunately, this requirement is not too restrictive and can be satisfied by many

practical datasets such as the more than 30 datasets on elections, Netflix movie ranking, and sports

competitions hosted on the PrefLib website [Mattei and Walsh, 2013].

Remark 1. Recall the definition of ⇢mp✓q in (10) for each m P rns. In the context of pairwise com-

parison where M “ 2, Gao et al. [2021] proposed a p1´↵q ˆ 100% confidence interval r rR˛
m, rR7

ms for

the population rank rm, where

rR˛
m “ 1 `

ÿ

k‰m

I
#

p✓k ´ p✓m ° z1´↵{2

⇢mpp✓q
` p1 ` c0q

?
2 log n

⇢kpp✓q

+
,

rR7
m “ n ´

ÿ

k‰m

I
#

p✓m ´ p✓k ° z1´↵{2

⇢mpp✓q
` p1 ` c0q

?
2 log n

⇢kpp✓q

+
.

Here z1´↵{2 is the p1 ´ ↵q-th quantile of the standard normal distribution, c0 ° 0 is an arbitrary small

and fixed positive constant. Note that the uncertainty of p✓k for all k ‰ m is controlled by its high-

probability Bonferroni bound, leading to the
?
2 log n multiplier (the worst lower or upper bound).

Denote r⌘mk “ z1´↵{2
⇢mpp✓qp1`c0q?

2 logn
` 1

⇢kpp✓q for each 1 § k ‰ m § n. Then it is straightforward that

P
´
rm P r rR˛

m, rR7
ms

¯
• P

˜
max
k‰m

ˇ̌
ˇ̌
ˇ
p✓k ´ p✓m

r⌘mk

ˇ̌
ˇ̌
ˇ ° p1 ` c0q

a
2 log n

¸
• 1 ´ ↵ ´ op1q. (21)
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The length of the confidence interval is given by

rL1´↵ “ rR7
m ´ rR˛

m “ n ´ 1 ´
ÿ

k‰m

I
#ˇ̌

ˇ̌
ˇ
p✓k ´ p✓m

r⌘mk

ˇ̌
ˇ̌
ˇ ° p1 ` c0q

a
2 log n

+
. (22)

In contrast, following (12)–(15), if we set the normalization parameter ⌘mk to be r⌘mk, our confidence

interval for rm is given by rR˛
mpr⌘,G}

1´↵q,R7
mpr⌘,G}

1´↵qs with length

L1´↵ “ R
7
mpr⌘,G}

1´↵q ´ R
˛
mpr⌘,G}

1´↵q “ n ´ 1 ´
ÿ

k‰m

I
#ˇ̌

ˇ̌
ˇ
p✓k ´ p✓m

r⌘mk

ˇ̌
ˇ̌
ˇ ° G

}
1´↵

+
, (23)

where G
}
1´↵ is the p1 ´ ↵q-th quantile of G} “ maxk‰m

1
L

ˇ̌
ˇ
∞L

`“1

´
p⇠k`´p⇠m`

r⌘mk

¯
!`

ˇ̌
ˇ. Following the same

proof of Theorem 3, we can similarly obtain

P
˜
max
k‰m

ˇ̌
ˇ̌
ˇ
p✓k ´ p✓m

r⌘mk

ˇ̌
ˇ̌
ˇ ° G

}
1´↵

¸
Ñ 1 ´ ↵.

However, it is easy to verify that the length of our proposed confidence interval in (23) is shorter than

that given by Gao et al. [2021] in (22). In detail,

P
´

rL1´↵ • L1´↵

¯
• P

´
G
}
1´↵ § p1 ` c0q

a
2 log n

¯
Ñ 1.

In conclusion, for any m P rns, our confidence interval of rm will be narrower than that of Gao

et al. [2021] with probability tending to 1. In addition, from the above remark, the confidence interval

proposed by Gao et al. [2021] using high-probability Bonferroni adjustment can also be easily ex-

tended to the situation of M ° 2, once we plug-in the updated formula for ⇢mpp✓q and ⇢kpp✓q as in (10)

in the normalization parameter r⌘mk. However, their Bonferroni confidence interval cannot be directly

extended to simultaneous inference of a few ranks whereas in our proposal we have the freedom to

choose any interested set M of size more than one. In our simulation and real data analyses below, we

will demonstrate empirically that there is no big difference on using r⌘mk or p�mk as the normalization

parameter. Thus, we will see the length of confidence intervals for both choices are strictly smaller

than the Bonferroni confidence interval constructed in Gao et al. [2021].
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4.3 One-Sided Confidence intervals

In this subsection, we provide details on constructing (simultaneous) one-sided intervals for popu-

lation ranks, and utilizing the one-sided intervals to resolve two more important questions, namely

top-K placement testing and sure screening of top-K candidates. This further illustrates the wide

applicability of our methodology.

For one-sided intervals, the overall procedure is similar to constructing two-sided confidence in-

tervals. Specifically, let

G
˝ “ max

mPM
max
k‰m

1?
L

Lÿ

`“1

˜
p⇠m` ´ p⇠k`

p�mk

¸
!` (24)

where !1, . . . ,!L P R are as before i.i.d. standard normal random variables. Correspondingly, let G˝
1´↵

be its p1 ´ ↵q-th quantile. Under the conditions of Theorem 3, it follows that
ˇ̌
ˇ̌
ˇP

#
max
mPM

max
k‰m

?
Ltp✓k ´ p✓m ´ p✓˚

k ´ ✓˚
mqu

p�mk
° G

˝
1´↵

+
´ ↵

ˇ̌
ˇ̌
ˇ Ñ 0.

Then the p1 ´ ↵q ˆ 100% simultaneous left-sided confidence intervals for trmumPM are given by

rR˛
m, ns “

«
1 `

ÿ

k‰m

I
"

p✓k ´ p✓m ° p�mk?
L

ˆ G
˝
1´↵

*
, n

�
, m P M. (25)

We next show the usefulness of the one-sided confidence intervals with two examples. The first one

is on testing whether an item of interest lies in the top-K placement. The mathematical framework is

given in Example 2.

Example 2 (Testing top-K placement). Let M “ tmu for some 1 § m § n and let K • 1 be an

prescribed positive integer. We are interested in testing whether m-th item is among the top-K ranked

items. So the hypotheses under consideration is

H0 : rm § K versus H1 : rm ° K. (26)

Based on the one-sided confidence interval rR˛
m, ns in (25), for any ↵ P p0, 1q, a level ↵ test for (26) is

simply given by

 m,K “ ItR˛
m ° Ku.
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Proposition 1. Under the conditions of Theorem 3, we have Pp m,K “ 1|H0q § ↵ + o(1). In addition,

Pp m,K “ 1|H1q Ñ 1 holds when ✓˚
pKq ´ ✓˚

m Á
c

logn

p n´1
M´1qpL , where ✓˚

pKq denotes the underlying score

of the item with true rank K.

Proposition 1 summarizes the size and power of the above test  m,K . From Proposition 1, we are

able to control the type-I error effectively below ↵ under the null hypothesis. Moreover, when the

alternative holds, the power of the test goes rapidly to one as long as the score difference is larger than

the threshold of order Op
b
log n{p

`
n´1
M´1

˘
pLqq.

Besides testing for the top-K placement, our second crucial example is on constructing a screened

candidate set that contains the top-K items with high probability. This is particularly useful in college

candidate admission or company hiring decision. Oftentimes, a university or a company would like to

design certain admission or hiring policy with the high-probability guarantee of the sure screening of

true top-K candidates. We formulate this rigorously in Example 3.

Example 3 (Candidate admission and sure screening). Let r : rns Ñ rns denote the rank operator on

n items which maps each item to its population rank and K “ tr´1p1q, . . . , r´1pKqu be the top-K

ranked items. Our goal is to select a set of candidates pIK which contains the top-K candidates with a

prescribed probability, that is,

P
´
K Ä pIK

¯
• 1 ´ ↵, (27)

for some ↵ P p0, 1q. Let M “ rns and trR˛
m, nsumPrns denote the corresponding p1 ´ ↵q ˆ 100%

simultaneous left-sided confidence intervals in (25). Notice that R˛
m ° K implies that rm ° K for

each m P rns. Hence a natural choice of pIK which satisfies (27) would be

pIK “ t1 § m § n : R˛
m § Ku.

In practice, the candidates are more likely to be admitted based on their empirical ranks tprp1q, . . . , prpnqu.

In this scenario, we then seek the minimal number D • 1 such that

P
`
K Ä tpr´1p1q, . . . , pr´1pDqu

˘
• 1 ´ ↵.
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(a) (b)

Figure 1: `8- and `2- statistical errors of the MLE p✓ against the theoretical rate when p varies. The

solid lines represent the averaged statistical errors of 200 repetitions and the light areas denote the

standard deviations.

To estimate D, with a slight abuse of notation, set p�mk “ 1 for all 1 § k ‰ m § n in (24) and denote

the corresponding p1 ´ ↵q ˆ 100% simultaneous left-sided confidence intervals as tr pR˛
m, nsu. Then,

similar to pIK , our estimator for D is defined by

pD “ max
!
1 § m § n : pR˛

m § K
)
,

where pR˛
1 § pR˛

2 § . . . § pR˛
n maintains the same ranking as the empirical ranks.

In Example 3, we constructed sure screening set for top-K candidates. Although many works

studied sure screening property of the high-dimensional regression coefficients [Fan and Lv, 2008,

Fan and Song, 2010, Zhu et al., 2011, Li et al., 2012, Barut et al., 2016, Wang and Leng, 2016, Fan

et al., 2022], the study on the sure screening property of population ranks is much less explored and to

our best knowledge, our procedure is the first one to have concrete theoretical guarantee.

5 Numerical Studies

In this section, we first conduct numerical studies via synthetic data to demonstrate our theoretical

results in finite samples in Section 5.1 and to illustrate the effectiveness of our proposed confidence
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(a) (b)

Figure 2: `8- and `2- statistical errors of the MLE p✓ against the theoretical rate when L varies. The

remaining captions are the same as those in Figure 1.

interval methodology in Section 5.2. We then analyze a real data example in Section 5.3.

5.1 Synthetic Data Analysis

To confrim the correctness of our theorem in finite samples, we will verify the statistical convergence

rate, the asympototic normality and the effectiveness of Gaussian multiplier bootstrap in this subsec-

tion.

Statistial rates of convergence. We first validate the statistical rates of our MLE estimator p✓ in

both `8- and `2-norms. In the first simulation, we fix n “ 60,M “ 3, L “ 20 and let p vary such

that
b
log n{

`
n´1
M´1

˘
pL takes uniform grids from 0.04 to 0.18. Meanwhile, we generate every entry

of the true ✓˚ independently from Uniformr2, 4s. We then record the `8- and `2- statistical errors of
p✓ to ✓˚ by solving the MLE given in (1). The average errors together with the standard deviations

of 200 repetitions for each p are displayed in Figure 1. In the second simulation, we investigate the

effects of L on these statistical rates. In this scenario, we fix n “ 60,M “ 3, p “ 0.05 and let L

vary such that
b
log n{

`
n´1
M´1

˘
pL takes uniform grids from 0.04 to 0.18. The remaining procedures are

the same as above and the results are shown in Figure 2. Clearly, we observe from Figures 1 and 2,

the statistical rates are proportional to their theoretical rates, as indicated by the overall linear pattern.
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These simulation results lend further support to the theoretical results in Theorem 1.

Asymptotic normality. Next, we investigate the uncertainty quantification of the MLE estimator
p✓. Here we fix n “ 60,M “ 3 and choose L, p from t5, 10, 20u and t0.008, 0.015, 0.03u respectively,

which results in 9 combinations. For each combination, the true ✓˚ is generated independently from

Uniformr2, 4s for 500 times. We record the empirical distributions of the standardized p✓1, that is

⇢1pp✓qpp✓1 ´ ✓˚
1 q, of these 500 repetitions, and check its normality via histograms, presented in Figure 3.

From Figure 3, we observe that the empirical distribution of p✓1 is well approximated by the standard

Gaussian distribution, especially when we have a larger p and L. This is consistent with the theoretical

results in Theorem 2.

Gaussian multiplier bootstrap. Finally, we validate the Gaussian approximation results discussed

in Section 4. We let n “ 60,M “ 3, L “ 80, p “ 0.05 and investigate the distribution of T in (12) with

M “ t1u. By Theorem 3, we have ErItT ° G1´↵us “ PpT ° G1´↵q Ñ ↵. We then verify this with

various ↵ P t0.05, 0.10, ¨ ¨ ¨ , 0.90u. For every ↵, we bootstrap 300 times to compute the critical value

G1´↵, and repeat this whole procedure 500 times to calculate pPpT ° G1´↵q “ 1
500

∞500
b“1 ItT b ° G

b
1´↵u

where T
b and G

b
1´↵ are the pairwise score difference statistic and the corresponding bootstrap critical

value of the b-th repetition. Note that in each repetition, the true ✓˚ is generated independently from

Uniformr2, 4s as before. Note that pPpT § G1´↵q is the empirical coverage probability for the pairwise

score difference statistic T . Figure 4 gives the so-called PP-plot, which shows pPpT ° G1´↵q against

the theoretical significance level. From Figure 4, it the clear that the empirical probability match well

with the theoretical ones. Especially, when we apply the significant level of ↵ “ 0.05, the empirical

exceptional probability is indeed around 0.05.

5.2 Confidence Interval

Below we provide numerical studies for validating our proposed framework for confidence interval

construction in Section 4. Throughout this subsection, we use n “ 60,M “ 3, L “ 80 and let p vary

in t0.05, 0.10, 0.15u. In addition, the entries of ✓ P R60 are generated from the uniform grids from 4 to

2, i.e. ✓i “ 4 ´ pi ´ 1q{30 for i “ 1, . . . , 60. For every experiment, we conduct the bootstrap for 500
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Figure 3: Histogram of ⇢1pp✓qpp✓1 ´ ✓˚
1 q against standard Gaussian distribution. The blue curve denotes

the standard Gaussian distribution. The experiments were repeated for 500 times for each combination

of L P t5, 10, 20u and p P t0.008, 0.015, 0.03u.
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Figure 4: PP-plot of empirical probability pPpT ° G1´↵q of T given in (12) with M “ t1u against

theoretical significance level ↵. The red solid and blue dash-dotted lines represent theoretical and

empirical probabilities respectively. The green dotted line represents the the case when significance is

chosen to be 0.05.

times to compute the critical value according to ↵ “ 0.05 and further repeat the entire procedure for

500 times.

Two-sided confidence intervals. We construct the confidence interval (CI) for the 10-th item

(M “ t10u) using our method in Section 4 and the Bonferroni correction proposed in Gao et al. [2021]

respectively. Concretely, we will compare the following 3 confidence intervals: (i) our bootstrap CI

rR˛
10pp�,G1´↵q,R7

10pp�,G1´↵qs with the normalization p�mk, (ii) our bootstrap CI rR˛
10pr⌘,G}

1´↵q,R7
10pr⌘,G}

1´↵qs
but with the normalization r⌘mk (c0 “ 1), (iii) the Bonferroni CI r rR˛

10, rR7
10s given by Gao et al. [2021]

extended to M “ 3 in this simulation (see discussions after Remark 1). For each choice of the above

confidence intervals, we report: (a) EC(✓) – the empirical coverage probability pPpT § G1´↵q for T ,

which is also the overall empirical coverage probability for all the score differences ✓˚
k ´ ✓˚

10, @k ‰ 10,

(b) EC(r) – the empirical coverage of the confidence interval constructed for rank r10, and furthermore

(c) Length – the length of the CI for rank r10 which equals R7
10 ´ R

˛
10, where rR˛

10,R
7
10s is any of the
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CI rR˛
10pp�,G1´↵q,R7

10pp�,G1´↵qs rR˛
10pr⌘,G}

1´↵q,R7
10pr⌘,G}

1´↵qs r rR˛
10, rR7

10s

EC(✓) EC(r) Length EC(✓) EC(r) Length EC(✓) EC(r) Length

p “ 0.05 0.950 1.000 5.590 0.948 1.000 5.716 1.000 1.000 10.290

p “ 0.10 0.940 1.000 3.604 0.956 1.000 3.686 1.000 1.000 6.962

p “ 0.15 0.950 1.000 2.886 0.948 1.000 2.928 1.000 1.000 5.476

Table 1: Empirical coverages and lengths of two-sided confidence intervals (CI). For any choice of CI,

“EC(✓)” and “EC(r)” denote the empirical coverages of confidence intervals for score differences and

ranks. “Length” denotes the length of the CI for r10. The first two CI’s use our bootstrap method in

Section 4 and only differ in the normalization parameters used. The third CI is based on the Bonferroni

method of Gao et al. [2021]. All numbers are averaged over 500 replications.

above CI in (i)-(iii).

The results of the empirical coverages for score differences and ranks and the length of confidence

intervals are summarized in Table 1. Table 1 reveals that the empirical coverage probability for score

differences, no matter which normalization it uses, is approximately 0.95, which is consistent with

our theory in Section 4. However, the CI for the rank of the 10-th item is more conservative since

the rank must be an integer, so we see the empirical coverage of the confidence intervals for the rank

stays at one for all cases. In comparison, the confidence interval via Gao et al. [2021]’s method is even

more conservative as the empirical coverages of the confidence intervals for ✓ are already one and the

lengths of their confidence intervals are much wider than ours.

One-sided confidence intervals. Next we validate the testing performance of the test  m,K “
ItR˛

m ° Ku for (26). In this experiment, we choose K “ 10 in (26) and by default we would like to

use the normalization parameter p�mk in constructing R
˛
m as in (25). Consider m P tK´2, ¨ ¨ ¨ , K`5u.

We computed the proportion of rejection for each given m. If m § K the null hypothesis is true and

the proportion is approximately the sizes of the test, whereas if the alternative is true, the proportion is

approximately the power of the test. In addition, when the null holds, we also calculated the size of the
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Null holds: rm § K Alternative holds: rm ° K

m K ´ 2 K ´ 1 K K ` 1 K ` 2 K ` 3 K ` 4 K ` 5

✓˚
m ´ ✓˚

K 2{30 1{30 0 ´1{30 ´2{30 ´3{30 ´4{30 ´5{30

p “ 0.05 0 (0.036) 0 (0.038) 0 (0.050) 0.008 0.144 0.444 0.822 0.986

p “ 0.10 0 (0.043) 0 (0.045) 0 (0.054) 0.032 0.372 0.896 0.993 1

p “ 0.15 0 (0.042) 0 (0.038) 0 (0.046) 0.094 0.624 0.984 1 1

Table 2: Sizes and powers of the test  m,K “ ItR˛
m ° Ku for testing hypothesis in (26). The

numbers inside the bracket indicate the sizes of testing score differences as we discussed in the text.

The numbers outside the bracket represent the sizes or powers of directing testing the rank, which is

our goal here. All displayed numbers are averaged over 500 replications.

test Itmaxk‰m

?
Ltp✓k ´ p✓m ´ p✓˚

k ´ ✓˚
mqu{p�mk ° G

˝
1´↵u for the one-sided hypotheis testing problem

H0 : ✓˚
m ´ ✓˚

k • pk ´ mq{30 for all k ‰ m for testing score differences.

The results are presented in Table 2. We observe from this table that when the alternative holds and

true rank increases, the power of our test rise rapidly to 1. On the other hand, when the null hypothesis

holds, we control the test size around ↵ “ 0.05 if we are testing the score differences and the rank test

becomes more conservative and get size equal to zero, which can be a good feature in practice.

Uniform one-sided confidence intervals. In the candidate admission Example 3, to guarantee the

sure screening property, we need to build uniform one-sided coverage for all items, i.e. M “ rns.
Following Example 3, once we have the one-sided confidence interval for all items, the sure screening

set is given by pIK “ t1 § m § n : R˛
m § Ku. In this simulation, we choose K “ t5, 10, 15u. In

Table 3, we report the average length of pIK and empirical coverages of the confidence intervals for

score differences and for true top-K ranks over 500 replications. It turns out that in the simulation the

length of the sure screening confidence set is no more than K ` 4 even when the sampling probability

p is as small as 0.05 since the true scores are well-separated. Similar to what we have previously seen,

the rank empirical coverage probabilities “EC(r)” are again all one for K “ 5, 10, 15, indicating that
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EC(✓) EC(r) K “ 5 K “ 10 K “ 15

p “ 0.05 0.964 1.000 8.81 13.82 18.89

p “ 0.10 0.966 1.000 7.55 12.49 17.54

p “ 0.15 0.962 1.000 6.98 12.00 17.00

Table 3: Empirical coverages and lengths of sure screening confidence set for Example 3. “EC(✓)”

represents the empirical coverage of confidence intervals for score differences. Note EC(✓) does not

depend on K. “EC(r)” denotes the empirical coverage of the confidence intervals for true top K items.

For all K P t5, 10, 15u, we see ECprq “ 1, so we collapse them into just one column. Other numbers

are the lengths of the sure screening confidence set pIK . All displayed numbers are averaged over 500

replications.

the sure screening set is already conservative. Finally, since we use M “ rns, the empirical coverage

“EC(✓)” for score differences is independent of K. From Table 3, for different p, this coverage via the

Gaussian multiplier bootstrap is approximately 0.95 as expected.

5.3 Real Data Analysis

In this subsection, we analyze a real dataset to corroborate the practical effectiveness of our proposed

methodology and its associated theoretical guarantees. We choose to use the relatively simple Jester

Dataset [Goldberg et al., 2001] which contains ratings for 100 jokes from 73, 421 users and is available

on the website of https://goldberg.berkeley.edu/jester-data/. Among all the users, 14, 116 rated all 100

jokes. Our analyses are based upon these users who rated all jokes for simplicity.

Results with M “ 3. As for data generation, we first synthesize an uniform-hypergraph with edge

sampling probability p “ 0.05 and consider the setting M “ 3, namely, any 3 jokes are chosen for

comparisons with probability p “ 0.05. For any selected tuple, we randomly select L “ 80 rankings

from those 14, 116 users who ranked all jokes, and observe the top rankings for the selected tuple.

For CI construction, we follow our methodology discussed in Section 4. We construct both two-sided
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and one-sided 1 ´ ↵ confidence intervals for top-15 ranked items with ↵ “ 0.05. We summarize our

inference results in Table 4.

From Table 4, we observe that our bootstrap method using p�mk (TC1) or r⌘mk (TC2) does not make

too much difference. However, it is worth mentioning that our confidence intervals constructed using

either of these two normalization parameters are strictly better than the confidence interval constructed

via the Bonferroni method (TC3) of Gao et al. [2021]. Furthermore, we also build the one-sided

confidence intervals for each individual item, denotes as OC, and the uniform one-sided confidence

intervals for all items together, denoted as UOC, which is wider than OC due to the overall control.

OC can be used to conduct the hypothesis testing in (26). For example, if we care to test whether a joke

is within the top-3 funniest in this real data, we will reject the hypothesis from the 7-th ranked item.

If we test whether a joke is within the top-10 best, we will reject the hypothesis from the 12-th ranked

item. UOC can be used to generate the sure screening confidence set in Example 3. For example, a

set that contains all the top-5 jokes with high probability should include the first 9 jokes in total.

Results with different M ’s. According to our asymptotic distribution, the asymptotic variance is

of the order M{r
`
n´1
M´1

˘
pM s when we assume t✓iuiPrns are in the same order. Now we let M vary and

choose pM such that M{r
`
n´1
M´1

˘
pM s is a fixed number. Specifically, we fix p2 “ 0.3, we will have

the following tpMuMPt3,¨¨¨6u: p3 “ 9 ˆ 10´3, p4 “ 3.7 ˆ 10´4, p5 “ 1.9 ˆ 10´5, p6 “ 1.2 ˆ 10´6.

We summarize the two-sided confidence intervals for jokes with ID in t10, 30, 50, 70, 90u for each M

in Table 5. We observe from Table 5, when we increase M but keep the same M{
`
n´1
M´1

˘
pM , we still

obtain confidence intervals with comparable length for any given item. We also observe that it allows

a much smaller sampling probability pM when M is large to construct confidence intervals of the same

significance level.

As noted before, for each given sampling probability p, the effective number of samples is very

different for different M . Therefore, we compare the inference results only for the adjacent M and

M ` 1 with the same p, denoted as pM,M`1. Specifically, we pre-select 5 jokes and compute their

two-sided confidence intervals based on M -way and pM ` 1q-way comparisons with a fixed sampling

probability pM,M`1,M P t2, 3, 4, 5u. The results are presented in Table 6. We observe that for a

fixed pM,M`1, the two-sided confidence intervals with M ` 1 are much narrower than those with M .
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Moreover, for a given M , if we increase p, the lengths of confidence intervals also become much

smaller. Both of these conclusions are due to the increase of sample size in both scenarios.

6 Conclusion and Discussion

This paper studies the ranking inference problem based on multiway comparisons. Unlike the conven-

tional Plackett-Luce model [Plackett, 1975], which models the entire multiway rankings, we consid-

ered the more general case of only observing the top choices. Such a model serves as an extension

of the famous Bradley-Terry-Luce model and modifies the Plackett-Luce model in a useful and prac-

tical direction. Theoretically, under the sparsest uniform sampling regime, we proposed to estimate

the underlying preference scores via the MLE and established its optimal `2- and `8- statistical rates.

This closed the gap of achieving the optimal convergence with a practical algorithm under the sparest

comparison hypergraph. Moreover, little has been done to quantify the asymptotic uncertainty of an

estimator for the multiway comparisons. To our best knowledge, our work is the first to derive and

justify the asymptotic distribution of the MLE for the underlying preference scores in the top-choice

multiway comparison model. We should emphasize again that our theoretical contributions are highly

nontrivial as the justification for general M is quite mathematically involved. More importantly, we

proposed a novel inference framework for building confidence intervals for ranks, which are prov-

ably narrower than the confidence intervals with high-probability Bonferroni correction in Gao et al.

[2021]. This framework is valuable in solving outstanding inference questions, including testing top-K

placement and constructing sure screening confidence sets.

There are a few future directions to improve our work further. Firstly, we studied the ranking

problem based on a uniform comparison hypergraph. That is, each comparison is made among M

items. It would be interesting to consider the mixed-size choice set where one may observe different

numbers of items for each comparison. The Plackett-Luce model can be viewed as choosing the best

item from M items and then choosing the best from the remaining M ´ 1 items and so on. For general

mixed-size comparisons, some analyses need to be modified, and it is interesting to study whether

the ranking inference results in this paper can be generalized. Secondly, although the convergence
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optimality and asymptotic normality results require no assumption on the number of comparisons L,

when we studied the ranking inference in Section 4, we needed L to satisfy L Á polyplog nq in order to

establish the theoretical guarantee for the Gaussian multiplier bootstrap. It remains open whether we

can further relax the condition to L Á 1 or even allow L “ 1 to conduct effective ranking inferences.

Thirdly, it would be interesting to see if some covariate information can be added to the analysis.

In reality, the ranking is sometimes conducted together with item features or expert opinions. It is

another exciting topic to study how we may incorporate these pieces of additional information into

ranking inferences. Lastly, the time-varying effect of ranks may also be worth further investigation

regarding time series of ranks. Over time, we may see underlying scores jump to a different level.

Ranking inferences to detect the change point is another promising direction. Overall, we still see

many challenges in inference for ranks under various settings, which calls for more research on ranking

inference methodologies.
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Rank Joke ID Score TC1 TC2 TC3 OC UOC

1 89 0.89 [1,2] [1,2] [1,2] [1,100] [1,100]

2 50 0.85 [1,2] [1,2] [1,2] [1,100] [1,100]

3 27 0.73 [3,8] [3,8] [3,9] [3,100] [3,100]

4 36 0.69 [3,8] [3,8] [3,10] [3,100] [3,100]

5 35 0.69 [3,9] [3,9] [3,10] [3,100] [3,100]

6 29 0.67 [3,9] [3,9] [3,11] [3,100] [3,100]

7 32 0.67 [3,9] [3,9] [3,11] [4,100] [3,100]

8 62 0.66 [3,10] [3,10] [3,11] [4,100] [3,100]

9 54 0.64 [4,11] [5,11] [3,14] [5,100] [5,100]

10 53 0.60 [8,12] [8,12] [4,16] [9,100] [7,100]

11 49 0.57 [9,15] [9,15] [6,16] [10,100] [9,100]

12 68 0.54 [10,16] [10,16] [9,21] [11,100] [9,100]

13 72 0.52 [11,16] [11,16] [9,21] [11,100] [10,100]

14 66 0.52 [11,16] [11,16] [9,21] [11,100] [10,100]

15 69 0.51 [11,16] [11,16] [10,21] [11,100] [10,100]

Table 4: Confidence intervals for ranks of jokes in the Jester Dataset. The columns Rank, Score and

Joke ID denote the estimated rank, estimated MLE score and the corresponding joke IDs, respectively.

TC1, TC2 denote our bootstrap two-sided confidence intervals constructed using p�mk and r⌘mk (c0 “ 1)

as the normalization parameters. TC3 is constructed based on the Bonferroni method of Gao et al.

[2021]. Furthermore, OC represents the one-sided confidence intervals for each individual item and

UOC denotes the uniform one-sided confidence intervals for all items together, which are used to

generate the sure screening confidence set in Example 3.
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Joke ID M “ 2 M “ 3 M “ 4 M “ 5 M “ 6

10 [24,51] [23,50] [26,48] [21,45] [24,43]

30 [63,89] [78,94] [80,97] [79,95] [84,98]

50 [1,4] [1,4] [1,4] [1,4] [2,4]

70 [52,81] [63,79] [63,80] [67,81] [76,89]

90 [47,74] [40,66] [43,70] [41,68] [38,64]

Table 5: Two-sided confidence intervals constructed for jokes with ID in t10, 30, 50, 70, 90u. We

choose the sampling probability pM such that M{r
`
n´1
M´1

˘
pM s is a fixed constant for M P t2, ¨ ¨ ¨ 6u.

p2,3 “ 1 ˆ 10´1 p3,4 “ 3 ˆ 10´3 p4,5 “ 1.2 ˆ 10´4 p5,6 “ 6 ˆ 10´5

Joke ID M “ 2 M “ 3 M “ 3 M “ 4 M “ 4 M “ 5 M “ 5 M “ 6

10 [12,69] [33,39] [17,63] [28,45] [15,50] [29,36] [15,47] [27,36]

30 [54,98] [83,87] [66,99] [86,95] [78,99] [88,94] [78,99] [88,97]

50 [1,10] [1,2] [1,14] [2,4] [1,5] [2,2] [1,7] [2,2]

70 [45,92] [68,75] [50,90] [73,81] [51,87] [76, 79] [61,97] [77,80]

90 [32,88] [55,63] [40,84] [55,68] [35,77] [51,63] [31,72] [52,64]

Table 6: Two-sided confidence intervals constructed for jokes with ID in t10, 30, 50, 70, 90u. We

compare the confidence intervals for every two adjacent M under the same sampling probability.
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